Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 74 (1974)

Artikel: Zufälligkeitstests und ihre Anwendung in der Versicherungsmathematik

Autor: Streit, Franz

DOI: https://doi.org/10.5169/seals-967099

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zufälligkeitstests und ihre Anwendung in der Versicherungsmathematik

Von Franz Streit, Bern

Versicherungsmathematischen Berechnungen liegen stets gewisse Modellvoraussetzungen zugrunde. Deshalb ist es empfehlenswert, gestützt auf Beobachtungsdaten zu überprüfen, inwieweit das verwendete Modell den vorliegenden Gegebenheiten tatsächlich entspricht. Zur Beurteilung von empirischem Zahlenmaterial steht heute eine Vielzahl von statistischen Verfahren zur Verfügung. Es ist ein Charakteristikum der neuzeitlichen statistischen Forschung. dass man sich vorwiegend damit befasst, diese Techniken im Hinblick auf ihre Optimalität zu analysieren. Derartige Untersuchungen entsprechen dem Leitbild, dass die Aufgabe des Statistikers bei praktischen Anwendungen darin besteht, auf Grund der verfügbaren, beschränkten Information unter Berücksichtigung aller Umstände und problembedingten Einschränkungen bestmögliche Aussagen über die effektiv vorliegenden Verhältnisse zu machen. Vor einiger Zeit hat Berliner [3] eine Übersicht über einige nicht-parametrische Tests mit Anwendungsmöglichkeiten in der Versicherungsmathematik vermittelt. In unserer Arbeit werden Testverfahren besprochen, welche unseres Erachtens insbesondere bei der Überprüfung von Hypothesen über Sequenzen von Schadenzeitpunkten Anwendung finden können. Man spricht in diesem Zusammenhang von Zufälligkeitstests (tests of randomness), da als Verteilungsannahme unter der Nullhypothese oft ein homogener Poissonpunktprozess – also gewissermassen das Standardmodell einer «rein zufälligen» Folge von Ereignissen – gewählt wird. Dem parametrischen Charakter dieser Verteilungsannahme entsprechend, ist es sinnvoll in erster Linie parametrische Methoden in Betracht zu ziehen. Neben einigen gebräuchlichen Prüfverfahren werden neue statistische Tests vorgeschlagen und ihre Optimalitätseigenschaften hergeleitet. Die praktische Nutzanwendung wird abschliessend an einem Zahlenbeispiel aus der Versicherungspraxis illustriert.

1. Zufallsfolgen von Ereignissen; Punktprozesse

In der Nichtlebensversicherungsmathematik stellt die Sequenz der zufälligen Zeitpunkte, bei denen versicherte Schäden für einen Versicherungsträger entstehen, ein wichtiges Untersuchungsobjekt dar. Bevor statistische Rückschlussverfahren für derartige Zufallsvorgänge entwickelt werden, sollen deshalb kurz

einige wahrscheinlichkeitstheoretischen Grundbegriffe, deren Kenntnis wir in diesem Zusammenhang benötigen, bereitgestellt werden.

Das soeben erwähnte Zufallsphänomen aus der Versicherungstechnik lässt sich mathematisch am besten durch einen Punktprozess wiedergeben.

Definition: Ein stochastischer Prozess (mit Stichprobenraum) $\{V(t); t \in R^+\}^1$, wobei V nur die Werte 0 und 1 annehmen kann und die Eigenheit besitzt, dass mit Wahrscheinlichkeit 1 für alle t, h R^+ die Anzahl N(t; h) der Argumentwerte in (t, t + h] für welche V(t) = 1 realisiert wird, existiert und endlich ist, nennen wir einen stochastischen Punktprozess.

Definition: Es sei $\{V(t); t \in R^+\}$ ein stochastischer Punktprozess. Einen Argumentwert t mit der Realisierung V(t) = 1 nennen wir ein *Ereignis* des Punktprozesses.

Mathematisch gesprochen handelt es sich also bei dem zu untersuchenden Phänomen um einen stochastischen Punktprozess, dessen Ereignisse als Schadenzeitpunkte zu interpretieren sind.

Es bestehen zwei grundsätzlich verschiedene Möglichkeiten, einen Punktprozess wahrscheinlichkeitstheoretisch zu charakterisieren, nämlich durch den zugeordneten Zählprozess einerseits und durch den zugeordneten Zwischenraumprozess andrerseits.

Definition: Es sei $\{V(t); t \in R^+\}$ ein stochastischer Punktprozess. Wir nennen $\{X(t); t \ge 0\}$ mit X(t): = Anzahl der Ereignisse von $\{V(t); t \in R^+\}$, welche in $\{0, t\}$ realisiert werden, den dem Punktprozess zugeordneten Zählprozess.

Definition: Als zugeordneter Zwischenraumprozess eines Punktprozesses bezeichnen wir den stochastischen Prozess $\{Y(i); i = 1, 2, ...\}$ mit Y(i):

$$\inf_{h \in \mathbb{R}^+} \left\{ h : X \left(\sum_{l=1}^{i-1} Y(l) + h \right) - X \left(\sum_{l=1}^{i-1} Y(l) \right) = 1 \right\} [i = 1, 2, \dots]. \text{ Anschaulich ge-}$$

sprochen kann also die Realisierung eines stochastischen Punktprozesses dadurch beschrieben werden, dass man die Anzahl der Ereignisse in den Zeitintervallen der Form (0, t] zählt oder indem man die Länge der ereignisfreien Zwischenräume misst.

Der folgende Spezialfall verdient besondere Erwähnung:

Definition: Wir sagen, dass die Ereignisse eines stochastischen Punktprozesses einen Erneuerungsprozess bilden, wenn die Zufallsvariablen Y(i) des zugehörigen Zwischenraumprozesses voneinander stochastisch unabhängig und identisch verteilt sind.

¹ R ⁺ bezeichnet die Menge der positiven reellen Zahlen.

Anmerkung: Bei einem homogenen Poissonpunktprozess mit Intensität $\lambda[\lambda > 0]$ beispielsweise gilt für die Zufallsvariablen des zugeordneten Zählprozesses

$$Pr\left(X(t)=n\right)=\frac{(\lambda\,t)^n}{n!}\,e^{-\lambda t}\qquad [n=0,\,1,\,\ldots]$$

und die Ereignisse des Prozesses bilden einen Erneuerungsprozess. Die Längen Y(i) der Zwischenräume sind exponentialverteilt mit Parameter λ .

