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Martingales in Risk Theory

By Hans U Gerber, Ann Arbor, Michigan*

1. The General Method

Let {X}^ be a one-dimensional Markov-process (X, surplus of a company
at time t). We are interested in T, the time of first entry into the negative half-
axis (T time of "ruin"), and XT, the non-positive surplus at the time when
ruin occurs. In many cases T and Xr are defective random variables. For
notational convenience let [T °° ] be the event that ruin does not occur.
If we stop the process at T, we obtain the process {x}^3, where

_
rx if t> t

Xt — \XT if T<t. ^
Let

yjt(x) P[T< t/X0 x] (2)

be the probability of ruin before time t, and let

rp (x) P[T < oo / X0 x\ (3)

be the probability of ultimate ruin; both are functions of the initial surplus a.
Our goal is to obtain information about these two functions.
The general idea is to find an appropriate function v(x, t), such that {v(X, min
(t, D)}~ is a martingale with respect to {X, Then the martingale property
implies that for t > 0

v(x,0) =E[v{Xt,mm(t, T))/X0 x]

-E [v(XT, T)/X0 x,T Zt]Vt(x) (4)

+ E[v(X„t)/X0 x,T > i][l— i/v(x)]-

* The author gratefully acknowledges the support received from the Forschungsinstitut fur
Mathematik an der ETH Zurich He is equally grateful to Professor Bühlmann, and Drs. Straub
and Küpper, for their stimulating conversations.
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Making the additional assumption that v > 0, we obtain the inequalities

I \ <r tipt{x) < (5a

E[v{Xt, T)/X0 x, T < t]

and

v(x,0)
' (x) ^ (5b)

E[v(Xt, T)/X0 x, T <°°]

which are useful whenever the denominators can be estimated from below.

Furthermore, equality holds in (5 b), whenever

E[v(Xt,t)/X0 x, T> ?][1— v,(x)] ->0 for ?->a). (6)

In Section 3 we shall make use of this.

Remarks

1) For example, v(x, t) ip(x) and, for every u > 0, v(x, t) =ipu-tix) are

functions with the desired property (ifwe set ip 0 for t < 0).

2) For a given function v(x, t) it might be easier to verify that {y{X„ t)}^is a

martingale with respect to {x,}^ This is a sufficient condition since optional

stopping does not affect the martingale property. (However, this condition is

not necessary; for example {y>(T,)}^0 is not a martingale in general.)
3) The process {v(X„ t)}tJ> is a martingale with respect to iffor all 0 < t

< u < co andx

v(x, t) E[v{Xu, u)/X,= x], (7)

This implies that for all t > 0 and x

(axtt + y) v (X, t) =0 (8)

where the operator ax,t is the generator,

E[f (Xt+h)/X=x)]-f(x)
Ax) lim+ ^^h
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Observe that equation (8) is not identical with the Fokker-Planck equation,

In order to apply the technique introduced in the preceding section we still need

an appropriate function v{x, t). In this section we solve this problem under the

assumption that {X, is a process with independent increments.
Let Y, X, — X0, and let us consider

for values of r for which the denominator exists. The following lemma has been
used by Meyer (see [7], p. 180) in a different context*

Lemma 1. {v(X,, t)} is a martingale with respect to {x,}°£
For completeness we repeat the short proof. Since

(10)

see p. 287 in [5],

2. Processes with Independent Increments

(11)

r(Xu -X,)
(12)

we recognize that condition (7) holds.
As a corollary, we conclude from (5 a) that

w (x) < min e ,x max' r 0 <,s<t
(13a)

and from (5 b) that

ip (x)< min e
rx max

r s >o
(13b)

In the special case where there is a constant R > 0 with

for all t > 0 (14)

* The author is grateful to Professor Wendel for pointing out this lemma.



208

formula (13 b) implies

y(x)<e~Rx (15)

which is the famous Lundberg inequality.

Examples.

1) In the classical case, Y, is the difference between a deterministic component ct

and a compound Poisson process (say with Poisson parameter a and cdf'F(x) of
the jump amounts). We have

I ->'Yt 1 rE\e \= exp\-crt + at [p(r)—1]} (16)

witho(r) Je"dF(x), and formula (11) reads

v(x, t) exp{— rx + crt—a/[p(r) — 1]}. (17)

In the case where R, the positive solution of

cR- a [g(R) -1] 0 (18)

exists, the inequality (13a) cari be simplified. Since the maximum in (13a) is at

least one, we need only consider values of r> R. But for these the maximum is

assumed for.? t, and we obtain

tp,(x) < minexp{— rx — crt + at[g(r) — 1]}. (19)
R

- rXj-If a lower bound (higher than one) is available for E [e IT < t] this

inequality may be improved by dividing the right side by this lower bound. For

example, if E(x) 1 — e~x,

E [e TjT < t) q (r) (20)

and we get

y,(x)<^min (1 — r)exp{--rx—crt+at^zzj}- (^1)
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As an illustration, let us consider the example discussed by Seal on p. 115 in [8],
Here t 100,x 50, a l,c 1.05.Theminimumin(21)isassumedforr .2

and equals (.8) e~6 .002. So we get^loo(50) < .002 which is a considerable

improvement of the approximationi/qoo (50) ^ .015 that was found in [8].

