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Zufälligkeitstests und ihre Anwendung in der
Versicherungsmathematik

Von Franz Streit, Bern

Versicherungsmathematischen Berechnungen liegen stets gewisse Modell-
Voraussetzungen zugrunde. Deshalb ist es empfehlenswert, gestützt auf Beob-
achtungsdaten zu überprüfen, inwieweit das verwendete Modell den vorliegen-
den Gegebenheiten tatsächlich entspricht. Zur Beurteilung von empirischem
Zahlenmaterial steht heute eine Vielzahl von statistischen Verfahren zur Ver-
fügung. Es ist ein Charakteristikum der neuzeitlichen statistischen Forschung,
dass man sich vorwiegend damit befasst, diese Techniken im Hinblick auf
ihre Optimalität zu analysieren. Derartige Untersuchungen entsprechen dem
Leitbild, dass die Aufgabe des Statistikers bei praktischen Anwendungen dar-
in besteht, auf Grund der verfügbaren, beschränkten Information unter Be-

rücksichtigung aller Umstände und problembedingten Einschränkungen best-

mögliche Aussagen über die effektiv vorliegenden Verhältnisse zu machen.
Vor einiger Zeit hat ZUr//«er [3] eine Übersicht über einige nicht-parametrische
Tests mit Anwendungsmöglichkeiten in der Versicherungsmathematik ver-
mittelt. In unserer Arbeit werden Testverfahren besprochen, welche unseres
Erachtens insbesondere bei der Überprüfung von Hypothesen über Sequenzen
von Schadenzeitpunkten Anwendung finden können. Man spricht in diesem

Zusammenhang von Zufälligkeitstests (tests of randomness), da als Vertei-
lungsannahme unter der Nullhypothese oft ein homogener Poissonpunktpro-
zess - also gewissermassen das Standardmodell einer «rein zufälligen» Folge
von Ereignissen - gewählt wird. Dem parametrischen Charakter dieser Ver-
teilungsannahme entsprechend, ist es sinnvoll in erster Linie parametrische
Methoden in Betracht zu ziehen. Neben einigen gebräuchlichen Prüfverfahren
werden neue statistische Tests vorgeschlagen und ihre Optimalitätseigenschaf-
ten hergeleitet. Die praktische Nutzanwendung wird abschliessend an einem

Zahlenbeispiel aus der Versicherungspraxis illustriert.

1. Zufallsfolgen von Ereignissen; Punktprozesse

In der Nichtlebensversicherungsmathematik stellt die Sequenz der zufälligen
Zeitpunkte, bei denen versicherte Schäden für einen Versicherungsträger ent-
stehen, ein wichtiges Untersuchungsobjekt dar. Bevor statistische Rückschluss-
verfahren für derartige Zufallsvorgänge entwickelt werden, sollen deshalb kurz
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einige wahrscheinlichkeitstheoretischen Grundbegriffe, deren Kenntnis wir in

diesem Zusammenhang benötigen, bereitgestellt werden.
Das soeben erwähnte Zufallsphänomen aus der Versicherungstechnik lässt sich

mathematisch am besten durch einen Punktprozess wiedergeben.
: Ein stochastischer Prozess (mit Stichprobenraum) { F(r); / GR

wobei P'nur die Werte 0 und 1 annehmen kann und die Eigenheit besitzt, dass mit
Wahrscheinlichkeit 1 für alle r, /; 7? die Anzahl TV ; /;) der Argumentwerte
in / + /;] für welche F 1 realisiert wird, existiert und endlich ist, nennen
wir einen stoc/m/Ac/ze«
De/zn/ïzo/î ; Es sei{F(?); /GR ' } ein stochastischer Punktprozess. Einen Argu-
mentwert? mit der Realisierung F 1 nennen wir ein £Vezg«A des Punktpro-
zesses.

Mathematisch gesprochen handelt es sich also bei dem zu untersuchenden
Phänomen um einen stochastischen Punktprozess, dessen Ereignisse als Scha-

denzeitpunkte zu interpretieren sind.
Es bestehen zwei grundsätzlich verschiedene Möglichkeiten, einen Punktprozess
wahrscheinlichkeitstheoretisch zu charakterisieren, nämlich durch den zuge-
ordneten Zählprozess einerseits und durch den zugeordneten Zwischenraum-

prozess andrerseits.
R>e/z«z7/o« : Es sei { F ; G R ' } ein stochastischer Punktprozess. Wir nennen

{Z(/);/ > 0}mitZ(/): Anzahl der Ereignisse von { F (r) ; GR"}, welche in

(0, /] realisiert werden, den dem Punktprozess zwgeoröfne/e« Zä/z/proz&M.
R>e/znz7z'o« ; Als rz/geordnc/er Zvt'Ac/zc/;razw;/?;'orevv eines Punktprozesses be-

zeichnen wir den stochastischen Prozess {>'(/); z 1, 2, } mit 7(1):

sprochen kann also die Realisierung eines stochastischen Punktprozesses da-

durch beschrieben werden, dass man die Anzahl der Ereignisse in den Zeit-

intervallen der Form (0, /] zählt oder indem man die Länge der ereignisfreien
Zwischenräume misst.
Der folgende Spezialfall verdient besondere Erwähnung:
Z)e/z«/Yzo« ; Wir sagen, dass die Ereignisse eines stochastischen Punktprozesses
einen Zrnci/erMWgvp/'ozc.sw bilden, wenn die Zufallsvariablen 7 (/) des zugehöri-

gen Zwischenraumprozesses voneinander stochastisch unabhängig und iden-

tisch verteilt sind.

