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Ein Portfolio-Modell

Marktgleichgewicht bei
subjektiven Preiserwartungen *

Von Heinz Miiller

1. Einleitung

In der vorliegenden Arbeit wird ein Tauschmarkt untersucht. Neben Speku-
lationsgiitern (Aktien, Wertpapiere, Rohstoffe) kommt auch das Geld (Wert-
einheit) vor.
Das Modell umfasst die Zeitpunkte 1 (Gegenwart) und 2 (Zukunft).| P sei das
Preissystem im Zeitpunkt 1.
Fir den Zeitpunkt 2 hat jeder Marktteilnehmer von P abhiingige Preiserwar-
tungen !,
Diese Preiserwartungen sind durch subjektive Wahrscheinlichkeiten gegeben.
Im Zeitpunkt 1 ergibt sich nun folgende Situation:
- Jeder Marktteilnehmer hat bestimmte Anteile an den verschiedenen Giitern.
- Er legt sein Vermogen neu an und maximiert dabei eine Zielfunktion.
— Die Zielfunktion ist der subjektive Erwartungswert des Nutzens 2 aus dem
Vermégen im Zeitpunkt 2.
— Auf diese Weise entstehen im Zeitpunkt 1 Angebot und Nachfrage in Ab-
hingigkeit von P.
Damit stellt sich die Frage nach der Existenz eines Gleichgewichts. Zu andern
Modellen [1], [15], [17], [24] bestehen folgende Unterschiede:
I Die Zielfunktionen der Marktteilnehmer entsprechen der Nutzentheorie von
Neumann/Morgenstern.
Inden iibrigen Arbeiten sind die Zielfunktionen oft nur von Erwartungswert
und Varianz abhingig ([u, o]-Analyse).

. Per vorliegende Artikel stellt meine Doktorarbeit dar. Ich mdchte dem Referenten Herrn Prof.
Bithlmann und der Korreferentin Frau Prof. Schelbert fiir ihre wertvollen Ratschlige bestens
danken. Die Herren R.Bloch, P.Schuster und die Mitarbeiter des Instituts fiir Operations Re-

Se&}rch der Universitit Ziirich halfen mir mit zahlreichen Hinweisen und ihrem Interesse sehr viel
bei der Durchfiihrung der Arbeit.

ihES bﬁ:steht kein Zusammenhang mit dem Begriff « Erwartungswert» aus der Wahrscheinlichkeits-
eorie,

2 T
Nutzenfunktion im Sinne von Neumann/Morgenstern.
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2. DiePreiserwartungen hingen von den gegenwirtigen Preisen ab. Diese Eigen-
schaft ist oft von entscheidender Bedeutung (z. B. bei Aktien).

Sind Transaktionen von Aktien (bzw. Wertschriften) jederzeit moglich, so

geniigt die Betrachtung zweier Zeitpunkte. Die Wertschriften- und Aktien-

mirkte sind mit der restlichen Okonomie durch den Geldzinssatz und die Er-

wartungen der Marktteilnehmer gekoppelt 3. Das vorgeschlagene Modell eig-

net sich besonders zur Untersuchung solcher Méarkte.

In dieser Arbeit wird zuerst auf die Literatur zur Gleichgewichtstheorie be

Unsicherheit hingewiesen. Dann erfolgt die mathematische Formulierung des

Modells. Anschliessend an den Existenzsatz werden die Optimalitidtseigen-

schaften des Gleichgewichts untersucht.

Unter zusdtzlichen Voraussetzungen sind Aussagen tiber die Nachfragekorres-

pondenz moglich (Eindeutigkeit, Stetigkeit, Differenzierbarkeit).

Tritt im Modell nur das Geld und ein Spekulationsgut auf, so kann man

Systemstabilitidt nachweisen. Einzelne Gleichgewichtspreise konnen allerdings

instabil sein. Falls zwei Spekulationsgiiter vorkommen, lassen sich Gegenbei-

spiele zur Systemstabilitit konstruieren.

Samtliche Beweise befinden sich im Anhang. Damit soll die Ubersichtlichkeit

erhéht werden.

2. Literatur zur Gleichgewichtstheorie bei Unsicherheit
2.1. Die Beitrdge von Arrow, Debreu und Radner

In der Gleichgewichtstheorie wurde die Unsicherheit urspriinglich nicht be-
riicksichtigt. Arrow schligt in einer Arbeit aus dem Jahr 1952 vor, Zusténde
der Natur («states of nature») zu unterscheiden [3]. Ein Gut ist genau dann
verfiigbar, wenn ein bestimmter Zustand der Natur eintritt. Dieser AnsatZ
wurde von Debreu [11], pp. 106-110 und vor allem von Radner weiter be-
arbeitet [19], [20], [21], [22].

Betrachtet werden T Zeitintervalle: r = 1, 2, ..., T.

Qsei die Menge der moéglichen Zustinde der Natur. Die Natur entscheidet
sich fiir einen Zustand w, € 2. Damit ist alles bestimmt, was die Teilnehmer

3 Auf dem Aktienmarkt sind die Erwartungen der Marktteilnehmer (Besitzer des Unternchmens)
massgebend und nicht diejenigen des Managements (Leiter des Unternechmens). Die Erwartungen
der Marktteilnehmer kénnen iibrigens stark von denjenigen des Managements abweichen (vel
Davidson [10]).
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an der Okonomie nicht beeinflussen konnen (z.B. Verlauf des Wetters, Natur-
katastrophen, Auftreten von Krankheiten usw).

Die Information des Teilnehmers i iiber den wahren Zustand w, wird folgen-
dermassen dargestellt:

S!(t = 1, ..., T) seien Partitionen von £.

In jedem Zeitintervall ¢ weiss der Teilnehmer i, welche Menge S (S € ©i) den
wahren Zustand w, enthélt.

{Sj}, i heisst Informationsstruktur des Teilnehmers ;.

Die Mengen S€ S/ heissen Ereignisse.

Ein Gut ist jetzt charakterisiert durch

- allgemeine Eigenschaften,

- Ort der Verflgbarkeit,

— Zeit der Verfiigbarkeit,

— Zustand der Natur, bei dem das Gut verfiigbar ist.

Radner erweitert die bekannte Theorie von Arrow/Debreu fiir den Fall, dass
die einzelnen Teilnehmer tiber unterschiedliche Informationsstrukturen verfii-
gen [19].

Der Fall, dass die Informationsstrukturen der Teilnehmer {ibereinstimmen,
wurde schon frither von Debreu behandelt ([11], pp. 106-110).

In [20] weist Radner auf die Mingel der erweiterten Theorie hin. Bei den bis-
herigen Modellen finden alle Transaktionen bereits im ersten Zeitintervall statt.
Inden Zeitintervallen ¢ = 2, ..., T gibt es keine Mérkte. Radner untersucht in
[21] ein Modell, das der alltiglichen Beobachtung besser entspricht. Er macht
folgenden Ansatz: Alle Teilnehmer verfiigen iiber die gleiche Informations-
struktur {S'}, _ | ;. In jedem Zeitintervall 7 und bei jedem Ereignis SES, (t = 1,
--» 1-1) gibt es nicht sofort verfiigbare Giiter, mit denen kein Handel méoglich
ist. Deshalb existieren zukiinftige Mirkte.

Fiir jeden zukiinftigen Markt (d.h. ¢+ > 1) ordnen die Teilnehmer den einzel-
nen Giitern feste Preise zu. Diese Preise werden in [21] als Preiserwartungen
aufgefasst. Es wird vorausgesetzt, dass die Teilnehmer in den Preiserwartun-
gen Gbereinstimmen. Die Preiserwartungen bestimmen die Pline betreffend
Angebot und Nachfrage auf den zukiinftigen Mérkten.

Ein Gleichgewicht existiert, falls es Preise und Preiserwartungen gibt, so dass
einerseits im Zeitintervall 1 der Markt geraumt wird und andererseits die

Pline der Teilnehmer fiir die zukiinftigen Mirkte aufeinander abgestimmt
sind,
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Mit dem Existenzbeweis gelingt Radner eine wertvolle Verallgemeinerung der
Theorie von Arrow/Debreu. Die in [21] eingefiihrten Preiserwartungen unter-
scheiden sich allerdings formal nicht von wirklichen Preisen.

2.2. Anwendung der (u, o )-Analyse auf den Kapitalmarkt

Ein spezielles Problem betrachten Allais [1], Lintner [15], Mossin [17] und

Sharpe [24].

Sie untersuchen einen Tauschmarkt mit Wertschriften.

Hinsichtlich der zukiinftigen Preise herrscht Unsicherheit. Die Preiserwartun-

gen der Marktteilnehmer sind durch Erwartungswerte, Varianzen und Ko-

varianzen gegeben. Jeder Teilnehmer entscheidet sich fiir ein Portefeuille, das

seine Zielfunktion maximiert. Die Zielfunktion hdngt nur von Erwartungswert

und Varianz des Portefeuilles ab 4. So erhilt man in der Gegenwart Angebot

und Nachfrage. In den erwidhnten Arbeiten wird die Existenz eines Gleich-

gewichts nachgewiesen und dessen Eigenschaften untersucht.

Die erste Arbeit [1] wurde von Allais verfasst. Der Ansatz ist sehr einfach,

lisst jedoch neben Risikoaversion auch Risikopriferenz zu. Allais rechtfertigt

sein einfaches Modell mit der Ubersichtlichkeit von Problemstellung und

Losungsmethoden.

Die nédchste Arbeit stammt von Sharpe [24].

Mossin [17] prizisiert Sharpes Ansatz. Neben der Risikoaversion setzt Mossin

auch voraus, dass alle Teilnehmer gleiche Preiserwartungen haben. Schliesslich

lasst Lintner [15] unterschiedliche Preiserwartungen zu, verwendet aber sehr

spezielle Zielfunktionen.

