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Berechnung der Wurzeln eines Polynoms
mittels Störungsrechnung

Von Willy Kellenberger, Zürich

In der vorliegenden Arbeit soll das Problem der approximativen Berechnung
der Wurzeln eines Polynoms unter Verwendung von Störungsrechnung gelöst
werden. Im Gegensatz zu den meisten gängigen Methoden, wie Newton,
Nickel, Graeffe usw., werden bei diesem Verfahren alle Wurzeln simultan
bestimmt, womit die Deflation und damit die bei der numerischen Berechnung
von ihr herrührenden Fehler dahinfallen.

1. Problemstellung

Gegeben sei ein Polynom n-ten Grades p(z) durch n-Funktionswerte f; p(z,)
in n paarweise verschiedenen Stützstellen z; und durch die zusätzliche Bedingung,

dass der Höchstkoeffizient von p(z) gleich 1 sein soll:

gegeben fj p(zi) i=l,...,n (1)
wobei f, z e (Tn

Zj =£ Zj für i A j und i, j 1, n

p(z) zn+

Gesucht sind die n-Nullstellen w von p(z), d.h. die n-Zahlen w. in der komplexen

Ebene, für die gilt:

p(z) it (z - Wj)
wobei we(T

2. A llgemeine Beschreibung des Lösungsverfahrens

Iterativ wird p(z) durch ein Polynom
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qlm)(z) m 1,2,... (Höchstkoeffizient 1)

approximiert, von dem wir eine Zerlegung in Partialpolynome kennen und das

im Limes mit p(z) übereinstimmt:

lim q(m)(z) p(z),
m-wo n v / rv

oder was gleichbedeutend ist mit

lim q^'fz:) p(z;) für i 1, n.
nn ->oo i v 1/ r\ iz

Numerisch reduziert sich die Lösung darauf, ein Polynom q6"0 (z) zu suchen,

dessen Funktionswerte an den ursprünglich gegebenen Stützstellen «möglichst

genau» mit den Funktionswerten von p(z) übereinstimmen.

3. Norm

Wir definieren zu jedem q(m) (z) den folgenden Vektor:

(m,_ p(Zi) - qm)(Zj)
dj - p(2i)

Die Abweichung des Iterationspolynoms q<m) (z) vom ursprünglich gegebenen

Polynom p(z) wird nun mit der folgenden Norm gemessen:

ndcm,n= s idr>i. (2)
i»l

Wird nun eine Folge von Polynomen q(rn' (z) aufgebaut, deren Norm||d(^
monoton mit wachsendem m gegen Null konvergiert, so muss qtm) (z) monoton
mit wachsendem m gegen p(z) konvergieren.

4. Darstellung der Polynome

Das gegebene Polynom wird entsprechend der Problemstellung nach Lagrange
dargestellt:



235

j-i l-

p(z) F (z — z,) + E f, ^ (3)
1=1 1 1 -

j i
J *»

Das Iterationspolynom qtm^ (z) setze sich zusammen aus s Partialpolynomen
qkCn^(z) vom Grade tk, deren Höchstkoeffizient immer gleich 1 sein soll:

cf>(z) fqf.k»i K

Soll auch das Iterationspolynom qCm:i nach Lagrange dargestellt werden, so
müssen vorerst die Stützstellen z eindeutig auf die Partialpolynome aufgeteilt
werden:

jedem Polynom qk(rTl) vom Grade tk werden t^-Stützstellen (nach geeigneter
Umnumerierung)

Ll- I
ZT Zt 1

K l Tk ' k+11

so zugewiesen, dass gilt:

Tk+i~~ Tk= L
G(L|, Lj) 0 i,j= 1,s; iAj,
ULpZ
1=1

d. h. z wird eindeutig aufden Vektor L abgebildet.

Jedes Partialpolynom qkmi wird nun als Lagrange-Polynom an den ihm
zugewiesenen Stützstellen Lk aufgebaut

(l) : i Tk+ l,...,Tk+i; I^j.
Da die Abbildung von z auf£ eindeutig ist, ex. zu jedem Zj ein

gjCm)=qlkmW j Tk+l,...,Tk+1
k 1,..., s
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und ein

Man erhält somit

und damit

(iT
h/z) s (zj-z,)

(i)

<,w J.V>-o+,,\..gr''hj<z)

(m)/ \ s
4 <z) Jhk=l

Tfc+1 l \ J. v+1 tm),
II (z zj) \ gj hj(z)

jsTk+1 J--V1

(4)

Bemerkung

Halten wir die Aufteilung von cfm) in die Partialpolynome und die Abbildung
von z auf L fest, so wird das Polynom q(ml (z) eindeutig beschrieben durch den

Vektor l*1-"', und damit ist der Vektor nur eine Funktion von g(m):

^tm)=^ (T).