inf V 7(/) + /j
/. c- J? -r

/ 1,2, .]. Anschaulich ge-

' Ä " bezeichnet die Menge der positiven reellen Zahlen.
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Tnmer/cwng.- Bei einem homogenen Poissonpunktprozess mit Intensität A[A > 0]

beispielsweise gilt für die Zufallsvariablen des zugeordneten Zählprozesses

und die Ereignisse des Prozesses bilden einen Erneuerungsprozess. Die Län-
gen K (/') der Zwischenräume sind exponentialverteilt mit Parameter A.

2. Zur Konstruktion optimaler statistischer Tests für Punktprozesse

In diesem Abschnitt werden kurz die Grundbegriffe aus der mathematischen
Statistik, die wir im folgenden benötigen, erläutert. Im Zusammenhang mit der

Beurteilung von Zufallsfolgen von Ereignissen besteht die Aufgabe des Statisti-
kers darin, gestützt auf die Kenntnis einer Realisierung des Punktprozesses in
einer endlichen Zeitspanne, Aussagen über den tatsächlich zugrunde liegenden
Zufallsprozess zu machen. Wir beschränken uns in dieser Arbeit auf die Kon-
struktion statistischer Testverfahren. In diesem Zusammenhang nimmt das

Grundproblem die folgende Gestalt an : Gegeben seien eine Klasse < 0(0 0);
> von stochastischen Punktprozessen und eine empirisch beob-

achtete Realisierung einer derartigen Zufallsfunktion in der Zeitspanne (0, j].
Es seien 0o und 0, zwei disjunkte Teilmengen der Indexmenge 0. Gestützt
aufdiese Angaben soll entschieden werden, ob für den effektiv zugrunde liegen-
den Punktprozess { K(A : 0*) ; £ R ' } die Nullhypothese : 0* 0o oder die

Alternativhypothese //, : 0*G 0, zutreffend ist. Die Grundlage für die Beurtei-
lung der Eigenschaften eines statistischen Testes bilden die Irrtumswahrschein-
lichkeiten. Bezeichnen wir mit a (0) [0G0o] die Wahrscheinlichkeit, auf Grund
des Testes die Hypothese //, anzunehmen, wenn 0* 0, und mit /? (0) [0 G 0,]
die Wahrscheinlichkeit, dass der Test zur Annahme von //q führt für 0* 0, so
ist ein optimaler Test zur Sicherheitsschwelle a ein Test, bei welchem für alle
0 6 0o a (0) ^ a ist und unter dieser Einschränkung /i (0) bei Gültigkeit der
Alternativhypothese minimalisiert wird. Ist insbesondere die Alternativ-
hypothese einfach, d.h. besteht 0i {0i} nur aus einem einzigen Index 0,

allein, so nennen wir einen Test, für welchen a (0) < a [0 G 0o] und /? (0,) mini-
mal wird, einen Test zum Prüfen von //q gegen E/,. Ist 0, nicht einpunk-
dg, so spricht man von einem gfezcAmf/Wzg Test falls u (0) < a [0G0o]
und unter dieser Einschränkung /? (0) für alle 0 G 0i simultan den kleinstmögli-
chen Wert annimmt.

[« 0, 1, ...]
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In diesem Zusammenhang sei noch vermerkt, dass ein bester Test zum Prüfen

einer einfachen Nullhypothese @o {0o} gegen eine einfache Alternativ-
hypothese stets existiert und im wesentlichen eindeutig vorgegeben ist [7, p. 65],

Wenden wir dieses grundlegende Ergebnis von Neyman und Pearson auf sto-

chastische Punktprozesse an, so erhalten wir unter passenden Regularitäts-
bedingungen das folgende Konstruktionsprinzip:
1. Die Realisierung eines Punktprozesses in der Zeitspanne (0, s] lässt sich

durch folgende Angaben vollständig beschreiben : Die Anzahl « der realisierten

Ereignisse in (C s] und die Längen der ersten « ereignisfreien Zwischenräume

Vi, • - Man berechnet die (kombinierte) Wahrscheinlichkeit(sdichte) für

das Ereignis

A(x) «, T(1) y,, 7(«) v„

für 0* 0o und für 0* 0,. Diese Werte seien mit

T (0o : «;>>,, y„) und L(0, : n; j/,, v„) bezeichnet.

2. Man untersucht die Teststatistik (Likelihoodquotientenstatistik)

L(0„:A(X); 7(1),..., T(A(.V)))

1 .1 (AI.O: 7(1), 7(.V(,.)j : -
L(0, :*(*); 7(1),..., 7 (*(*)))

und bestimmt die Sicherheitsgrenze zl„ für welche gilt

zl„: sup {.x : Pr (/I < .x:0„) < a}.

3. Die kritische Region (Ablehnungsbereich von /7ß) des besten Testes zum

Sicherheitsniveau a ist dann gegeben durch

/I («;y,, j>„) < d„.

