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Exact Multidimensional Credibility

By William S. Jewell

University of California, Berkeley

Introduction

Credibility theory is the name given by American actuaries to a linearized
Bayesian forecast of the mean observation. In modern notation, let & be a
discrete or continuous random variable (the risk), depending upon a parameter
0 (the risk parameter) through a likelihood density p (- | 0); a prior density u(0)
isassumed known. If n independent risk samples, x = {f, =x,;t=1,2,..., n}
(the experience data), are drawn, then the Bayesian forecast of the mean risk
next period (the experience-rated fair premium) 1s just the conditional mean:

) ) Il px10)
E{énﬂ ‘1} ~-[/yp(YI‘9) ¥ /]jjlp(xfi@)u(@)d@

u(0)do. (1)

Practically speaking, this expression can only be evaluated with the aid of a
computer, or by using natural conjugate prior families [4] [8] of likelithood and
prior to carry out the updating.

Based on practical arguments, American actuaries in the 1920’s proposed
forecasting the mean risk through the credibility formula:

n

E{éi | x)=fl) = (1-2) m+2Z(+ D x). @)

n =1

=




194

Here,m = E;m(0) = E, E{& | 6 }is the prior mean (the manual fair premium),
and N is a time constant chosen heuristically. Z is called the credibility factor,
which increases to unity with increasing data. The interesting feature of (2),
as contrasted with (1), is the linear dependence of f(x) on the data, through
the sample mean %Ex, . The credibility method of experience rating has worked
well in the insurance industry for over 40 years.

In the 1950’s, Bailey and Mayerson showed that (2) was, in fact, the exact
Bayesian result (1) for the Beta-Binomial, Gamma-Poisson, and Normal-Nor-
mal conjugate prior likelihood families. Bithlmann then showed, in 1967, that
f(x) was the minimum least-squares linear estimator for arbitrary priors and
likelihood provided that N = E, V{& | 0}/ V,E{¢ | 0}. A fuller historical
discussion may be found in [7].

In [8], the author showed that f(x) was also exact for the simple (or linear)
exponential family (with natural parameterization):

a(x)e ™

0) = —" —, (x€X 3
p(x|0) (0 (x € X) 3)

provided that the natural conjugate prior,
u(@) o [c@] e ", (O€O) 4

is used over the complete parameter space @ , and that u(9) - 0 at both ends
of the range [9]. It turns out that the hyperparameter #, is the time constant
N of Bithlmann, while x, = m - N [8]. Credibility also holds, in an extended
sense, for exponential families with different sufficient statistics.

Multidimensional Credibility

There are many applications in which Bayesian analysis of more than one
random variable is of interest. For instance, in the collective risk model of
casualty insurance, forecasts are needed of the moments of the three dependent
random variables {number of claims; total cost of claims; average per-claim
cost}.

In the sequel, we shall use certain lower case letters (such as &, x, 0) as
column vectors. Upper case letters without subscript (X, &, N, E, D) arc
matrices, with & _, being the vector which is the " column of =, etc. [3].
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Now consider a multivariate extension to (1), in which there is a p-dimensional
risk variable £ and an p x n data matrix & = X, or{¢, = x,;i = 1,2, ...,
p;t=12, ..., n}, of n independent vector samples, given 0, a vector-
valued risk parameter. Define the indexed vectors £, = Z_,and x, = X _,. An
obvious modification to (1) will give the multidimensional forecast of a
selected component s, E{&, ., | X } of the next observation, or a vector
forecast E{&,., | X }. In [7], the author gives the multidimensional credibility
(linear least-squares) result corresponding to (2). Let:

m;(0) = E{ér I 0} s my = Eym;(0)
Ci(0) = C{&: &1 035 Ey = E,Ci(0) (6, = 1,2, ..., p) (5)
D, = Co{m (6) ;m(6)})

and let m (6), m, C(A), E, and D be the corresponding vector and matrix
quantities. (Here, as in the rest of the paper, we assume all indicated
moments exist.) £ and D being covariance matrices, they must be symmetric
and non-negative definite. We shall additionally require D to be positive
definite, so that D! exists (see [3], page 106); otherwise, with probability

one m (0) lies in some hyperplane for all #, and at least one dimension of the
forecast problem is uninteresting.