5. Variation von g^undEntwicklung von c!lrn)

Variiert man

gCm)zu g(m)+ AAg.

wobei: X= positiver reeller Parameter,

Aged

und entwickelt jede Komponente von 3 (J(nn) + A A g) nach Potenzen von A, so

erhält man

r(k.t).

* Summation über alle Permutationen von j,, jt in den Grenzen 1 bis n, wobei j4 < jufalls i < u
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Wir vernachlässigen alle Summanden in A* mit t > 2 und bestimmen A g aus
dem folgenden linearen Gleichungssystem:

grad(dk(g))

k 1 n.

im)- Af) + dk(gN) 0 (6)

Die Koeffizientenmatrix dieses linearen Gleichungssystems ist, wie im nächsten
Abschnitt gezeigt wird, bei geschickter Aufspaltung von q0""1 in Partialpoly-
nome immer regulär.

Setzt man A t aus (6) in der Gleichung (5) ein, so erhält man

dk(g^+ AAg) dk(g(ml) (1 - A) + £ x'r(k.t).

und damit gilt

st "
||d(#m>+ AADII < t|d(g(m,)!i • (1 - X) + 't Ax £ r(k,t).

Da, wie im Konvergenzbeweis gezeigt werden wird, obere Schranken für

2 |rfk,t)| < K, t 2,..., n
k>i

angegeben werden können, kann der Parameter Ä so gewählt werden, dass

hwS |r(k,t)|<^||d(gw)||. (7)
k=i Z

Für A g aus Gleichung (6) und A aus (7) gilt damit

nj(gM+ AÄg) 11 < ni(gtm))ii • (i - ^ < nd(r)ii. (8)

Setzt man

AAf, (9)

so ist ein neues Iterationspolynom q(m+1^ gefunden worden, dessen Norm
gegenüber derjenigen von q(m) abgenommen hat.
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6. Untersuchung der Koeffizientenmatrix aus (6)

Für diese Untersuchung müssen noch die folgenden Bezeichnungen eingeführt
werden:

Wurzeln der Partialpolynome q
(m)

j (rn)
U U; lf,= ir+i (z - u,(m)); k=l,

l*Tk +1
S

Koeffizientenmatrix aus (6)

A(m)= {aik (grad;'d^(g)) ||M)kj-

a) s n

Ist s n, d. h. ist das Iterationspolynom q(m> ein Produkt von lauter linearen

Partialpolynomen, so wird die Determinante von A*"0 zu

Det(Atm))
TT p(zi) i«*
i i

Hl s, (rn) (rn)\
F (Zj-ZjAUj -u-,
j»i+l

wenn

Danach Voraussetzung Z; f z- für i + j wird Am dann und nur dann singulär,

Uitm) Ujr") für i, j 1, n und i A j..

b)s < n

Auch für den Fall, wo sich q(rr,) nicht aus lauter linearen Polynomen zusammensetzt,

lässt sich die Determinante von A<m) explizite angeben als

Det(AMs 1 V1] V
n i»i| h

,ii p(2;) lj3Ti+t k«Ti+i+i

Die Matrix A<rT,) wird also dann und nur dann singulär, falls ein u |<rri) und Uj(m)

mit i ^ j so ex, dass

u.(mi =UjWund zi, zj ^im gleichen Lk,
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d.h. A(m) bleibt regulär, falls zwei oder mehrere Nullstellen desselben Partial-
polynoms miteinander übereinstimmen.

Folgerung

Stimmen die Wurzeln zweier verschiedener Partialpolynome überein, so lässt
sich durch die Zusammenfassung der beiden zu einem einzigen neuen Partial-
polynom erreichen, dass die Matrix A^ regulär wird.
Die Zusammenfassung zweier Partialpolynome q|ml und q^zu einem neuen

- Om) (m) im)
qt =q. ük (io)

übt keinen Einfluss auf die Norm II dCrn' II aus.

gtrrl) geht dabei über in

g/-)=gj^-qr)(Zj) j =Tj + 1 T1 + ±

gj(m>= gj(rn). qH(Zj) j=Tk+l,...,Tktl,

die übrigen g/mi werden von der Zusammenfassung nicht berührt.