Der Vorteil dieser Arbeiten besteht darin, dass iiber das Gleichgewicht recht

viel ausgesagt werden kann. Dem stehen jedoch folgende Nachteile gegentiber:

1. Eine Beurteilung, die nur von Erwartungswert und Varianz abhingt, ist un-
befriedigend. |
Samuelson untersucht in [23], inwieweit sich die (i, o)-Analyse als Approxi-
mation fiir die Neumannsche Nutzentheorie eignet. Die Approximation €r-
weist sich als nicht besonders gut.
Weiter untersuchen Cass und Stiglitz [9] den Einfluss von Vermogenseffekten
auf das optimale Portefeuille. Aus ihrer Arbeit wird ersichtlich, dass sich
das Sicherheitsdquivalent 5 zur Charakterisierung eines Portefeuilles wesent-
lich besser eignet als Erwartungswert und Varianz.

4 Das entspricht dem Ansatz von Markowitz.
5 Geldmenge, aus der der gleiche Nutzen resultiert wie aus dem Portefeuille.
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2. Die Arbeiten [1], [15] und [17] beriicksichtigen den Einfluss der gegenwérti-
gen Preise auf die Preiserwartungen nicht. (Vgl. Einleitung)

2.3. Vergleich des vorgeschlagenen Modells mit der Literatur

Ahnlich wie Allais, Lintner und Mossin untersuche ich einen Tauschmarkt mit

Spekulationsgiitern. Aber anstelle der (u, o)-Analyse verwende ich Neu-

mannsche Nutzenfunktionen. Zudem sind die Preiserwartungen durch sub-

jektive Wahrscheinlichkeiten gegeben, die von den gegenwartigen Preisen ab-
hingig sind (vgl. Einleitung).

Ein solches Modell ist natiirlich weniger allgemein als die grundlegenden

Arbeiten von Arrow, Debreu und Radner. Dafiir kann auf abstrakte Kon-

struktionen verzichtet werden (vgl. 2.1.: Die Verfiligbarkeit eines Gutes hangt

vom Zustand der Natur ab).

Ein wesentlicher Unterschied besteht hinsichtlich der Preiserwartungen. In [21]

wird verlangt:

- Die Teilnehmer haben gemeinsame Preiserwartungen («common expecta-
tions»). Gleichen zukiinftigen Ereignissen ordnen alle Teilnehmer gleiche
Preise zu ©.

- Im Gleichgewicht realisieren sich die Preiserwartungen; d.h. die Pline fiir
die Zukunft miissen aufeinander abgestimmt sein.

— Es besteht kein direkter Zusammenhang zwischen Preisen und Preiserwar-
tungen.

Mein Vorschlag sieht vor:

~ Hinsichtlich der Preiserwartungen braucht es keine Ubereinstimmung.

— Das Gleichgewicht umfasst nur Angebot und Nachfrage im Zeitpunkt 1 7.

— Die Preiserwartungen sind von den gegenwirtigen Preisen abhéingig.

6 Die Teilnehmer diirfen den Ereignissen allerdings unterschiedliche subjektive Wahrscheinlich-
keiten zuordnen,

7 Obwohl die Mirkte interdependent sind, kann ich mir keinen Mechanismus vorstellen, der An-
gebot und Nachfrage auf einem zukiinftigen Markt bereits in der Gegenwart zum Gleichgewicht
bringt‘ Deshalb beschranke ich mich auf ein Gleichgewicht fiir den Zeitpunkt 1. (Der Terminmarkt
st ein gegenwirtiger Markt mit Giitern, die erst in der Zukunft verfiigbar sind.)
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3. Das Modell
3.1. Zeit, Giiter, Mark tteilnehmer

Die Zeitpunkte 1 (Gegenwart) und 2 (Zukunft) kommen im Modell vor. Auf
dem Markt gibt es m+ 1 Giiter (h = 0, ..., m).
— Das Gut 0 ist das Geld und dient als Werteinheit.
- Die Giiter & = 1, ..., m sind Spekulationsgiiter.
Beispiele: Aktien, Liegenschaften, Rohstoftlager, Boden, fremde Wihrun-
gen usw.
Es gibt n Marktteilnehmer 3 (i = 1, ..., n).
Beispiele: Investmentfonds, Banken, Versicherungen, Vermogensverwalter.
Die Teilnehmer verwalten Portefeuilles. Innerhalb des Modells findet kein
Konsum statt.

3.2. Das Preissystem

Das Preissystem im Zeitpunkt 1 bezeichnen wir mit
f: - (P(h Pla"'a Bﬂ) (1)

B, ist der Preis des Gutes 4 (h = 0, ..., m).
Dabei gilt:

P > 09 (Negative Preise treten nicht auf.)
Py= 1 (Der Preis des Geldes ist 1.)

Das heisst

Pc;, wobel £2,: = {(l,yl e ) Y, 2 0h =1, my. 2)

Kein Teilnehmer ist in der Lage das Preissystem P zu beeinflussen. Es herrscht
vollstindige Konkurrenz.

3.3. Die Preiserwartungen

Das Gut & wirft zwischen den Zeitpunkten 1 und 2 einen Ertrag ab. Es ist
zweckmissig, zum effektiven Preis des Gutes 7 im Zeitpunkt 2 diesen Ertrag zu
addieren.

5 Im folgenden wird nur noch von Teilnehmern gesprochen.

Ya z bbedeutet a; > b, fir alle i,
a = b bedeutet a; = b, fir alle /, ag > by, fiir mindestens ein j,,
a > b bedeutet ¢; > b, fiir alle .
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Beispiele:

Preis einer Aktie im Zeitpunkt 2 = Aktienkurs plus Dividende.

Preis des Geldes im Zeitpunkt 2 = effektiver Geldpreis (= 1) plus Zins.
Nun betrachten wir das Preissystem im Zeitpunkt 2

e =0 wn Bk (3)
Der Zinssatz fiir das Geld ist extern gegeben und betrigt a (e >—1).

Somit gilt 7o = 1 + al (4)

Auch 1m Zeitpunkt 2 sollen keine negativen Preise auftreten.
a€Q, ,wobei 2, : = {(l + a,y...pn) 20, h=1,.,m). (5

Wie schon erwdhnt, kennen die Teilnehmer im Zeitpunkt 1 7 noch nicht.
Wenn P gegeben ist, betrachtet der Teilnehmer i das Preissystem im Zeitpunkt
2 als Zufallsgrosse n'.

Das zugehorige Wahrscheinlichkeitsmass F' hingt von P ab.

' ist also gegeben durch F' (- ; P), wobei I (- ; P) ein Wahrscheinlichkeits-
mass auf Q, ist.

Im folgenden sprechen wir von Preiserwartungen.

3.4. Das Portefeuille

Urspriinglich verfiigt der Teilnehmer 7 iiber bestimmte Anteile an den Giitern.

Ii: - (rrips ceey r/ﬁi ) (6)

ri ist der Anteil des Teilnechmers i am Gut h (i = 1, ., n; h = 0, ..., m).
Dabei verlangen wir

rp =0 @

2" » = 1. (Die total verfugbare Menge jedes Gutes ist auf | normiert.)  (8)
=]

Im Zeitpunkt 1 bringt der Teilnehmer i seine urspriinglichen Anteile auf den

Markt und will sich ein neues Portefeuille pi erwerben.
' a entspricht dem direkten Zinsertrag und nicht den «opportunity costs». Je nachdem wie wir
das Geld definieren, ergeben sich folgende Maglichkeiten

@ = 0 bei Bargeld

@ > 0 bei Sichteinlagen

@ < 0 bei Schwundgeld
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pli=(p,, ..., ph),wobeip, =20 =0,..,m). (9)

Schulden und Leerverkiufe sind also nicht zugelassen.
3.5. Die Zielfunktion

Der Teilnehmer 7/ bewertet sein Vermoégen im Zeitpunkt 2 (zukiinftiges Ver-
mogen) mit einer Neumannschen Nutzenfunktion w'.

w' soll folgende Eigenschaften erfiillen:

@ w': [0, ) [0, )

— strikt monoton wachsend (A.1)

— konkav 11 (A.2)
— stetig 12 (A.3)
— beschréinkt (A.4)

Die strikte Monotonie (A.1) bedeutet, dass keine Sattigung auftritt. Die
Konkavitit (A.2) schliesst Risikopriferenz aus.

Auf den ersten Blick scheint die Beschrdnktheit (A. 4) eine sehr starke Voraus-
setzung zu sein. Aber unbeschrinkte Nutzenfunktionen fithren zu Situationen,
die dem Petersburger Paradox entsprechen (vgl. Arrow [2], [4]).

Beispiel fiir eine Nutzenfunktion: w(x) = 1 —¢e :

Figur 1

A

w (%)

Das Vermogen des Teilnehmers / im Zeitpunkt 2 betragt

—_ (10)

HFiir e [0,1] gilt w'ex, + (1-0)x,) 2 mv'(x) + (1-0w'(x,).

12 Wegen (A.2) genligt es, Stetigkeit im Nullpunkt zu verlangen.

T okp T P -
- h=0
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[st P gegeben, so lautet die Zielfunktion

G (p'; P): =fwf'(7_r * p) dF' (z; P).

Der Teilnehmer 7/ versucht G; zu maximieren.
Bei der Wahl von p’ muss er die Budgetungleichung

Pxp & P*ri
beachten 14,

3.6. Angebot und Nachfrage

Das Angebot des Teilnehmers ¢ betrdgt ri(vgl. 3.4.).
Die Nachfrage hingt von P ab.

(1)

(12)

Bei gegebenem P erfiillt ein Nachfragevektor pi(P) folgende Bedingungen:

D) piP) 2 0.
2) Px(p'(P)-r") < 0 (Budgetungleichung).