Now define the square matrices N, Z:
N =ED', Z(E+nD) = nD. (6)

From the results given in [7], one can then show that the vector forecast
function f(X) = E{Z ., | X }is given by the following generalization of (2):

FX) = (I- Zym + Z% 7

Where [ is the identity matrix, and ¥ is the vector of sample means. The
credibility matrix Z satisfies formulae analogous to the one-dimensional result:

Z = n(l +#ls (I—2) —%(ZN) =%(NZ). ®)
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If the eigenvalues of N are {v,}, then those of Z are {n/(n + v)}; one can
show that in the nondegenerate case lim Z = /. In other words, in the
multidimensional case, the initial forecast (no data) is the prior mean m;
successive forecasts utilize linear mixtures of al/l sample means in varying
proportions, but then, ultimately, each component of the risk is estimated
only through its own sample mean, as n — oo . Specific examples are given
in [7].

The purpose of this paper is to show in what sense the multidimensional
credibility formula (7) is exact, that is, to find the multidimensional families
for which the Bayesian conditional mean is linear in the data X. Contrary
to expectations, it will turn out that the simple one-dimensional credibility
formula holds for each dimension of many multivariate distributions and a
“natural” conjugate prior. In order to require the full multidimensional
generalization (7), we shall have to consider special likelihood families, and
enrich the associated priors.

Multidimensional Exponential Family

The linear multivariate exponential family with natural parameterization 6 has
a likelihood density:

~@x
plx| 0y =29 ey )
c(0)
The normalization factor, ¢ (), is determined by
c(0) = fff a(xye "dx (0 €0), (10)
reX

and the complete parameter space @ consists of all points in R” for which (10)
is finite; @ is known to be convex. Studies of distributions in this family
have been carried out by Bildikar and Patil [2] (see also [10]); it includes,
for example, the multinational with known precision. It is also known that
this is the only family which, subject to certain regularity conditions and a
sample space X independent of 0 has the sample mean vextor X as a sufficient
statistic [4]. The family is characterized by certain relationships between ifs
moments [2]
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~ac(0) 0% c(0)
P — 00, . C,(0) — 00, 00,  om,(0) _  9m,(0) (1)
c(0) c(0) 30, 30,

Credibility for a Simple Prior

Natural conjugate priors for specific multivariate distributions have been
developed by several authors [1][10]; however, there seems to be no discussion

in the literature of priors conjugate to (9). Following (4), we shall first assume
the (scalar function) prior:

u(0) o [c(@)] e " 0€6 (12)

where the scalar n, and the vector x, = {x,;i = 1,2, ..., p »are hyperpara-
meters. Since the likelihood of n independent vector samples X governed by

(9) is proportional to [¢(¢)] " exp { Z 0, Z ,,}, it follows that the prior

i=1 t =1
(12) is closed under sampling, i.e., u(6 | X) is of the same form as (12), with
the hyperparameters updated by:

ny< ny+n
n 13)
)CO S xo + S‘ X; - (
=

1

Following the method used in [8], we assume that u () = 0 everywhere on the

boundary of @ to relate n, and x, to moments of the mixed density through
(5)and (11). First

au(6)

88 o« [no’mf(g)*xfo]'“(g), (l: 1721"':[)) (14)

fff a%g)) d0 = ny - E;m. (0) - x,.
2] i

But, by definition of @, the first integral is zero, so that

o that

m, = E,m,(0) =0, (15)

Hy
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Further,
2
SUON |y €y (0) + g, (0) — xo) (o, (0) — xp) (@), (16)
a0, 80,
: 0°u -
and under the assumption that ff df =0 we find
5 00, 00,
E;, = E,C;(0) = n Cg{m,-(()); m_,-(())} = nyD; (17

foralli,j. Thus N is a diagonal matrix, n,/.
Since E{&, ., X }=E, ym (). it follows from (13) and (15) that

i

by ,
. ‘ x,\‘() + jé-i ‘X.S'[ - m n ]
E{C,y,m 1 i X } = : =T kel (4

ny +n ny +n ny tn\n,

ﬁ! ‘{) C8)

