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Zufalligkeitstests und ihre Anwendung in der
Versicherungsmathematik

Von Franz Streit, Bern

Versicherungsmathematischen Berechnungen liegen stets gewisse Modell-
voraussetzungen zugrunde. Deshalb ist es empfehlenswert, gestiitzt auf Beob-
achtungsdaten zu iiberpriifen, inwieweit das verwendete Modell den vorliegen-
den Gegebenheiten tatsdchlich entspricht. Zur Beurteilung von empirischem
Zahlenmaterial steht heute eine Vielzahl von statistischen Verfahren zur Ver-
fiigung. Es ist ein Charakteristikum der neuzeitlichen statistischen Forschung,
dass man sich vorwiegend damit befasst, diese Techniken im Hinblick auf
ithre Optimalitdt zu analysieren. Derartige Untersuchungen entsprechen dem
Leitbild, dass die Aufgabe des Statistikers bei praktischen Anwendungen dar-
in besteht, auf Grund der verfiigbaren, beschrankten Information unter Be-
riicksichtigung aller Umstdnde und problembedingten Einschrinkungen best-
mogliche Aussagen iiber die effektiv vorliegenden Verhiltnisse zu machen.
Vor einiger Zeit hat Berliner [3] eine Ubersicht iiber einige nicht-parametrische
Tests mit Anwendungsmoglichkeiten in der Versicherungsmathematik ver-
mittelt. In unserer Arbeit werden Testverfahren besprochen, welche unseres
Erachtens insbesondere bei der Uberpriifung von Hypothesen iiber Sequenzen
von Schadenzeitpunkten Anwendung finden kénnen. Man spricht in diesem
Zusammenhang von Zufilligkeitstests (tests of randomness), da als Vertei-
lungsannahme unter der Nullhypothese oft ein homogener Poissonpunktpro-
zess — also gewissermassen das Standardmodell einer «rein zufilligen» Folge
von Ereignissen — gewédhlt wird. Dem parametrischen Charakter dieser Ver-
teilungsannahme entsprechend, ist es sinnvoll in erster Linie parametrische
Methoden in Betracht zu ziehen. Neben einigen gebrauchlichen Priifverfahren
werden neue statistische Tests vorgeschlagen und ihre Optimalititseigenschaf-
ten hergeleitet. Die praktische Nutzanwendung wird abschliessend an einem
Zahlenbeispiel aus der Versicherungspraxis illustriert.

1. Zufallsfolgen von Ereignissen; Punktprozesse

In der Nichtlebensversicherungsmathematik stellt die Sequenz der zufélligen
Zeitpunkte, bei denen versicherte Schiden fiir einen Versicherungstriger ent-
Stehen, ein wichtiges Untersuchungsobjekt dar. Bevor statistische Riickschluss-
verfahren fiir derartige Zufallsvorginge entwickelt werden, sollen deshalb kurz
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einige wahrscheinlichkeitstheoretischen Grundbegriffe, deren Kenntnis wir in
diesem Zusammenhang bendtigen, bereitgestellt werden.

Das soeben erwdhnte Zufallsphdnomen aus der Versicherungstechnik ldsst sich
mathematisch am besten durch einen Punktprozess wiedergeben.

Definition: Ein stochastischer Prozess (mit Stichprobenraum) { V' (¢); 1 € R '}
wobei F'nurdie Werte 0und | annehmen kann und die Eigenheit besitzt, dass mit
Wahrscheinlichkeit 1 fiiralle 7, 7 R ' die Anzahl N (¢; i) der Argumentwerte
in (¢, ¢ + k] tir welche V' (¢) = 1 realisiert wird, existiert und endlich ist, nennen
wir einen stochastischen Punktprozess.

Definition.: Esseid{ V (1); t€R *} ein stochastischer Punktprozess. Einen Argu-
mentwert z mit der Realisierung V' (¢) = 1 nennen wir ein Ereignis des Punktpro-
zesses.

Mathematisch gesprochen handelt es sich also bei dem zu untersuchenden
Phidnomen um einen stochastischen Punktprozess, dessen Ereignisse als Scha-
denzeitpunkte zu interpretieren sind.

Esbestehen zwei grundsitzlich verschiedene Moglichkeiten, einen Punktprozess
wahrscheinlichkeitstheoretisch zu charakterisieren, nidmlich durch den zuge-
ordneten Zahlprozess einerseits und durch den zugeordneten Zwischenraum-
prozess andrerseits.

Definition: Es sei {V (¢); t€R "} ein stochastischer Punktprozess. Wir nennen
{X(D);t > O}mit X (1): = Anzahl der Ereignisse von { V' (¢); 1 €R ¥, welche in
(0, 7] realisiert werden, den dem Punktprozess zugeordneten Zihlprozess.

- Definition: Als zugeordneter Zwischenraumprozess eines Punktprozesses be-
zeichnen wir den stochastischen Prozess { Y(i); i = 1, 2, ... ymit Y(i): =

inf{h:X(i Y(l)+h>ﬁX([ZI Y(l)) = 1}[1' = 1,2, ...]. Anschaulich ge-

heR i =1

sprochen kann also die Realisierung eines stochastischen Punktprozesses da-
durch beschrieben werden, dass man die Anzahl der Ereignisse in den Zeit-
intervallen der Form (0, 7] zahlt oder indem man die Linge der ereignisfreien
Zwischenrdume misst. _

Der folgende Spezialfall verdient besondere Erwiahnung:

Definition: Wir sagen, dass die Ereignisse eines stochastischen Punktprozesses
einen Erneuerungsprozess bilden, wenn die Zufallsvariablen Y (i) des zugehori-
gen Zwischenraumprozesses voneinander stochastisch unabhingig und iden-
tisch verteilt sind.