2. Zur Konstruktion optimaler statistischer Tests für Punktprozesse

In diesem Abschnitt werden kurz die Grundbegriffe aus der mathematischen Statistik, die wir im folgenden benötigen, erläutert. Im Zusammenhang mit der Beurteilung von Zufallsfolgen von Ereignissen besteht die Aufgabe des Statistikers darin, gestützt auf die Kenntnis einer Realisierung des Punktprozesses in einer endlichen Zeitspanne, Aussagen über den tatsächlich zugrunde liegenden Zufallsprozess zu machen. Wir beschränken uns in dieser Arbeit auf die Konstruktion statistischer Testverfahren. In diesem Zusammenhang nimmt das Grundproblem die folgende Gestalt an: Gegeben seien eine Klasse $< \{ V(t; \theta) :$ $t \in \mathbb{R}^+$; $\theta \in \Theta$ > von stochastischen Punktprozessen und eine empirisch beobachtete Realisierung einer derartigen Zufallsfunktion in der Zeitspanne (0, s]. Es seien Θ_0 und Θ_1 zwei disjunkte Teilmengen der Indexmenge Θ . Gestützt auf diese Angaben soll entschieden werden, ob für den effektiv zugrunde liegenden Punktprozess $\{V(t: \theta^*); t \in R^+\}$ die Nullhypothese $H_0: \theta^* \in \Theta_0$ oder die Alternativhypothese $H_1: \theta^* \in \Theta_1$ zutreffend ist. Die Grundlage für die Beurteilung der Eigenschaften eines statistischen Testes bilden die Irrtumswahrscheinlichkeiten. Bezeichnen wir mit $\alpha(\theta)$ [$\theta \in \Theta_0$] die Wahrscheinlichkeit, auf Grund des Testes die Hypothese H_1 anzunehmen, wenn $\theta^* = \theta$, und mit $\beta(\theta)$ $[\theta \in \Theta_1]$ die Wahrscheinlichkeit, dass der Test zur Annahme von H_0 führt für $\theta^* = \theta$, so ist ein optimaler Test zur Sicherheitsschwelle a ein Test, bei welchem für alle $\theta \in \Theta_0 \ a \ (\theta) \le a$ ist und unter dieser Einschränkung $\beta \ (\theta)$ bei Gültigkeit der Alternativhypothese minimalisiert wird. Ist insbesondere die Alternativhypothese einfach, d.h. besteht $\Theta_1 = \{\theta_1\}$ nur aus einem einzigen Index θ_1 allein, so nennen wir einen Test, für welchen $\alpha(\theta) \leq \alpha [\theta \in \Theta_0]$ und $\beta(\theta)$ minimal wird, einen besten Test zum Prüfen von H_0 gegen H_1 . Ist Θ_1 nicht einpunktig, so spricht man von einem gleichmässig besten Test falls $a(\theta) \leq a[\theta \in \Theta_0]$ und unter dieser Einschränkung $\beta(\theta)$ für alle $\theta \in \Theta_1$ simultan den kleinstmöglichen Wert annimmt.

In diesem Zusammenhang sei noch vermerkt, dass ein bester Test zum Prüfen einer einfachen Nullhypothese $\Theta_0 = \{\theta_0\}$ gegen eine einfache Alternativhypothese stets existiert und im wesentlichen eindeutig vorgegeben ist [7, p. 65]. Wenden wir dieses grundlegende Ergebnis von Neyman und Pearson auf stochastische Punktprozesse an, so erhalten wir unter passenden Regularitätsbedingungen das folgende Konstruktionsprinzip:

1. Die Realisierung eines Punktprozesses in der Zeitspanne (0, s] lässt sich durch folgende Angaben vollständig beschreiben: Die Anzahl n der realisierten Ereignisse in (0, s] und die Längen der ersten n ereignisfreien Zwischenräume y_1, \ldots, y_n . Man berechnet die (kombinierte) Wahrscheinlichkeit(sdichte) für das Ereignis

$$X(s) = n, \quad Y(1) = y_1, \dots, \quad Y(n) = y_n$$

für $\theta^* = \theta_0$ und für $\theta^* = \theta_1$. Diese Werte seien mit $L(\theta_0; n; y_1, \dots, y_n)$ und $L(\theta_1; n; y_1, \dots, y_n)$ bezeichnet.

2. Man untersucht die Teststatistik (Likelihoodquotientenstatistik)

$$\Lambda = \Lambda\left(X(s); Y(1), \ldots, Y(X(s))\right) := \frac{L\left(\theta_0: X(s); Y(1), \ldots, Y(X(s))\right)}{L\left(\theta_1: X(s); Y(1), \ldots, Y(X(s))\right)}$$

und bestimmt die Sicherheitsgrenze Λ_a für welche gilt

$$\Lambda_a := \sup \{x : Pr (\Lambda < x : \theta_0) \leq a \}.$$

3. Die kritische Region (Ablehnungsbereich von H_0) des besten Testes zum Sicherheitsniveau a ist dann gegeben durch

$$\Lambda(n; y_1, \ldots, y_n) < \Lambda_a.$$

Der beste Test verwirft demnach die Nullhypothese für diejenigen $100 \cdot a\%$ aller möglichen Realisierungen, welche die kleinsten Werte der Likelihood-quotientenstatistik aufweisen für $\theta^* = \theta_0$.

3. Spezielle Tests für Punktprozesse

In diesem Abschnitt werden einige spezielle Tests für Zufallsfolgen von Ereignissen besprochen. Im Sinne eines praktischen Hinweises sei an dieser Stelle ausdrücklich festgehalten, dass für die statistische Analyse von Punktprozessen wenn immer möglich nicht bloss die Anzahl der Ereignisse in der Beobachtungsperiode bestimmt, sondern eine vollständige Liste der Zeitpunkte ihres Auftretens erstellt werden sollte. Die letzteren Angaben liefern bei vielen Problemstellungen zusätzliche Information über den Zufallsvorgang.