Der beste Test verwirft demnach die Nullhypothese für diejenigen 100 • a%

aller möglichen Realisierungen, welche die kleinsten Werte der Likelihood-

quotientenstatistik aufweisen für 0*= 0„.
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3. Spezielle Tests für Punktprozesse

In diesem Abschnitt werden einige spezielle Tests für Zufallsfolgen von Ereig-
nissen besprochen. Im Sinne eines praktischen Hinweises sei an dieser Stelle
ausdrücklich festgehalten, dass für die statistische Analyse von Punktprozessen
wenn immer möglich nicht bloss die Anzahl der Ereignisse in der Beobachtungs-
période bestimmt, sondern eine vollständige Liste der Zeitpunkte ihres Auf-
tretens erstellt werden sollte. Die letzteren Angaben liefern bei vielen Problem-
Stellungen zusätzliche Information über den Zufallsvorgang.

3.7 Der y4ntokorre/a/;on.vte.st

Bei Zufallsfolgen von Ereignissen ist es wichtig zu wissen, ob die Ereignisse
einen Erneuerungsprozess bilden. Ist dies der Fall, so ist die Vielfalt der in
Betracht zu ziehenden stochastischen Modelle schon wesentlich eingeschränkt.
Es gibt eine grosse Zahl von Testverfahren [2, 6], welche zur statistischen Be-

urteilung dieser Frage verwendet werden können. Wir besprechen hier den

Autokorrelationstest, der sich insbesondere durch relativ geringen Rechenauf-
wand auszeichnet. Er basiert auf der Feststellung, dass bei einem Erneuerungs-
prozess die Korrelation zwischen aufeinander folgenden Abständen zwischen
konsekutiven Ereignissen verschwindet, d.h. Korr [F(z'), T(z + 1)] g 0.

Zum Schätzen dieses Wertes g der Autokorrelationsfunktion benützt man in
der Zeitreihenanlyse bei im weiteren Sinne stationären Zwischenraumsprozes-
sen den Stichprobenkorrelationskoeffizienten, berechnet anhand der Werte-
paare O2, J3), 1, V,), also

L : 2 Omt') CKm-T") 2 y • 2 Ow-t'T
/ 2 /" 3

1

_
1 "

mit K : 2 >< >'"• 7 2n-2 n-2
wobei y,, Ks, y„ die in (0, .v] realisierten Abstände zwischen konsekutiven
Ereignissen bezeichnen (es empfiehlt sich bei diesem Test die Messung y, nicht
zu berücksichtigen. Vgl. auch die diesbezüglichen Bemerkungen in §3.3).

Der Autokorrelationstest prüft die Hypothesen:

i/o : g 0 gegen D) : p ¥= 0.

Aus einem allgemeineren Theorem der mathematischen Statistik [1] ergibt sich
durch Spezialisierung, dass bei Gültigkeit von i/o "j/«-2 r„ asymptotisch für
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[« - x ] die Realisierung einer standardisiert normalverteilten Zufallsvaria-
bien ist. Gestützt auf diese asymptotische Verhalten wählt man

als kritische Region des Autokorrelationstestes. <£ bezeichnet hier und im fol-

genden die Verteilungsfunktion der standardisierten Normalverteilung.

Eine andere Abweichung von der Hypothese, dass die Ereignisse einen Erneue-

rungsprozess bilden, ergibt sich, falls die Zufallsvariablen des Zwischenraum-

prozesses zwar stochastisch voneinander unabhängig sind, aber die Abstands-

Verteilung zeitlichen Veränderungen unterworfen ist. Wählt man als Vertei-

lungsannahme unter der Nullhypothese einen homogenen Poissonpunkt-

prozess, so ist es naheliegend, einen inhomogenen Poissonpunktprozess, wel-

eher also eine nicht-konstante Intensitätsfunktion 7. aufweist, in Betracht

zuziehen. In diesem Zusammenhang ist ein von Co* [4, p. 137] vorgeschlagener
Test gegen Trends von Interesse, welcher zum Prüfen der beiden Hypothesen

verwendet wird. Unter //„ bleibt die Intensität im Zeitablauf konstant, wäh-

rend sie bei Gültigkeit von T/j eine streng monoton fallende Funktion von

ist.

Wir leiten nachstehend ein diesbezügliches Resultat her, das in der Literatur

mehrfach ohne überzeugenden Beweis erwähnt wird [8, /?. 70; 5, /?. 48 und

77ieorem 7

Der gleichmässig beste Test zum Prüfen von TT, gegen //, zur Sicherheits-

schwelle a gestützt auf die Beobachtung des Punktprozesses in (0, j] basiert

V U I

auf der Teststatistik £/* : V {/(/), und der gleichmässig beste bedingte Test

unter der Voraussetzung A(.s) « weist für « — x die kritische Region

5.2 TV« fl.vvvn/i/ot/.vc/i o/??zmo/er Test gege« TrewA

/To: 7. 7.„

TT, : 7. 7,, e * [/te/C]

/;. 153],
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V M - - «.y

ff < z„ auf.

I
Hierbei ist £/(/): 7(1) + + 7(/) und <£ (z,,) a.

