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On the Calculation of IBNR Reserves 11

By H. Kramreiter and E. Straub, Zurich

1. Introductory remarks

In direct insurance as well as in reinsurance it is suitable to use a combination of
individual claims handling and a blanket method to calculate IBNR-reserves:
the largest and most complex cases are reserved individually whereas the
remaining ‘‘unproblematic” losses are treated as a whole on the basis of
experience. We will limit ourselves to this second, purely statistical problem and
will use the minimum-variance-method of estimating ‘“‘correct” reserves de-
rived in [1]. As was to be expected, the covariances as the simplest measures of
dependency between the burning costs of different run-off years are of para-
mount importance. In this connection the most complicated numerical task is
the inverting of such covariance matrices. Fortunately, this is explicitly possible
for the models treated in paragraphs 3, 4 and 5, so that the corresponding

results become especially transparent and illustrative compared with the gen-
eral case.

2. The general result (summary of [1])

For a given insurance or reinsurance portfolio we denote by X# the burning
cost (= total of claims divided by underlying premium volume) of the under-
writing year i as observed at the end of the A-th year of run-off.



Example :
Burning cost observed at the end of
Yearof
occurrence 1966 1967 1968 1969 1970
1966 i=5 XS‘“ X‘” X“’ );(4) X
\ ~.
1967 i=4 e X2 P h=5

i 4

1968 i=3 X‘l’\ X2

//

X(

1969 =2 \X(\ws
1970 i=1 \Xm\h:Z

\h =1
e.g. X;¥ = burningcostofyear1967

as known at the end of 1969

Our observations over n years consist thus in a run-off triangle which we denote
by

=1,2,...n;h=1,2,..

Ny

w X = {)(i(h)

so that the calculation of IBNR-reserves or rather the final burning cost may be
formulated in the following way, e. g. for the year of occurrence no. g:

Determine an estimator 25™ for the conditional expected value

E x| <1 v]

such that
E HE [Xfm) ’ WX} —ﬂgm)} 2} = minimum
and E|a¢|=E[x)].

(We assume that after m years all claims are settled.)
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In other words: We are looking for an unbiased estimator for the unknown
final burning cost X of year ¢ such that the expected quadratic error be
minimized.

Under the assumptions

(i) X® stochastically independent of X, 19") fori i’
(i1) E [X;"”] = ¢ independent of i

(ii) PCov [X,“”, Xi“")} = ¢, Independent of i
where £, = premium volume of year i

n 1
V) A= 2 ay x®

i=1 h=1
(I.e. we confine ourselves to linear homogenous estimators.)

The general solution is given (cf[1]) by the two equations

Al = ai B(Q,G:”_Xiﬁ (quﬁq“qu) (1)

i=1

e™=q

i1

])i(gi’(giﬁlg—i)+(£mq’¢;1€q) (2)

where theé following vector and matrix notation has been used

| 0
€ Cig Ci2° * - - Cy X Cmi
2 ()
€ €Cap Cpp+ » * + Coy X Cm2
_e.1= ’ 612 > Afi— s Emi= 2
B R, 7
\ €1 Ciprt o Cy Xi' Comi
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(.(5,“ = inverse of the covariance matrix@, and (g, b) = inner product of g and Z_y)

When the expected values ¢,, and the covariances €, are known first(2) may be

(m)

solved for the Lagrange multiplier « and secondly (1) for the estimator g
Incidentally, equation (2) is nothing more than the condition of unbiasedness
applied to equation (1).

3. Application to a multiplicative run-off model

We now investigate how this general method can be applied to the “*classical”
case in which the burning cost of run-off year #+ lis the one of year # multiplied
by a stochastic factor. So we assume

with E[/lh]zllh and  Var [/1,1]: 0
Wenote (for P, = 1)
e = E[Xgh)] =x, and ¢, = Var [X(.h)} = B

dropping the lower subscript /i of X{# so that

ELYUIH)] A E [X(h)]
and assuming /1 and X to be independent of each other, we obtain forh 2k
E[X(k)X(h)] xE[E[X(k)X(h) lX(h—l)H:E[E[AhX(h—l)X(k)lX(h—p]]
= 7, E| x4 x®)

This means

E[x®]= [7 4 x®=x [T,

r=k+1 r=2

E[x®x ] l:I A E[x®x¥).

and
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Wealso have
E[x®x®| — g xWxwixw-t]| = E[H42x-0x 6]

=(2%+0}) E[x U0y Ge-n)]
We thus may compute the ¢, recursively by

g, == Var [x(")}m ck_l(ﬂ,%+gi)+ X2y 0%
andnote thatforh = k
h k o 8
Bl i A, A, = 1 by deﬁmtlon)
The invarse of such a covariance matrix is given explicitly by means of the

following

Lemma .
Theinverse of a symmetric matrix of the type

h
=ck [ [ A, 1=k=h=m

r=k+1

is—if itexists — defined by

2
Crp = 1—( G + Cr11 ) for k=1,2,...m-1(c,=0)
k41

2
Ck Ck—Ck_] j’k Ck+1 Ck}-
-1 ] ~Akt =0 else
cmm——"—fz ) Ck k4l = Ck+1 k= 7z el
Cm—Cm_1m Gt ™ % ket

which is an 0-matrix except for the main diagonal and the two adjacent
diagonals.

