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Eine obere Grenze für Stop-Loss-Prämien

Von B.Gagliardi und E. Straub, Zürich

1. Problemstellung und Resultat

Die Anzahl Ai der Schäden pro Jahr sei poissonverteilt, und der einzelne Scha-
den X nehme höchstens den Wert M an. Für den Gesamtschaden

a:

Z ^ X, (X,, A-ter Einzelschaden)
A 1

gilt demnach

£(z) Prob [Z ^ z] 2 e ' F** (z),
A: 0 ^ •

worin F** (z) die A-te Faltungspotenz der Einzelschadenverteilung

F (z) Prob [X < z] und also F** (z) 1 für z > A M

nach obiger Voraussetzung, denn die Summe von A beliebigen Einzelschäden
kann höchstens gleich dem A-fachen Maximalschadenbetrag sein.

Mit diesen Bezeichnungen berechnet sich die Bedarfsprämie für eine unbe-

grenzte Stop-Loss-Deckung nach einem Interventionspunkt u zu

£,, * (a) / (z-a) <ZF (z) £,, * (0) - / A (z) üz,
« 0

worin

£*, jç (0) A [Z] A [Ai] A [X]

mit A mittlere Schadenanzahl und m mittlerer Schadenbetrag
und

A (z) 1 — A (z) 2-l^F'Gz)
A= 0 ^

mit F** (z) 1 - F* (z).
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Nun lässt sich (a) bekanntlich in den wenigsten Fällen exakt berechnen,
und ausserdem sind die meisten der üblichen Approximationen recht aufwendig.
G. Zfc/Amnr/cr [1, 2] hat deshalb vorgeschlagen, die Variablen Ä' und ,Vdurch À'

und À zu ersetzen, wobei À eine bei M degenerierte Variable ist (man tut so,

als ob es nur Maximalschäden gäbe) und poissonverteilt mit Parameter /I
z — (es ist damit /IM Im, also hat der diskretisierte Prozess Z denselben

M
Erwartungswert wie Z). Die Berechnung der Stop-Loss-Prämie für die neue

Gesamtschadenvariable

das heisst, für a rM + ZmitO < Z < M (der Stop-Loss-Punkt liege zwischen

dem r- und (r + l)-fachen Maximalschaden) ist

Z V À,

wird dann wegen

sehr einfach, weil

£>.x- («) Z/77 - ; V Af-« /> (-) f/-
M /. __ n /\'

oder mit anderen Formeln

£>. * (ö) /IM/f (Z) - (rM + Z) G - i (Z)

- Z ''

mit G (Z) y, — <?
'

/^, A-!
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Damit wird also für die Bestimmung der so diskretisierten Stopp-Loss-Prämie
j? (a) lediglich eine Tabelle der kumulativen Poissonwahrscheinlichkeiten

benötigt.
Im folgenden wird gezeigt, dass diese Ersetzung «Z statt Z» stets eine obere
Schranke für die richtige Stopp-Loss-Prämie liefert, das heisst, dass

à (a) > Wr, a- h') für alle a > 0.

Es ist uns nicht gelungen, einen kürzeren und weniger anspruchsvollen Beweis
als den vorliegenden zu finden. Trotzdem gibt es vermutlich eine direktere
Methode. - Sachdienliche Mitteilungen seitens der Leser sind erbeten an die
Autoren oder die Redaktion der «Mitteilungen»!*

2. Vorbereitungen für den Beweis

Wir werden die folgenden zwei Lemmata benützen:

Lemma 1

Vor.: F,, Fj, G seien Verteilungsfunktionen auf der nicht-negativen Zahlen-
geraden.

Für alle a > 0 gelte ausserdem

j F, (z) dz > / F2 (z) dz.
0 0

Beh. :

Für alle a > 0 gilt

/ F, * G (z) dz > / Fj * G (z) dz,
0 0

wobei * die Faltungsoperation bedeutet.

Beweis:
„ „

/ F, * G (z) dz / dz / Fi (z-y) dG (y) -
0 0 0

/ dG O) / F, (z-y) dz / dG 0) / Fi (C) d£ >
0 V 0 0

* Für eine erste solche Reaktion siehe unter «Kurzmitteilungen» in diesem Heft.
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j (y) / F (C) JC / 0') / F (-->') ^
o 0 0 V

j Hz J F (z-v) 2/6 (v) / is * G (z) <7z.

Hieraus folgt unmittelbar das

Korollar :

F G„ ; 1,2 seien Verteilungsfunktionen mit Gesamtmasse auf den nicht'

negativen Zahlen, und es gelte für alle « > 0

/ F) (z) Hz > / F (z) Hz, [ G, (z) Hz > J' G2 (z) Hz.
0 0 0 0

Dann ist auch

f F, * G, (z) Hz > / F * Go (z) Hz für alle u > 0.
0 0

Lemma 2

Beh. : 77 (H,, a) < /7 (H,, 2/) für H, > HoUnd77(H,a)
H/17

Bew. : Es ist

77 (Hu)
HA7

HA/F,,,.,, (H) - uHMP [n.i] * 1 (H)

[u.l] /J" [<7,11-1 /f"
1 -a + Fy V —Irf

I ,fF, »! «!'

wobei [uH] grösste ganze Zahl < uH.
Für [o • H] 0 gilt

77 (H, a) 1 - u + e
' u.