Sewew

Die (kombinierte) Wahrscheinlichkeit(sdichte) für die Realisierung von
A"(s) n, f/(l) M,, {/(«) w„ in (0,5] ist - wie man mühelos verifi-
ziert - unter //„ gegeben durch

Âg e [0 < m, < • • • < m„ < 5]

und beträgt bei Gültigkeit von //,

Ag exp -y? 2 "i "f ^0-
-/iv_l

yß

Demzufolge erhält man als Likelihoodquotientenstatistik zum Prüfen von /? 0

gegen /?=$,> 0 [#, fest gewählt]

/I exp -AO

A)-*— I

"ÄT exp
•V(.v)

â S ^0 ex/7 [-Aos]

Der beste Test für diese beiden Hypothesen kann also mittels der mit /( äqui-
valenten Prüfgrösse

er 2 ^/ 1

durchgeführt werden und verwirft //(, für (relativ) kleine Werte von t/*. Da diese

Testgrösse nicht von der spezifischen Wahl von /f, [/À, > 0] abhängt, handelt
es sich um den gleichmässig besten Test. Auf Grund des zentralen Grenzwert-
Satzes ergibt sich, dass CT | A(5) « unter //„ asymptotisch normalverteilt mit

Mittelwert und Varianz ist. a ist also die Realisierung einer un-

1er A/,, asymptotisch standardisiert normalverteilten Prüfgrösse, die mit der
Likelihoodquotientenstatistik des bedingten Tests äquivalent ist. Die Satzaus-
sage ergibt sich nun unmittelbar aus dem Theorem von Neyman/Pearson.
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/InwerTwwg :

Mit analogen Überlegungen erhält man, dass der gleichmässig beste Test zum
Prüfen von //„ gegen die Alternative A üe [/? £/?"'] zum Sicherheits-

niveau a die kritische Region ff > r, „ aufweist.

JJ 7&ï?j gegen £>7zeMe»g.ra//er«aT've« m/t e/rae///g ges/w/z/er
^fo?a«ö&ver?c//M«g

In diesem Abschnitt werden beste Tests entwickelt zur Beurteilung der Frage,
ob ein Punktprozess durch homogen poissonverteilte Ereignisse oder durch

Ereignisse, welche einen Erneuerungsprozess mit gestutzter Abstandsverteilung
bilden, erzeugt wird. Wir befassen uns zunächst mit den Hypothesen

#o: (hü?); /£ä'} ist ein homogener Poissonpunktprozess mit Intensität 1.

TT,: Die Ereignisse von {V(/); /GTÜ} bilden einen Erneuerungsprozess, dessen

Abstandsverteilung eine Dichtefunktion /'aufweist, welche den Bedingun-

gen/(«) < oo [m T? '],/(«) > 0 [w < c] und/(«) 0 [w V c] genügt,
wobei c eine fest vorgegebene positive reelle Zahl ist.

77?eorew 2

Der beste Test zum Prüfen von TTq gegen //, zur Sicherheitsschwelle a, basierend

auf der Beobachtung des Punktprozesses im Zeitabschnitt (0, .v], führt zur An-
nähme von //(,, falls y* > c und unter //o Fr (7* > c) < 1 - a gilt, und zur

Verwerfung von T/o, falls v* < c und unter //„ TV (T* < c) < a gilt. Hierbei
bezeichnet y

* die Länge des grössten in (0, s] realisierten ereignisfreien Zwischen-

raums, also

und 7* die dazugehörige Zufallsvariable.

T/evveA :

Der Wert der (kombinierten) Wahrscheinlichkeit(sdichte) für die beobachtete

Realisierung

X(v) «; 7(1) y„ 7(v(v)) T,

beträgt 1" e "
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bei Gültigkeit von 77, >. Unter 77, erhält man

g (n ; y,, y„ ; j, c, /) : 77 /(y,) f ./'(«) <7m,

É »

falls < e
und

0, falls >•' > c.

Nach dem Theorem von Neyman/Pearson verwirft der optimale Test zum
Prüfen von //„ gegen //, kleine Werte der Statistik

Gilt Pr (7* < c) > a unter 7/, so führt - unabhängig von der speziellen Wahl
von/-y* > c zur Annahme von /To- Der zweite Teil der Aussage ergibt sich
auf Grund analoger Überlegungen.
Ein ähnliches Resultat erhält man beim Vergleich von //„ mit der Alternativ-
hypothese

77* : Die Ereignisse von {F(?) ; / P ' } bilden einen Erneuerungsprozess, dessen

Abstandsprozess eine Dichtefunktion /aufweist, welche den Bedingungen

/(") < 00 [KG7r],/(«) > 0 [« > c] und / («) 0 [n < c] genügt, wobei
c eine fest vorgegebene positive Zahl ist.