3) G; (pi(P); P) = max {G, (p'; P) | perfiillt (13), (14)} (Optimierung).
Der Nachfrageiiberhang 15 des Teilnehmers i ist gegeben durch

N (P): = {pi(P) - ' | pi(P) exfillt (13), (14), (15)}.

Schliesslich erhalten wir den gesamten Nachfrageliberhang

N(P): = ; N (P)

J_V: QI g [_I’ CO) m + I_
4. Das Gleichgewicht

4.1. Definition des Gleichgewichts

Eine Tauschékonomie ¢ ist bestimmt durch
- die urspriinglichen Anteile der Teilnehmer

n

ri=1,.,n (Fz0 > r=(1.,1),

=1

: In (12) wird immer Gleichheit auftreten (wegen A. 1).
> Im allgemeinen handelt es sich um eine Korrespondenz.

(13)
(14)
(15)

(16)

(17)
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— den externen Zinssatz fiir das Geld a (a > -1),
— die Preiserwartungen

Fi(-;P) PEQ,, i=1,..,n

(Wahrscheinlichkeitsmasse auf £2,),
— die Nutzenfunktionen
W i=1,..,n

& = Ay oy Y Oy B [ 5 Yy oy B 5 PY, W, oy R (18)

Definition.: Das Tupel (p*1, ..., p*, P¥) ist ein Gleichgewicht von ¢, falls

la) p* 2.0 i=1,..n, (19)
1b) P* + (p*—ry £ 0 i=1,..n, (20)
le) [w'(z * p*) dF (zm; £%) =2 f W' (z * p)dF (z: P*) (21)

fiir alle p?, die (19), (20) erfiillen.

n n

2) D p¥= # (22)
1

i=1 i=

(P* ist also genau dann ein Gleichgewicht, wenn 0 € N (P*)). (23)
Gelegentlich braucht man noch einen weiteren Begriff.

Definition: Das Tupel (p!, ..., p”) heisst erreichbarer Zustand der Tausch-
Okonomies = (¢, a, F', w), falls

=2 = 1un (24)

- i p= iz (25)

4.2. Voraussetzungen fiir die Existenz eines Gleichgewichts

In 3.5. wurden bereits die Voraussetzungen (A. 1) (A. 4) iiber die Nutzenfunk-
tionen w' eingefithrt. Fiir die Existenz eines Gleichgewichts sind zusitzliche
Voraussetzungen notig.
Kleine Anderungen der gegenwiirtigen Preise sollen nur kleine Anderungen
der Preiserwartungen zur Folge haben. Exakt formuliert heisst das

schwache

P yP=—==F (-, P) S Fi(-; P). (20)
: Konvergenz
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Nicht alle Preiserwartungen fiihren zu einem Gleichgewicht. Ist der externe
Zinssatz a klein und setzen die Teilnehmer voraus:

gleichgiiltig wie hoch die Preise fiir die Spekulationsgiiter im Zeitpunkt 1 sind,
bis zum Zeitpunkt 2 werden sie sich mindestens verdoppeln,

dann kann sich kein Gleichgewicht einstellen.

Damit ein Gleichgewicht existiert, ist ein gewisses Vertrauen ins Geld erforder-
lich. Wir nechmen deshalb folgendes Verhalten an '¢:

Ist der Preis P; eines Spekulationsgutes / sehr hoch, so halten alle Teilnehmer
ein Absinken des Preises fiir wahrscheinlich. Trotzdem kann es sich lohnen,
das Gut /1 zu erwerben. Die Preiserwartungen fiir das Gut / konnen z.B. mit
den tibrigen Preiserwartungen negativ korreliert sein. Ein Versicherungseffekt
stelltsichein. Beieinemgeniigend hohen Preis P;iiberwiegtjedochdie Gefahreines
Preisriickgangs den Versicherungseffekt.

Schliesslich ergibt sich folgende Situation:

Es lohnt sich nicht, ein Portefeuille p zu erwerben, falls der Preis P; cines
Spekulationsgutes 4 extrem hoch ist und der Anteil p;; ins Gewicht fillt. Eine
reine Geldanlage ist vorteilhafter.

Fir die Preiserwartungen der Teilnehmer muss deshalb gelten:

© " Es gibt ein ¢ > 0 mit folgender Eigenschalft:

Falls ein 7€ {1, ..., m} existiert, so dass
1) P; > ¢, (27)
. 1 ”i‘
D 2 > — wobeip, 3z 0, IZI oA >0, (28)
e o
J; Pu
dann folgt
f(g*_p)dF’(_;;;f) < (I+a)Pxp (i=1,..,n). (29)

16 Dije Uberiegungen entsprechen weitgehend der Argumentation von Keynes.

I Interpretation von © -

(27) Der Preis des Spekulationsgutes / ist extrem hoch.

(28) Der Anteil p; fillt ins Gewicht. '

(29) Das erwartete Vermdgen im Zeitpunkt 2 ist grosser, wenn man sich nicht fiir das Portefeuille
P =Apg. ..., p,,) sondern fiir die reine Geldanlage (P = p, 0., ...., 0) entscheidet.
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Die vierte und letzte Voraussetzung lautet:
@r, >0 (i=1,..,n) (30)
D.h. jeder Teilnehmer verfiigt iiber einen positiven Geldbetrag.

4.3. Existenz eines Gleichgewichts

Satz 1: Die Tauschokonomiee = (¢, a, £ (- ; P), w') besitzt ein Gleichgewicht
(p*, P*), falls
® w'ist strikt monoton wachsend, konkay, stetig und beschrinkt.

schwache

® P P SF (-5 P) F =5 Py
Konvergenz

© Es gibt ein ¢ > 0 mit der Eigenschafi:
Falls ein 72 €1, ..., m} existiert, so dass

1)P/}>C

P 1 ] m
2) s z — wobeip, = 0, D p, > 0,
m h=1
> P
h=1

dann folgt

J@ep dF @:p) < (140 P p.

©r>0.

Beweis: siche Anhang.

4.4. Beschrdinkte Information

Bei praktischen Anwendungen kennt ein Teilnehmer im allgemeinen nicht alle
Spekulationsgiiter. Das lisst sich im Modell sehr einfach beriicksichtigen:
7' sei die Preiserwartung des Teilnehmers 7 (gegeben durch F' (- ; _P)). Kennt
der Teilnehmer i das Gut 4 nicht, so setzt man

n, = 0 f.s. (beziiglich F' (- ;. P)).



79

5. Optimalititseigenschaften des Gleichgewichts

Im untersuchten Modell hat das Preissystem P zwei Eigenschaften:

a) P tritt in der Budgetungleichung (12) auf und beeinflusst damit die Teilneh-
mer bei der Wahl ithrer Portefeuilles p'.

b) Weil die Preiserwartungen von P abhéngig sind, geht P auch in die Zielfunk-
tionen

G, (p; P): = [ w'(z * p) dF'(x: P)

ein. Die Priferenzen sind also von P abhingig.
Wir kdnnen nicht von Pareto-Optimalitit im Ublichen Sinne sprechen. Ist
(p*1, ..., p*, P*) ein Gleichgewicht von e, so stellt sich aber die Frage:

Gibt es einen erreichbaren Zustand (P, ..., p7) von ¢, der die individuellen
Budgetungleichungen (Eigenschaft a)) nicht erfiillen muss, so dass

G(PiPY = G(*:PY) i=1..n (31)
Go (P P*) > Giyo(p*®; P*) fiirein iy€{1, ..., n}. (32)

Definition.: Die Tauschokonomie ¢ = (r! a, Fi w') sei gegeben. Das Tupel
(Plysss ", P) bestehend aus dem erreichbaren Zustand(j!, ..., p) vone und dem
Preissystem P ist ein bedingtes Pareto-Optimum, falls es keinen erreichbaren
Zustand (p1, ..., p) gibt, so dass

G P) = G@E; P i=1,..,n (33)
Go(p% P) > Go(p®; P) fiirein ip€ {1, ..., n} (34)
(vel.: Arrow, Hahn [5], pp. 129-131).

Satz 2: Gegeben sei die Tauschékonomiee = (¢ a, F% w?). Falls die Nutzen-
funktionen w' strikt monoton wachsend und beschrinkt sind, so ist jedes

Gleichgewicht (p*L, ..., p*', P*) vone ein bedingtes Pareto-Optimum.
Beweis : siehe Anhang.
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6. Eigenschaften der Nachfragekorrespondenz
6.1. Eindeutigkeit

Satz 3: Fir P > 0 kann der Nachfragetiberhang des Teilnehmers i/ durch eine
Funktion N (P) dargestellt werden, falls
1) w'ist strikt monoton wachsend, strikt konkav, stetig und beschriankt,
2} Bxp, = Exp,,wobelp #p5, P >0
== g'* p\| ¥ r'* p/, mit positiver Wahrscheinlichkeit. (35)
Beweis: siche Anhang.
Interpretation von 2):
Kosten zwei verschiedene Portefeuilles p', und p, in der Gegenwart gleich viel

Pxp, = Pxp,, (36)

so unterscheiden sich die Zufallsgréssen 7'+ p' und z' * p/, , die das zuklinftige
Vermogen darstellen.

6.2. Stetigkeit

Satz 4:

Voraussetzung:
1) Die Bedingungen ®. ®,® des Existenzsatzes sind erfiillt.
2) wiist strikt konkav.
Hr Py~ B*ﬁfz’ WObei'gil 7 /_)Iz’ﬂ = 0
=== p'xp| F T *p, mit positiver Wahrscheinlichkeit.
Behauptung:
— Fir P > 0 ist V' (P) eine stetige Funktion.
~ Existiert ein €1, ..., m } mit P = 0, so folgt

lim > N/ (PY) = =. (37)

| =

Beweis: siche Anhang.
6.3. Differenzierbarkeit

Nist auch unter Regularititsbedingungen nicht fiir alle P >0 differenzierbar
Der Grund liegt beim Verbot vor Leerverkdufen.
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Um die Situation ndher zu untersuchen, verlangen wir:

1) w'ist strikt monoton wachsend, zweimal stetig differenzierbar und es gilt
wi'< 0.