"' R™ bezeichnet die Menge der positiven reellen Zahlen.
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Anmerkung : Beieinem homogenen Poissonpunktprozess mit Intensitit 4[4 > 0]
beispielsweise gilt fiir die Zufallsvariablen des zugeordneten Zihlprozesses
_ ",
= ¢

n!

Pr(X(z):n) n=0,1,..]
und die Ereignisse des Prozesses bilden einen Erneuerungsprozess. Die Lan-
gen Y (i) der Zwischenrdume sind exponentialverteilt mit Parameter A.

2. Zur Konstruktion optimaler statistischer Tests fiir Punktprozesse

In diesem Abschnitt werden kurz die Grundbegriffe aus der mathematischen
Statistik, die wir im folgenden bendtigen, erldutert. Im Zusammenhang mit der
Beurteilung von Zufallsfolgen von Ereignissen besteht die Aufgabe des Statisti-
kers darin, gestiitzt auf die Kenntnis einer Realisierung des Punktprozesses in
einer endlichen Zeitspanne, Aussagen iiber den tatsichlich zugrunde liegenden
Zufallsprozess zu machen. Wir beschranken uns in dieser Arbeit auf die Kon-
struktion statistischer Testverfahren. In diesem Zusammenhang nimmt das
Grundproblem die folgende Gestalt an: Gegeben seien eine Klasse < { Vi(t:0):
tER*} ; €@ > von stochastischen Punktprozessen und eine empirisch beob-
achtete Realisierung einer derartigen Zufallsfunktion in der Zeitspanne (0, s].
Es seien 6, und @, zwei disjunkte Teilmengen der Indexmenge ©. Gestiitzt
auf diese Angaben soll entschieden werden, ob fiir den effektiv zugrunde liegen-
den Punktprozess{ V' (¢: 0"); t € R* } die Nullhypothese H,: 0" € @, oder die
Alternativhypothese H,: 6" € @, zutreffend ist. Die Grundlage fiir die Beurtei-
lung der Eigenschaften eines statistischen Testes bilden die Irrtumswahrschein-
lichkeiten. Bezeichnen wir mit a (9) [# € @,] die Wahrscheinlichkeit, auf Grund
des Testes die Hypothese H, anzunehmen, wenn * = 0, und mit 8 (0) [0 € O]
die Wahrscheinlichkeit, dass der Test zur Annahme von H,, fithrt fiir 6* = 0, so
ist ein optimaler Test zur Sicherheitsschwelle a ein Test, bei welchem fiir alle
0€ @, a (0) < aist und unter dieser Einschrinkung g (0) bei Giiltigkeit der
Alternativhypothese minimalisiert wird. Ist insbesondere die Alternativ-
hypothese einfach, d.h. besteht ®, = {0,} nur aus einem einzigen Index 6,
allein, so nennen wir einen Test, fiir welchen ¢ () < [0 € @] und f (6,) mini-
mal wird, einen besten Test zum Priifen von H, gegen H,. Ist @, nicht einpunk-
tig, so spricht man von einem gleichmdissig besten Test falls a (0) < a [0 €6O]
und unter dieser Einschriinkung f3 () fiir alle # € @, simultan den kleinstmogli-
chen Wert annimmt.
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In diesem Zusammenhang sei noch vermerkt, dass ein bester Test zum Priifen
einer einfachen Nullhypothese @, = {0} gegen eine einfache Alternativ-
hypothese stets existiert und im wesentlichen eindeutig vorgegeben ist [7, p. 65].
Wenden wir dieses grundlegende Ergebnis von Neyman und Pearson auf sto-
chastische Punktprozesse an, so erhalten wir unter passenden Regularitits-
bedingungen das folgende Konstruktionsprinzip:

1. Die Realisierung eines Punktprozesses in der Zeitspanne (0, s] ldsst sich
durch folgende Angaben vollstindig beschreiben: Die Anzahl n der realisierten
Ereignisse in (C, s] und die Lingen der ersten # ereignisfreien Zwischenrdume
Vi, - - -, Vo. Man berechnet die (kombinierte) Wahrscheinlichkeit(sdichte) fiir
das Ereignis

Xs)=n YD) =yp,..., Y(n) =y,
fiir 0" = 0, und fiir 0* = 0,. Diese Werte seien mit

EAUs} B2 915 5 « s ¥0) B0 LGy T RS Vis =« w0 V) DEZEIGHTIEL,

2. Man untersucht die Teststatistik (Likelihoodquotientenstatistik)

L(()U:X(s); Y(,. .. Y(X(S)))

A= A(X(s); Y, ..., Y(X(s)) . = .
L((), X () YD, Y (X))

und bestimmt die Sicherheitsgrenze A, fiir welche gilt
Ay = sup{x: Pr (4 < x:6p) < aj.