T/îeorem 3

Der beste Test zum Prüfen von 77„ gegen //* zur Sicherheitsschwelle a, basie-
rend auf der Beobachtung des Punktprozesses im Zeitabschnitt (0, j], führt zur
Annahme von 7/,, wenn ,y < c und unter 77o Pr 7 < c) < 1 - a gilt, und führt
zur Verwerfung von 77o, falls ,y > c und unter 77q Pr 7 > c) < a gilt. Hier-
bei bezeichnet ,y die Länge des kleinsten in (0, j] realisierten ereignisfreien
Zwischenraums, vorausgesetzt, dass man die Lücke am Ende des Intervalls
nicht berücksichtigt, also

,y: min { j,, ,,y„},
und 7 die dazugehörige Zufallsvariable.

f /*<,) e " [7* < c]
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.Bewm

Die Satzaussage ist wie bei Theorem 2 eine Folgerung des Theorems von Ney-
man und Pearson. In diesem Fall erhält man mit analogen Überlegungen die

Likelihoodquotientenstatistik

/I
/»(jT(j); 7(1) 7 (v (.v)) ; ,v, c,/

[. y < c]

[,7 > c],

wobei /ï (/; ; y, y„ ; .v, c,/) // /Oü
00

I /'(;/) r/w.

2 -b

Obschon die Aussagen von Theorem 2 und Theorem 3 in der Regel keine voll-

ständige Charakterisierung der besten Tests vermitteln, ist es bei praktischen
Anwendungen vielfach trotzdem möglich, auf Grund dieser Ergebnisse zu opti-
malen Entscheidungen zu gelangen. Die Berechnung der massgebenden Wahr-
scheinlichkeiten unter der Nullhypothese bietet keine Schwierigkeiten (vgl. die

Ausführungen am Ende dieses Abschnitts). Gelegentlich ist es erforderlich, die

kritische Region des Tests genau zu bestimmen. Diese hängt indessen massgeb-

lieh von der in Betracht gezogenen Alternative, also von der Wahl von/ab.
Zu Beginn und am Ende der Beobachtungsperiode können bei empirischen
Studien über Punktprozesse leicht Komplikationen auftreten (z. B. kann der

Anfangs- oder Endzeitpunkt der Beobachtungsperiode nicht genau bekannt
sein, zu Beginn der Beobachtungsperiode können unter Umständen Ereig-
nisse nicht registriert werden, und auch die Erfassung von Ereignissen unmittel-
bar vor dem Ende der Beobachtungsperiode kann mit Schwierigkeiten verbun-
den sein [etwa zufolge verspäteter Meldungen]). Derartige Störungen führen

insbesondere zu falschen Werten von y, und v - V y,. Es ist deshalb von In-

teresse, einen statistischen Test zu entwickeln, mit welchem beurteilt werden

kann, ob auch die ereignisfreien Randlücken des Intervalls mit der Hypothese
des homogenen Poissonprozesses vereinbar sind oder ob diese Hypothese bes-

ser nur in bezug auf die Abstände zwischen den registrierten Ereignissen aufge-

stellt wird. Dies führt auf den Vergleich der folgenden Hypothesen:
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Ho"': Die in der Beobachtungsperiode (0, .v] registrierte Realisierung des

Punktprozesses stammt vollumfänglich von einem Punktprozess homo-

gen poissonverteilter Ereignisse mit Intensität À.

Hi"': Der erste und letzte ereignisfreie Zwischenraum in der Beobachtungs-
période (0, ,v] unterliegen irgendeinem unbekannten Verteilungsgesetz.
Die Realisierungdes Punktprozesses im (nicht-leeren Teilintervall T 1

Al.M

V Z(/')] lässt sich durch einen Punktprozess homogen poissonverteil-
/ 1

ter Ereignisse mit Intensität A erklären.

In Analogie zu den übrigen in diesem Artikel hergeleiteten Verfahren schlagen
wir zum Prüfen von Ho"' gegen H,"' zur Sicherheitsschwelle a den Test mit der
kritischen Region

A < £>„ A « > 2 vor,

wobei fr (D < £>„ A A 2 : H,) a.

d bezeichnet hier den Abstand zwischen erstem und letztem Ereignis in der

Beobachtungsperiode (0, j], also

<:/: V _v, [« > 2],
/ 2

und £> die zugehörige Zufallsvariable.

Begründung:
Die Hypothese H,"' ist nur für ^ja _y, A 0, also für « > 2, sinnvoll. Die

«Likelihoodquotientenstatistik» ist gegeben durch

H + ^
und somit äquivalent zu £>. Die kritische Region des Testes weist also die Form
D < ö„ auf.
Falls der in Theorem beschriebene Test zur Annahme von H,<" führt, so ist es

naheliegend, gestützt auf die Realisierung des Punktprozesses in (T(l),
vi'2 F(/)] zu prüfen, ob der zugrunde liegende Punktprozess tatsächlich durch
' 1

homogen poissonverteilte Ereignisse oder nicht vielmehr durch einen Erneue-
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rungsprozess mit einseitig gestutzter Abstandsverteilung erzeugt ist. Man er-

hält die den Theoremen 2 und 3 entsprechenden Aussagen, wenn man die Prüf-

grosse y* durch die Statistik IT": max jF(2), y^T(,v)j j und y durch

„IT: min |F(2) y(x(s)) j ersetzt.

Beispielsweise findet man

Theorem 4

Der beste Test zum Prüfen von //,, gegen //, zur Sicherheitsschwelle «, basierend

auf der Realisierung des Punktprozesses im Zeitabschnitt ^ y 1 y"

führt zur Annahme von //„, falls vr* > c, und unter //,, gilt Pr fP* > c) < 1-a
und zur Verwerfung von //(>, falls w* < c und unter //(, gilt /V (ff* < c) < a.