2) Zu jedem P > 0 existiert eine Umgebung U;: ={P" > 0| P'-P < 4§}
und ein kompakter Bereich K von £2,, so dass fir alle P'€ U, gilt:
Die gesamte Wahrscheinlichkeitsmasse von Fi(- ; P) liegt in K.

3) Fi(-; P) ist durch eine Wahrscheinlichkeitsdichte fi(z ; P) gegeben 18,
fi(z; P)ist in P stetig differenzierbar und die Ableitungen
of
oP,

(z: P)sind auf 2, x Q beschrinkt.

=——=a's g Fr'ep mit positiver Wahrscheinlichkeit.

Daraus erhdlt man

Lemma I: Unter den Voraussetzungen 1)-4) ist N' fiir 2 > 0 eindeutig und
stetig.

Nun betrachten wir die Zielfunktionen

G,-(ﬂw;f)i*fvv’ (m=p)dF'(n; P). (38)

oG, &G &G

I 2 Die part . : | exist
emma 2: Die partiellen Ableitungen 3/9,1’ B,Dh apl, 3/Jh 81‘? existieren
und sind in (B , P) stetig.
Es gilt:
oG, § :
s P) = [ W @ p) 7w, dF (s P) (39)
o - P
' h=0,..m
%G, .
" (p; P) = [ w" (% pymym, Az P) (40)
op Op - o
h 1
h=0,..m
[ =0, ...m
202G, of'
L (p: P) = [w : Pyd 41
o aPI(J(_),L’) fw (= p)m, 0P, (zm; P) du (41)
h=20,.. m

W8 i e
¥ fiist die Dichte bezliglich dem Lebesgue-Mass . [ =1,..
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... 0G; . .. .
Folglich ist 5; (= 0o ) 0 Upps s P B} 5 500 P} SEELIE diffeTEnzICTbAT,

h

Die Kuhn/Tucker-Bedingungen fiir das Problem

PP 20 (13)
Px@pP)y-r)=10 (14)
G (p'(P); P) = max {G(p; P) | p erfiillt (13), (14)} (15)
lauten19:
\ 9G; .
@y (p, 4, P): = z (p; P) + AP, = 0,falls p, > 0 (42)
Pr
h=20,..m
; oG, ;
D, (p, A, P): = (p:P)+ AP, <0, fallsp, =0 (43)
Pn —
h=0,..,m
@mﬁ-l(Ba Aa_P)' :_P*(_f_)i_rl) :0 (44)
Fir P > 0sind zwei Fille zu unterscheiden.
. i 5. ,
a) pil (P) = 0 —— Eb—(f’(f);f) + AP <0 (45)
i - o
hel0, ..., my.

Interpretation: Der Grenznutzen pro Geldeinheit ist bei den nicht nach-
gefragten Giitern kleiner als bei den nachgefragten Giitern.
Mit dem Theorem von der impliziten Funktion erhdlt man

Satz 5: p' (P) ist in P > 0 differenzierbar, falls die Bedingung a) erfillt ist.
b)=Es existiert 1€{0, ..., m), so dass
pi (B) =0 (46)

8Gf (LB F) =+ 4Py = 0. (47)

aopi

Interpretation: Es gibt ein nicht nachgefragtes Gut, das den gleichen Grenz-
nutzen pro Geldeinheit hat wie die nachgefragten Giiter.

19 Die Anwendbarkeit des Kuhn/Tucker-Theorems wird im Anhang untersucht.
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Tritt dieser Fall auf, so weist man leicht nach, dass N’ in P nicht differenzierbar
sein muss.

Das nachfolgende Beispiel illustriert die Situation, falls b) auftritt.

Beispiel: m = 1.

| ist der Geldpreis.

p ist der Preis des Spekulationsgutes.

p, (p) ist die Nachfrage nach dem Spekulationsgut.

Figur 2

A

o (p)

e
p* ~N % Leerverkiufe

Das Verbot von Leerverkdufen kann also die Differenzierbarkeit verunmdogli-
chen.

Die Eigenschaften der Nachfrage werden auch in den Arbeiten [7], [13], [14]
untersucht.

7. Stabilitiit im Falle eines Spekulationsgutes (m = 1)

7.1. Systemstabilitdit

Wir setzen an
P=(0,p) 0gp <o (48)

NP) = (2, (p), z (P). (49)

Die Voraussetzungen ®, ®, ©, O des Existenzsatzes seien erfiillt.
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Weiter gelte:
— Die Nutzenfunktionen w‘ sind strikt konkav.

— 7 # (1 + a,[1 + a] p) mit positiver Wahrscheinlichkeit (7 = 1, ..., n). (50)
Aus Satz 4 folgt:

~ 2, (p), z; (p) sind fir p > 0 stetige Funktionen. (51)
— lim z, (p) = . (52)

Pl

Wegen Voraussetzung © existiert ein ¢ > 0, so dass

2, (p) < 0, falls p > c. (53)
Figur 3 Figur 4
‘F )4 \n P
\, |
17
HI\
z1 (p) z1 (p)

Die Figuren 3 und 4 stellen den moglichen Verlauf von z, (p) dar.
Um die Stabilitdt zu untersuchen, fithren wir einen Preismechanismus ein.

P el ). (54

Die Funktion g ist stetig, strikt monoton wachsend und erhilt das Vorzeichen.

~

Fir p > Osei w (¢; p) eine Losung von (54) mit w (0; p) = p 20,

20y (¢; p) existiert, weil goz| stetig ist. w braucht aber nicht eindeutig zu sein, da goz; keine Lip-
schitzbedingung erfiillen muss.
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Definition : p ist ein Gleichgewichtspreis, falls z; (p) = 0 21,
E:={p|a@ = 0} ist die Menge der Gleichgewichtspreise.  (55)

Definition : Der Gleichgewichtspreis p ist stabil, falls fiir alle p aus einer Um-
gebung U von p (und fiir alle méglichen ) gilt

lim y (£;p) = p. (56)
Definition : Das System (54) ist global stabil, falls fiir jedes p > 0 (und fiir alle
moglichen ) gilt

111;’2 w(t;p)EE.

Satz 6 : Unter den gemachten Voraussetzungen ist das System (54) global stabil.
Die Stabilitat fiir m = 1 wird auch in [5] und [6] behandelt. Bei der Her-
leitung von Satz 6 miissen jedoch die speziellen Eigenschaften des untersuchten
Modells verwendet werden.

7.2. Beispiel fiir einen instabilen Gleichgewichtspreis

Die Terminologie und die Voraussetzungen von 6.3. werden beniitzt.
(2=(,p)zm=(1%amn)
P* = (1, p*) sei ein Gleichgewichtspreissystem mit
Fie*)=r i=1,..,n (57)

(keine Transaktionen im Gleichgewicht).
P* ist instabil, falls

d (1 oG, 3G,-> N 58)
N N - —p* > I = 1l;mall
WAL Do) em
oG, § .
S iR = [ @ep) (1 + @) /(s ) du (59)
P,
1 9G; | ., .
S (P = [ w (e p) S B du (60)
p o, — p

121 (F)=0=5z) (5) = 0 wegen des Walrasgesetzes (Gleichheit in den Budgetungleichungen ge-
miss Fussnote”),
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1 0G; 9G, _ s T L
T B [ wia g)[;—(l 2 a)}f(y_z,g) 2 (6

i [1 96 ,@Gf} -/
dplp 9 9oy

+ W' (z % p) {”41 + a)} —af(E;B)} dp.
e p

W (2% p) (- ;})ff(g; P) (6)

Dieser Ausdruck ist natiirlich bei einem geeigneten Verlauf von — (z; P)
positiv. op
Ein instabiler Gleichgewichtspreis p* ist somit moglich (vgl. Figur 3, I1).

8. Gegenbeispiel zur Systemstabilitit fiir m = 2

m=2,n=2,

Es gelte
a=0,. (63)

Der Teilnehmer 1 ist charakterisiert durch
— die Preiserwartungen

(1,0, 0) mit Wahrscheinlichkeit Y3
nl =4 (1,g,(P),0) mit Wahrscheinlichkeit Y5 (64)
(1, g, (P), g, (P)) mit Wahrscheinlichkeit 3,

— die Ressourcen

rl = (20,0, 0) 22, (65)

— die Nutzenfunktion
wl(x) =1-e (66)
Gy (pa P): = 1—%(3”“ + g o8B o pom 8Bl - By (67)

1st also die Zielfunktion des Teilnehmers 1.

22 In diesem Beispiel werden die Giiter nicht auf 1 normiert (vgl. (8))
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Ein Nachfragevektor pl(P) erfiillt bei festem P

pI(P) 2 0 (68)
P pl(P) = Pxr! (69)
G, (p' (P); P) = max{G, (p; P) | p erfiillt (68), (69)}. (70)

Das ist dquivalent zum folgenden Problem:
Minimiere
e"/)!” + e‘/"n‘gﬂ’!\ + e /’Iu"g|/’|a’g3/’!_‘ (71)
unter den Nebenbedingungen
ply + Py ply + Pypl, =20 (72)
pl 20

Das Kuhn/Tucker-Theorem 23 liefert nun

o e’/’]u —e Pla-giply _ e P&t gt = /1 (73)

o gl e'pau' g]i’“ _gl e’g!u ’311)l| g]ptj 2 ;-P]

AP

W
o

— -Pha- g8 - 8p's
&€

ply + R ply + Bply = 20.