Proof: for h>j wehave

m

N\ i -1 :

k.é_ Chic Ciej = Cn,j1 €721 3V Chj € F Chja €y = G l] ; ( )

=1 A
-1 J

Fi==f

2 A3 B
+¢ i1 i+1 " At .
le ( A3 + +1—Gi )LG) ¢ * Eh H ( ¢, —CcAZ, . )ﬁ

r=j+1 — €y r=j+2 J+1
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butforh=jc, ., =c1;=¢4,, andthus

= 1
Z Cik CEl =¢;_1 A;

k—1

a
—Aj

a2

o

Cit+1
— ¢ Ay

Y
Ci=Ci 14y

s . b

! 72
Ci—Cj_1

Letus return to equation (2)

m
O -1

In ourspecial case we get

7

i-1

i

r=dfi

Crp1—C; A7 41

i>+<gmq,(5qleq).

and furthermore for each ¢-dimensional vector a

where

SO

(..

€ lal=

aq

in particular this means for equation (2)

‘

1

r=qg+1

~1 — L@ 1 —e™
oG, = [T

from which a = 0and thus, according to (1)

ﬁ?:(g

mq

AV Xq)

=x [[1=E

r=q+1

—1
C33

[X;"”I N X].

—_;{L:! ed.
— a2 q
J+1 77 i+1
0 .0
0 .0
og . . 0
0
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As we see our rule for estimating the final value of multiplicatively developing
burning costs is identical with the well-known procedure of estimating “IBNR
factors A,”” based on the IBNR-triangle whose product is to be multiplied with
the most recent X2,

Finally, it should be noted that in this simple model the linear estimator 43" is

equal to
E [X;’"’I N X]

which is to be estimated, provided the expected values x, and the covariances
C_mgare known.

4. Multiplicative development with further additive variation
In the more general case of

U= A ey XRET L FOr A=, 2.

withA,,,, Xand ¥,,, mutually independent, we denote
(for premium volume P = 1):

E[X(’"] = X,, Var[X””}= Con= Ch
E[A,,] =2, , Var {Ah} =02 and

E[YE] = Y, Var[Y,,] =02,

We find the expected values

E.{X”'“)]:/lhﬂE[X“”}—l—y,,ﬂ

or

%, e=F [X(h)] ZJ’ Hl

r=s41
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whereas for the covariances —if k = i, we still have

Chi= Cp H/,
since
COV[X”‘) lm Cov[/l y (-1 +y,, X% !ECOV[A‘& th_u’Xu«)“.

— ApCov [X”‘_U, X (k)’ etc.

Therefore, the matrix ,, is also of the type
Chk_ck H)\.r, g éhgm
r=f-+1

and again its inverse can be calculated explicitly. We only have to bear in mind
thatnow

,_.

co=Var [ X ¥ =Var [ 4, xR = e, (A0 02) Tadopt 0

compared with the preceding case in which 07=0
we thus get

?PQ @HX)
i — X T 3,4
(cr6 )

m
N
§=gq+1] r=gs+1

r=4-+1 ZP

i=1
which as we see coincides with the future burning costs

E[XZ"’\ N X} to be expected for year g only if

N Ble gox )= ( o )
2 ,(g,,G, X) D Ple, Ee,),

i=1

but otherwise, of course, still is an unbiased minimum variance estimator.
Intuitively, however, one would have expected

g =X, U7+2ys]7?

r=gl § o= g1 r=g41

to be a better estimatorin this special case than our /™.
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Thisisinfact the case, since

el WXJ

but one should not forget thati (™ does not have the initially postulated
homogenous linear form

m) —_Z EathXh)

i=1 h=1

but contains an ‘‘unforeseen’ constant term

aOZEySH,L

s=gq+41 r=s+1

instead.