3. Die kritische Region (Ablehnungsbereich von H;) des besten Testes zum
Sicherheitsniveau a ist dann gegeben durch

Ay, oo,y < A,

Der beste Test verwirft demnach die Nullhypothese fiir diejenigen 100 - a%
aller moglichen Realisierungen, welche die kleinsten Werte der Likelihood-
quotientenstatistik aufweisen fiir *= §,.
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3. Spezielle Tests fiir Punktprozesse

In diesem Abschnitt werden einige spezielle Tests fiir Zufallsfolgen von Ereig-
nissen besprochen. Im Sinne eines praktischen Hinweises sei an dieser Stelle
ausdriicklich festgehalten, dass fiir die statistische Analyse von Punktprozessen
wenn immer moglich nicht bloss die Anzahl der Ereignisse in der Beobachtungs-
periode bestimmt, sondern eine vollstindige Liste der Zeitpunkte ihres Auf-
tretens erstellt werden sollte. Die letzteren Angaben liefern bei vielen Problem-
stellungen zusitzliche Information {iber den Zufallsvorgang.

3.1 Der Autokorrelationstest

Bei Zufallsfolgen von Ereignissen ist es wichtig zu wissen, ob die Ereignisse
einen Erneuerungsprozess bilden. Ist dies der Fall, so ist die Vielfalt der in
Betracht zu ziehenden stochastischen Modelle schon wesentlich eingeschrankt.
Es gibt eine grosse Zahl von Testverfahren [2, 6], welche zur statistischen Be-
urteilung dieser Frage verwendet werden konnen. Wir besprechen hier den
Autokorrelationstest, der sich insbesondere durch relativ geringen Rechenauf-
wand auszeichnet. Er basiert auf der Feststellung, dass bei einem Erneuerungs-
prozess die Korrelation zwischen aufeinander folgenden Abstdnden zwischen
konsekutiven Ereignissen verschwindet, d.h. Korr [Y (i), Y(i+1)] = p = 0.
Zum Schitzen dieses Wertes p der Autokorrelationsfunktion beniitzt man in
der Zeitreihenanlyse bei im weiteren Sinne stationdren Zwischenraumsprozes-
sen den Stichprobenkorrelationskoeffizienten, berechnet anhand der Werte-

paare (yQa y3)7 L (yrr 1s yn)s aiso

n—I S -1 n s
= > 00y (yu-l*ﬁ”)} [Z iy’ D) x =) | 2
i=2 =2 =5 i
P S 1 e d =83 . __ 1 <
mity’: = — 2}2 y; und y’’: — iz Yis

=3

wobei y,, ys, ..., ¥, die in (0, s] realisierten Abstinde zwischen konsekutiven
Ereignissen bezeichnen (es empfiehlt sich bei diesem Test die Messung y, nicht
zu beriicksichtigen. Vgl. auch die diesbeziiglichen Bemerkungen in § 3.3).
Der Autokorrelationstest priift die Hypothesen:

Hy:p=10 gegen Hi:og7 0.

Aus einem allgemeineren Theorem der mathematischen Statistik [1] ergibt sich
durch Spezialisierung, dass bei Giiltigkeit von H, 'I/n—2 r, asymptotisch fiir
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[n > o] die Realisierung einer standardisiert normalverteilten Zufallsvaria-
blen ist. Gestlitzt auf diese asymptotische Verhalten wihlt man

T . ol
V “2jn | zay mitd @) =1
als kritische Region des Autokorrelationstestes. @ bezeichnet hier und im fol-
genden die Verteilungsfunktion der standardisierten Normalverteilung.

3.2 Ein asymptotisch optimaler Test gegen Trends

Eine andere Abweichung von der Hypothese, dass die Ereignisse einen Erneue-
rungsprozess bilden, ergibt sich, falls die Zufallsvariablen des Zwischenraum-
prozesses zwar stochastisch voneinander unabhingig sind, aber die Abstands-
verteilung zeitlichen Verdnderungen unterworfen ist. Wahlt man als Vertei-
lungsannahme unter der Nullhypothese einen homogenen Poissonpunkt-
prozess, so ist es naheliegend, einen inhomogenen Poissonpunktprozess, wel-
cher also eine nicht-konstante Intensitdtsfunktion 4 (¢) aufweist, in Betracht
zuziehen. In diesem Zusammenhang ist ein von Cox [4, p. 137] vorgeschlagener
Test gegen Trends von Interesse, welcher zum Priifen der beiden Hypothesen

HO: /1 ([) = /:()

' ; ; WERT],
Hy:i(0) = se? [per] [WER
verwendet wird. Unter H, bleibt die Intensitit im Zeitablauf konstant, wéh-
rend sie bei Giiltigkeit von H, eine streng monoton fallende Funktion von !
ist.

Wir leiten nachstehend ein diesbeziigliches Resultat her, das in der Literatur

mehrfach ohne tiberzeugenden Beweis erwihnt wird [8, p.70; 5, p.48 und
#: badl

Theorem 1
Der gleichmissig beste Test zum Priifen von H, gegen H, zur Sicherheits-
schwelle a gestiitzt auf die Beobachtung des Punktprozesses in (0, s] basiert

,\’__(,\) .
auf der Teststatistik U": = > U(/), und der gleichmissig beste bedingte Test

=1

unter der Voraussetzung X (s) = n weist fiir n ~ oc die kritische Region



Hierbeiist U(/): = Y(1)+ ... + Y()und @ (z,) = «.