Example 2. Suppose that {Y, }(? is a diffusion process with constant parameters
a2 and p > 0. Thus

E[e '] =exp (22)

and R pjr- Again we can restrict ourselves to values r > R in formula (13a),
in which case the maximum is assumed for s t. We find that the minimum is

assumed by

(23)

Consequently, (13a) reads now

y.,« <
exp

exp'

2 px
a1

(x-^p t)

2a t

if t> x.
H

if t< *
(24)

In the case ofa diffusion process, an explicit formula is available for yjt (x):

where 0 denotes the standard normal cdf (see formula (72), p. 221, in [4], or
p. 353 of [10]). This enables us to compare the upper bound in (24) with the exact
values for y>t (x). For p a x 1, and various values of t, we find:
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(1)

t
(2)

upper
bound

(3)

exact
value

(3)
(4)

0 0 0

.09 .0014 .0003 21

.16 .015 .004 27

.25 .044 .015 34

.36 .077 .031 40

.49 .104 .048 46

.64 .122 .064 52

.81 .133 .079 59
1 .135 .090 67
2.25 .135 .123 91

4 .135 .133 99
00 .135 .135 100

This suggests that the right side of (24), or more general of (13 a), can be a rather

crude estimate for ipt (x).

3. Claim Amounts with Monotone Failure Rates

In this section we continue example 1 (compound Poisson process) of the

preceding section. The existence of R is assumed, and let v(x, t) =e~Rx- For

given K > 0 we decompose the event [T > t\ according to whether X, > K

or 0 ^ X, < K. Correspondingly we get the estimate

e[ e~RX>/ T > t) [l- w, (x)] < eRK + P [X, < K]. (26)

The last term vanishes for t -> oc. Since K is arbitrary, the validity of condition

(6) follows. Thus the equality holds in (5 b), and we have

V M —r — y •

(27)

[e RXt/T <oo, Xq x]

This formula is also derived in Section 12.2 of [4],
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Let us denote the denominator in (27) by D, and suppose F{0) 0 (no negative
"claims")- We shall estimate D under the assumption thatF(x) is IFRor DFR,
i.e. has an increasing or decreasing failure rate (see [1] or [9]). If F{x) is IFR
(DFR), it follows that for every z > Oandy > 0withF(y) < 1

!zZ(zM(>) X-F{z).
\-F(y) < (28)

For fixed X0 x, let us consider

P(y)=P[XT-0 <y/T< oo], (29)

It follows that

P[-Xt<zIt<^}=J^~^^~ dP(y) (30)

where the integral has to be extended over values y > 0 for which F(y) < 1.

Further, we recall that for any cdfH(z) with H(0) 0

JeRz dH(z) 1+R j eRz [1 II(z)] dz (31)
o o

which can be verified by partial integration. If we apply this formula back and

forth, we obtain from (28), (30), and finally from the definition of R, (18), the
estimate

° =f[hR'F-Timd

(^)
< J IJeRzdF(z)\dP(y) (32)

y \o

<?(*) 1 +R%.

Using this in (27), we obtain the following result.
Theorem. IfF{x) is IFR (DFR), then

e"ÄX' (33)
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Remarks

1) If F(x) is DFR, this improves the classical inequality (15). If, on the other
hand, F(x) is IFR, (15) and (33) may be combined to evaluate^ (x). In

particular, if/? is small (this corresponds to small security loadings) one gets an

excellent estimate. Thirdly, in the case of exponential claim amounts, (33)

reduces to the well known explicit expression for yj (x).
2) Ifwe compare (33), forx 0, with the identity

where fi-=J x dF{x) (34)

(seep. 150 in [3], for example), we see that

(<) iR> i - J (35)

whenever F(x) is IFR (DFR). If F(x) is IFR, this can be used in (15) to obtain

the nonparametic estimate

y;(x)<exp (36)

for the probability of ruin.

4. Processes Modified by a Reflecting ßarrier

To fix ideas, suppose that {X, is the process introduced in example 1 of

Section 2, with the restriction F{0) 0 (the validity of the lemma below hinges

essentially on the semi-continuity of the sample paths).
Let b(t), t > 0, be a continuously differentiable function, and let {Z,}denote the

process that results from {X,} if {b(t)} is added as reflecting barrier. So unless a

jump downwards (a claim) takes place, Z, grows at a rate c if Z, < b(t), and at a

rate min(b'(0> c) if Z, b(t). An explanation for such a barrier would be that

the company pays out premium refunds whenever the surplus reaches the

barrier.
The following lemma may lead us to suitable functions v(x, t).
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Lemma2. Suppose that v(x, t) is a function such that{v(T,, t)} is a martingale
with respect to {X, }^°. Then {v(Z,, t) }<^ is a martingale with respect to {Z,}~,
ifand only if

9v (x, t)

9x x bit)
Ö whenever b1(t)<c. (37)

The proof follows from

U

E \v{Zu, u)\Z, xj v(x, /) -J*
9v(y, s)

9^ Mi)
[c-Z)' C?)]+ q(s)ds

valid for t < u, with q(s) P[ZS b(s) | Z, — x].

