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Berechnung der Wurzeln eines Polynoms
mittels Storungsrechnung

Von Willy Kellenberger, Ziirich

In der vorliegenden Arbeit soll das Problem der approximativen Berechnung
der Wurzeln eines Polynoms unter Verwendung von Stérungsrechnung gelést
werden. Im Gegensatz zu den meisten gidngigen Methoden, wie Newton,
Nickel, Graeffe usw., werden bei diesem Verfahren alle Wurzeln simultan
bestimmt, womit die Deflation und damit die bei der numerischen Berechnung

von ihr herrihrenden Fehler dahinfallen.

1. Problemstellung

Gegeben sei ein Polynom n-ten Grades p(z) durch n-Funktionswerte f; = p(z;)
in n paarweise verschiedenen Stiitzstellen z; und durch die zusétzliche Bedin-

gung, dass der Hochstkoeffizient von p(z) gleich 1 seinsoll :

gegeben £, = p(z)) i=1,..,n (1)

wobei T,z e @"
Zy £ g fir isegund 3= 1, .. 0

p(z) =z"+ ...

Gesucht sind die n-Nullstellen W von p(z), d. h. die n-Zahlen w, in der komple-

xen Ebene, fiir die gilt:

N
p(z)= 1 (z—w)
wobei we (.

2. Allgemeine Beschreibung des Losungsverfahrens

[terativ wird p(z) durch ein Polynom
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q™z) m=1,2,.. (Hochstkoeffizient 1)

approximiert, von dem wir eine Zerlegung in Partialpolynome kennen und das
im Limes mit p(z) tibereinstimmt :

lim  q™(z) = p(2),

m >ce

oder was gleichbedeutend ist mit

o lIm d™(z) =p(z) furi=1, .. n.

Numerisch reduziert sich die Losung darauf, ein Polynom q“™ (z) zu suchen,
dessen Funktionswerte an den urspriinglich gegebenen Stiitzstellen «mdoglichst

genau» mit den Funktionswerten von p(z) iibereinstimmen.

3. Norm

Wir definieren zu jedem q('"} (z) den folgenden Vektor:

()

4 ™=P#) —q ()
' p(z;)

1=1,..,n.

Die Abweichung des Iterationspolynoms q(m) (z) vom urspriinglich gegebenen
Polynom p(z) wird nun mit der folgenden Norm gemessen:

~(m) n
@™ =2 1dfm. (2)

. . -+ ()
Wird nun eine Folge von Polynomen q('") (z) aufgebaut, deren Norm|ld ™

monoton mit wachsendem m gegen Null konvergiert, so muss q(m) (z) monoton
mit wachsendem m gegen p(z) konvergieren.

4. Darstellung der Polynome

Das gegebene Polynom wird entsprechend der Problemstellung nach Lagrange
dargestellt:
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n
J'Iia. (= -zj)

n e =

pE)= T (z-z)+ 36— (3)

i ) j-_-ll (zi - 2j)

Das Iterationspolynom q(m) (z) setze sich zusammen aus s Partialpolynomen

qk('") (z) vom Grade t,, deren Hochstkoeffizient immer gleich 1 sein soll:

M) = g

q (Z) g q‘k N

1

Soll auch das Iterationspolynom q(m) nach Lagrange dargestellt werden, so
mussen vorerst die Stiitzstellen 7 eindeutig auf die Partialpolynome aufgeteilt
werden:

jedem Polynom qk("‘) vom Grade t, werden t,-Stiitzstellen (nach geeigneter

Umnumerierung)
Lk: {ZTflﬂ — ZTk+1

so zugewiesen, dass gilt:

Tk:ti—_ Tk: tk

Q(Li,LJ)zo Li=1,..,8 1%],
V1L1=?

=

d.h.Z wird eindeutig auf den Vektor L abgebildet.

Jedes Partialpolynom q'i"‘) wird nun als Lagrange-Polynom an den ihm zuge-
wiesenen Stiitzstellen L, aufgebaut

T E -2y
Tk k+d 0
QM= n (2t 2 (z) R

Da die Abbildung von 7 auf L eindeutig ist, ex. zu jedem z; ein

gjr‘m): q::n)(zj') =Tt T
k=1,..,58
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und ein _
o=
|
hkz) =5 (zj-7))
|
Man erhilt somit
Tk+'1. Tk .
@@= 5 )+ 3 g™ @) (4)
und damit
% Tiexd
q(m)(z) = ki [ nt (4 —z)+ 2, gam) hj(z)
Bemerkung

Halten wir die Aufteilung von ™ in die Partialpolynome und die Abbildung
von Zauf L fest, so wird das Polynom q™ (z) eindeutig beschrieben durch den
Vektor §(m’, und damit ist der Vektor d™ nur eine Funktion von gm):

—atm):—d* @;&m) -)'

5. Variation von 3™ und Entwicklung von d™
Variiert man
§Zu g+ NAE,
wobei: A= positiver reeller Parameter,
Age ("
und entwickelt jede Komponente von d (8™ + A A &) nach Potenzen von A, so
erhidlt man

dyg ™+ \AE) = fh((*"“) (grad(dk("g’))]gw ag) 2 ()
n ®
t=2 *agh agJ gyt i
r(k.t).