Tritt in (73) Gleichheit auf, so erhalten wir fir P, P,, g,, g, > 0.

1 gg')*P]gz
pl (£):_ ln_l-——_
1 g Pg-Pg
| P - P,
pl, (P) = - In T18 718 (74)
& P, g,

ply(B) =20~ P pl  (B)- P, p', (B).
In diesem Beispiel sei
g (P)=2P (1 +puP2e 44 (75)
g (P) = w,

23 1y; . ,
3 Die Slater-Bedingung ist offensichtlich erfiillt.
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wobel
i = 16.18274958
/= 3.128987615 76)
o = 0.003515514075
w = 0.1524772660.
Eingesetzt in (74) ergibt das
] 2P (1 +uP2e '+ 6-P
phi(B) = PETLL zI l N AP (31
2P (1 +puP2e ™ +d A =P P(l+uP?2)e =L,
1 w P
L(P)= -1 I T}, 77
P = M TE BT P e T T B g
Der Teilnehmer 2 ist charakterisiert durch
— die Preiserwartungen
n2 = (1,0.5P,0.5P,) mit Wahrscheinlichkeit 1, (78)
— die Ressourcen
2= (0,1, 1), (79
— die Nutzenfunktion (80)
w2(x) =1-e ™.
Fiir die Nachfrage erhédlt man somit, falls 2 > 0 ist
PR = (B, & Py 1,0 (31)

Der gesamte Nachfragetiberhang ist gegeben durch
NP) = pl+ p2—rl-r2.

Man tberlegt sich leicht, dass fiir ein Gleichgewicht notwendig ist

— P > 0 (aus Satz 4 folgt nimlich  lim Ym‘ pl, (PV) = oo, falls P =0
B (L P By iy

oder P, = 0),

— Gleichheit in den Kuhn/Tucker-Bedingungen (73).
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Zuerst weisen wir nach, dass nur ein Gleichgewicht existieren kann.
Fiir jedes Gleichgewichtspreissystem P* muss gelten

1
2P*(l+uP*2)e o

gy (B =

o 2P uP e N o P
N - 5 P
P*-2P*P*(l+g P2 e - dp,*

= 1 (82)

1 ‘ w P*
PN g L ] — e
- w |2PF*PF*(l+uP™)e ""+P*0

17 = 1. (83)

Aus (83) erhdlt man

2 . )
SPEPF(UuP e APl = (0 + ) P (34)
w - ]

Eingesetzt in (82)

o )
I 2(0+puP*)e M- 1+5+
P 1. (85
w5 : | . (89)
2P1*(1+,UP1*2)€"[‘+() 1‘—((3“‘%1)
Es ldsst sich nachweisen 24, dass | S
l 2(1+;,zp2)e"f’—1+g
S(p) = In (86)

2p(L+pupe” +o I (e®+ 1)

in p strikt monoton fallend ist.

Aus (85) folgt somit die Eindeutigkeit von P.*,
Wegen (84) ist auch P.* eindeutig.

Fir P* erhilt man

P* = (1, 0.24608599, 0.038119316).

Nun untersuchen wir die Stabilitit.

24 Man teilt den Definitionsbereich von fin Intervalle auf. Auf diesen Intervallen lassen sich obere
Sghranken fiir /" berechnen. Weil diese Schranken negativ sind, ist f strikt monoton fallend.
Dieses Verfahren ist allerdings ziemlich miihsam. Anstelle eines Beweises wird deshalb der Verlauf
von fund f” durch einen Computer-Output illustriert.
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aN,  2[1-AP +3uP2-3uP3le™ 2P (1+uP?2e *fi+0-P,

9B RP (I+uPRe o2 U P=2P P, (1+u PR e - 0P,
i 2[1-AP +3uP2-AuP 3l e -1 . 1 &7
2P, (1+uP2 el +6 2P, (1+uP2) e +5-P,
1P [1-AP + 3u PP JuPile 1
2Pi(l+tuP?He’n+g Pﬁc%Pl Py(1+uP?)erh “C%pz
N, 1 "
oP, wP-2P P,(1+u P2 e "6 P, (88)
o, 2P2[A-2u P, +ulP2le’+0
0P, [wP -2P P,(1+uPp2) e’ "—P,6]2P,(1+uP2e " +d] (89)
N, 1 P,
P, Py wP 2P P,(l+uPe’l — P, 6 120)
M M 0.7952691054 49.53234751
P P,
ONy BNy ) \L10.42496392 -319.7648243
oP, 0P, =B
Fihren wir fiir P > 0 den Preismechanismus
P
—0 =
dt
dP,
@ kN (P)
P, (92)
PR

ky =-1000, k,=1

ein, so hat die Matrix



¥

N, oN |
S o ; 49532.34
k; 2P, ky 0P 795.2691054 49532.34751
- (93)
N, dN,

oy —== -10.42496392 -319.7648243

oP

k___:
| 23P2/ p=pF

Eigenwerte mit positiven Realteilen.

Deshalb kann keine Losung w (7; P)23-26 von (92) gegen P* konvergieren, falls
P = PH(P>0).
Damit 1st ein Gegenbeispiel zur Systemstabilitdt konstruiert.

Anhang
9. Der Existenzbeweis

Der Beweis von Satz 1 beruht auf den Arbeiten von Debreu [11], [12]. Im
untersuchten Modell treten jedoch subjektive Preiserwartungen auf; zudem
kommt das Geld vor. Deshalb muss der Beweis an verschiedenen Stellen an-
ders als bei Debreu gefiihrt werden.

9.1. Die erreichbaren Zustdnde

Die Tauschokonomiee = (¢, a, F', w) ist gegeben.

. {gﬂ,..-,p”)% $oa= 3 s Q} (94)

ist die Menge der erreichbaren Zustinde vone. (4 C IR D),
Weil 4 kompakt ist, gibt es ein @ > 1, so dass

A g [0, a)(m = Dn . (95)

Wir betrachten leicht modifizierte Nachfragekorrespondenzen.

% g (0;.P) = P
26 Es lisst sich zeigen P > 0=w (t:P)>0Vvr=0.
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pr(P) (i = 1, ..., n)ist definiert durch

D azp/ @) =0 (h=0,..m) (96)
P+ (P)-r) <0 (97)
3) G, (' (P): P) = max { G, (p: P) | p erfillt (96), (97) }. (98)

Die neuen Korrespondenzen lauten

NU(P): ={p'(P)— 1| p' (P) erfiillt (96), (97), (98)) (99)

N (P): = i N'(P). (100)

Der Beweis verlduft nun folgendermassen :

Zuerst (9.2.-9. 5.) wird die Existenz eines Preissystems P* € (2| nachgewiesen,
so dass 0& N (P*). Am Schluss zeigt man, dass P* ein Gleichgewichtspreis-
system ist. |

9.2. Stetigkeit der Zielfunktionen
Lemma 9.1: Die Funktionen
G (p; P): —fwf(g*_p)dF"(g;f)iZ -
G [0, )=+t g, -+ [0, ) (101)

sind in (p, P) stetig.

Beweis:
(7, P) sei gegeben. Es ist zu zeigen:

Zu jedems > 0 existieren 0,0 > 0, so dass
p=p <6, P-P <§=—=|G(p;P)-G (p:P)]| <e?.(102)

| ist die Euklidische Norm.
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1) Die Voraussetzungen (A. 3), (A. 4) (w'isteine beschrinkte, stetige Funktion)
und ® (schwache Konvergenz der F') ergeben sofort:
Es existiert 9; > 0, so dass

P-P <6 —= G(@p;P)-G@;P)| <&, (103)
2) Fiir die Wahrscheinlichkeiten
(€2, .8, F'(-;.P)) (104)

(Bist die Borel-o-Algebra von 2.)
gilt:

P—  SPpe s Fi(-; P)— Fi (- ; P) (Voraussetzung ®).

schwach

Schwache Konvergenz und Konvergenz in der Prokhorov-Metrik sind dqui-
valent.
Zug, > 0existiert also 0, > 0, so dass

PP <oy ——= dp(F(-:P),F(-;P) <¢, 2. (109

Es existiert eine kompakte Teillmenge M von £, (ME€B) mit

F(M;P) 2 1-¢,. (106)
Wir definieren
M :{26933?5 -yl se). (107)

M ist ebenfalls kompakt.
Jetzt gilt
F(M:P)>1-2,VPEQ mit P-P <3, (wegen (105) (10)

Jw@spdF @) = [w (@ +p) dFi@; P)

bYa

N / w(z * p) dF (z; P)  (109)

o, M’

28 Definition der Prokhorov-Metrik

dp,(Hy, Hy): = inf{v> 0| Hy(B) < H(B") +v.VBEB)
ve =4y |5 o

BY: {JEQZU?;E xX-y §v}.



25
G.iP) -G @D < [|w@ep) - w@wp) | dF (P (110)

+f W (m=*p)-w=*p) | dF (z;P).
Wahle 0 > 0, so dass oM

PPl <d—=|W@sp)-w@*p)| <%, VzeM (111)

(wegen der Stetigkeit von w' (A. 3) und der Kompaktheit von M ).
Dann folgt aus (108), (110) und (111)

lp-pP| <6,|P-P| <4,

—= G, ;L) -G, (p; P)| <&, +supw (1) F(Q,-M;P) (112)

120

<Y, 1T 2¢ sup w' ().

Setzen wir & = min {(5'[ \ 52} , so erhilt man aus (103) und (112) mit Hilfe der
Dreiecksungleichung

p-p| <o |P-P| <4
—— [G(piP)-Gi(F: P | < 1o+ 26, 5up W (D). (113)
Damit ist die Stetigkeit bewiesen. i
Lemma 9.2.: Die Funktionen
G,(p: P): = | wi(m=p)dF (: P) (114)

sind konkav in p.
Der Beweis folgt sofort aus der Konkavitat von w' (A.2).