Thus, with (12) as natural conjugate prior, we reach the embarrassing con-
clusion that there is only a single time constant n, operating in the multi-
variate case, Z 1s a diagonal matrix with entries n/(n, + n), and each component
is predicted by a one-dimensional credibility formula (2)! We shall refer to this
degenerate result as a self-dimensional credibility forecast.

The condition u(f) = 0 on the boundary of @ is satisfied in most problems
of practical interest, and is, fortunately, easily checked. An examination of this
condition in the one-dimensional case may be found in [9].

Enriched Priors for Linearly Dependent Exponential Families

Inorderto require fullmultidimensional credibility, additional hy perparameters
and functions of & must be used to enrich the prior; however, these functions
must be chosen in a special way so as to obtain a linear mixture of means.

A clue to the correct enrichment can be gotten by imagining first that there
was a vector of independent risks n, with a vector of natural parameters @, all
of whose marginal distributions were in the exponential family. The joint density
of n = y, analogous to (9), would be of the form:

2ol = %’2;) Ld(@) = [e by, (= 1,...p) (1)
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for appropriate functions 5,(-) and d,(-). Here y, and &, are components
of y and @, respectively. Because of the assumed independence, the overall
normalization d (@) is a product of normalization factors.

An appropriate conjugate prior, v(®), would also be a product of individual

priors: ‘
V(@) [T |d ()] e " (20)

but with hyperparameters n, and y, = {ym; i=1,2,..., p}for each com-
ponent. Once again, the argument leading to (15) would give independent
credibility forecasts for each component, with the difference that each com-
ponent, #,, would have its own time constant, n,,. Or in vector terminology,
(7) applies with N a special diagonal matrix N,:

N, = diag {nm, B cuss n,,o}. (21)

Now consider again the general multivariate exponential-type density (9),
and suppose there exists an invertible linear transformation, defined by a
square matrix 4 and a vector k, that

E=dAn+k [A[F0 (22)

causes a(Ay + k) to factor into the product of independent: components b,(y,)
in each variable y, (i = 1, 2, ..., p). We will call such a likelihood a linearly-
dependent multivariate exponential family (LDMEF) distribution.

Defining the vector of parameters € by

b =40, (23)
and using definition (19) of the d.(-), the normalization factor c¢(f)) can be

decomposed into:

i=1 h

c(0) = Hd (E HhA,r) . o kb (24)

Where 4, and k; are the elements of 4 and k, respectively. Then in place of
(12), we define the enriched prior for the LDMEF family as:

=1

u® < J] dl-(g OhAhf)] — 25)
h
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[Note that the translation factors k&, which effect the factorization of a(x) can
be absorbed into the definition of the x; in the prior; for the most part, we
shall neglect k& in the sequel.] The parameter updating becomes:

Ny, < N, + nl; x, < x, + Z X, =x,+tnX. (26)
=]

Theorem .

If p(x | 0) belongs to the linearly-dependent multivariate exponential family
(LDMEF) as defined above, and the enriched natural conjugate prior (25)
is used with hyperparameters n, > 0 (i = 1, 2, ..., p), the full multi-
dimensional credible forecast (7), (8) is used to predict E{&,., | X } = f(X) with:

N = AN,A-' = ED'. (27)

Add: providing that u(0)and du(0)/ 90 one zero everywhere on the boundary
of @.