ßcH'c/.v

Die (kombinierte) Wahrscheinlichkeit(sdichte) für die beobachtete Realisie-

rung in der Zeitspanne (>,, ^ p) ist bei Gültigkeit von //„

É *
2" '

e ' 2

und bei Gültigkeit von //,
//

/(y,) oder 0, je nachdem w* < c oder w* > c.
/ 2

Die Aussage des Theorems erhält man nun auf Grund des Theorems von Ney-

man und Pearson.
Bei den bisher in diesem Abschnitt hergeleiteten Ergebnissen wird die Kenntnis

des Intensitätsparameters Â des unter //„ in Betracht gezogenen homogenen

Poissonprozesses vorausgesetzt. Bei praktischen Anwendungen ist 2 aber in

Tat und Wahrheit oft unbekannt. Diese Schwierigkeit kann dadurch umgan-

gen werden, dass man den Parameter 2 durch seinen Maximum-Likelihood-

Schätzwert 1 =—^ ersetzt. Eine andere Möglichkeit besteht darin, die sta-

tistische Analyse gestützt auf die bedingten Verteilungen unter der Einschrän-

kung X(.v) n durchzuführen, wobei n die in der untersuchten Beobachtungs-

période tatsächlich beobachtete Anzahl Ereignisse bezeichnet. Bei diesen be-
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dingten Tests sind die für die Beurteilung massgebenden Wahrscheinlichkei-
ten von 1 unabhängig. Man überlegt sich leicht, dass die optimalen Tests unter
dieser Einschränkung auf denselben Statistiken wie bei den Tests in Theorem
2-4 basieren und dass auch die Entscheidungskriterien dieselbe Form aufwei-
sen. Da sich nämlich für X (s) w die (kombinierte) Wahrscheinlichkeit(sdichte)
bei der durch X(j) » bedingten Verteilung nur durch einen konstanten Pro-

portionalitätsfaktor von der (kombinierten) Wahrscheinlichkeit(sdichte) bei

Verzicht auf diese Bedingung unterscheidet, sind auch die Likelihoodquotien-
tenstatistiken der beiden Tests proportional. Dies erklärt die Übereinstimmung
in der Form der kritischen Regionen bei beiden Analysemöglichkeiten. Wegen
der vollständigen Analogie der Aussagen verzichten wir auf die Formulierung
der Sätze über die bedingten Tests.

Die praktische Anwendung der Ergebnisse dieses Abschnitts setzt voraus, dass

man die massgebenden Wahrscheinlichkeiten bestimmen kann. Mit dem Pro-
blem der Ermittlung von Anordnungswahrscheinlichkeiten bei homogen pois-
sonverteilten Ereignissen hat sich der Autor in der Arbeit [10] befasst. Dort fin-
det man auch eine Sammlung der wichtigsten Berechnungsformeln. Deshalb
werden nachstehend lediglich die für bedingte Tests zuständigen Relationen
zusammengestellt, die wir bei der Besprechung des Zahlenbeispiels in § 4 benöti-
gen, und für weitere Angaben über Anordnungswahrscheinlichkeiten und de-

ren Herleitung wird auf [10] verwiesen.

Lewwa :

Für einen homogenen Poissonpunktprozess mit Intensität A gilt:

ft-(r < c|jf(s) -»)- 2 (-!)'(" )')('a)" « + 1
< C < J

0 < c <

(7)K;
^•(z) < /|jr(j) «) - (n-1) 0"

< c < 5
/7 - 1

[0 < f < 5 ; « > 2].
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Ein Ausdruck der Form [w] bezeichnet hierbei die grösste ganze Zahl, welche

kleiner oder gleich m ist.

3.4 Der

Wir gehen von der Annahme aus, dass empirische Beobachtungen über k homo-

gene Poissonpunktprozesse vorliegen. Der /-te Punktprozess wird in einer Beob-

achtungsperiode der Längey untersucht [/ 1 k]. Die Frage soll geprüft
werden, ob die Intensitäten dieser Punktprozesse alle identisch sind oder nicht.

Wir vergleichen also die Hypothesen

//,, : f., À

//, : Nicht alle À U [/' 1 k] sind einander gleich.

Einem gebräuchlichen Vorgehen in der Statistik entsprechend, prüft man Ho ge-

gen k/| zur Sicherheitsschwelle a gestützt auf die Prüfgrösse

^ ^ to
1

" yl
welche einen Vergleich zwischen den empirisch festgestellten und den theore-

tisch erwarteten Werten herstellt. Dabei bezeichnet A : S • 2 *<

die Maximum-Likelihood-Schätzfunktion der gemeinsamen Intensität unter //,)
Basiert man den Test aufdie asymptotische Verteilung von d, so verwendet man

die kritische Region

<5 > x ii. i „ mit G,, i (*a" i „) 1 - «.

Hier repräsentiert <5 die Realisierung von d und G, die Verteilungsfunktion der

Chiquadratverteilung mit v Freiheitsgraden.