Beweis

Die (kombinierte) Wahrscheinlichkeit(sdichte) fir die Realisierung von
X)) =nUQ1)=w, ..., Un) = u,in (0,s] ist — wie man miihelos verifi-
ziert — unter H, gegeben durch

e’ [0 <u < -+ <u, < 5]

und betragt bei Giiltigkeit von H,

n P |
Al exp[ﬁ Z w+ A 5 }
=1

Demzufolgeerhiltmanals Likelihoodquotientenstatistik zum Priifen von g = 0
gegen f = B, > 0 [f, fest gewihlt]

4 = exp [_Zu e_ﬁ;_]JCXP [ﬁo S‘j U (l)]exp [-Aos].

0 [=1

Der beste Test fiir diese beiden Hypothesen kann also mittels der mit 4 dqui-
valenten Priifgrosse
X(s)
U = MU @)
=1
durchgefiihrt werden und verwirft H, fiir (relativ) kleine Werte von U". Da diese
Testgrosse nicht von der spezifischen Wahl von f, [, > 0] abhingt, handelt

€s sich um den gleichmiissig besten Test. Auf Grund des zentralen Grenzwert-
satzes ergibt sich, dass U" | X (s) = nunter H, asymptotisch normalverteilt mit

. 2
Mittelwert 5 * und Varianz (S]/E) ist. g ist also die Realisierung einer un-

ter H, asymptotisch standardisiert normalverteilten Priifgrésse, die mit der
Likelihoodquotientenstatistik des bedingten Tests dquivalent ist. Die Satzaus-
Sage ergibt sich nun unmittelbar aus dem Theprem von Neyman /Pearson.
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Anmerkung :

Mit analogen Uberlegungen erhilt man, dass der gleichmiissig beste Test zum
Priifen von H, gegen die Alternative A (t) = lpe "# [p € R'] zum Sicherheits-
niveau a die kritische Region ¢ > z, , aufweist.

3.3 Optimale Tests gegen Erneuerungsalternativen mit einseitig gestutzter
Abstandsverteilung

In diesem Abschnitt werden beste Tests entwickelt zur Beurteilung der Frage,
ob ein Punktprozess durch homogen poissonverteilte Ereignisse oder durch
Ereignisse, welche einen Erneuerungsprozess mit gestutzter Abstandsverteilung
bilden, erzeugt wird. Wir befassen uns zunichst mit den Hypothesen

H,: {V(t); t € R*} ist ein homogener Poissonpunktprozess mit Intensitit A.

H,: Die Ereignisse von {V(1); t € R"} bilden einen Erneuerungsprozess, dessen
Abstandsverteilung eine Dichtefunktion faufweist, welche den Bedingun-
gen f(u) < oo [W€R'], f(u) > 0Ju < ¢]und f(u) = 0[u > c] geniigt,
wobel ¢ eine fest vorgegebene positive reelle Zahl ist.

Theorem 2

Der beste Test zum Priifen von H, gegen H, zur Sicherheitsschwelle a, basierend
auf der Beobachtung des Punktprozesses im Zeitabschnitt (0, s], fiihrt zur An-
nahme von H,, falls y* > ¢ und unter H, Pr (Y" > ¢) < 1 - a gilt, und zur
Verwerfung von Hy, falls y* < ¢ und unter H, Pr (Y < ¢) < a gilt. Hierbei
bezeichnet y* die Linge des grossten in (0, s] realisierten ereignisfreien Zwischen-
raums, also

y' = max{yl, s oum Pos =9, y,—},
und Y die dazugehorige Zufallsvariable.

Beweis :

Der Wert der (kombinierten) Wahrscheinlichkeit(sdichte) fiir die beobachtete
Realisierung

X(s) = n; Y(D) =y, ..., Y(X() =y
betragt A" e ¥
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bei Giiltigkeit von H,. Unter H, erhilt man

g(n:ylauynasvcaf) :|:1H7 f(y,)] f(u)du,

J
8- Z Yi

=1

falls y* < ¢
und

0, falls y* > ¢.

Nach dem Theorem von Neyman/Pearson verwirft der optimale Test zum
Priifen von H, gegen H, kleine Werte der Statistik

JX) gmis [Y* < €]
s = 1 g(X(s); Y(), ..., Y(X(®);s, c,f) [Y* > c].
o0

Gilt Pr(Y" < ¢) > aunter H, so fiihrt — unabhingig von der speziellen Wahl
von f—y" > ¢ zur Annahme von H,. Der zweite Teil der Aussage ergibt sich
auf Grund analoger Uberlegungen.

Ein dhnliches Resultat erhdlt man beim Vergleich von H, mit der Alternativ-
hypothese

H7: DieEreignissevon { ¥ (¢); € R" } bilden einen Erneuerungsprozess, dessen
Abstandsprozess eine Dichtefunktion faufweist, welche den Bedingungen
JW) < o[u€R'], f(u) > 0[u > cJund f(u) = 0[u < c] geniigt, wobei
c eine fest vorgegebene positive Zahl ist.