To illustrate the usefulness of the lemma, let us consider

v[x, t)
jx ~(r+s)b

r e e

E e
-rY, iA

(39)

for positive constants b, r, s with g(r) < co. {v(Xt, ?)} is a martingale, because

v(x, t) is a linear combination of functions of the form (11). Ifwe solve equation
(37) for b(t), we obtain a linear barrier, namely

b{t) b + a{r,s)t, where

9{r)-e(-s)
a(r, s) c - a r+s

(40)

Notethatu(r, oo) c, which is the classical case ofno barrier. For a given linear
barrier, b(t) b + at, we are now able to obtain estimates for the probability of
ruin. Assuming the existence of!?, wehaveforr > R,y < 0, and 0 < u <t

v(y,u)

Using this in (5 a) we obtain

^ E
-rY,

(41)

ip,(x) < min v{x, 0) exp{—crt+at[Q{r)—1]} (42a)
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valid for 0< x < b, where the minimum is to be taken for r>R,s with
a(r,s) a Fort ^cc,weget

yj (x) < v{x, 0) e
Rx \ + E e(R+S)(b-x)

s (42 b)

where S is the solution of a(R, S) a These inequalities generalize formulas

(15) and (19) Inequality (42 b) appears m [6] as Theorem 2, where it was derived

by different methods

Application The Rationale ofParticipating Policies

Should a company offer insurance policies on a participating or on a non-

participatmg basis9 From a pure safety point of view, this old question should

be answered m favor of the former Formulas (42) make it possible to demonstrate

this numerically.
Suppose that the risk to be insured consists of a compound Poisson process

(Poisson parameter a 1, and exponential claim amounts, F(x) 1 — e-x).
Let us assume that the company has an initial surplus of SFr 50, and that it
plans to achieve a profit of 5% m the long run
a) Non-participating policies. The proper profit margin is obtained by c 1 05

The resulting probability ofultimate rum is

^(50) I e~50R 088. (43)

(This is the example discussed on p 115 of [8])
b) Participating policies Alternatively, the company might charge a higher

premium density, say c 1 50, and return 45 % of the net premiums (in the long

run) to the policy holders A rational way to do this would be to introduce the

dividend barrier b(t) 50 + 05 t, and to pay out premium refunds (at a rate c

— a 1 45) whenever the surplus coincides with the premium barrier Flere we

have R (c— l)/c 1/3, and S, the solution of a(R, S) 05, equals 034

From (42 b) we obtain the estimate

y> (50) < e 50/3

102
00000062 (44)

A comparison of (43) and (44) shows impressively how participating policies

improve the safety of a company (at least as long as the premium refunds are

allowed to depend properly on the claims experience).
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Zusammenfassung

Im Falle, wo der Emkommensprozess Markov'sch ist, gibt es eine Martingal-Technik, um Resul
täte über die Ruinwahrschemlichkeiten herzuleiten Anwendungen umfassen Prozesse mit
unabhängigen Zuwachsen, insbesondere den zusammengesetzten Poissonprozess (wo weiterreichende
Resultate möglich sind, wenn die Verteilungsfunktion der Schadenhohen eine monotone Ausfallsrate

besitzt), sowie die Auswirkung einer Dividendenbarriere aufdie Rum Wahrscheinlichkeit

Summary

Under the assumption that the income process is Markov, it is shown how a martingale technique
can be used to derive results concerning the probabilities of rum Applications include processes
with independent increments, in particular the compound Poisson process (where stronger results
are possible whenever the distribution function of the claim amounts has a monotone failure rate),
and the effect of imposing a dividend barrier on the probability ofruin

Resume

Sous l'hypothese que le processus de revenu est markovien, on montre comment utiliser la
technique des martingales pour deriver des resultats concernant les probabilites de ruine On
applique ensuite ceci a des processus a accroissements independants, en particulier au processus de
Poisson compose (des resultats plus forts sont possibles dans le cas ou les montants des simstres ont
une distribution du type «monotone failure rate») Une autre application concerne l'effet d'une
barriere de dividendes sur la probabilite de ruine
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Riassunto

Sotto l'ipotesi che llprocesso di reddito sia markoviano si mostra come si pud utilizzare la tecnica
del martingali per derivare alcum nsultati concernenti la probability di rovma 1 risultati vengono
poi applicati a piocessi a incremcnti mdipendenti, m particolare al processo di Poisson composto
(risultati piu forti sono possibili nel caso che gli importi dei danni hanno una distnbuzionc del tipo
«monotone failure rate») Un altra applicazione tratta l'effetto d'una barriera di dividcndi sulla

probabilita dirovina.
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