3.1 Der Autokorrelationstest

Bei Zufallsfolgen von Ereignissen ist es wichtig zu wissen, ob die Ereignisse einen Erneuerungsprozess bilden. Ist dies der Fall, so ist die Vielfalt der in Betracht zu ziehenden stochastischen Modelle schon wesentlich eingeschränkt. Es gibt eine grosse Zahl von Testverfahren [2, 6], welche zur statistischen Beurteilung dieser Frage verwendet werden können. Wir besprechen hier den Autokorrelationstest, der sich insbesondere durch relativ geringen Rechenaufwand auszeichnet. Er basiert auf der Feststellung, dass bei einem Erneuerungsprozess die Korrelation zwischen aufeinander folgenden Abständen zwischen konsekutiven Ereignissen verschwindet, d.h. Korr $[Y(i), Y(i+1)] = \varrho = 0$. Zum Schätzen dieses Wertes ϱ der Autokorrelationsfunktion benützt man in der Zeitreihenanlyse bei im weiteren Sinne stationären Zwischenraumsprozessen den Stichprobenkorrelationskoeffizienten, berechnet anhand der Wertepaare $(y_2, y_3), \ldots, (y_{n-1}, y_n)$, also

$$r_n := \left[\sum_{i=2}^{n-1} (y_i - \overline{y}') (y_{i+1} - \overline{y}'') \right] \cdot \left[\sum_{i=2}^{n-1} (y_i - \overline{y}')^2 \cdot \sum_{i=3}^{n} (y x_i - \overline{y}'')^2 \right]^{-\frac{1}{2}}$$

$$\text{mit } \overline{y}' := \frac{1}{n-2} \sum_{i=2}^{n-1} y_i \text{ und } \overline{y}'' := \frac{1}{n-2} \sum_{i=3}^{n} y_i,$$

wobei y_2, y_3, \ldots, y_n die in (0, s] realisierten Abstände zwischen konsekutiven Ereignissen bezeichnen (es empfiehlt sich bei diesem Test die Messung y_1 nicht zu berücksichtigen. Vgl. auch die diesbezüglichen Bemerkungen in § 3.3).

Der Autokorrelationstest prüft die Hypothesen:

$$H_0$$
: $\varrho = 0$ gegen H_1 : $\varrho \neq 0$.

Aus einem allgemeineren Theorem der mathematischen Statistik [1] ergibt sich durch Spezialisierung, dass bei Gültigkeit von $H_0 \sqrt{n-2} r_n$ asymptotisch für

 $[n \to \infty]$ die Realisierung einer standardisiert normalverteilten Zufallsvariablen ist. Gestützt auf diese asymptotische Verhalten wählt man

$$\sqrt{n-2} | r_n | > z_{1-\frac{\alpha}{2}} \text{ mit } \Phi (z_{1-\frac{\alpha}{2}}) = 1 - \frac{\alpha}{2}$$

als kritische Region des Autokorrelationstestes. Φ bezeichnet hier und im folgenden die Verteilungsfunktion der standardisierten Normalverteilung.

3.2 Ein asymptotisch optimaler Test gegen Trends

Eine andere Abweichung von der Hypothese, dass die Ereignisse einen Erneuerungsprozess bilden, ergibt sich, falls die Zufallsvariablen des Zwischenraumprozesses zwar stochastisch voneinander unabhängig sind, aber die Abstandsverteilung zeitlichen Veränderungen unterworfen ist. Wählt man als Verteilungsannahme unter der Nullhypothese einen homogenen Poissonpunktprozess, so ist es naheliegend, einen inhomogenen Poissonpunktprozess, welcher also eine nicht-konstante Intensitätsfunktion λ (t) aufweist, in Betracht zu ziehen. In diesem Zusammenhang ist ein von Cox [4, p. 137] vorgeschlagener Test gegen Trends von Interesse, welcher zum Prüfen der beiden Hypothesen

$$H_0$$
: $\lambda(t) \equiv \lambda_0$
 H_1 : $\lambda(t) = \lambda_0 e^{-\beta t}$ $[\beta \in R^+]$ $[\lambda_0 \in R^+]$,

verwendet wird. Unter H_0 bleibt die Intensität im Zeitablauf konstant, während sie bei Gültigkeit von H_1 eine streng monoton fallende Funktion von t ist.

Wir leiten nachstehend ein diesbezügliches Resultat her, das in der Literatur mehrfach ohne überzeugenden Beweis erwähnt wird [8, p. 70; 5, p. 48 und p. 153].

Theorem 1

Der gleichmässig beste Test zum Prüfen von H_0 gegen H_1 zur Sicherheitsschwelle α gestützt auf die Beobachtung des Punktprozesses in (0, s] basiert

auf der Teststatistik U^* : = $\sum_{l=1}^{X(s)} U(l)$, und der gleichmässig beste bedingte Test

unter der Voraussetzung X(s) = n weist für $n \to \infty$ die kritische Region

$$\sigma = \frac{\sum_{l=1}^{n} u - \frac{1}{2} ns}{\sqrt{\frac{n}{12}}} < z_a \text{ auf.}$$

Hierbei ist U(l): = Y(1) + ... + Y(l) und $\Phi(z_a) = a$.

Beweis

Die (kombinierte) Wahrscheinlichkeit(sdichte) für die Realisierung von X(s) = n, $U(1) = u_1, \ldots, U(n) = u_n$ in (0, s] ist – wie man mühelos verifiziert – unter H_0 gegeben durch

$$\lambda_0^n e^{-\lambda_0 s}$$
 $[0 \leqslant u_1 \leqslant \cdots \leqslant u_n \leqslant s]$

und beträgt bei Gültigkeit von H_1

$$\lambda_0^n \exp \left[-\beta \sum_{l=1}^n u_l + \lambda_0 \frac{e^{-\beta s}-1}{\beta} \right].$$

Demzufolge erhält man als Likelihoodquotientenstatistik zum Prüfen von $\beta = 0$ gegen $\beta = \beta_0 > 0$ [β_0 fest gewählt]

$$\Lambda = \exp\left[-\lambda_0 \frac{e^{-\beta_0 s} - 1}{\beta_0}\right] \exp\left[\beta_0 \sum_{l=1}^{X(s)} U(l)\right] \exp\left[-\lambda_0 s\right].$$