Aus obigen Formeln sieht man, dass 77 (H, a) in H stetig und an den Stellen

H differenzierbar ist, für die H • u keine ganze Zahl ist.
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Für den Beweis genügt es, zu zeigen, dass

<777 (/l, a) I

I -> 0 ist, für ß-c ^ ganze Zahl.
M l/l=C

[ß-c] > 0

<777 04, ß)

<74 /I c
• c

'
• ([ßc]-ßc) < 0

[a • c]

[<7 c] 0

<777 (/l, ß)
<7/1 /( c

e ' • ß < 0.

3. Beweis durch Induktion nach «

Mit « bezeichnen wir die Anzahl Werte, welche die Einzelschadenvariable X
im Intervall (0, M] annimmt.

Als Induktionsverankerung setzen wir « 1 und benutzen Lemma 2. Sei also
A X M mit Wahrscheinlichkeit 1 und somit

Induktionsvoraussetzung: Die Behauptung gelte auch für alle (« - 1)-wertigen
Variablen X.

Für den Schritt von « - 1 nach « betrachten wir nun eine Einzelschadenvariable
X, welche die « Werte y„ 0 < v, < 47, z 1,2, « mit den Wahrscheinlich-

keiten annimmt. Wir schreiben g„ i für V /;, und definieren eine (« - 1)-

£*.*(«) 2X77(2,^-) /1M77 (2,
/A 2M

< Z1M77U,—
2M

:) x- (ß) für X 2 —.
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sowie eine degenerierte Variable V, welche den Wert y„ mit Wahrscheinlichkeit
1 annimmt. Damit lässt sich Vwie folgt als Mischung von V" ' und V" schreiben:

Prob [V z] =—-Prob [V" ' z] + —Prob [V z]
A A

mit A, Ag„ i, /U t>„A und also Ai + A2 A.

Nun ist aber bei zusammengesetzt poissonverteilten Variablen eine Mischung
der Einzelschäden dasselbe wie die Addition der entsprechenden Gesamt-

schadenvariablen (leicht nachzuweisen mit Hilfe der charakteristischen Funk-

tionen), also

2 Xk z z, + z, V Xt' + 2
A I k I km

worin z der Gesamtschaden mit der n-wertigen Einzelschadenvariablen J
und £[/£] A,

Z, der Gesamtschaden mit der (n-1 )-wertigen Einzelschadenvariablen
V" ' und [AT,] A, und

Zj der Gesamtschaden mit der bei degenerierten Einzelschadenvaria-
bien V" und £ [/sG] A,.

Weiter gilt auf Grund obiger Induktionsverankerung und -Voraussetzung

£.V". À*2 (Ö) ^f.v. ÄS (v)

mit £[.fc] /L An-^:

und £>, y*, (a) < s'] (a)

mit is [X|] H, ^ - 2 VA^ 1 r 1

und wieder À M mit Wahrscheinlichkeit 1,

woraus unter Benutzung des Korollars von Lemma 1 die Behauptung a W
< * (n) für jede Einzelschadenversicherung mit endlich - aber beliebig -
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vielen Werten folgt. (Die Verallgemeinerung des Beweises auf kontinuierliche
Verteilungen geschieht am besten indirekt unter Benutzung der Tatsache, dass

jede kontinuierliche Verteilung beliebig gut durch eine diskrete angenähert wer-
den kann.)
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Zusammenfassung

Ersetzt man eine zusammengesetzte Poisson-verteilte Gesamtschadenvariable durch eine solche
mit degeneriert verteiltem Einzelschaden, so werden Stop-Loss-Prämien leicht berechenbar und
bilden zudem eine obere Schranke für die zum ursprünglichen Gesamtschaden gehörigen Stop-
Loss-Prämien.

Summary

If an integrated Poisson-distributed overall loss variable is replaced by one with degenerate
distributed individ ual loss, it becomes easy to calculate stop loss premiums which, in addition, form
an upper limit for the stop loss premiums belonging to the original overall loss.

Résumé

Si l'on remplace une variable de sinistre global, composée, répartie selon Poisson, par une variable
dégénérant en sinistres individuels les primes stop loss deviennent facilement calculables et
constituent un plafond pour les primes stop loss afférentes au sinistre global primitif.

Riassunto

Sostituendo una variabile che rappresenta un sinistro totale e che segue la distribuzione di Poisson

composta mediante una variabile con un sinistro individuale a distribuzione degenerata si possono
calcolare facilmente i premi dello stop loss; questi ultimi costituiscono inoltre un limite superiore
dei premi corrispondenti al sinistro totale originario.
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