Proof:
Neglect k, and assume x = Ay factors a(x) into 77h, (y,). Directly from the
enriched prior (25):

~ dd (D)
) _ Ao, | ‘ -
gg;u(()) ;Aﬂﬂok e Xp |l u(@® (G=1,2,...,p). (28)

Now from (19), the term in parentheses is just E{n,, | @}, and E{¢ | 0} =
m(0) = A E{n | ®}. Using definition (21) of N,, we rewrite (28) in vector
notation as:

a_ag.u(e):[A-No-Al-m(e)xo]-u(e). (29)

Since we assume u(6) = 0 everywhere on the boundary of @ [see (14), (15)],
the expectation of the term in brackets vanishes, and

N-m=x,, (30)

with N defined by (27), and updated by (26).
Using (11), the matrix of second derivatives of u (0) is [see (16), (17)]:
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2
820’ u(0) = {ﬂN- C0) + [N-m(0) - x) [N-m(0) — x;]' } ~u(0) (31)
and under the assumption that the various gradients of u(f) are zero every-

where on the boundary of @, the expectation of the term in braces vanishes,
and from (5):

N-E=C{N-m@)}=N-D-N'. (32)

Now E and D are symmetric, so £ = ND. Since D ' is assumed to exist,
N=ED".

The desired forecast is f(X) = E, ym(0), so from the updating (26) and
from (29):

E, x|A(N° + nDA 'm(0) - (x, + nf)] = i

or

(N + nh)f(X) = N-m + nXx,

which is the multidimensional forecast (7), (8). Q.E.D.

The key point to requiring full credibility is the factorization of a(x) [and
hence ¢(0)] after a linear transformation of variables. If such a transforma-
tion only factors out less than p mutually independent random variables 7, ,
then this limits the amount of enrichment possible in the prior, leading to a
degenerate form of N . Details are left to the reader.

Multinormal with Random Mean and Known Precision

As an example, consider the nonsingular p-dimensional multivariate normal
with unknown mean vector 1, and a known (symmetric) precision matrix W
(covariance W), In the usual notation, the likelihood is:

P

i =) e Le-wwe-w) 6
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This is clearly in the exponential family, with & = — Wy, and normalizing factor

) = (2n)3; W zl'exp{% 0w 15}_ (34)

If we take the simple conjugate prior (12), we would have:
. Ly -3
u () « exp ~3 0 (ngW-110-x40 ., (35)

or upon completing the square and returning to a traditional notation

u(p) o exp {— % (,u - (i)\a (W) <,u - (}%)x(])} , (36)

that is, a multinormal with mean (ni)xu and precision n, W .
0

Since the mean and covariance of the likelihood are:
mp) = p; Clpw) = W,
it follows that

7 = (i>x0; E=EC()=W"'D=@mW)'.

"y
Thus, we get
N=ED"';x,=N-m,
only with N = ny/, i.e., the one-time-constant credibility forecast (18) holds.

Enriching the prior amounts to replacing n,# ! in (35) by NW~'. The new
prior is then:

u(p) o« exp{-% (,u— N 1,@' (WN) (uN‘xo>} (37)
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i.e., a multinormal with mean N 'x, and precision WN . Clearly,

m= Nlx;; E=W1',D=(WN)!

so that x, = N-m; N is not an arbitrary matrix of hyperparameters, but
must satisfy N = ED ', where £ and D are the symmetric matrices of prior
mean covariance and covariance of the means, respectively.

The reader may easily verify that the updating of the prior is governed by
(26), so that the full multidimensional forecast (7) (8) applies. As a by-product,
the posterior distribution of x is multinormal, with a mean given by the same
credibility formula, and with updated precision (N + nl)W = D' + nE!
= D' (I + nN-"). The latter results are well known (see, for example, [4],
page 175).

Credible Means for the General Multiexponential Family

In principle, there is no difficulty extending the above arguments to generalized
multiexponential families of the form:

px|6) = 22 e"pc((;)”’f Ol e (38)

by following the approachgivenin[8] . Here, the various functions f (x) ={ fi(x);
i=12, ..., p} are sufficient statistics, and credibility updates their mean
values.