Der beste Test für diese beiden Hypothesen kann also mittels der mit Λ äquivalenten Prüfgrösse

$$U^* = \sum_{l=1}^{X(s)} U(l)$$

durchgeführt werden und verwirft H_0 für (relativ) kleine Werte von U^* . Da diese Testgrösse nicht von der spezifischen Wahl von β_0 [$\beta_0 > 0$] abhängt, handelt es sich um den gleichmässig besten Test. Auf Grund des zentralen Grenzwertsatzes ergibt sich, dass $U^* \mid X(s) = n$ unter H_0 asymptotisch normalverteilt mit Mittelwert $\frac{n \cdot s}{2}$ und Varianz $\left(s \cdot \sqrt{\frac{n}{12}}\right)^2$ ist. σ ist also die Realisierung einer unter H_0 asymptotisch standardisiert normalverteilten Prüfgrösse, die mit der Likelihoodquotientenstatistik des bedingten Tests äquivalent ist. Die Satzaussage ergibt sich nun unmittelbar aus dem Theorem von Neyman/Pearson.

Anmerkung:

Mit analogen Überlegungen erhält man, dass der gleichmässig beste Test zum Prüfen von H_0 gegen die Alternative λ $(t) = \lambda_0 e^{+\beta t}$ [$\beta \in R^+$] zum Sicherheitsniveau α die kritische Region $\sigma > z_{1-\alpha}$ aufweist.

3.3 Optimale Tests gegen Erneuerungsalternativen mit einseitig gestutzter Abstandsverteilung

In diesem Abschnitt werden beste Tests entwickelt zur Beurteilung der Frage, ob ein Punktprozess durch homogen poissonverteilte Ereignisse oder durch Ereignisse, welche einen Erneuerungsprozess mit gestutzter Abstandsverteilung bilden, erzeugt wird. Wir befassen uns zunächst mit den Hypothesen

 H_0 : $\{V(t); t \in \mathbb{R}^+\}$ ist ein homogener Poissonpunktprozess mit Intensität λ .

 H_1 : Die Ereignisse von $\{V(t); t \in R^+\}$ bilden einen Erneuerungsprozess, dessen Abstandsverteilung eine Dichtefunktion f aufweist, welche den Bedingungen $f(u) < \infty$ $[u \in R^+]$, f(u) > 0 [u < c] und f(u) = 0 $[u \geqslant c]$ genügt, wobei c eine fest vorgegebene positive reelle Zahl ist.

Theorem 2

Der beste Test zum Prüfen von H_0 gegen H_1 zur Sicherheitsschwelle a, basierend auf der Beobachtung des Punktprozesses im Zeitabschnitt (0, s], führt zur Annahme von H_0 , falls $y^* \ge c$ und unter H_0 $Pr(Y^* \ge c) \le 1 - a$ gilt, und zur Verwerfung von H_0 , falls $y^* < c$ und unter H_0 $Pr(Y^* < c) \le a$ gilt. Hierbei bezeichnet y^* die Länge des grössten in (0, s] realisierten ereignisfreien Zwischenraums, also

$$y^*$$
: = max $\{y_1, \ldots, y_n, s - \sum_{i=1}^n y_i\},$

und Y* die dazugehörige Zufallsvariable.

Beweis:

Der Wert der (kombinierten) Wahrscheinlichkeit(sdichte) für die beobachtete Realisierung

$$X(s) = n; Y(1) = y_1, ..., Y(X(s)) = y_n$$

beträgt $\lambda^n e^{-\lambda s}$

bei Gültigkeit von H_0 . Unter H_1 erhält man

$$g(n; y_1, \ldots, y_n; s, c, f) := \begin{bmatrix} \prod_{i=1}^n f(y_i) \end{bmatrix} \cdot \int_{i=1}^c f(u) du,$$

$$s - \sum_{i=1}^n y_i$$

$$falls y^* < c$$

und

0, falls
$$y^* \ge c$$
.

Nach dem Theorem von Neyman/Pearson verwirft der optimale Test zum Prüfen von H_0 gegen H_1 kleine Werte der Statistik

$$\Lambda \colon = \left\{ \begin{array}{l} \frac{\lambda^{X(s)} e^{-\lambda s}}{g\left(X(s); Y(1), \ldots, Y(X(s)); s, c, f\right)} & [Y^* < c] \\ \infty & [Y^* \geqslant c]. \end{array} \right.$$

Gilt $Pr(Y^* < c) \ge a$ unter H_0 so führt – unabhängig von der speziellen Wahl von $f - y^* \ge c$ zur Annahme von H_0 . Der zweite Teil der Aussage ergibt sich auf Grund analoger Überlegungen.

Ein ähnliches Resultat erhält man beim Vergleich von H_0 mit der Alternativhypothese

 H_1^* : Die Ereignisse von $\{V(t); t \in R^+\}$ bilden einen Erneuerungsprozess, dessen Abstandsprozess eine Dichtefunktion f aufweist, welche den Bedingungen $f(u) < \infty$ [$u \in R^+$], f(u) > 0 [$u \ge c$] und f(u) = 0 [u < c] genügt, wobei c eine fest vorgegebene positive Zahl ist.

Theorem 3

Der beste Test zum Prüfen von H_0 gegen H_1^* zur Sicherheitsschwelle a, basierend auf der Beobachtung des Punktprozesses im Zeitabschnitt (0, s], führt zur Annahme von H_0 , wenn $_*y < c$ und unter H_0 $Pr(_*Y < c) \le 1-a$ gilt, und führt zur Verwerfung von H_0 , falls $_*y \ge c$ und unter H_0 $Pr(_*Y \ge c) \le a$ gilt. Hierbei bezeichnet $_*y$ die Länge des kleinsten in (0, s] realisierten ereignisfreien Zwischenraums, vorausgesetzt, dass man die Lücke am Ende des Intervalls nicht berücksichtigt, also

$$_*y$$
: = min $\{y_1, \ldots, y_n\}$,

und _{*}Y die dazugehörige Zufallsvariable.