* Summation iiber alle Permutationen von j,, ..., j, in den Grenzen 1 bis n, wobei j; < jufalls1 < u.
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Wir vernachldssigen alle Summanden in A® mit t > 2 und bestimmen A g aus
dem folgenden linearen Gleichungssystem:

(‘grad (dk(?-j )) Lém,. L\"f;’) + dk( g)kmi) =() (6)
k=1, .., 1.

Die Koeffizientenmatrix dieses linearen Gleichungssystems ist, wie im nichsten
Abschnitt gezeigt wird, bei geschickter Aufspaltung von ¢™ in Partialpoly-
nome immer regulir.

Setzt man A gaus (6) inder Gleichung (5) ein, so erhilt man

o h &
le(g(m)+ ?\Ag) = dk(g( )) (] o ?\) t 2 I

L=2

(k.t),

und damit gilt

-

I A< IE™ - (1 -0+ 2N E (k).

Da, wie im Konvergenzbeweis gezeigt werden wird, obere Schranken fiir
§ rknI<K, t=2,..n
k=1 :
angegeben werden konnen, kann der Parameter A so gewihlt werden, dass
5oyt § <L Fam 7
R Ir(k,0) < 5 11d(g™) 1. (7)
Fir A gaus Gleichung (6) undAaus (7) gilt damit
T ~ m >\ T =) .
@™+ AR < HAE™) - (1 5) <IdETII (8)
Setzt man

g, )

o ‘ .
S0 ist ein neues Iterationspolynom q'™* ) gefunden worden, dessen Norm
gegeniiber derjenigen von ™ abgenommen hat.
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6. Untersuchung der Koeffizientenmatrix aus (6)

Fiir diese Untersuchung miissen noch die folgenden Bezeichnungen eingefiihrt
werden:

— Waurzeln der Partialpolynome q, ™

K

(m) T__k*i m) ]
i :i¥ i(z—u,- ¥ k=1,..,,s},
Ty + ]

>{m)
u =

)

W

K oeffizientenmatrix aus (6)

A= {aik:@rad(diw(g)}

sl

a)s=n

Ist s = n, d.h. ist das Iterationspolynom q™ ein Produkt von lauter linearen
Partialpolynomen, so wird die Determinante von A“™ zu

n-11n
Det(ALm)) _ 1 [lT i(zi"zj)(ul(m)_ui(m))]-

T plzpi=t]jeiv
i=4
Danach Voraussetzung z, # z i fiiri # jwird A™ dann und nur dann singulir,

wenn

(m)

uf™=uf™ fir i, j=1,..,nundi#j..

b)s < n

Auch fiir den Fall, wo sich ¢"™ nicht aus lauter linearen Polynomen zusammen-
setzt, lasst sich die Determinante von A explizite angeben als

) 1 EYTLT ., (m)
Det(A ):m—ﬁil:1 T [F (zj —2Zy) (v =4 )]

R4St JeT et [ R=Tiy g he
i=

Die Matrix A™ wird also dann und nur dann singuldr, falls ein ui('") und uj('")

miti # jsoex, dass

u™ =ufMund z;, z; ¢im gleichen L.,
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d.h. A"™ bleibt regulér, falls zwei oder mehrere Nullstellen desselben Partial-

polynoms q, "™ miteinander iibereinstimmen.

Folgerung

Stimmen die Wurzeln zweier verschiedener Partialpolynome iiberein, so ldsst

sich durch die Zusammenfassung der beiden zu einem einzigen neuen Partial-
; . . ) . .

polynom erreichen, dass die Matrix A™ regulir wird.

Die Zusammenfassung zweier Partialpolynome q""‘)

) 5
™ und q.™ zu einem neuen

—m) _ (m)  m) (10)

qt ] qx
iibt keinen Einfluss aufdie Norm || d || aus.

8 geht dabei iiber in
5M=g-qM(z) j=Ti+1,., Ty
gM=g™ q™(z)  j=Tt L Ths

die tibrigen gj™ werden von der Zusammenfassung nicht beriihrt.