Theorem 3

Der beste Test zum Priifen von H, gegen H, zur Sicherheitsschwelle a, basie-
rend auf der Beobachtung des Punktprozesses im Zeitabschnitt (0, s], fiihrt zur
Annahme von H,, wenn ,y < cund unter H, Pr(,Y < ¢) < 1 - agilt, und fiihrt
zur Verwerfung von H,, falls ,y > c und unter H, Pr (,Y > c} < a gilt. Hier-
bei bezeichnet ,y die Linge des kleinsten in (0, s] realisierten ereignisfreien
Zwischenraums, vorausgesetzt, dass man die Liicke am Ende des Intervalls
nicht beriicksichtigt, also

Ji = min{yl, ...,yn},

und , Y die dazugehérige Zufallsvariable.
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Beweis

Die Satzaussage ist wie bei Theorem 2 eine Folgerung des Theorems von Ney-
man und Pearson. In diesem Fall erhilt man mit analogen Uberlegungen die
Likelithoodquotientenstatistik

0 LY < c]
/“iX(.\) e 45

/I ==
1 h(X 5); Y (1), ..., Y (X (9)): s c,f)

n 58
wobei £ (7; v, - . ., Vus 5, €, f) —[ 11 f@»,)}- [ S du.
i 1

Obschon die Aussagen von Theorem 2 und Theorem 3 in der Regel keine voll-
standige Charakterisierung der besten Tests vermitteln, ist es bei praktischen
Anwendungen vielfach trotzdem moéglich, auf Grund dieser Ergebnisse zu opti-
malen Entscheidungen zu gelangen. Die Berechnung der massgebenden Wahr-
scheinlichkeiten unter der Nullhypothese bietet keine Schwierigkeiten (vgl. die
Ausfiihrungen am Ende dieses Abschnitts). Gelegentlich ist es erforderlich, die
kritische Region des Tests genau zu bestimmen. Diese hdngt indessen massgeb-
lich von der in Betracht gezogenen Alternative, also von der Wahl von fab.

Zu Beginn und am Ende der Beobachtungsperiode kénnen bei empirischen
Studien liber Punktprozesse leicht Komplikationen auftreten (z.B. kann der
Anfangs- oder Endzeitpunkt der Beobachtungsperiode nicht genau bekannt
sein, zu Beginn der Beobachtungsperiode konnen unter Umstidnden Ereig-
nisse nicht registriert werden, und auch die Erfassung von Ereignissen unmittel-
bar vor dem Ende der Beobachtungsperiode kann mit Schwierigkeiten verbun-
den sein [etwa zufolge verspiteter Meldungen]). Derartige Storungen fithren

insbesondere zu falschen Werten von y, und s — > ¥;. Es ist deshalb von In-
i=1

teresse, einen statistischen Test zu entwickeln, mit welchem beurteilt werden

kann, ob auch die ereignisfreien Randliicken des Intervalls mit der Hypothese

des homogenen Poissonprozesses vereinbar sind oder ob diese Hypothese bes-

ser nur in bezug auf die Abstiinde zwischen den registrierten Ereignissen aufge-

stellt wird. Dies fiithrt auf den Vergleich der folgenden Hypothesen:
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H)'"": Die in der Beobachtungsperiode (0, s] registrierte Realisierung des
Punktprozesses stammt vollumfianglich von einem Punktprozess homo-
gen poissonverteilter Ereignisse mit Intensitit A.

H"":  Der erste und letzte ereignisfreie Zwischenraum in der Beobachtungs-
periode (0, s] unterliegen irgendeinem unbekannten Verteilungsgesetz.
DieRealisierungdes Punktprozessesim(nicht-leeren Teilintervall (Y (1),

X(s) v
2 Y (i)]1asst sich durch einen Punktprozess homogen poissonverteil-
|

i=

ter Ereignisse mit Intensitiat A erklaren.

In Analogie zu den tibrigen in diesem Artikel hergeleiteten Verfahren schlagen
wir zum Prifen von H'" gegen H,'" zur Sicherheitsschwelle a den Test mit der
kritischen Region

d < D,/\ n = 2vor,
wobei Pr(D < D, A\ X(s) = 2:H)) = a.

d bezeichnet hier den Abstand zwischen erstem und letztem Ereignis in der
Beobachtungsperiode (0, s], also

di = 3y >,

und D die zugehorige Zufallsvariable.

Begriindung: .
Die Hypothese H,(" ist nur fiir (yl, > y,} # (J,also fir n > 2, sinnvoll. Die
i=1

«Likelihoodquotientenstatistik» ist gegeben durch
4 = Aeff‘.s + iD

und somit Aquivalent zu D. Die kritische Region des Testes weist also die Form
D < D, auf
Falls der in Theorem beschriebene Test zur Annahme von H, fiihrt, so ist es

naheliegend, gestiitzt auf die Realisierung des Punktprozesses in (Y (1),
X()
2 Y (i)] zu priifen, ob der zugrunde liegende Punktprozess tatsdchlich durch

i=

homogen poissonverteilte Ereignisse oder nicht vielmehr durch einen Erneue-
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rungsprozess mit einseitig gestutzter Abstandsverteilung erzeugt ist. Man er-
hélt die den Theoremen 2 und 3 entsprechenden Aussagen, wenn man die Priif-
grosse Y* durch die Statistik W': = max{ Y (2), ..., Y(X(s)) } und , Y -durch
W : = min {Y(Z), G g Y(X(s)) } ersetzt.

Beispielsweise findet man

Theorem 4

Der beste Test zum Priifen von H, gegen H, zur Sicherheitsschwelle a, basierend

X(y)
auf der Realisierung des Punktprozesses im Zeitabschnitt ( ¥l Z y(z‘)),
, i 1

fiihrt zur Annahme von H,, falls w* > ¢, und unter H, gilt Pr (W" > ¢) < 1-a
und zur Verwerfung von H,, falls w* < ¢ und unter H, gilt Pr (W™ < ¢) < a.