Beweis

Die Satzaussage ist wie bei Theorem 2 eine Folgerung des Theorems von Neyman und Pearson. In diesem Fall erhält man mit analogen Überlegungen die Likelihoodquotientenstatistik

$$\Lambda = \begin{cases} \infty & [*Y < c] \\ \frac{\lambda^{X(s)} e^{-\lambda s}}{h(X(s); Y(1), \ldots, Y(X(s)); s, c, f)} & [*Y < c], \end{cases}$$

wobei
$$h(n; y_1, \ldots, y_n; s, c, f) = \begin{bmatrix} \prod_{i=1}^n f(y_i) \end{bmatrix} \cdot \int_{j=1}^{\infty} f(u) du$$
.

$$s - \sum_{i=1}^n y_i$$

Obschon die Aussagen von Theorem 2 und Theorem 3 in der Regel keine vollständige Charakterisierung der besten Tests vermitteln, ist es bei praktischen Anwendungen vielfach trotzdem möglich, auf Grund dieser Ergebnisse zu optimalen Entscheidungen zu gelangen. Die Berechnung der massgebenden Wahrscheinlichkeiten unter der Nullhypothese bietet keine Schwierigkeiten (vgl. die Ausführungen am Ende dieses Abschnitts). Gelegentlich ist es erforderlich, die kritische Region des Tests genau zu bestimmen. Diese hängt indessen massgeblich von der in Betracht gezogenen Alternative, also von der Wahl von f ab. Zu Beginn und am Ende der Beobachtungsperiode können bei empirischen Studien über Punktprozesse leicht Komplikationen auftreten (z. B. kann der Anfangs- oder Endzeitpunkt der Beobachtungsperiode nicht genau bekannt sein, zu Beginn der Beobachtungsperiode können unter Umständen Ereignisse nicht registriert werden, und auch die Erfassung von Ereignissen unmittelbar vor dem Ende der Beobachtungsperiode kann mit Schwierigkeiten verbunden sein [etwa zufolge verspäteter Meldungen]). Derartige Störungen führen insbesondere zu falschen Werten von y_1 und $s - \sum_{i=1}^{n} y_i$. Es ist deshalb von Interesse, einen statistischen Test zu entwickeln, mit welchem beurteilt werden kann, ob auch die ereignisfreien Randlücken des Intervalls mit der Hypothese des homogenen Poissonprozesses vereinbar sind oder ob diese Hypothese besser nur in bezug auf die Abstände zwischen den registrierten Ereignissen aufgestellt wird. Dies führt auf den Vergleich der folgenden Hypothesen:

 $H_0^{(1)}$: Die in der Beobachtungsperiode (0, s] registrierte Realisierung des Punktprozesses stammt vollumfänglich von einem Punktprozess homogen poissonverteilter Ereignisse mit Intensität λ .

 $H_1^{(1)}$: Der erste und letzte ereignisfreie Zwischenraum in der Beobachtungsperiode (0, s] unterliegen irgendeinem unbekannten Verteilungsgesetz. Die Realisierungdes Punktprozesses im (nicht-leeren Teilintervall (Y(1), S(1)))

 $\sum_{i=1}^{X(s)} Y(i)$] lässt sich durch einen Punktprozess homogen poissonverteil-

ter Ereignisse mit Intensität λ erklären.

In Analogie zu den übrigen in diesem Artikel hergeleiteten Verfahren schlagen wir zum Prüfen von $H_0^{(1)}$ gegen $H_1^{(1)}$ zur Sicherheitsschwelle a den Test mit der kritischen Region

$$d < D_a \wedge n \ge 2 \text{ vor},$$

wobei
$$Pr(D < D_a \land X(s) \ge 2 : H_0) = a$$
.

d bezeichnet hier den Abstand zwischen erstem und letztem Ereignis in der Beobachtungsperiode (0, s], also

$$d: = \sum_{i=2}^{n} y_i \quad [n > 2],$$

und D die zugehörige Zufallsvariable.

Begründung:

Die Hypothese $H_1^{(1)}$ ist nur für $\left(y_1, \sum_{i=1}^n y_i\right) \neq \emptyset$, also für $n \ge 2$, sinnvoll. Die

«Likelihoodquotientenstatistik» ist gegeben durch

$$\Lambda = \lambda e^{-\lambda s + \lambda D}$$

und somit äquivalent zu D. Die kritische Region des Testes weist also die Form $D < D_a$ auf.

Falls der in Theorem beschriebene Test zur Annahme von $H_1^{(1)}$ führt, so ist es naheliegend, gestützt auf die Realisierung des Punktprozesses in (Y(1),

 $\sum_{i=1}^{X(s)} Y(i)$] zu prüfen, ob der zugrunde liegende Punktprozess tatsächlich durch

homogen poissonverteilte Ereignisse oder nicht vielmehr durch einen Erneue-

rungsprozess mit einseitig gestutzter Abstandsverteilung erzeugt ist. Man erhält die den Theoremen 2 und 3 entsprechenden Aussagen, wenn man die Prüfgrösse Y^* durch die Statistik W^* : = max $\{Y(2), \ldots, Y(X(s))\}$ und $_*Y$ durch $_*W$: = min $\{Y(2), \ldots, Y(X(s))\}$ ersetzt.

Beispielsweise findet man

Theorem 4

Der beste Test zum Prüfen von H_0 gegen H_1 zur Sicherheitsschwelle a, basierend auf der Realisierung des Punktprozesses im Zeitabschnitt $\left(Y(1), \sum_{i=1}^{X(s)} y(i)\right)$, führt zur Annahme von H_0 , falls $w^* \ge c$, und unter H_0 gilt $Pr(W^* \ge c) \le 1-a$ und zur Verwerfung von H_0 , falls $w^* < c$ und unter H_0 gilt $Pr(W^* < c) \le a$.

Beweis

Die (kombinierte) Wahrscheinlichkeit(sdichte) für die beobachtete Realisierung in der Zeitspanne $(y_1, \sum_{i=1}^{n} y_i)$ ist bei Gültigkeit von H_0

$$\lambda^{n-1} e^{-\lambda \sum_{i=2}^{n} y_i}$$

und bei Gültigkeit von H_1

$$\prod_{i=2}^{n} f(y_i) \text{ oder } 0, \text{ je nachdem } w^* < c \text{ oder } w^* \ge c.$$

Die Aussage des Theorems erhält man nun auf Grund des Theorems von Neyman und Pearson.