4. Ein numerisches Beispiel aus der Versicherungspraxis

Als Illustration der in dieser Arbeit besprochenen Verfahren werden die der

SUVA gemeldeten schweren Unfälle in den Kalenderjahren 1963-1972 [9]

analysiert'. Die empirischen Daten lassen sich als Realisierung eines stochasti-

i Der Autor dankt Herrn Dr. //. Â'oc/ï (SUVA) für die Zurverfügungstellung der Unterlagen und

für wertvolle Hinweise über die Unfallstatistik und Herrn M. ^mae/ier für seine Mithilfe bei den

numerischen Auswertungen.
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sehen Punktprozesses interpretieren und sind in der Tabelle auf Seite 189 zu-
sammengestellt.
Auf Grund der Überlegungen von Abschnitt 3.4 soll zunächst abgeklärt wer-
den, ob-unter der Voraussetzung, dass die Daten in den einzelnen Kalender-
jähren durch einen homogenen Poissonpunktprozess erklärbar sind - die I nten-
sitäten für alle Jahre denselben Wert annehmen. Man findet <5 11,17, was mit
der Sicherheitsgrenzex^ 95% 16,92 zu vergleichen ist-. Zur Sicherhcits-
schwelle von 5% liegt demnach keine Signifikanz vor. Wir schliessen daraus,
dass eine gesonderte Behandlung der einzelnen Kalenderjahre nicht erforder-
lieh ist. Es ist also statthaft, die Daten aus den verschiedenen Kalenderjahren
zu poolen.
Basierend auf dem gesamten Beobachtungsmaterial, prüfen wir mit Hilfe des

Autokorrelationstestes anhand der Statistik r, - vgl. Abschnitt 3.1 - die
Hypothese, dass die Ereignisse des Punktprozesses einen Erneuerungsprozess
bilden. Wir erhalten r,5Q 0,00395 oder~|/348r,so ~ 0,074 während „5 1,96.
Es kann keine signifikante Abweichung von der Nullhypothese festgestellt wer-
den.

Auf das gesamte Beobachtungsmaterial wurde ausserdem der in §3.2 bespro-
chene Test gegen Trends angewandt. Es ergibt sich, dass er - 0,046. Ein Ver-
gleich mit der Sicherheitsgrenze zur Sicherheitsschwelle von 5% führt offen-
sichtlich nicht zur Ablehnung von //„.
Schliesslich findet man in der Tabelle auf Seite 190 die Resultate zusammen-
gestellt, die sich bei Anwendung der in Abschnitt 3.3 besprochenen Tests auf
die Daten jedes einzelnen Kalenderjahres oder auf das gesamte Beobachtungs-
material ergeben (da die Angaben nur in Tagen und nicht in feineren Zeit-
einheiten zur Verfügung stehen, werden die Tests gegen linksseitig gestutzte
Abstandsverteilungen der damit verbundenen Ungenauigkeit wegen nicht
durchgeführt). Aus dieser Zusammenstellung geht hervor, dass, abgesehen von
den Kalenderjahren 1968 und 1970, der beste Test mit Sicherheit zur Annahme
von führt, sofern nur die für die Alternativverteilungen zuständige Stutzungs-
schranke c so angesetzt wurde, dass c < y* (bzw. vv* und c > y*„ (bzw. h>*„)

und dass er nur in den beiden Kalenderjahren 1968 und 1970 für jede Wahl
von / H,, verwirft, falls c > >'* (bzw. vv*) und c < (bzw. w*„) [mit fr
(Ü < >C< I A(j) n) a] festgesetzt wurde. Mit Ausnahme der Werte in der
letzten Zeile wurden die in der Tabelle vermerkten Wahrscheinlichkeiten auf
Grund der bedingten Verteilungen berechnet. In der Tat kann der genaue Wert
von 2 nicht als bekannt angesehen werden. Führt man die statistische Analyse

Wir wählen « 0,05 für alle in diesem Abschnitt besprochenen Tests.
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gestützt auf die ursprünglichen Verteilungen durch und schätzt A mit der Maxi-
mum-Likelihood-Methode, so erhält man praktisch dieselben Wahrscheinlich-
keiten. Die entsprechenden Werte für das gesamte Beobachtungsmaterial sind

auf Seite 190 am Schluss der Tabelle angegeben. Wie ersichtlich sind die numeri-
sehen Unterschiede gering und führen zu derselben Beurteilung der Verhält-
nisse.

Abschliessend kann festgestellt werden, dass die Ergebnisse der Untersuchung
zu keinen Zweifeln Anlass geben an der Hypothese, dass die Unfallzeitpunkte
homogen poissonverteilt sind.
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Der 57/K/4 gemeWete .sc/zwere (7«/ä7/e /« </e« Ä"a/e«c/er/a/zre« 7965-/972'

Liste der Schadenzeitpunkte- :

