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Irrfahrten in höheren Dimensionen

Von H. Menzi, Zürich

Die vorliegende Arbeit ist eine Zusammenstellung der Resultate meiner Disser-
tation. welche unter der Anleitung von Herrn Prof. Dr. Bühlmann entstanden
ist.

Gegeben sei ein Wahrscheinlichkeitsraum (ß, 5t, P) [5t Borel-u-Algebra auf
dem Raum ß, P Wahrscheinlichkeitsmass auf a] und eine Folge unabhängi-
ger, gleichverteilter Zufallsvektoren (Af,),f//y im ZR", wobei Z/V die Menge der
natürlichen Zahlen ist und ZR" der«-dimensionale euklidische Raum bedeutet.
Die Folge der Zufallsvektoren

S^Afi+Af,, .V; .V. A, • Ai

nennt man eine Irrfahrt im ZR" oder, einen «-dimensionalen Erneuerungspro-
zess.

Als Beispiel kann man sich im dreidimensionalen Raum einen Massenpunkt
vorstellen, der sich im Zeitpunkt 1 im Ort S, AT, (.V,'", AT,«-"), im
Zeitpunkt 2 im Ort ,S", Ad t Ad usw. befindet.
Im eindimensionalen Fall kann A[ die Lebensdauer eines Elementes einer
Ausscheidegesamtheit bedeuten. Wenn ein Element ausscheidet, wird es durch
ein neues ersetzt, dieses wird im Falle seines Ausscheidens wiederum ersetzt
usw. Si, Sj, S3, sind dann die Summen der einzelnen (zufälligen) Lebens-
dauern.
Sei C eine beliebige Borelmenge im ZR". Dann ist die durch

o[C]: Jp[s,eq
/c-1

definierte Mengenfunktion ein Mass auf der Borel-u-Algebra des ZR". Man
nennt t/[C] das Erneuerungsmass von C. Wenn Z(C) die Zufallsvariable der
Anzahl der 5^ mit ist und £[Z(Q] der Erwartungswert von Z(Q
bezeichnet, dann lässt sich leicht zeigen, dass gilt :

£[Z(Q] t/[q.
SeiS(v,o) {.y£ZR" / [[.v-r||<a), wobei ||x|| |}bedeutet (diese
Norm wird im folgenden stets verwendet). Nun kann man in unserem ersten
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Beispiel //[/>(0,1)] als die mittlere Anzahl der «Besuche» des Massenpunktes im

Einheitsquader auffassen. Falls C im zweiten Beispiel das Zeitintervall [0,t] ist,

so lässt sich t/[C] als die erwartete Anzahl Ausscheidungsfalle während dieser

Zeit interpretieren.
Für die Dimension Eins bewies Black well [2] und [3] unter der Voraussetzung,
dass der Erwartungswert £[A,] > 0 ist und A, nicht arithmetisch ist (A, nimmt

nicht nur Werte an, die ein ganzzahliges Vielfaches einer Zahl ,v > 0 sind), als

erster, dass für ein Intervall / der Länge A gilt:

lim l/[a+/] und lim f7[a + /]=0.
fl^-OO £, [zAjl J a -) -OO

FallsA[Ai] °°, sind beide obigen Grenzwerte gleich Null.
Bickel und Yahav [1] zeigten nun, dass für Irrfahrten im TR- unter den

Voraussetzungen, dass 1. die gewählte Norm im ZR- polygonal ist, 2. der

Erwartungsvektor Zs[AJ existiert und verschieden vom Nullvektor ist. 3. £[Aj]
nicht parallel zu einer Seite von S(0,«) liegt, 4. die Irrfahrt nicht arithmetisch ist,

der Blackwellsatz auch für die Dimension zweiin der folgenden Form gilt:

lim F[S'(ö,ü + A)»5(0. a)] '

In meiner Arbeit wird dieses Ergebnis auf alle endlichen Dimensionen verallge-

meinert.
Der Vollständigkeit halber sei auch der folgende allgemeinere Satz aufgeführt :