9.3. N hat abgeschlossenen Graphen

Aus «Espaces topologiques», C. Berge, pp. 122-123, [8] konnen wir leicht
folgenden Satz herleiten.

Maximumtheorem

Voraussetzung :

¢:X X Y—— 3 IR ist eine stetige Funktion.

I': X - Y ist eine stetige Korrespondenz, I'(x) # @, VX€X.
Y ist kompakt.
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Behauptung:

m(x): = max {@(x.y) y€/['(x)} iststetigauf X.

@ (x): = { YeY yel'(x), p(x, ) = m(x) } hat abgeschlossenen Graphen,
® () * &, VxeX,

Das Maximumtheorem eignet sich zum Beweis des folgenden Lemmas.
Lemma 9.3.: Die Korrespondenz

- (115)

hat abgeschlossenen Graphen und nicht leere Bildmengen.
Bewelis: .

Es gentigt LVI (i = 1, ..., n) zu untersuchen.

Wir definieren

1"

m+1

- J—,

1

=

P~~~y 0<x <alh= Lm), Px(x-r) € 0). (116)

h

Wegen Voraussetzung ® ist _/lzeine stetige Korrespondenz (siehe: G. Debreu,
Théorie de la valeur [11], pp. 67-69). '
Nun gilt:

N'(P) ={x-r" xed" (P, G, (%3 B) = nax Gi(x; Py (117)
N'hat wegen des Maximumtheorems abgeschlossenen Graphen und nicht leere
Bildmengen. Folglich hat auch N abgeschlossenen Graphen und nicht leere
Bildmengen.
Lemma 9.4.: Die Bildmengen von N sind konvex.
Beweis: .
Weil G (p; P)in p konkav ist (Lemma 9.2.), sind die Bildmengen von N 'konvex.
Somit sind auch die Bildmengen von N konvex.

29

A A i
AP <a

_” :
= -1 g E ([,hl(f)f rhl) gna h=0 .,m

i=1
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9.4. Transformation

Der Fixpunktsatz von Kakutanildsst sich nur auf Korrespondenzen mit kom-

paktem Definitionsbereich anwenden. Da | nicht kompakt ist, betrachten wir
P 3 .

eine Folge {02 }%-,, wobei

Q4 ={,y) | ye[0, 9"y t=1.2, ... (118)
Zusétzlich normieren wir das Preissystem.

¢ QW —{g >0 Sx = 1}(W= Standardsimplex)  (119)

=0

=

[~

g:Q ——— W.:={xew X, S 1%, h=1,.,m} (120)
p 1
25
h=0
Figur 5
A X,
P 8 2,
—
v
7~
-
p e
N ~
~
W, -
-
s
~
// W
7~
7

P X
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Die Korrespondenz

NWw — [ L™ =12 .. (121)

P ~~rs W (P) (5; :pig)xo

0

hat, weil g ein Homdomorphismus ist, abgeschlossenen Graphen und konvexe,
nicht leere Bildmengen.

Um den Fixpunktsatz von Kakutani anzuwenden, muss noch eine Hilfskorres-
pondenz eingefiihrt werden.

m+1

EiFlpd” & ——— W

Daraus lidsst sich
v Wox[-1,na"" s Wox[-1, na] ™" (123)

(. 2) (K'(2), N'(p)

konstruieren. )

Aus den Eigenschaften von N, K 'folgt

— . hat abgeschlossenen Graphen.

— Die Bildmengen von y, sind konvex und nicht leer.

Zudem ist W, x [ 1, na] "' kompakt.

Nun konnen wir den Fixpunktsatz von Kakutani anwenden, der aussagt:

Satz

Voraussetzung:

C ¢ IR" konvex kompakt.

[7:C ———— C ist eine Korrespondenz mit abgeschlossenem Graphen.
L’(x) ist konvex und nicht leer fiir alle x€ C.

Behauptung: Es existiert ein x,€ C, so dass x € L'(x,) (vgl. [§], p. 183).

Somit existieren

(P’ 29€ (K (), N'(p)) 1 =1,2, .. (124)

mit folgenden Eigenschaften:
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prezi € 0 (denn e K (p7), vel. (97), (99), (100), (121)) (125)

p'xz' 2z pxz, VpEW, (denn p'€ K' (2, vgl. (122)) (126)

(p',z)- 1 1st eine Folge auf der kompakten Menge W x [~ 1, na]” " ' und besitzt
deshalb einen Haufungspunkt (p*, z*).
O. B. d. A. diirfen wir annehmen

(@ 2)—>{" 2" (127)
Lemma 9.5.:
p¥xz* =0 (128)
<0 (129)
Beweis :
Zuerst zeigt man
! ! ]' —
p'*z ;fm =D o (130)
Fallunterscheidung:
D)z/2 0== p'sz' 2 0 (wegen (126)), (131)
) z/ < 0=—= max z'20 ‘ (132)
(denn , max 2! < Q=== z' <0 = Widerspruch zu (98)
o (Nutzenoptimierung)).
Wegen (126) folgt jetzt
| t 1 1
‘2t Fy — ‘> ‘'z - — 133
B*Z21+t0 ]_;_t;;=n}.a..).(,mzhal+fzo 1+t (133)
Damit ist (130) bewiesen.
pxz's 0 | (125)} > p*xz* = 0. (128)
P o 130
przz - 130

Aus
p'xz'zpxz’ VpeW, (126)



folgt nach kurzer Rechnung

pF w g¥ ;E*g* VBEW.

Aus (128) und (134) erhilt man sofort
0.

z*

N

9.5. Konstruktion von P*

Mit Hilfe der Voraussetzung © schliessen wir den Fall p: = 0 aus.

Lemma 9.6.:
aF =0
Beweis (indirekt):
Sel gt = 1.
dann existiert 7, so dass
1
p’ < ——— (¢ gemiss Voraussetzung ©).

0 r?zc+1

Es gibt ein A €{1, ..., m}, so dass gleichzeitig

-1 = e b4
Lﬁ; h nll.d..).{‘m“;x
G
P! = max P" (P"= WITp’)
h=1..m h p =i
0
wqe. . 31
erfullt ist
Aus (137) erhilt man P;g > .

(134)

(129)

(135)

(136)

(137)

(138)

(139)

(140)

Weiter gilt zf < 0 (falls z§ > 0, so widersprechen sich (125) und (126)) (141)

Gemiss (99), (100), (121) existieren p' (P"), so dass
— p'(P") erfiillt (96), (97), (98),

S =N G -1,

S - o b .
ns= kg s, M s gk gy,
Wegen (126) gilt

i !’ p
E 38y - falls 1y €S hye {1 omd~s.

(142)

(143)
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Es gibt ein i €{1, ..., n y mit

- N peP) >0 (dennz’ =1, h=1,..m (144)
h=1
—— P" =0, h= 1, .. m Wid. zu (140))
K | (145)
B ’ Z m
2 ple (B
h=1
(denn (138) —= N B2 N AE) =1 m
i=1 i=1
— S ezl S S e
=T T m HiH T T
; I =%
— D 2 L 2 h) (B')>
h=1
-pe P <1< a(wegen (141)). (146)
Wegen (140), (144), (145) folgt nach Voraussetzung ©
Jrr b @) dFe (@: P) < (1+a) P % o (B) (147)

Weil wie konkav ist, ergibt die Ungleichung von Jensen
fW’b (71 # plo (B’)) dFe(z; P') < wh (fz * pro (P) dFe (z; E”)) . (148)
Aus der strikten Monotonie von w' folgt wegen (147) weiter

wol [+ pin (Pr) ' (3 1)) < we ([L+al B e (B) - (149)

Setzen wir

ple: = (P % pio (P), 0, ...,0), (150)
50 erhiilt man aus (148) und (149)
/Wio (E * /_”)io (_Br)) dFio (m; P") < whe ((}-%a)ﬁ’g) = fwio (7 * é:’o) dF'o (z; Pr) (15]1)
oder

G, (o (P"); P') < G, (s P'). (152)
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Moglicherweise gilt g > a, aber wegen (146) existiert em 5, 0 < s < 1,
so dass

por =5 po + (1-5) p (P (153
die Bedingung
0 < pl € X

erfullt.
Die Konkavitit von G, im ersten Argument (Lemma 9.2) liefert uns weiter

~

G, (p° (P"); P") < G, (p~; P") (wegen (152), (153)). (154)

Weil é"o die Bedingungen (96), (97) erfiillt, erhalten wir einen Widerspruch zur
Optimalitit (98) von p* (P").

Damit 1st das Lemma bewiesen.

pP*: = —1*-3*. (155)

. Po

Wir wollen zeigen: 0€ N (P¥).

P*+0 === Hisodassp' €W; Vi =1 (wegen (127)) (156)
— (phz)€{(p.2) | pEWLzZEN (p)} Vi (157)
—— (p*.ME{(p. D) | pEWL ZEN(P)) (158)

(denn N7 hat abgeschlossenen Graphen)
z*e N (P*) (wegen (121)) (159)
2= 3 e - D (160)

i=1

wobei p’ (P*) die Bedingungen (96), (97), (98) erfiillt.