The normalization is, as usual,

c(0) = f a(x) exp (—O’f(x)) dx (39)

for 0 in the natural parameter space @ for which (39) is finite.
Generalized mean vectors

m(0) = E;of 0) = -2 In c(0) (40)
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and covariance matrices

o TR 9’
CO) = Cou{f(O) = + arln (@),

as defined in the obvious manner, and assumed to exist.
If the simple natural conjugate prior

u(0) = [c(é))] L exp (—2_/’; 0)
is assumed, we get self-dimensional forecasts in the form

for + 22/, (%)

ny +n

E{f,(&. )| X} =

2

in an obvious analogy to (18) above and to (36) in [8].

(41)

(42)

Clearly one could get various enrichments of (36) in special cases where the
/:(x) factored under various lincar transformations of x, and thus get a multi-
dimensional credibility forecast. Rather than attempting to extend the theory
any more, we must examine special cases where this factorization is possible.

Multinormal with Random Mean and Precision

Simple Prior

If we now consider the p-dimensional multinormal in which the precision
matrix o is also random (and symmetric with probability 1), the likelihood

1S

b —

ot 1) = (2 o

exo{- sy -,

(44)

This is in the generalized multiexponential family, sometimes called the

quadratic exponential family,
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a(x) exp{— 0" x — % x’wx}

x| 0,w) = 45
P G} (0, ) )
if we make the identification 6 = — wu, a(x)=1, and
L 1 1
c(0,w) = (27I)Z;wE 2exp{z 0’0)"]0}. (46)

We extend the idea of a simple natural conjugate prior (12) by adding a
symmetric matrix @, = {Qy: 6,/ = 1,2, ..., p} 0f~2~ p(p + 1) hyperpara-
meters (for the random variables w) to the usual p + | hyperparameters n,
and x,:

u(@.0) x| c0.0)| exp{- 0% (@0} (47)

The Jacobian of the transformation is | w |, so in traditional notation

‘1 ng + 1 1
u(o) o (02" P exp{ L no)u+ wox- 1 (@0))  @9)

which can be seen to be a Normal-Wishart distribution by factoring u(u, w)
into u(u | @) - u(w).

For the conditional distribution of the mean, we take:

u(p | ) < o [% exp{—; (ﬂ-%)(”ow) (ﬂ):l_ol))} (49)

that is, a multinormal distribution, with mean vector x,/n, and precision
matrix nyw .

This leaves, after some algebra,

u(w) o |w \%("M 9 exp {—% tr (a)Uo)}, (50)
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where
Up = Qo — (xox¢' /1) (51)

which can be recognized as a Wishart distribution with a = n, +p +2
degrees of freedom, and precision-parameter matrix U, . For future reference,
the covariance of the likelihood, 2 = w', has mean [10]:

E{w'} = #—TUO = Uy/(n, + 1). (52)

Formulae for the covariance of the covariance are also available [12].
The marginal distribution of u, after some algebra (see, e.g., [4]), is then:

u(p) oo '1 + (ﬂ“{Q‘)’ U(il( _fc_o)
: gy g

which is a multivariate Student-t distribution, with f = n, + 3 degrees of

freedom, location vector x,/nm,, and precision-parameter matrix 1T =
ny(ny + 3)Uy' . For future reference:

E{/l} = Xo/My, (54)

Cluy = 7257 = Ulmo (o + 1. (59

In this case, we can also get an explicit form for the mixed (predictive)
density, p(x) = f p(x | u, w)u(u, w)dudo, by retracing some of the above
steps, as in pp. 178-180 of [4]. We find that an arbitrary vector & (no data)
is distributed as multivariate Student-t, with f = n, + 3 degrees of freedom,
location vector x,/m,, and precision-parameter matrix 7 = n,(ny +3)
(n, + 1) 'U,"'. Updating of the parameters can be shown to follow:

1
;2(}10 +p+3)

(53)

>

Ny<ny + n (56)
X< Xy - S %x; (57)
0 < Xo tZI

Q)< Oy + 3 %, x;. (58)
{ |
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The relationship with the moments defined in (5) is then:

m = X,/n,, (59)
E = U,/(n, + 1), (60)
D = Uy/ny(ny + 1), (61)

so that, as expected, the Normal-Wishart prior (48) is of the simple type,
with N = n,/, giving a self-dimensional forecast (18) of the mean.