Bemerkungen

A. Eine Zusammenfassung zweier (linearer) Partialpolynome muss bei allge-
meiner Wahl des Startpolynoms q‘”’ dusserst selten vorgenommen werden,
da das hier beschriebene Verfahren bei der numerischen Berechnung eine
mehrfache Nullstelle oder eine Wolke von k-Nullstellen von p(z) durch
ebenso viele auf einem Kreis um das Zentrum der Wolke getrennt angeord-
nete approximative Nullstellen wiedergibt.

Fallen zufilligerweise im Verlaufe der Iteration zwei Wurzeln von q(’")
zusammen, so kann durch eine Verdnderung von A eine Zusammenfassung
umgangen werden.

B. Solange q("') sich aus lauter linearen Partialpolynomen zusammensetzt,
lassen sich die Elemente der inversen Matrix

)~

B™= A
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explizite angeben als
h
iLq (- wt
J#k
ik — p(zk) " n a -
W w
{ =t (22l 3;4 (u(mﬁ_u(m})
JEK 1#1

7. Das Verfahren

Aus der in den Abschnitten 1 bis 6 hergeleiteten Theorie ldsst sich das folgende
Verfahren zur Berechnung der Nullstellen eines Polynoms ableiten

Start: Beliebige Wahl eines Startpolynoms q (z) als Produkt von lauter
linearen Partialpolynomen

a@ @)= @)= [22) +g].

[teration: Die Anwendung von (9) auf[g)(m) firm = 0,1, ... ergibt eine Folge von
Iterationspolynomen ™ (z). Fallen zwei Wurzeln zweier verschiedener
Approximationspolynome zufilligerweise zusammen, so werden die beiden
Polynome gemiss (10) zu einem neuen zusammengefasst.

Abbruch: Ist fir m = t die Norm || d* || kleiner geworden als ein vorgegebe-
neseps < 0, so wird der Iterationsprozess abgebrochen.

Als Resultat erhilt man ein Polynom q(t) (z), das an allen n-vorgegebenen
Stitzstellen die Bedingung

Ip(z) — a4 ()]
p(2)] <eps

erfiillt und von dem wir die Aufspaltung in s Partialpolynome kennen:

@)= 1 %@
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Sollte der Grad t, eines oder mehrerer dieser Partialpolynome grosser als zwei
sein, so wird das Verfahren auf jedes dieser Partialpolynome von neuem

angewendet.
Wie schon unter Abschnitt 6 erwahnt wurde, lassen sich die Zusammenfassun-

gen in der praktischen Rechnung umgehen, womit p(z) approximiert wird
durch ein Polynom, von dem wir die Aufspaltung in seine n-linearen Partialpo-
lynome und damit alle n Wurzeln kennen.

8. Skizzierung des Konvergenzbeweises

Abschitzung von |r(k, t)|aus (5)

Die r(k,t) sind endliche Summen von endlichen Produkten in den z;, gi¢™ und

Agitm)
Ausgehend von [d® ||, den 7z und einer unteren Schranke fiir die Det(A"™)

lassen sich globale Schranken S, bzw. S, fiir alle

igi(m” <8,
i=1,..,n; m=0,1, ..

|Agi(m)| & SZ

angeben.
Unter Verwendung von S, und S, lassen sich obere Schranken K, fiir
) lr(k,t)[ <K, t=2,..n,

ableiten, wobei diese Schranken fiir alle m = 0, 1, ... giiltig sind.

2o+ ) " i Fem) )
Abschitzung der relativen Abnahmevon [d™™"" | gegeniiber |d™ |
Setzt man
£
—(m)
d
)\(m) —— ” ”
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so wird

— (m+y) —(m) n (m t
i@ <@ -+ £k,

(¢ Jormin 21
<IN - =Ny 2 o

?\( m)

—(m)
<M¢wm—7ﬁ

Die HH(”’)H sind, solange iteriert wird, wegen des Abbruchkriteriums nach unten
beschriankt durch eps, woraus sich eine untere Schranke fiir X™ ergibt :

}:‘4\/,_... SR

’ eps (m)

= < =
?\eps min 7K, I\ m =0, 1,

t

Damit erhalten wir aber eine untere Schranke fiir die relative Abnahme

—>m+: —{m :/ >\e
I <@ - -2,

die uns zusitzlich noch eine obere Schranke fiir die maximale Anzahl der
notwendigen Iterationsschritte angibt :

¢ [ eps )

n —(0)

Anz. [ter. Schr. < M
£ (1- }iﬁ)

9. Praktische Durchfiihrung des Rechenprozesses

Der praktische Ablauf des Verfahrens ldsst sich durch das folgende Schema
darstellen:
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Wahl des Startvektors %; m

|

Regularitit v » Al

Berechnung von A ™ nach (6)

A =

’e

(numerisch!)

g+ 1Y = 11 then

A = g
k < 1)

Wurzeln von 'p(z)'. Wi = nga(m'

i=l,..0n

-
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Erkldrungen zu den einzelnen Rechenschritten

Wabhl des Startvektors ¢
Sind Niherungswerte v fiir die Wurzeln von p(z) bekannt, so setzen wir

g 0l 7 -7

andernfalls ist es am gilinstigsten, g©)so zu wihlen, dass die zugehorigen
Wurzeln U® ein konstantes Vielfaches der Einheitswurzeln von

e L =0
darstellen.