Beweis

Die (kombinierte) Wahrscheinlichkeit(sdichte) fiir die beobachtete Realisie-
rung in der Zeitspanne (y,, 2 y;) 1st bei Giiltigkeit von H,
i 1

*ljyi

j,,”le i=12

und bei Giiltigkeit von H,

n

f(y:) oder0,je nachdem w* < coderw’ > c.

i

Die Aussage des Theorems erhilt man nun auf Grund des Theorems von Ney-
man und Pearson.

Bei den bisher in diesem Abschnitt hergeleiteten Ergebnissen wird die Kenntnis
des Intensititsparameters A des unter H, in Betracht gezogenen homogenen
Poissonprozesses vorausgesetzt. Bei praktischen Anwendungen ist A aber in
Tat und Wahrheit oft unbekannt. Diese Schwierigkeit kann dadurch umgan-
gen werden, dass man den Parameter A durch seinen Maximum-Likelihood-

Schitzwert 1 :%@l ersetzt. Eine andere Moglichkeit besteht darin, die sta-

tistische Analyse gestiitzt auf die bedingten Verteilungen unter der Einschrén-
kung X (s) = n durchzufiihren, wobei n die in der untersuchten Beobachtungs-
periode tatsiichlich beobachtete Anzahl Ereignisse bezeichnet. Bei diesen be-
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dingten Tests sind die fiir die Beurteilung massgebenden Wahrscheinlichkei-
ten von A unabhingig. Man tiberlegt sich leicht, dass die optimalen Tests unter
dieser Einschrankung auf denselben Statistiken wie bei den Tests in Theorem
2—4 basieren und dass auch die Entscheidungskriterien dieselbe Form aufwei-
sen. Da sichndamlich fiir X' (s) = ndie (kombinierte) Wahrscheinlichkeit(sdichte)
bei der durch X (s) = n bedingten Verteilung nur durch einen konstanten Pro-
portionalititsfaktor von der (kombinierten) Wahrscheinlichkeit(sdichte) bei
Verzicht auf diese Bedingung unterscheidet, sind auch die Likelihoodquotien-
tenstatistiken der beiden Tests proportional. Dies erklirt die Ubereinstimmung
in der Form der kritischen Regionen bei beiden Analysemoglichkeiten. Wegen
der vollstindigen Analogie der Aussagen verzichten wir auf die Formulierung
der Sitze liber die bedingten Tests.

Die praktische Anwendung der Ergebnisse dieses Abschnitts setzt voraus, dass
man die massgebenden Wahrscheinlichkeiten bestimmen kann. Mit dem Pro-
blem der Ermittlung von Anordnungswahrscheinlichkeiten bei homogen pois-
sonverteilten Ereignissen hat sich der Autor in der Arbeit [10] befasst. Dort fin-
det man auch eine Sammlung der wichtigsten Berechnungsformeln. Deshalb
werden nachstehend lediglich die fiir bedingte Tests zustindigen Relationen
zusammengestellt, die wir bei der Besprechung des Zahlenbeispiels in § 4 benoti-
gen, und flr weitere Angaben iiber Anordnungswahrscheinlichkeiten und de-
ren Herleitung wird auf [10] verwiesen.

Lemma :

Fir einen homogenen Poissonpunktprozess mit Intensitit A gilt:

Pr(Y* < cllX(s) =n) = g (*1)"(n+l) (1~r£>'z s chs:

=% N s

A

i

Prim<clxe = n) = ng{(f)’” n-1 (6)} chg 5]

(o <ilxe =n) = a(Xf -0 () per<snsa
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Ein Ausdruck der Form [u] bezeichnet hierbei die grosste ganze Zahl, welche
kleiner oder gleich u ist.

3.4 Der Homogenitdtstest

Wir gehen von der Annahme aus, dass empirische Beobachtungen tiber £ homo-
gene Poissonpunktprozesse vorliegen. Der i-te Punktprozess wird in einer Beob-
achtungsperiode der Lange s; untersucht [/ = 1, ..., k]. Die Frage soll gepriift
werden, ob die Intensitdten dieser Punktprozesse alle identisch sind oder nicht.
Wir vergleichen also die Hypothesen

Hg): /A\,| = L. T g
H,: Nichtalle A:’s[i = 1, ..., k] sind einander gleich.

Einem gebrauchlichen Vorgehen in der Statistik entsprechend, priift man H, ge-
gen H, zur Sicherheitsschwelle a gestiitzt auf die Priifgrosse

welche einen Vergleich zwischen den empirisch festgestellten und den theore-

A k 7] k 1
tischerwarteten Werten herstellt. Dabei bezeichnet A: = [ Z X, (S,)J : [ Z S,]
iz

=]
die Maximum-Likelihood-Schitzfunktion der gemeinsamen Intensitat unter Hy.
Basiert man den Test aufdie asymptotische Verteilung von 4, so verwendet man
die kritische Region

s

6>xi, 1, mit G, (¥}, =1-a.

Hier représentiert ¢ die Realisierung von 4 und G, die Verteilungsfunktion der
Chiquadratverteilung mit v Fretheitsgraden.