Since C{¢&} = D+ E = U,/n,, it follows that a simple forecast of the
covariance can also be given:

Can Xy =1-2c@+ 215 D% | ©)
+Z(1-Z)(m-X)(m-Xx)",

where, of course, Z is a scalar, equal to n/(n, + n). This should be compared
with Equation (41) of [8].

The prior (48) was discovered by Ando and Kaufman [1], and its “thinness”
seems to be well known in the literature. The usual criticism is that one
cannotsetboththemeansandcovariancesofbothuand X = o lindependently.
From our point of view, the limitation is that £ = n,D, so that the two
covariance components of observations from the collective cannot be chosen
independently.

Actually, the prior of Ando and Kaufman is slightly more general than (48),
being multiplied by an additional factor

2

@ ‘%(w—mno—m

with ¢ arbitrary, but greater than p — 1. Thus, their joint prior begins with
a term

B —

15 le-p)
| o | .

This leads to the following changes in the marginal priors, as described above:
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u(u | w) — no change;

u(w) — a degrees of freedom;

u(p) — = a-p+ 1 degrees of freedom, and precision-parameter matrix
T=n(a-p+1)U';

p(x) — f = a-p + 1 degrees of freedom, and precision-parameter matrix

T=mn(a-p+ 1)+ 1)y 'Us'.
This changes (60) and (61) to:
E=U/(ea-p+1) (60")
D=U/n(a—p+1), (61

but clearly does not affect the updating, the forecasting, or the fact that
E = nyD . In this sense, ais an invariant nuisance hyperparameter which only
scales the variance of the observations, independent of the mean.

In some unpublished work [11] [12], Kaufmann further enriches this prior by
multiplying the Wishart distribution u(w) by arbitrary powers of the products
of determinants of principal minors of @, thus introducing p — 1 additional
hyperparameters, and eliminating some of the objections to the Ando-
Kaufman prior. However, the formulae are quite complicated, and do not
appear relevant to the credibility problem.

Enriched Prior

To obtain a more general multinormal prior which will require full credibility,
we follow a previous argument, and start with a vector of independent risks 1,
distributed as a (degenerate) multinormal, with mean vector 4 = (4, 4y, .-
4,)", and a diagonal precision matrix 7 = diag {nl, Mgy »vex My} The joint
density of # = y can be expressed as a product of independent one-dimensional
normals, or as:

Py Am)x n%exp{—%qagz)'n@—z)} (63)

remembering the diagonal form of 7, and not confusing it with 3.14159 ...-
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For each component i = 1, 2, ..., p, we take a one-dimensional prior
distribution of the type suggested by (20) and (48):

] 3
v, (4;, m;) o« (nf) 30HD) eXp {‘; A (ngm) + Ay ”% R[Oni} (64)

where there are three hyperparameters {n,, y,, Ry} for each dimension,
This is clearly a one dimensional Normal-Gamma, or Normal-Chi Squared [8],
and the marginals and moments follow from the last section using 1, instead
of ny, v, instead of x,, R, instead of Q,, and p = 1. Each #, is predicted

independently by a credibility formula with different time constant n,, .

- ; . P \ ‘ i . ;
The joint density v(4, ) = H v;(4;, m;) can be written in matrix form as:

=1

P

1 e Ny ,
sGomy o | 1T (z2"07)| exp {~37 @) 2+ 2 mpo= 2 tr (2R} .(65)

N, is given in (21), R, = diag {Ry, Ry ..., Ry}, and yy = (yig, ¥y - -
V)

We then obtain a general linearly-dependent multinormal by transforming
the random variables as follows:

"

x=Ay; u=A4i;, o' = An'4A", (66)

where 4 is an invertible p X p matrix, otherwise arbitrary. x4 and o are
now the vector mean and matrix precision of &, with likelihood (44) .
Changing the prior (65) to the variables (u, @) can be most easily accomplished
by defining new hyperparameters:

Xo = Ayy; N = ANA"; Qp = ARA" . (67)
The first two relations are those of the section on LDMEF distributions; the

last transformation follows from the identity tr(A4'B) = tr (BA ).
The enriched multinormal prior is then:

“(/d,oo)oc[H(ZA,,a),kAk)z("“’ ")] exp{w—[/.z (wN)u] +w wx0—~rr(on)} (68)
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which, when compared with (48), has a generalized product term in front, and
a precision factor wN in place of nyw. We shall call this prior the linearly-
dependent Normal-Wishart (LDNW) distribution.