Bei den bisher in diesem Abschnitt hergeleiteten Ergebnissen wird die Kenntnis des Intensitätsparameters λ des unter H_0 in Betracht gezogenen homogenen Poissonprozesses vorausgesetzt. Bei praktischen Anwendungen ist λ aber in Tat und Wahrheit oft unbekannt. Diese Schwierigkeit kann dadurch umgangen werden, dass man den Parameter λ durch seinen Maximum-Likelihood-

Schätzwert $\hat{\lambda} = \frac{X(s)}{s}$ ersetzt. Eine andere Möglichkeit besteht darin, die statistische Analyse gestützt auf die bedingten Verteilungen unter der Einschränkung X(s) = n durchzuführen, wobei n die in der untersuchten Beobachtungsperiode tatsächlich beobachtete Anzahl Ereignisse bezeichnet. Bei diesen be-

dingten Tests sind die für die Beurteilung massgebenden Wahrscheinlichkeiten von λ unabhängig. Man überlegt sich leicht, dass die optimalen Tests unter dieser Einschränkung auf denselben Statistiken wie bei den Tests in Theorem 2–4 basieren und dass auch die Entscheidungskriterien dieselbe Form aufweisen. Da sich nämlich für X(s) = n die (kombinierte) Wahrscheinlichkeit(sdichte) bei der durch X(s) = n bedingten Verteilung nur durch einen konstanten Proportionalitätsfaktor von der (kombinierten) Wahrscheinlichkeit(sdichte) bei Verzicht auf diese Bedingung unterscheidet, sind auch die Likelihoodquotientenstatistiken der beiden Tests proportional. Dies erklärt die Übereinstimmung in der Form der kritischen Regionen bei beiden Analysemöglichkeiten. Wegen der vollständigen Analogie der Aussagen verzichten wir auf die Formulierung der Sätze über die bedingten Tests.

Die praktische Anwendung der Ergebnisse dieses Abschnitts setzt voraus, dass man die massgebenden Wahrscheinlichkeiten bestimmen kann. Mit dem Problem der Ermittlung von Anordnungswahrscheinlichkeiten bei homogen poissonverteilten Ereignissen hat sich der Autor in der Arbeit [10] befasst. Dort findet man auch eine Sammlung der wichtigsten Berechnungsformeln. Deshalb werden nachstehend lediglich die für bedingte Tests zuständigen Relationen zusammengestellt, die wir bei der Besprechung des Zahlenbeispiels in § 4 benötigen, und für weitere Angaben über Anordnungswahrscheinlichkeiten und deren Herleitung wird auf [10] verwiesen.

Lemma:

Für einen homogenen Poissonpunktprozess mit Intensität λ gilt:

$$Pr\left(Y^* < c \mid X(s) = n\right) = \sum_{r=0}^{\left[\frac{s}{c}\right]} (-1)^r \binom{n+1}{r} \left(1 - r\frac{c}{s}\right)^n \qquad \left[\frac{s}{n+1} \leqslant c \leqslant s\right]$$

$$Pr\left(W^* < c \mid X(s) = n\right) = n! \left\{ \left(\frac{c}{s}\right)^{n-1} - \frac{n-1}{2} \left(\frac{c}{s}\right)^n \right\} \qquad \left[0 \leqslant c \leqslant \frac{s}{n-1}\right]$$

$$= \sum_{r=0}^{\left[\frac{s}{c}\right]} (-1)^r \binom{n-1}{r} \left(1 - r\frac{c}{s}\right)^n \qquad \left[\frac{s}{n-1} \leqslant c \leqslant s\right]$$

$$Pr\left(D < t \mid X(s) = n\right) = n \left(\frac{t}{s}\right)^{n-1} - (n-1) \left(\frac{t}{s}\right)^n \qquad [0 \leqslant t \leqslant s; \ n \geqslant 2].$$

Ein Ausdruck der Form [u] bezeichnet hierbei die grösste ganze Zahl, welche kleiner oder gleich u ist.

3.4 Der Homogenitätstest

Wir gehen von der Annahme aus, dass empirische Beobachtungen über k homogene Poissonpunktprozesse vorliegen. Der i-te Punktprozess wird in einer Beobachtungsperiode der Länge s_i untersucht $[i=1,\ldots,k]$. Die Frage soll geprüft werden, ob die Intensitäten dieser Punktprozesse alle identisch sind oder nicht. Wir vergleichen also die Hypothesen

$$H_0: \lambda_1 = \ldots = \lambda_k$$

 H_1 : Nicht alle λ_i 's [i = 1, ..., k] sind einander gleich.

Einem gebräuchlichen Vorgehen in der Statistik entsprechend, prüft man H_0 gegen H_1 zur Sicherheitsschwelle α gestützt auf die Prüfgrösse

$$\Delta: = \sum_{i=1}^{k} \frac{\left(X_{i}\left(s_{i}\right) - s_{i} \hat{\lambda}\right)^{2}}{s_{i} \hat{\lambda}},$$

welche einen Vergleich zwischen den empirisch festgestellten und den theoretisch erwarteten Werten herstellt. Dabei bezeichnet $\hat{\lambda} := \left[\sum_{i=1}^{k} X_i(s_i)\right] \cdot \left[\sum_{i=1}^{k} s_i\right]^{-1}$

die Maximum-Likelihood-Schätzfunktion der gemeinsamen Intensität unter H_0 . Basiert man den Test auf die asymptotische Verteilung von Δ , so verwendet man die kritische Region

$$\delta > \chi^2_{k-1, 1-a}$$
 mit $G_{k-1}(\chi^2_{k-1, 1-a}) = 1 - a$.

Hier repräsentiert δ die Realisierung von Δ und G_v die Verteilungsfunktion der Chiquadratverteilung mit v Freiheitsgraden.