4. Ein numerisches Beispiel aus der Versicherungspraxis

Als Illustration der in dieser Arbeit besprochenen Verfahren werden die der
SUVA gemeldeten schweren Unfille in den Kalenderjahren 1963-1972 [9]
analysiert'. Die empirischen Daten lassen sich als Realisierung eines stochasti-

1Der Autor dankt Herrn Dr. H. Koch (SUVA) fiir die Zurverfiigungstellung der Unterlagen und
fiir wertvolle Hinweise iiber die Unfallstatistik und Herrn M. Amacher fiir seine Mithilfe bei den
numerischen Auswertungen.
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schen Punktprozesses interpretieren und sind in der Tabelle auf Seite 189 zu-
sammengestellt.

Auf Grund der Uberlegungen von Abschnitt 3.4 soll zunichst abgeklirt wer-
den, ob — unter der Voraussetzung, dass die Daten in den einzelnen Kalender-
jahren durch einen homogenen Poissonpunktprozess erklirbar sind — die Inten-
sitdten fiir alle Jahre denselben Wert annehmen. Man findet 6 = 11,17, was mit
der Sicherheitsgrenzex§ 5, = 16,92 zu vergleichen ist’. Zur Sicherheits-
schwelle von 5% liegt demnach keine Signifikanz vor. Wir schliessen daraus,
dass eine gesonderte Behandlung der einzelnen Kalenderjahre nicht erforder-
lich ist. Es ist also statthaft, die Daten aus den verschiedenen Kalenderjahren
zu poolen.

Basierend auf dem gesamten Beobachtungsmaterial, priffen wir mit Hilfe des
Autokorrelationstestes anhand der Statistik ry5, — vgl. Abschnitt 3.1 — die
Hypothese, dass die Ereignisse des Punktprozesses einen Erneuerungsprozess
bilden. Wir erhalten ry5, = 0,00395 oderm ryso =~ 0,074 wiahrend z; 4,5 = 1,96.
Es kann keine signifikante Abweichung von der Nullhypothese festgestellt wer-
den.

Auf das gesamte Beobachtungsmaterial wurde ausserdem der in §3.2 bespro-
chene Test gegen Trends angewandt. Es ergibt sich, dass ¢ = — 0,046. Ein Ver-
gleich mit der Sicherheitsgrenze zur Sicherheitsschwelle von 5% fiihrt offen-
sichtlich nicht zur Ablehnung von Hj,.

Schliesslich findet man in der Tabelle auf Seite 190 die Resultate zusammen-
gestellt, die sich bei Anwendung der in Abschnitt 3.3 besprochenen Tests auf
die Daten jedes einzelnen Kalenderjahres oder auf das gesamte Beobachtungs-
material ergeben (da die Angaben nur in Tagen und nicht in feineren Zeit-
einheiten zur Verfiigung stehen, werden die Tests gegen linksseitig gestutzte
Abstandsverteilungen der damit verbundenen Ungenauigkeit wegen nicht
durchgefiihrt). Aus dieser Zusammenstellung geht hervor, dass, abgesehen von
den Kalenderjahren 1968 und 1970, der beste Test mit Sicherheit zur Annahme
von H, fithrt, sofern nur die fiir die Alternativverteilungen zustindige Stutzungs-
schranke ¢ so angesetzt wurde, dass ¢ < y" (bzw. w') und ¢ > y', (bzw. w",)
und dass er nur in den beiden Kalenderjahren 1968 und 1970 fiir jede Wahl
von f H, verwirft, falls ¢ > y" (bzw. w") und ¢ < y, (bzw. w',) [mit Pr
(¥ <y, ' X(s) = n) = q] festgesetzt wurde. Mit Ausnahme der Werte in der
letzten Zeile wurden die in der Tabelle vermerkten Wahrscheinlichkeiten auf
Grund der bedingten Verteilungen berechnet. In der Tat kann der genaue Wert
von / nicht als bekannt angesehen werden. Fithrt man die statistische Analyse

2y57: 5 .
Wir wihlen ¢ = 0,05 fiir alle in diesem Abschnitt besprochenen Tests.
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gestiitzt auf die urspriinglichen Verteilungen durch und schitzt A mit der Maxi-
mum-Likelihood-Methode, so erhdlt man praktisch dieselben Wahrscheinlich-
keiten. Die entsprechenden Werte fiir das gesamte Beobachtungsmaterial sind
auf Seite 190 am Schluss der Tabelle angegeben. Wie ersichtlich sind die numeri-
schen Unterschiede gering und fiihren zu derselben Beurteilung der Verhilt-
nisse.

Abschliessend kann festgestellt werden, dass die Ergebnisse der Untersuchung
zu keinen Zweifeln Anlass geben an der Hypothese, dass die Unfallzeitpunkte
homogen poissonverteilt sind.
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Der SUV A gemeldete schwere Unfdlle in den Kalenderjahren 1963 1972"

Liste der Schadenzeitpunkte?:

Kalenderjahr Schadenzeitpunkte

1963 39 51 54 03 71 96 102 107 108 114
121 128 134 157 169 169 173 185 189 196
211 211 224 224 232 234 235 239 247 248
261 261 272 243 275 284 291 301 329 335

1964 10 12 17 26 28 49 wr 80 112 114
142 152 168 181 197 197 198 213 224 230
231 232 237 242 250 269 304 311 327 328
340 347

1965 14 58 94 107 118 118 119 121 142 152
153 161 162 176 192 196 198 219 234 242
243 248 261 265 269 290 308 314 344 344

1966 11 36 45 73 74 107 119 149 154 164
177 220 237 245 269 270 272 278 281 283
289 291 300 307 312 314 314 315 346 350
351