5. The purely additive model

Ifin the above case we assume /A = 1, we get a purely additive model where

IA
IA

h=m

, h
E[X(h)}:xnzéys and c¢u=1¢ for- 1=k

and the ¢, given recursively by
k
2 i 2
G, =0, g% 0, Je Ck:Z.GS‘
§=1

So, for the inverse of the covariance matrix we obtain

-1 I ( Ce1 . Crv1\ f g — ¥
el = 2 =l ork=L2,...m-1,
T G\ B 92 6

-1 1 <1 -1 -l

B gy == -@ and Coter1 = Crpip = —62“

therefore
¥ Yy 2

i i
( (S,IX,) Z rﬁé and (f_?,.,@,-_igi> Z 62

r=1

(r) G (.r_l . .
where Y = x, L r=12,... .1 xX®=o.

i
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Finally, we abbreviate

pw :2 P, and y""— RN P Yiln

and by analogy

so that

(r)
N\ Y pin
( @, = 62 A
~ (m) q) . r=j
Ha —“Xq ES ml‘ zr Z Vs
vlf_ P(f) s=q+1
/_162
r=1UY,

It can now be seen clearly how the IBNR-reserve 2™ — X{*’ depends on the
observed increments Y in the r-th years of run-of:

Ife.g. they exceed on average the corresponding expected values y,, our IBNR
estimation will be higher than the ““true” value

RIP=>" y,.

In the above mentioned calculation the weights

(r)
. P : : :
- 02 = expected value times reciprocal variance of Y7 are to be used.
:

In practice the true (but unknown) parameters ¥, and % must always be
replaced by estimators 7, and § 2. Aninteresting special case is

p,= T
i.e. the mean r-th increment y, is estimated on the basis of the individual
experience of the risk category considered. In this situation the result for the-
purely additive model becomes
g =x+ 3y

s
s=q41
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irrespective of the estimation of the variances %, again in accordance with the
intuitively expected rule saying: IBNR reservein % of the underlying premium
volume of year ¢ = sum of the hitherto observed increments from run-off year
g+ 1 onward.

6. A numerical example

In practice of course the parameters e,, and € ,, are unknowns. We must
estimate them on the basis of the development triangle, either directly under the
hypothesis of one of the above described models or more generally we assume
the correlations p,, between X" and X{* for given k (h = k) non-decreasing
with A. (This corresponds to intuition: the burning cost of year 4 depends at
least as much on the value in year k as the burning cost of year ~-1). Such a
general statement leads in the main to the methods described in [2].

In the following illustrative example, however, let us for the sake of simplicity
leave aside this rather problematic estimation of monotonous correlations and

instead use the true parameters ¢, which —as mentioned above —in practice are
unknown.

Letusassume

XV =y, = {é with probability }g
X2 =4,XV + Y, X'V, 4,, Y, stochastically independent
Ad; and Y, having the same distribution as Y,

2/3

where 4, Y, ={ ! with probability 73

and generally

Xm =4, XD 4y,

with 4, ¥, ={} with probability (*-D /7
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ie l,—=yp, =014y 2 __ ntl
e 7
_ n+1y2 |1 n—|

and 02— 9,}2:(1—’1?;21) l?h._l (2‘“;—) . n:(nf)
We thus get the expected values

’ h=1 h=2 h=73 h=4 h=>5 h=6
Xp l 1,50 3,73 6,33 9,17 12,20 15,40
and for h = k the following covariances ¢y .

h=1 h=2 h=73 h=4 h=5 h=6

k=1 0,25 0,38 0,5 0,63 0,75 0.88
k=2 1,38 1,83 2,29 2,75 3,21
k= 5,79 7,24 8,69 10,14
k=4 16,76 20,11 23,46
k=35 37,73 44,02
k=0 72,17

Finally, simulation based on these probabilities leads to the following run-off
triangle R, = 4 {6 — X9

yearof burning costs observed at the end of year
occurrence
6 5 4 3 2 1

g = 1 4 Y 10 11 12
i=5 2 6 7 9 9
i=4 1 3 3 6
i=3 1 4 5
1= 1 4
i = 2
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Using the theoretically correct expected values and covariances we get the
IBNR-reserves

’ g=1 q=2 g=3 qg=4 g=>5

>

» l 15,30 12,09 8,12 5,00 4,36
1n contrast to the exact reserves

‘ g=1 g=2 q=73 q=4 g=>5

Rq L 15,15 11,98 8.07 4.97 4,33
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Zusammenfassung

Unter gewissen, nicht allzu einschrinkenden, Voraussetzungen an das Bildungsgesetz von Abwick-
lungsstatistiken lisst sich die zugrunde liegende Kovarianzmatrix explizit invertieren und damit die
erwartungstreue Minimum-Quadrat-Schitzung der Spatschadenreserven in geschlossener Form
angeben.

Summary

We show that it is possible to find a relatively simple expression for the statistical IBNR-reserves if
the run-off pattern of claims reserves can be described by a certain rather general type of
mathematical model.

Résume

Sous condition que le dépouillement des taux de sinistres puisse étre décrit par un modele
mathématique d’un type assez général, on peut démontrer qu’il est possible d’obtenir une formule
assezsimple pour 'estimation statistique des réserves IBNR.

Riassunto

A condizione che I'evoluzione delle riserve sinistri possa essere rappresentata da un modello
matematico d’un certo tipo abbastanza generale, si dimostra la possibilita di ottenere una formula
semplice per le riserve statistiche, dettaIBNR.
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