4. Ein numerisches Beispiel aus der Versicherungspraxis

Als Illustration der in dieser Arbeit besprochenen Verfahren werden die der SUVA gemeldeten schweren Unfälle in den Kalenderjahren 1963–1972 [9] analysiert¹. Die empirischen Daten lassen sich als Realisierung eines stochasti-

¹ Der Autor dankt Herrn Dr. *H. Koch* (SUVA) für die Zurverfügungstellung der Unterlagen und für wertvolle Hinweise über die Unfallstatistik und Herrn *M. Amacher* für seine Mithilfe bei den numerischen Auswertungen.

schen Punktprozesses interpretieren und sind in der Tabelle auf Seite 189 zusammengestellt.

Auf Grund der Überlegungen von Abschnitt 3.4 soll zunächst abgeklärt werden, ob – unter der Voraussetzung, dass die Daten in den einzelnen Kalenderjahren durch einen homogenen Poissonpunktprozess erklärbar sind – die Intensitäten für alle Jahre denselben Wert annehmen. Man findet $\delta = 11,17$, was mit der Sicherheitsgrenze $\chi^2_{9,95\%} = 16,92$ zu vergleichen ist². Zur Sicherheitsschwelle von 5% liegt demnach keine Signifikanz vor. Wir schliessen daraus, dass eine gesonderte Behandlung der einzelnen Kalenderjahre nicht erforderlich ist. Es ist also statthaft, die Daten aus den verschiedenen Kalenderjahren zu poolen.

Basierend auf dem gesamten Beobachtungsmaterial, prüfen wir mit Hilfe des Autokorrelationstestes anhand der Statistik r_{350} – vgl. Abschnitt 3.1 – die Hypothese, dass die Ereignisse des Punktprozesses einen Erneuerungsprozess bilden. Wir erhalten $r_{350} = 0,00395$ oder $\sqrt{348} \, r_{350} \approx 0,074$ während $z_{0,975} = 1,96$. Es kann keine signifikante Abweichung von der Nullhypothese festgestellt werden.

Auf das gesamte Beobachtungsmaterial wurde ausserdem der in § 3.2 besprochene Test gegen Trends angewandt. Es ergibt sich, dass $\sigma = -0.046$. Ein Vergleich mit der Sicherheitsgrenze zur Sicherheitsschwelle von 5% führt offensichtlich nicht zur Ablehnung von H_0 .

Schliesslich findet man in der Tabelle auf Seite 190 die Resultate zusammengestellt, die sich bei Anwendung der in Abschnitt 3.3 besprochenen Tests auf die Daten jedes einzelnen Kalenderjahres oder auf das gesamte Beobachtungsmaterial ergeben (da die Angaben nur in Tagen und nicht in feineren Zeiteinheiten zur Verfügung stehen, werden die Tests gegen linksseitig gestutzte Abstandsverteilungen der damit verbundenen Ungenauigkeit wegen nicht durchgeführt). Aus dieser Zusammenstellung geht hervor, dass, abgesehen von den Kalenderjahren 1968 und 1970, der beste Test mit Sicherheit zur Annahme $von H_0$ führt, sofern nur die für die Alternativverteilungen zuständige Stutzungsschranke c so angesetzt wurde, dass $c \leq y^*$ (bzw. w^*) und $c \geq y^*_a$ (bzw. w^*_a) und dass er nur in den beiden Kalenderjahren 1968 und 1970 für jede Wahl von $f H_0$ verwirft, falls $c > y^*$ (bzw. w^*) und $c \leq y_a^*$ (bzw. w_a^*) [mit Pr $(Y^* < y_a^* | X(s) = n) = a$] festgesetzt wurde. Mit Ausnahme der Werte in der letzten Zeile wurden die in der Tabelle vermerkten Wahrscheinlichkeiten auf Grund der bedingten Verteilungen berechnet. In der Tat kann der genaue Wert von λ nicht als bekannt angesehen werden. Führt man die statistische Analyse

² Wir wählen a = 0.05 für alle in diesem Abschnitt besprochenen Tests.

gestützt auf die ursprünglichen Verteilungen durch und schätzt λ mit der Maximum-Likelihood-Methode, so erhält man praktisch dieselben Wahrscheinlichkeiten. Die entsprechenden Werte für das gesamte Beobachtungsmaterial sind auf Seite 190 am Schluss der Tabelle angegeben. Wie ersichtlich sind die numerischen Unterschiede gering und führen zu derselben Beurteilung der Verhältnisse.

Abschliessend kann festgestellt werden, dass die Ergebnisse der Untersuchung zu keinen Zweifeln Anlass geben an der Hypothese, dass die Unfallzeitpunkte homogen poissonverteilt sind.

Der SUVA gemeldete schwere Unfälle in den Kalenderjahren 1963–1972¹ Liste der Schadenzeitpunkte²:

Kalenderjahr	Schad	enzeitpu	ınkte							
1963	39	51	54	63	71	96	102	107	108	114
	121	128	134	157	169	169	173	185	189	196
	211	211	224	224	232	234	235	239	247	248
	261	261	272	273	275	284	291	301	329	335
1964	10	12	17	26	28	49	77	80	112	114
	142	152	168	181	197	197	198	213	224	230
	231	232	237	242	250	269	304	311	327	328
	340	347								
1965	14	58	94	107	118	118	119	121	142	152
	153	161	162	176	192	196	198	219	234	242
	243	248	261	265	269	290	308	314	344	344
1966	11	36	45	73	74	107	119	149	154	164
	177	220	237	245	269	270	272	278	281	283
	289	291	300	307	312	314	314	315	346	350
	351									
1967	41	41	54	54	80	80	83	86	111	120
	127	156	157	163	169	180	186	193	196	199
	207	211	222	233	240	249	250	260	261	275
	295	301	304	314	322	333	337	349	350	360
1968	17	24	25	40	50	70	75	96	100	129
	160	163	172	172	175	182	183	188	195	219
	246	269	287	288	302	309	323	330	331	352
1969	29	33	74	84	89	94	96	98	103	111
	114	118	120	133	136	136	140	140	144	145
	170	172	190	199	209	216	217	230	232	235
	237	249	250	250	258	268	268	274	276	295
	301	306	309	311	322	323	332	357	358	
1970	9	13	22	39	52	68	83	110	113	129
	146	148	155	164	165	168	169	172	180	188
	193	196	220	224	228	246	265	266	267	278
	280	298	299	301	310	323	346	353		
1971	5	18	22	29	37	40	41	44	60	84
	93	101	109	113	155	165	168	182	195	197
	197	203	238	241	247	262	272	296	303	314
	335	344								
1972	21	23	102	119	123	124	154	167	169	172
M	175	179	180	185	192	194	203	204	215	235
	248	251	264	292	314	316	334	355		

¹ Aus Bericht und Rechnung SUVA, 1963–1972.