1967 41 41 54 54 80 80 83 86 111 120
127 156 157 163 169 180 186 193 196 199
207 211 222 233 240 249 250 260 261 275
295 301 304 314 322 333 337 349 350 360

1968 17 24 25 40 50 70 75 96 100 129
160 163 172 172 175 182 183 188 195 219
246 269 287 288 302 309 323 330 331 352

1969 29 33 74 84 89 94 96 98 103 111
114 118 120 133 136 136 140 140 144 145
170 172 190 199 209 216 217 230 232 235
237 249 250 250 258 268 268 274 276 295
301 306 309 311 322 323 332 357 358

1970 9 13 %) 39 52 68 83 110 113 129
146 148 155 164 165 168 169 172 180 188
193 196 220 224 228 246 265 266 267 278
280 298 299 301 310 323 346 353

1971 5 18 22 29 37 40 41 44 60 84
93 101 109 113 155 165 168 182 195 197
197 203 238 241 247 262 272 29 303 314
335 344

1972 21 23102 119 123 124 154 167 169 172

195 179 180 185 192 194 203 204 215 235
248 251 264 292 314 316 334 355

| ;
AI}S Bericht und Rechnung SUVA, 1963-1972.
Die Zahl x in der Liste reprisentiert ein Unfallereignis am x-ten Tage des Jahres.



Tests gegen Erneuerungsalternativen mit einseitig gestutzter Abstandsverteilung

Kalenderjahr K] n d Pr(D <d X(s) = n) y¥  Pr(Y* <y* X(s)=n) w* Pr (W* < w*  X(5) = n)
1963 365 40 296 0,002%* 39 0,606 28 0,117
1964 366 32 337 0,267 35 0,168 35 0,195
1965 365 30 330 0,203 44 0,455 44 0,483
1966 365 31 340 0,364 33 0,086 33 0,109
1967 365 40 319 0,031* 41 0,681 29 0,156
1968 366 30 335 0,265 31 0,032* 31 0,047%*
1969 365 49 329 0,039* 41 0,859 41 0,864
1970 365 38 344 0,349 27 0,046* 27 0,059
1971 365 32 339 0,324 42 0,455 42 0,482
1972 366 28 334 0,284 79 0,968 79 0,970
1963-1972 3653 350 3603 0,047* 79 0,845 79 0,845
Pr(D < d:J) Pr(Y* < y*: }) Pr(W* < w:])

1963-1972 3603 0,048* 79 0,835 79 0.838

061
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[1

Zusammenfassung

In dieser Arbeit werden statistische Tests fiir Punktprozesse mit Anwendungsméglichkeiten in der
Nicht-Lebensversicherung diskutiert. Insbesondere werden neue Tests vorgeschlagen, welche opti-
mal sind zum Priifen der Annahme, dass der Punktprozess durch homogen poissonverteilte
Ereignisse erzeugt sei, gegen Alternativen, bei welchen die Ereignisse des Prozesses einen Erneue-
rungsprozess mit gestutzter Zwischenraumsverteilung bilden. Des weiteren wird die Konstruktion
von statistischen Priifverfahren fiir Punktprozesse im allgemeinen besprochen und Bemerkungen
zu einigen in der Fachliteratur behandelten speziellen Tests gemacht. Die praktische Nutzanwen-
dung der Ergebnisse wird anhand einer Analyse von Beobachtungsdaten der Schweizerischen
Unfallversicherungsanstalt illustriert.

Summary

In this article statistical tests for point-processes with applications in non-life insurance are
discussed. New tests are proposed which are optimal for comparing the hypothesis that the point-
Process is generated by homogeneously Poisson distributed events with alternatives for which
the events of the process form a renewal process with a truncated gap distribution. Comments
are made about the construction of tests for point-processes in general and about some special
Procedures, which are treated in the literature. The practical application of the results is illustrated
by investigating data on occupational accidents in Switzerland.
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Résume

Discussion des méthodes de testage statistique pour les processus ponctuels applicables dans les
branches autres que la Vie. L’auteur propose de nouveaux procédés, optimaux pour la vérification
du postulat que le processus ponctuel résulte d’événements homogénement répartis selon Poisson,
par opposition aux alternatives, pour lesquelles les événements donnent un processus de renouvel-
lement avec répartition tronquée des intervalles. On trouvera dans cet article un commentaire
général de la mise au point des tests statistiques destinés aux processus ponctuels. Ainsi que diverses
remarques sur certains tests particuliers, évoqués dans la littérature spécialisee, ['auteur fournit un
bel exemple d’application pratique en analysant les données d’observation rec 1eillies par la CNA.

Riassunto

Sidiscutono tests statistici per processi puntuali con le possibilita di applicazione nell’assicurazione
non-vita. In particolare si propongono nuovi tests ottimali per confrontare I'ipotesi che il processo
puntuale sia generato da eventi distribuiti omogeneamente secondo Poisson con alternative
secondo le quali gli eventi del processo formano un processo dirinnovamento con una distribuzione
interspaziale troncata. Inoltre si commenta la costruzione di tests statistici per processi puntuali
in generale e si fanno osservazioni su alcuni tests particolari descritti nella letteratura spezializzata.
L utilita pratica deirisultati ottenuti viene illustrata mediante un’analisi di dati raccolti dall’Istituto
Nazionale Svizzero di Assicurazione contro gli Infortuni.
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