Sei 7?(«) eine Teilmenge der Menge {1. 2 l</< «, bestehend aus r

Elementen und sei £,( /?(«), o, A): {.v ZR" / A" > a für alley'£72'(«), A" A fl

für alle/e{l \ {/'}, «< A" < ö+.Sei Zf[A,] > 0 und £[A]"]
>£[AV>] > >E[A]"'], dann gilt:

lim £ 2 t/[L,(?;'(«), «,A)] ^
a^-oo

für/' 0,1,...,«-1.
Im Falle r 0 kann man daraus leicht den verallgemeinerten Blackwellsatz

herleiten.
Es liegt nun nahe, zu fragen wie sich das Erneuerungsmass der Menge

S(0,aW \)xS(0,a) verhält, wenn £[Ai] 0,£[||AjP] < x ist und a gegen x
geht. Darauf gibt der untenstehende Satz eine teilweise Antwort. Doch zu-

nächst müssen wir die Begriffe «transiente» und »rekurrente» Irrfahrt und

«Träger» eines Zufallsvektors einführen.
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Definition: Eine Irrfahrt im ZR" heisst transient, wenn das Erneuerungsmass
jeder kompakten Menge des TR" endlich ist. Andernfalls heisst die Irrfahrt
rekurrent.

Definition: Unter dem Träger 7>( Z) des n-dimensionalen Zufallsvektors A mit
der Verteilungsfunktion R(x), .vfll!", verstehen wir die Menge:

7>(Z): {je®"/ y Z<ZZ*fj) > 0 für alle Umgebungen £/(x) von x}.
}'</<»

Satz: Sei eine Irrfahrtim ZR"* mitZ?|Zj] 0 und£[||Tj||2] < oo. Dann
istJim i/[,S(0,fl + )\5"(0,a)] x falls folgende beiden Kriterien erfüllt sind:

1. Das Erneuerungsmass der folgenden zwölf Mengen ist unendlich für beliebi-
gesA > 0:

(xe/PM'i) < A, x('2) I 0. x<b) I o),

wobei /,, ^ij e {l, 2, 3} und /, x x (3 A /j.

2. G 7HSZ) ist dicht im ZR*.
fc l

Aus Gründen der Einfachheit wurde der Satz für die Dimension drei formu-
liert. Er gilt natürlich auch für höhere Dimensionen. Für die Dimensionen Eins
und Zwei wird er gegenstandslos, da unter obigen Voraussetzungen dann jede
Irrfahrt rekurrent ist (Chung und Fuchs [6]) und somit £/[5(0,a + A )\S(0,a)]
x ist für jedes a. Chung und Fuchs [6] zeigten auch, dass jede Irrfahrt im ZR",

" >3, transient ist.
Beispiel 1 : Der Satz gilt für jede symmetrische und nicht arithmetische Irrfahrt
im ZR\ fallsif[||Tj||-] < x ist. Wir nennen dabei eine Irrfahrt symmetrisch im
Ä' - falls die vier Zufallsvektoren Z,, (Z,<», Z«\ -Zj*> (Z«>, -Z®, -Zp> -Z,
gleichverteilt sind. Kriterium 1 ist aus Symmetriegründen erfüllt. Bickel und
Yahav [1] zeigten, dass für symmetrische und nicht arithmetische Irrfahrten im

M fr (S*) stets dicht ist im ZR".

Beispiel 2: Sei (S*)*e.cv eine Irrfahrt im ZR-* mit ZT[Z,] 0 und Zf[ ||Zijp] < 00.
Die Z,' 1< /< 3^ seien voneinander unabhängig und die Verteilungsfunktion
von Zi besitze eine absolut stetige Komponente. Dann lässt sich zeigen, dass die
beiden Kriterien erfüllt sind und somit die Aussage des Satzes auf diesen Fall
anwendbar ist.
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Zusammenfassung

Für Irrfahrten in B?" n >2, werden hier einige Resultate zusammengestellt, die das asymptotische
Verhalten des Erneuerungsmasses bestimmter Teilungen des B?"zum Gegenstand haben.

Résumé

Pour des «marches aléatoires» dans B?" n»2, on montre quelques résultats ayant trait au

comportement asymptotique de Iq mesure de renouvellement.

Riassunto

Per «cammini aleatori» in B?", n >2, si riassumono alcuni risultati che hanno per oggetto il

comportamento asintotico délia misura dirinnovo di determinati insiemiparziali.

Summary

For random walks in B?" n >2, some results are summarized which concern the asymptotical

behaviour of the renewal measure ofcertain sets in B? "
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