Bemerkungen

A. Eine Zusammenfassung zweier (linearer) Partialpolynome muss bei allge¬

meiner Wahl des Startpolynoms q<0) äusserst selten vorgenommen werden,
da das hier beschriebene Verfahren bei der numerischen Berechnung eine

mehrfache Nullstelle oder eine Wolke von k-Nullstellen von p(z) durch
ebenso viele auf einem Kreis um das Zentrum der Wolke getrennt angeordnete

approximative Nullstellen wiedergibt.
Fallen zufälligerweise im Verlaufe der Iteration zwei Wurzeln von qCrr,:>

zusammen, so kann durch eine Veränderung von X eine Zusammenfassung

umgangen werden.
B. Solange q(rr0 sich aus lauter linearen Partialpolynomen zusammensetzt,

lassen sich die Elemente der inversen Matrix
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b,K P(Z|<)
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>»*

J, Cu^-
J t K Ji"

7 Das Verfahren

Aus der in den Abschnitten 1 bis 6 hergeleiteten Theorie lasst sich das folgende
Verfahren zur Berechnung der Nullstellen eines Polynoms ableiten

Start: Beliebige Wahl eines Startpolynoms q(°5 (z) als Produkt von lauter
linearen Partialpolynomen

q(o) ^ ^ (7_utoi) ^ [(Z_Z|) + g to)J.

Iteration: Die Anwendung von (9) auf g<m) fürm 0,1,... ergibt eine Folge von
Iterationspolynomen q<no) (z). Fallen zwei Wurzeln zweier verschiedener

Approximationspolynome zufälligerweise zusammen, so werden die beiden

Polynome gemäss (10) zu einem neuen zusammengefasst.

Abbruch: Ist für m t die Norm || dct1 II kleiner geworden als ein vorgegebenes

eps < 0, so wird der Iterationsprozess abgebrochen.

Als Resultat erhält man ein Polynom q<i:) (z), das an allen n-vorgegebenen
Stützstellen die Bedingung

|p(z,)-q(t)(z,)|
lp(z,)l

P

erfüllt und von dem wir die Aufspaltung in s Partialpolynome kennen:

OD \ - W/ 1

0 (z)= II q, (z).
i 3 1 '
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Sollte der Grad tk eines oder mehrerer dieser Partialpolynome grösser als zwei
sein, so wird das Verfahren auf jedes dieser Partialpolynome von neuem
angewendet.
Wie schon unter Abschnitt 6 erwähnt wurde, lassen sich die Zusammenfassungen

in der praktischen Rechnung umgehen, womit p(z) approximiert wird
durch ein Polynom, von dem wir die Aufspaltung in seine n-linearen Partialpolynome

und damit alle n Wurzeln kennen.

8. Skizzierung des Konvergenzbeweises

Abschätzung von | r(k, t) | aus (5)

Die r(k,t) sind endliche Summen von endlichen Produkten in den zj, giCm^ und

Ausgehend von II dCo) || den z\ und einer unteren Schranke für die Det(A<rn))

lassen sich globale Schranken St bzw. S2für alle

Ig^KSa
i 1,..., n; m 0, 1,...

|AgM|<Sa

angeben.

Unter Verwendung von St und Sj lassen sich obere Schranken K,. für

2 |r(k,t) I < Kt t 2, n,
k=l I I

ableiten, wobei diese Schranken für alle m 0, 1, gültig sind.

Abschätzung der relativen Abnahme von i|dCr"+ ^ gegenüber ,i
dCrM>

|

Setzt man
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so wird
^ (m+i) ,(m) [mK n (At||dV II < ||d II • l-r)+2X \t-z

<\\Tm)\\ -(i-x(mJ) + xMiidCm)ii £ \t~a 2t

<||cfW|| -d-^).
Die |j3<rn)j; sind, solange iteriert wird, wegen des Abbruchkriteriums nach unten
beschränkt durch eps, woraus sich eine untere Schranke für X(m) ergibt:

X minVOlp- < ^ m 0, 1,
eps t V 2tKt

Damit erhalten wir aber eine untere Schranke für die relative Abnahme

iid^iKiid^ii- i-^;.
die uns zusätzlich noch eine obere Schranke für die maximale Anzahl der

notwendigen Iterationsschritte angibt:

tn

Anz. Iter. Sehr. < —

/ eps

jidTC0)ii

9. Praktische Durchführung des Rechenprozesses

Der praktische Ablauf des Verfahrens lässt sich durch das folgende Schema

darstellen:
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Wurzeln von p(z):

i 1, n
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Erklärungen zu den einzelnen Rechensehrilten

Wahl des Startvektors gcrt

Sind Näherungswerte v für die Wurzeln von p(z) bekannt, so setzen wir

- V,

andernfalls ist es am günstigsten, gt°'so zu wählen, dass die zugehörigen
Wurzeln u®> ein konstantes Vielfaches der Einheitswurzeln von

zn- 1 0

darstellen.