The factorization can be carried out as before, using the easily proven identities
u' Av = tr (Avu’") (u, v arbitrary vectors), and oN = N’ o' . We get:

ulp | w) < ol 5exp{—é(,u—]\“)c()) ((uN)(,ueN 'x(,)} (69)

and

/ l nin + N
u(w) oc [H(Z A‘,-,rco,-kA,\.,) 200 1)] exXp {; tr (@ Uo)} (70)
"\ ok :

where now
Us = Qo= (N ') = AV’ ()
and V, is the diagonal matrix

Vo = Ry—yoyoNy ' (72)

The conditional distribution of the mean vector, given w, is thus multinormal,
with mean vector N 'x,, and precision matrix wN .

The marginal distribution of the precision (70) is a new generalization of a
Wishart distribution obtained by a linear mixture of one-dimensional Gamma
or Chi Squared distributions, each with a different degree of freedom. We
shall call (70) the linearly-dependent Wishart (LDW) distribution. Because of
the third relation (66), the expected covariance has simple form:

E{w"} = (N+1)'U,. (73)
To obtain the marginal distribution of the mean vector, one begins with the

individual Student-7 distributions, with different degrees of freedom for each
dimension:

b o {1+ (i Vi) Ui~ o) B 2 (74

and then mixes the product of these marginals according to u = AA. It seems
difficult to get the resulting distribution into matrix form because of the
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different exponents. The moments, however, follow easily from the definitions:
E{)} = N-'x, (75)
C{Ay=(N+D)'N''Uy = N'(N+I)'Uj,. (76)

For completeness, we could call this a linearly-dependent Student-t (LDST)
distribution. Generalizations of this and more complicated types have been
studied in conjunction with multivariate analysis; see, for example, [5].

By reasoning similar to that described in the last section, the predictive
density for the vector & is also LDST, with a density similar to that which
will be obtained from (74) by mixing, but with n, / V, replaced by n  /
(ni(] + 1 Vm)'

From the above, we then see that moments of ¢ with the extended LDNW
prior (68) will be:

m = Nx, (77
E=N+D'U, (78)
D=N'"N+ DU, (79)

from which we see that E = ND, and the general credibility forecast (7)
of the mean will be exact, since the updating will follow

N<« N+nl (80)

and (57) (58).

Since C{&} = N 'U,, the general credibility forecast of the covariance can
be gotten from examining the updating of the hyperparameters. After some
algebra, and liberal use of symmetry, we find

Clern |3} = U-2)CEE+ 2| 3 (5= (=)
o | (81)
+(I-Z)(m-%)(@-%) Z’

where now Z is the general credibility matrix function (8).
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We believe that the enriched LDNW prior (68) is a new multinormal prior,
and has not been given before in the literature. It clearly answers many of the
objections to the Ando and Kaufman prior, having a total of 3p + p?
independent hyperparameters. Although the marginals cannot be written in
neat matrix form, the moments are trivially obtained through linear trans-
formations. It can, of course, be slightly generalized by making the degrees
of freedom of the LDW distributions into general values a;; we leave the
details to the reader.