—

Wegen P* « z* = 0, z* < 0 (128), (129) gilt weiter
—0=> pe - Z o (161)

— pH(P*) erfiillt (96), (97), (98). (162)
D.h. 0€N (P*). (163)
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9.6. (é‘ (P*), £*) ist ein Gleichgewicht

p' (P*) ist wegen (161) ein erreichbarer Zustand von e und erfillt (96), (97),
(98).
Es bleibt zu zeigen, dass auch gilt

P 2 0 P = 1.0 (19)
)~ ') <0 i=1,..n0 (20)
Gi(p'(P*); P*) = max{G,(p; P*) | perfiillt (19), (20) }. (21)

=T

I~
N W

* 4 (éz

Beweis (indirekt):
p'erfiille (19), (20) und es gelte
G (p";P*) > G, (p'(P*); B¥). (164)

Weil p* (P*) ein erreichbarer Zustand von ¢ ist, existiert 5, 0 < 5 < 1,
so dass

(a,a,..,a) 2z sp"+ (1-5) p' (P*) = 0. (165)

Da G, im ersten Argument konkav ist (Lemma 9.2.), folgt
Gi(sp" + (1-9) ' (B*); P¥) > G5 (P*); P*).  (166)

Also kann ' (P*) nicht (96), (97) und (98) erfiillen.
Mit diesem Widerspruch ist der Existenzsatz bewiesen.

10. Bedingte Pareto-Optimalitiit

Beweis von Satz 2:

' ..., p") sei ein erreichbarer Zustand von ¢ mit
Gi(gi; }._)*) ,2/ G!(E*l: ]_J*) j = Is ey 1 (167)
G, (ph; P*) > Gy (p*; P*) fiirein j€ {1, v n}. (168)

Das ist nur moglich, falls

P* x po > P* 4 rio (Definition des Gleichgewichts). (169)
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Weil (p', ..., p") ein erreichbarer Zustand ist, gilt aber

n

2 Prapl =

i=1

1

i
—

P* % r'.

Es muss also /'€ { 1, ..., n}existieren mit

P*xp" < P*ur’

Da w' strikt monoton wachsend ist, gilt
Go (s P*) > Gu(p"s P*) = G, (p*"; P*).

Folglich kann (p*', ..., p*", P*) kein Gleichgewicht sein.
Mit diesem Widerspruch ist der Satz bewiesen.

11. Beweis der iibrigen Sitze
I1.1. Eindeutigkeit

Beweis von Satz 3:

G, (p: P): = W (x % p) dF (x: P)
ist in p stetig.

(Die Stetigkeit weist man mit dem Satz von Lebesgue nach, denn es gilt

W (mxp) | < supw (1) V€L, p =0 )

120

Fir P > 0 ist
A(P): ={p20| Px(p-r)<0}

kompakt. »
Wegen der Stetigkeit von G; (p; P) in p erhalten wir:

Es existiert p' (P)€ A (P) mit

Gi(p'(P); P) = max{G,(p;P) | ped(P)}.

ple = p"+ (P*x ("~ p"), 0,0, ..., 0) erfiillt (19), (20).

(170)

(171)
(172)

(173)

(174)

(175)

(176)



105

Jetzt weisen wir die Eindeutigkeit von p' (P) nach.
Sel

P (B) # ph(B), (177)

dann gilt wegen der strikten Monotonie von w' (Voraussetzung 1))
Pupi(P) = Prph(P) = Pxr. (178)
Aus Voraussetzung 2) folgt

'« p (P) # n'=ph (P)auf einer Menge von positivem Mass (F" (. ;£)) :
(179)

Firz€(0,1)erhalten wir wegen derstrikten Konkavitit von w'(Voraussetzung 1))

wla ey (B) + (1= 0 p5 (B)) 2 0wz s p' (B)) + (1= ) w' (2 p (B)),

wobei auf einer Menge von positivem Mass strikte Ungleichheit auftritt. (180)
Daraus ergibt sich

G (10 (B) + (1-1)p=(P); P) > Gi(p' (P): P). (181)
Aus diesem Widerspruch folgt die Eindeutigkeit von p' (P).
N'(P): = p'(P) - r'ist also fiir P > 0 definiert und eindeutig.

11.2 Stetigkeit

Beweis von Satz 4:
Die Voraussetzungen von Satz 4 implizieren Existenz und Eindeutigkeit von
N'(P) fir P > 0 (Satz 3).
Um die Stetigkeit nachzuweisen, wihlt man eine Umgebung
U:={PcQ,| | P-P| <} (6d=" hggin P)). (182)

Setze
P' i
g > sup — = (vl 9.1). (183)
p€us Ioin £y
Dann gilt

N'(P)=N'(P) VPeU,. (184)
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Gemaiss dem Beweis des Existenzsatzes (9.3.) hat dann N' (P) fur P'€ U; ab-
geschlossenen Graphen.
Wegen der Eindeutigkeit folgt die Stetigkeit von N' (P) in P > 0 (vgl. [8],
pp. 114, 118).
Die Beweisidee fiir den zweiten Teil des Satzes stammt aus [5], pp. 102-104.
Es existiere 1€ {1, m} mit P; = 0.
Dann ist ' in P nicht definiert. (Wegen Voraussetzung 3) gilt namlich z;' > 0
auf einer Menge mit positivem Mass.)
Um

lim >, N/(P') = (185)

R —

zu zeigen, nehmen wir an, es existiere eine Teilfolge {f"’} e 1s SO dass

(P (P (186)
beschriankt ist.
O. B. d. A. existiert
pt: = lim p'(P") (187)
Betrachte p* = 0 mit
Gi(p"; P) > G (p'; P). (188)
Dann existiert 4 € (0,1), so dass
G(Ap"sP) > Gi(p'sP) (189)
G (Ap": ") > Gi(p' (E"): B")  Vv>w (190)

(Stetigkeit von G, gemdss 9.2.)

— P xip > Pepi(P) = P Vv v, (191)
= APxp' =z Pxr'>0 (Voraussetzung® ) (192)
——— Pxpi> Py, (193)

Wegen (188), (193) erhilt man
PP =0 (194

Aber N'(P): = p'(P)—r'ist nicht definiert. Aus diesem Widerspruch folgt (185).
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11.3. Differenzierbarkeit

Beweis von Lemma [

) Gilps P): = [wiims p)f'(x; P)d (195)
ist in (7, P) stetig.

Beweis
Wihle die Umgebungen

Us:={P>0| | P-P| <6} >0 (196)
(so dass Voraussetzung 2) erfillt ist).
Us:={p20 || p-p <&} & >0. (197)
Es gilt
sup - w'(mxp) < o (198)
z€CK, p €U B

’ y " o =, Bf s P

f@iB) = fiasB) + 5 (R By B (199
h=1 oP, Pm

Wegen Voraussetzung 3) existiert ein d > 0, so dass

" = ofi(z; P)
2 P o P ) e
= (B = F) oP,

FirPeU,, p €Uy gilt deshalb
W @ep) S @ P) | < SR wiep)[f @ P)+d). (201)

vid Eh P 6Lr()"

< d VPeU,, VreKk. (200)

Die Stetigkeit von G, lasst sich nun mit dem Satz von Lebesgue herleiten.
1) Jetzt sind zwei Fille zu unterscheiden.

iDr'=0 —= N (@) =p'(P) =0 VP> 0. (202)
12) pf > 0. N
Dann ist

4: P {pz0|Px(p-1r) <0} (203)

I einer Umgebung von £ > 0 stetig.
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Wegen der Stetigkeit von G, ergibt dann das Maximumtheorem:
p' (P) hat in einer Umgebung von P > 0 abgeschlossenen Graphen.

Die Voraussetzungen 1) und 4) implizieren Eindeutigkeit von p' (P) fir P > 0.

Somit sind p' (P) und N' (P) in P > 0 stetig.
Beweis von Lemma 2
Anwendung des Satzes von Lebesgue (vgl. (196)-(201)).

Anwendbarkeit des Kuhn / Tucker-Theorems

G, ist im ersten Argument konkav. Damit auch die Slater-Bedingung erfiillt

ist, muss man ¢’ > 0 voraussetzen.

(=0 == pi(P)=0VP >0)
Beweis von Satz 5

0

r>0=—= pi(P)>0 VP>

Fir P > 0 existiert somit # € {0, ..., m}, so dass pi, (P) > 0.
Deshalb erhilt man aus (42)
1 oG

A ﬁ = == — P ,f) .
HETF T, 1D

Wegen Lemma | und 2 ist A (P) in P > 0 stetig.
Wir definieren

{hyy s ={h | p(P) > 0,0 < h g m).

Aus Voraussetzung a) folgt

03; , e = ey
o /(PP + A (P) P, <0
Pn —

(204)

(205)

(206)

(207)

hed0, ...,my ~ {h;, sovs h)

Weil die linke Seite von (207) in P stetig ist (Lemma 1, 2, (205)), existiert eimn

0o” > 0, so dass
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@ 2B+ A (B) < 0 (208)
Vhe{0, ..., my~{h, ..., h}
VPEU,: ={P>0|| P-B|< 8"}
Daraus ergibt sich
pi(P) =0 VPEU;, he{0,..m}~{h, .., h (209)

Die Funktionen
@, j=h,. . h,m+ 1

sind in (py,, ..., Pus 4 Pry ooy P,) stetig differenzierbar.

Falls die Matrix ‘
2 :
0° G 1P,
9 9, /
J = f : (210)
R /B 10 kA€, by}

fir P = P regulir ist, so sagt der Satz von der impliziten Funktion aus:

Die Funktionen p,’ (P), he {h,, ..., h, psind in einer Umgebung von P definiert
und stetig differenzierbar.
Es bleibt zu zeigen

det (J) # 0. 211)

Annahme: Ein Vektor x = (Xpnps --r Xi» X+ 1) 7 0 existiert, so dass

Jx =0, (212)
Speziell gilt dann
Z Pfr/ xh, = 0 (2]3)
=1
Aus (212) folgt
’ &G ’ _ 214
XTJX = xh[ xh/ St & 2 X+l Z xfi[ Ph[ o O ( )
k,1=1 © sy =1
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r 32 Gl . ; r 2 ‘
0= 2 x”/ xf'/‘( T f w! (E & H) ( Z X/!/ 73/,) dr (Ea _B)
k=1 Py, / P i \I=1 y

< 0 (Voraussetzung 1)). (215)
(215) ist mit Voraussetzung 4) nur vereinbar, falls
(B %) = B (216)
Wegen (212) folgt daraus
(Xpps wos Xppo X 1) = 0. (217)

Mit diesem Widerspruch ist (211) bewiesen.