Wahl vonX(rrVI

wird im numerischen Algorithmus nicht aus der Gleichung (7) bestimmt,
sondern bei jedem Iterationsschritt vorerst 1 gesetzt und, falls notwendig, so

lange um den Faktor k verkleinert

~km): kX^m) (k < 1),

bis

||d(gtmVxMA#m')||<||d(glm))||.

Die numerische Austestung hat ergeben, dass der Iterationsprozess für ein k in
den Grenzen

0,25 < k < 0,75

je nach der Art der Polynome am schnellsten konvergiert.
(Für Polynome mit mehrfachen Nullstellen oder Wolken von Nullstellen sollte
k klein, für Polynome mit deutlich getrennten Nullstellen gross gewählt
werden.)

Abbruchkriterien

Als Abbruchkriterium wird nicht eine untere Grenze für II !l vorgeschrieben,

sondern es wird verlangt, dass so lange iteriert wird, bis die Änderung an
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gfm), hervoi gerufen durch den Korrekturvektor AgCm), innerhalb der Rechen-
genauigkeit vernachlassigbar klein geworden ist, d h bis numerisch

Ilg^llundllg-^ll + IIX^Ag^H

ubereinstimmen

Regularitat von Atm)

Fallen zwei Wurzeln des Iterationspolynoms q(m) zufälligerweise zusammen, so

trennen wir diese durch eine Verkleinerung des Parameters Die Austestung
hat gezeigt, dass die Regularisierung von ACm) keinerlei Schwierigkeiten bereitet,

sofern das Startpolynom qCo) genügend allgemein gewählt wird

Austestung

Der vorliegende Algorithmus zur Bestimmung der Wurzeln eines Polynoms
wurde m Algol programmiert und an einer grossen Zahl verschiedenartiger
Polynome (Polynome mit diskreten Wurzeln, mehrfachen Wurzeln, Wolken
von Wurzeln usw) mit gutem Erfolg ausgetestet Seme Anwendung ist vor
allem dann sinnvoll, wenn wir schon eine gute Näherung der Wurzeln von p(z)
kennen Der Nachteil des Algorithmus besteht dann, dass er einen bedeutend

grosseren Rechenaufwand benotigt als beispielsweise das m [5] beschriebene

Verfahren.
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Zusammenfassung

Um alle n-Wurzeln eines Polynoms p, das durch n Stützwerte p(z() an n paarweise verschiedenen
Stutzstellen z( gegeben ist, simultan zu bestimmen, wird p iterativ durch eine Folge von Polynomen
q(m) deren Wurzeln bekannt sind, so approximiert, dass || 3im' || =£ |p(z,) - qCm,(z,) | / [ p(z,) t

monoton gegen Null konvergiert Die Folge q'm'geht im wesentlichen aus der Variation der qCm)(z0

zu cfm)(Z|) + X Aqfm' hervor, wobei A und die Aq,'1' aus der Entwicklung von || dCm) || nach
Potenzen vonA. bestimmt werden

Summary

To determine simultaneously all the n roots of a polynomial p which is given by n supporting values

p(zt) at n pairs of different points of support z;, p is approximated iteratively by a series of
polynomials q(m) the roots of which are known, whereby || 3<ra> II E | p(z,) - q^'fz,)! / | p(z,) |

converges monotoneously to zero. The series q^is essentially derived from the variation of
qW(z,), as related to qt",,(z1)+A.Aq,(ra! A and Aq,^1 being determined from the expansion of
II 3Cm1 II according to the powers ofX

Resume

Afin de determiner simultanement toutes les n racmes d'un polynöme p, donne par les n ordonnees

p(zj) de n differents points dans le plan complexe, l'auteur approche de p iterativement au moyen
d'une suite de polynöme q(m), dont les racmes sont connues, de telle sorte que

Ildtml|| S|p(z,) - q*m)(z )| / Ip(z,) I

converge umformement vers zero La suite qlm) resulte en substance de la variation de q^ (z;) par
rapport ä q(ml (z;) + A a q|<rln) oü A et A q'm> sont tires du developpement de 3^ d'apres les

puissances deX
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Riassunto

Per stdbilire simultaneamente tutte le radici n di un pohnomio p - dato con valori di appoggio p(z;)
a punti di appoggio z,, in coppie diverse nell'n la p interativa e approssimata con una successione
di pohnomi q(r,1\ le radici del quail sono conosciute, in modo tale che Z | p(z,) - q^X) I / I

p(zi) I converge monotonamente verso lo zero La successione qt"1! risulta essenzialmente dalla
vanazione dalla q(rn) (z,) alia q(ml(z,) + X A q,^m1 tenuto conto cheXe la A q;Cm^ sono stabilite
dall'evoluzionedi ||a^4|| secondopotenzedi\.
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