Kalenderjahr Schadenzeitpunkte

1963 39 51 54 63 71 96 102 107 108 114
121 128 134 157 169 169 173 185 189 196

211 211 224 224 232 234 235 239 247 248
261 261 272 273 275 284 291 301 329 335

1964 10 12 17 26 28 49 77 80 112 114

142 152 168 181 197 197 198 213 224 230
231 232 237 242 250 269 304 311 327 328

340 347

1965 14 58 94 107 118 118 119 121 142 152

153 161 162 176 192 196 198 219 234 242

243 248 261 265 269 290 308 314 344 344

1966 11 36 45 73 74 107 119 149 154 164

177 220 237 245 269 270 272 278 281 283

289 291 300 307 312 314 314 315 346 350

351

1967 41 41 54 54 80 80 83 86 111 120

127 156 157 163 169 180 186 193 196 199

207 211 222 233 240 249 250 260 261 275

295 301 304 314 322 333 337 349 350 360

1968 17 24 25 40 50 70 75 96 100 129

160 163 172 172 175 182 183 188 195 219

246 269 287 288 302 309 323 330 331 352

1969 29 33 74 84 89 94 96 98 103 111

114 118 120 133 136 136 140 140 144 145

170 172 190 199 209 216 217 230 232 235

237 249 250 250 258 268 268 274 276 295

301 306 309 311 322 323 332 357 358

1970 9 13 22 39 52 68 83 110 113 129

146 148 155 164 165 168 169 172 180 188

193 196 220 224 228 246 265 266 267 278

280 298 299 301 310 323 346 353

1971 5 18 22 29 37 40 41 44 60 84

93 101 109 113 155 165 168 182 195 197

197 203 238 241 247 262 272 296 303 314

335 344

1972 21 23 102 119 123 124 154 167 169 172

175 179 180 185 192 194 203 204 215 235
248 251 264 292 314 316 334 355

Vus Bericht und Rechnung SUVA, 1963-1972.
Die Zahl x in der Liste repräsentiert ein Unfallereignis am x-ten Tage des Jahres
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Kalenderjahr 5 « rf Pr(0 < </ XO) n) y* Pc (7* < y* 7 (.y) n) le* Pc (17* < ir* JT(j) «")

1963 365 40 296 0,002** 39 0,606 28 0,117
1964 366 32 337 0,267 35 0,168 35 0,195
1965 365 30 330 0,203 44 0,455 44 0,483
1966 365 31 340 0,364 33 0,086 33 0,109
1967 365 40 319 0,031* 41 0,681 29 0,156
1968 366 30 335 0,265 31 0,032* 31 0,047*
1969 365 49 329 0,039* 41 0,859 41 0,864
1970 365 38 344 0,349 27 0,046* 27 0,059
1971 365 32 339 0,324 42 0,455 42 0,482
1972 366 28 334 0,284 79 0,968 79 0,970

1963-1972 3653 350 3603 0,047* 79 0,845 79 0,845

Pc(£> < rf: 2) Pc (7* < y*: Â) Pc (17* < vr : 1)

1963 1972 3603 0,048* 79 0,835 79 0,838
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Zusammenfassung

In dieser Arbeit werden statistische Tests für Punktprozesse mit Anwendungsmöglichkeiten in der
Nicht-Lebensversicherung diskutiert. Insbesondere werden neue Tests vorgeschlagen, welche opti-
mal sind zum Prüfen der Annahme, dass der Punktprozess durch homogen poissonverteilte
Ereignisse erzeugt sei, gegen Alternativen, bei welchen die Ereignisse des Prozesses einen Erneue-

rungsprozess mit gestutzter Zwischenraumsverteilung bilden. Des weiteren wird die Konstruktion
von statistischen Prüfverfahren für Punktprozesse im allgemeinen besprochen und Bemerkungen
zu einigen in der Fachliteratur behandelten speziellen Tests gemacht. Die praktische Nutzanwen-
dung der Ergebnisse wird anhand einer Analyse von Beobachtungsdaten der Schweizerischen
Unfallversicherungsanstalt illustriert.

Summary

In this article statistical tests for point-processes with applications in non-life insurance are
discussed. New tests are proposed which are optimal for comparing the hypothesis that the point-
process is generated by homogeneously Poisson distributed events with alternatives for which
the events of the process form a renewal process with a truncated gap distribution. Comments
are made about the construction of tests for point-processes in general and about some special
procedures, which are treated in the literature. The practical application of the results is illustrated
by investigating data on occupational accidents in Switzerland.
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Résumé

Discussion des méthodes de testage statistique pour les processus ponctuels applicables dans les

branches autres que la Vie. L'auteur propose de nouveaux procédés, optimaux pour la vérification
du postulat que le processus ponctuel résulte d'événements homogènement répartis selon Poisson,

par opposition aux alternatives, pour lesquelles les événements donnent un processus de renouvel-
lement avec répartition tronquée des intervalles. On trouvera dans cet article un commentaire
général delà mise au point des tests statistiques destinés aux processus ponctuels. Ainsi que diverses

remarques sur certains tests particuliers, évoqués dans la littérature spécialisée, l'auteur fournit un
bel exemple d'application pratique en analysant les données d'observation rec ueillies par la CNA.

Riassunto

Si discutono tests statistici per processi puntuali con le possibilité di applicazione nell'assicurazione
non-vita. In particolare si propongono nuovi tests ottimali per confrontare l'ipotesi che il processo
puntuale sia generato da eventi distribuai omogeneamente secondo Poisson con alternative
secondo le quali gli eventi del processo formano un processo di rinnovamento con una distribuzione
interspaziale troncata. Inoltre si commenta la costruzione di tests statistici per processi puntuali
in generale e si fanno osservazioni su alcuni tests particolari descritti nella letteratura spezializzata.
L'utilità pratica dei risultati ottenuti viene illustra ta mediante un'analisi di dati raccolti dall'Istituto
Nazionale Svizzero di Assicurazione contro gli Infortuni.
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