² Die Zahl x in der Liste repräsentiert ein Unfallereignis am x-ten Tage des Jahres.

Tests gegen Erneuerungsalternativen mit einseitig gestutzter Abstandsverteilung

Kalenderjahr	S	n	d	$Pr(D < d \mid X(s) = n)$	<i>y</i> *	$Pr\left(Y^* < y^* \mid X(s) = n\right)$	и,*	$Pr\left(W^* < w^* \mid X(s) = n\right)$
1963	365	40	296	0,002**	39	0,606	28	0,117
1964	366	32	337	0,267	35	0,168	35	0,195
1965	365	30	330	0,203	44	0,455	44	0,483
1966	365	31	340	0,364	33	0,086	33	0,109
1967	365	40	319	0,031*	41	0,681	29	0,156
1968	366	30	335	0,265	31	0,032*	31	0,047*
1969	365	49	329	0,039*	41	0,859	41	0,864
1970	365	38	344	0,349	27	0,046*	27	0,059
1971	365	32	339	0,324	42	0,455	42	0,482
1972	366	28	334	0,284	79	0,968	79	0,970
1963–1972	3653	350	3603	0,047*	79	0,845	79	0,845
				$Pr(D < d: \hat{\lambda})$		$Pr(Y^* < y^*: \hat{\lambda})$		$Pr(W^* < w: \hat{\lambda})$
1963-1972			3603	0,048*	79	0,835	79	0,838

Literaturverzeichnis

- [1] Anderson, T. W., Walker, A. M.: On the Asymptotic Distribution of the Autocorrelations of a Sample from a Linear Stochastic Process. Ann. Math. Stat. 35, 1296–1303, 1964.
- [2] Bartlett, M.S.: An Introduction to Stochastic Processes. Cambridge University Press, Cambridge, 1966.
- [3] Berliner, B.: Möglichkeiten der Anwendung von Anordnungstests im Versicherungswesen. Mitt. Ver. Schweiz. Vers.-Math. 70, 349–377, 1970.
- [4] Cox, D. R.: Some Statistical Methods Connected with Series of Events. Journ. Roy. Stat. Soc. 17, 129–164, 1955.
- [5] Cox, D. R., Lewis, P. A. W.: The Statistical Analysis of Series of Events. Methuen, London, 1966
- [6] Hannan, E.J.: Time Series Analysis. Methuen, London, 1960.
- [7] Lehmann, E. L.: Testing Statistical Hypotheses. J. Wiley, New York, 1966.
- [8] Lewis, P. A. W.: Some Results on Tests for Poisson Processes. Biometrika 52, 67-77, 1965.
- [9] Schweizerische Unfallversicherungsanstalt: Bericht und Rechnung. Luzern, 1963-1972.
- [10] Streit, F.: Probabilities for the Local Behavior for Poisson Distributed Events. Skandinavisk Aktuarietidskrift, 65–72, 1972.

Zusammenfassung

In dieser Arbeit werden statistische Tests für Punktprozesse mit Anwendungsmöglichkeiten in der Nicht-Lebensversicherung diskutiert. Insbesondere werden neue Tests vorgeschlagen, welche optimal sind zum Prüfen der Annahme, dass der Punktprozess durch homogen poissonverteilte Ereignisse erzeugt sei, gegen Alternativen, bei welchen die Ereignisse des Prozesses einen Erneuerungsprozess mit gestutzter Zwischenraumsverteilung bilden. Des weiteren wird die Konstruktion von statistischen Prüfverfahren für Punktprozesse im allgemeinen besprochen und Bemerkungen zu einigen in der Fachliteratur behandelten speziellen Tests gemacht. Die praktische Nutzanwendung der Ergebnisse wird anhand einer Analyse von Beobachtungsdaten der Schweizerischen Unfallversicherungsanstalt illustriert.

Summary

In this article statistical tests for point-processes with applications in non-life insurance are discussed. New tests are proposed which are optimal for comparing the hypothesis that the point-process is generated by homogeneously Poisson distributed events with alternatives for which the events of the process form a renewal process with a truncated gap distribution. Comments are made about the construction of tests for point-processes in general and about some special procedures, which are treated in the literature. The practical application of the results is illustrated by investigating data on occupational accidents in Switzerland.

Résumé

Discussion des méthodes de testage statistique pour les processus ponctuels applicables dans les branches autres que la Vie. L'auteur propose de nouveaux procédés, optimaux pour la vérification du postulat que le processus ponctuel résulte d'événements homogènement répartis selon Poisson, par opposition aux alternatives, pour lesquelles les événements donnent un processus de renouvellement avec répartition tronquée des intervalles. On trouvera dans cet article un commentaire général de la mise au point des tests statistiques destinés aux processus ponctuels. Ainsi que diverses remarques sur certains tests particuliers, évoqués dans la littérature spécialisée, l'auteur fournit un bel exemple d'application pratique en analysant les données d'observation recueillies par la CNA.

Riassunto

Si discutono tests statistici per processi puntuali con le possibilità di applicazione nell'assicurazione non-vita. In particolare si propongono nuovi tests ottimali per confrontare l'ipotesi che il processo puntuale sia generato da eventi distribuiti omogeneamente secondo Poisson con alternative secondo le quali gli eventi del processo formano un processo di rinnovamento con una distribuzione interspaziale troncata. Inoltre si commenta la costruzione di tests statistici per processi puntuali in generale e si fanno osservazioni su alcuni tests particolari descritti nella letteratura spezializzata. L'utilità pratica dei risultati ottenuti viene illustrata mediante un'analisi di dati raccolti dall'Istituto Nazionale Svizzero di Assicurazione contro gli Infortuni.