Summary

What we have attempted to show in this paper is that exact credibility can be required in the
multidimensional case only in certain special cases. This is because, for the multidimensional
exponential family of likelihoods, it is difficult to construct a conjugate prior which is rich enough
to specify both components E and D of the collective covariance independently. In certain cases,
such as the LDMEF family and the multinormal, full-dimensional credibility can be exact because
the prior can be enriched because certain factorizations are possible. In other cases, one will either
have toaccept the limitations of the simple prior, develop special formulae for the prior of interest,
or else use multidimensional credibility as an approximation. then valid for any prior.
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Zusammenfassung

In einer fritheren Arbeit wurde die Exaktheit von Credibilityformeln bewiesen fiir eindimensionale
Versicherungen der Exponentialfamilie und dazugehorige konjugierte A-priori-Verteilungen. Die
vorliegende Arbeit befasst sich mit dem mehrdimensionalen Fall und den Bedingungen, unter
welchen die {ibliche Credibilityformel gleich dem exakten A posteriori-Erwartungswert ist. Nimmt
man mehrdimensionale Exponentialverteilungen und deren einfachste Konjugierte als Struktur-
funktionen, so ist der zugehorige A posteriori-Erwartungswert zwar linear, aber trivial, indem nur
Beobachtungen der zu schitzenden Komponente in der Schatzfunktion vorkommen. Sind dagegen
in einem praktisch wichtigen Spezialfall auch gewisse allgemeinere a priori Verteilungen zugelas-
sen, so erhdlt man echte mehrdimensionale Credibilityformeln. Dasselbe Vorgehen liefert auch
neue verallgemeinerte konjugierte Verteilungen zur mehrdimensionalen Normalverteilung mit
unbekanntem Mittelwert und unbekannter Streuung.

Résumeé

Dansun travail antérieur, il a été démontré I’exactitude de formules de crédibilit‘é en ce quiconcerne
les distributions & une dimension de la famille des exponentielles et les distributions a priori
conjuguées qui s’y rapportent. La présente étude traite du cas a plusieurs dimensions et des
conditions dans lesquelles la formule habituelle de crédibilité est égale a I’exacte espérance
mathématique a posteriori. En admettant comme fonctions de structure des distributions exponen-
tielles a plusieurs dimensions et leur plus simple conjuguée, 'espérance mathématique a posteriori
correspondante est linéaire, mais triviale, car la fonction d’estimation ne comprend que des
observations sur la composante a estimer. Si, toutefois, dans un cas particulier, important dans la
pratique, on tient également compte de certaines distributions a priori plus générales, on obtient de
véritables formules de crédibilité 4 plusieurs dimensions. La méme démarche conduit aussi a de
nouvelles distributions généralisées, conjuguées a la distribution normale dont la valeur moyenne et
la déviation standard sont inconnues.

Riassunto

In un lavoro anteriore 'autore ha dimostrato che le formule di credibility sono — nel caso di una
dimensione — esatte per la famiglia esponenziale del tipo Koopman-Darmois ¢ le loro leggi
conjugate. Questo lavoro tratta il caso multidimensionale e le condizioni sotto quali le formule di
credibility sono identiche colla media a posteriori. Prendendo la famiglia di distribuzioni esponen-
ziali multidimensionali e le loro leggi conjugate le pitt semplici, si trova una media a posteriori
lineare ma triviale perché tiene conto soltanto delle osservazioni della singola componente. In un
caso speciale importante per la pratica I'autore dimostra come la famiglia delle distribuzioni a
priori puo essere estesa per ottenere formule di credibility non triviali. Lo stesso procedere genera
anche nuove leggi conjugate generalizzate per la distribuzione multidimensionale normale con
media e scarto sconosciuto.
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Abstract

In a previous paper, it was shown that the linear exponential family of likelihoods, together with
their natural conjugate priors, gave exact credibility in the one-dimensional case ; that is, a Bayesian
forecast of the mean observation which is linear in the data. This paper considers the multidimen-
sional case, and the conditions under which exact credibility again holds. Using the multidimen-
sional version of the exponential family likelihoods, and a certain simple natural conjugate prior, it
is shown that the prediction is linear, but self-dimensional, that is, only data from the predicted
component is used. However, in an important special case of this family (called the linearly
dependent exponential family), it is possible to provide additional hyperparameters to enrich the
prior, thus giving full-multidimensional credibility formulac. This approach also gives a new,
enriched prior for the multinormal, with unknown mean and precision.
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