Madaglichkeiten zur Verallgemeinerung

1) In den Beweisen wurde nicht verwendet, dass x das Lebesgue-Mass ist.
Es wurde nur verlangt ¢ (K) < o (K gemdiss Voraussetzung 2)).
i1) Der Satz von Lebesgue lisst sich auch unter abgeschwichten Voraussetzun-
gen anwenden.
1) Diskrete Wahrscheinlichkeiten lassen sich darstellen durch

S @) e mit Sy, 2) = 1L ow(@) 2 0. (@19
I=1 T I=1

Dabei ist e ; das Punktmass (¢ ./ {x'h=1.
x'(P), v, (P)seiin P > 0 differenzierbar.
Die Zielfunktion
G.(p:P): = S w(x'(P)*p) v (P) (219)
=1
istin (p; P) definiert und stetig, falls eine Umgebung U von (p; P) existiert,
so dass
W (x' (P)* p) v (P) < K, Vip, P)EU, (220)

. W)
wobei > K, < .
i=1

. . . aGy ~ —~ .
Weiter existiert £ (p, P), und es gilt
Pn

NG P = S wi @ (B p) v (P) X, (B, 221)
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falls es eine Umgebung U'von p gibt, so dass

LW (x (P)xp) v (P)x, (P) | £ L, Vp€U, (222)

WObCi Z L[;, < oo,
1=
. : : : *G, G, . . :
Die partiellen Ableitungen zweiter Ordnung 1 existieren, sind
a/)h 8/)/\ 8l9]: 817\

in (g, P) stetig, und es gilt

a;i_(;pb 1—3 i (EJ(E) o é) Vi (E) XY (E) x!, (P) (223)
0 G, % o [ oxt, |
aph aPK Z‘ {W (x (P) * p) 3 '[)‘/ 8}) (P) X (P)

+w'(xf (B) /))[—xf, (B)+v (P

falls folgende Bedingungen erfiillt sind:

Es existiert eine Umgebung U” von (P, P), so dass

W () x p) v (B) XL (PY XL (P) | < My Y (p,P)EU”, (225)

I=1

m ot

l w (X' () * p) Lmo q%: v (£) x4 (B)

o (x! (P)*p)!ﬁj x', (P) + v, (P) a;" ’ < My VY(p,P)eU”

k k J

gl M2, < oo, (226)

Ist fiir F/(-; P) der Ansatz (218) zuléissig, so darf man die Voraussetzungen
2), 3) durch die Bedingungen (220), (222), 225), (226) ersetzen.
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[1.4. Systemstabilitdit

Beweis von Satz 6

z,(p) < 0,falls p > c.

Wegen (52) existiert p, > 0, so dass

z(p) > 0, falls p < p,.

) z,(p) >0
pr=inf{p>p z(p) <0}
(p existiert wegen (53) )
w(t;p) < p Viz0
(Beweis: y (t;p) > p ———= o t”,sodass
P = w () > b
g (p") € 1,

Wegen (231) kann y (7; p) den Wert p” nicht annehmen.

Widerspruch.)
Aus

psw:p)sp Viz0
erhilt man

Zi(w(t;p)) = 0.

Somit ist (¢ ; p) monoton wachsend und beschrankt.

Folglich existiert
p* = limuy (1:p).
Offensichtlich gilt
z; (p*) = 0.
1) z, (p) < 0.

Analoges Vorgehen wie bei 1). (Statt (53) ist (227) zu verwenden.)

i) z, (5) = 0.

ml)w(:p)=p Vit 0.

W

(53)

(227)

(228)

(229)

(230)
(231)

(232)

(233)

(234)

(235)

(236)
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iii2) 3¢ > 0,sodass w (1';p) > p (237)
d

= d ¢t > 0,s0 dassg;w(t”;ﬁ) > 0 (238)

— =z, (y (t";p)) > 0 (Fall i) anwenden). (239)

iii3) dr > 0,sodass y (£;5) < p (240)

(Fall i1) anwenden).

Zusammenfassung

Ein Tauschmarkt mit Geld und Spekulationsgiitern (Aktien, Anleihen, Rohstoffe) wird unter-
sucht. Die Preiserwartungen der Marktteilnehmer hingen von den gegenwirtigen Preisen ab, und
die Portefeuilles werden mit Neumannschen Nutzenfunktionen bewertet.

Zuerst lassen sich Existenz und bedingte Pareto-Optimalitiit eines Marktgleichgewichts nachwei-
sen. Fiihrt man einen Preismechanismus ein, so ergibt sich fiir den Fall eines einzigen Spekulations-
gutesSystemstabilitit.

Résume

On examine un marché d’échange avec monnaies et des biens spéculatifs (actions, emprunts,
matieres premiéres). Chaque agent a des prix expectés qui dépendent des prix actuels. Les
portefeuilles sont évalués par des fonctions d’utilité selon Neumann.

D’abord on peut prouver I’existence et I'optimalité conditionelle d’un équilibre du marché. Si un
mécanisme de prix est introduit, on obtient la stabilité du systéme au cas d’un seul bien spéculatif.

Riassunto

Si esamina un mercato di scambi con denaro e beni speculativi (azioni, prestiti, materie prime).
Ogni agente ha delle aspettative di prezzo che dipendono dai prezzi attuali. I portafogli sono
valutati con le funzioni d’utilita di Neumann. Dapprima si pud dimostrare Iesistenza e I'ottimalita
condizionale di Pareto d’un equilibrio di mercato. Se si introduce un meccanismo di prezzo, si
ottiene la stabilita del sistema nel caso di un sol bene speculativo.

Summary

A money and speculative goods exchange market (stocks, bonds, raw materials) is investigated.
Each agent has price expectations depending on current prices. The portfolios are evaluated by
Neumann utility functions. It is possible to establish existence and conditional Pareto optimality of
amarket equilibrium. Ifa price adjustment process is introduced, one obtains system stability in the
case of a single speculative good. :



114

Literaturverzeichnis

[1] Allais, L’extension des théories de I'équilibre genéral et du rendement social au cas du risque,
Econometrica 1953, pp. 269-290.

[2] Arrow K.J.: Comment, Review of Economics and Statistics, 1963, pp.24-27.

[3] Arrow K.J.: The Role of Securities i the Optimal Allocation of Risk-bearing, Review of
Economic Studies, 1964, pp.91-96.

[4] Arrow K. J.. Aspects in the Theory of Risk Bearing, Helsink11965.

[5] Arrow K. J., Hahn F. H.: General Competitive Analysis, Holden-Day, San Francisco, 1971.

[6] Arrow K. J., Hurwicz L. On the Stability of the Competitive Equilibrium [, Econometrica 26
(1958), pp. 522-552.

[7] Barten A. P., Kloek T., Lempers F.B.: A Note on a Class of Utility and Production Functions
Yielding Everywhere Differentiable Demand Functions, Review of Economic Studies, 1969.

[8] Berge C.. Espaces topologiques, Dunod, Paris, 1966.

[9] Cass D., Stiglitz J.E.: Risk Aversion and Wealth Effects on Portfolio with Many Assets,
Review of Economic Studies 1972, pp. 331-354.

[10] Davidson P.. Money and Economic Growth, Econometrica 1968, pp.291-321.

[11] Debreu G.: Théorie dela valeur.

[12] Debreu G.: New Concepts and Techniques for Equilibrium Analysis, International Economic
Review 1962, pp.257-273.

[13] Dhrymes P.J.: Ona Class of Utility and Production Functions Yielding Everywhere Differen-
tiable Demand Functions, Review of Economic Studies 1967, pp. 399-408.

[14] Katzner D.W. . A Note on the Differentiability of Consumer Demand Functions, Econome-
trica 36 (1968), pp. 415-418.

[15] Lintner J.: The Aggregation of Investor’s Diverse Judgements and Preferences in Purely
Competitive Security Markets, Journal of Financial and Quantitative Analysis 1969, pp.347-
400.

[16] Loeve: Prabability Theory. ,

[17] Mossin J.: Equilibrium ina Capital Asset Market, Econometrica 1966, pp. 768-783.

[18] Nikaide H.: Convex Structures and Economic Theory, Academic Press, New York, 1968.

9] Radner R.: Equilibrium under Uncertainty, Econometrica 1968, pp. 31-58.

0] Radner R.: New Ideas in Pure Theory: Problems in the Theory of Markets under Uncertainty,

American Economic Review (Proceedings) 1970, pp. 454-460.

[21] Radner R.: Existence of Equilibrium of Plans, Prices, and Price Expectations in a Sequence of
Markets, Econometrica 1972, pp. 289-303.

[22] Radner R.: Equilibre des Marchés a Terme et au Comptant en Cas d’Incertitude, Cahiers du
Séminaire d’Economeétrie, Paris, C. N.R.S., 1966.

[23] Samuelson P.A.: The Fundamental Approximation Theorem of Portfolio Analysis in Terms
of Means, Variances and Higher Moments, Review of Economic Studies 1970, pp. 537-542.

[24] Sharpe W.F.: Capital Asset Prices: A Theory of Market Equilibrium under Conditions of
Risk, Journal of Finance 1964, pp. 425-442.

1
2



	Ein Portfolio-Modell : Marktgleichgewicht bei subjektiven Preiserwartungen