Wahl von Xdm

Wm) wird im numerischen Algorithmus nicht aus der Gleichung (7) bestimmit,
sondern bei jedem Iterationsschritt vorerst | gesetzt und, falls notwendig, so
lange um den Faktor k verkleinert

W= ) (k1)
bis

()

Id(g ™+ X7 Ag ™Y < 1 ) IL.

Die numerische Austestung hat ergeben, dass der Iterationsprozess fiir ein k in
den Grenzen

0,25 <k<0,75
je nach der Art der Polynome am schnellsten konvergiert.
(Fiir Polynome mit mehrfachen Nullstellen oder Wolken von Nullstellen sollte

k klein, fiir Polynome mit deutlich getrennten Nullstellen gross gewihlt wer-
den.)

Abbruchkriterien

Als Abbruchkriterium wird nicht eine untere Grenze fiir | d*" /| vorgeschrie-
ben, sondern es wird verlangt, dass so lange iteriert wird, bis die Anderung an
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g™ hervorgerufen durch den Korrekturvektor A 8¢ innerhalb der Rechen-
genauigkeit vernachlissigbar klein geworden ist, d. h. bis numerisch

g1 und 117N+ 1D ag ™|

tibereinstimmen.

Regularitit von A"™

Fallen zwei Wurzeln des Iterationspolynoms g™ zufilligerweise zusammen, so
trennen wir diese durch eine Verkleinerung des Parameters X™. Die Austestung
hat gezeigt, dass die Regularisierung von A™ keinerlei Schwierigkeiten berei-
tet, soferndas Startpolynom q* geniigend allgemein gewihlt wird.

Austestung

Der vorliegende Algorithmus zur Bestimmung der Wurzeln eines Polynoms
wurde in Algol programmiert und an einer grossen Zahl verschiedenartiger
Polynome (Polynome mit: diskreten Wurzeln, mehrfachen Wurzeln, Wolken
von Wurzeln usw.) mit gutem Erfolg ausgetestet. Seine Anwendung 1st vor
allem dann sinnvoll, wenn wir schon eine gute Naherung der Wurzeln von p(z)
kennen. Der Nachteil des Algorithmus besteht darin, dass er einen bedeutend
grosseren Rechenaufwand bendtigt als beispielsweise das in [5] beschriebene
Verfahren.
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Zusammenfassung

Um alle n-Wurzeln eines Polynoms p, das durch n Stiitzwerte p(z;) an n paarweise verschiedenen
Stiitzstellen z. gegeben ist, simultan zu bestimmen, wird p iterativ durch eine Folge von Polynomen
q™ deren Warzeln bekannt sind, so approximiert, dass || d*™ || =% |p(z) - ™ (z) | / | p(z)!
monoton gegen Null konvergiert. Die Folge q“™geht im wesentlichen aus der Variation der q™(z;)
zu (™ (z;) +x AqM™ hervor, wobei A und die Aq{™ aus der Entwicklung von | de || nach
Potenzen vonA bestimmt werden.

Summary

To determine simultaneously all the nroots of a polynomial p which is given by n supporting values
p(z;) at n pairs of different points of support z;, p is approximated iteratively by a series of
polynomials ¢" the roots of which are known, whereby || d* || = Z| p(z;) - q™(z)| / | p(z)|
converges monotoneously to zero. The series q¢is essentially derived from the variation of
q™(z;), as related to ¢™(z) +A Aq;¢™) X and A g™ being determined from the expansion of
Il d& || according to the powers of A.

Reésumeé

Afinde déterminer simultanément toutes les n racines d’un polynéme p, donné par les n ordonnées
p(z;) de n différents pomts dans le plan complexe, "auteur approche de p itérativement au moyen
d’une suite de polyndme q (e , dont les racines sont connues, de telle sorte que

1d = Zip) - 47 @)1/ Ip@)]

converge uniformément vers zéro. La suite q ™) résulte en substance de la variation de q(m) (z;) par

rapport 4 ¢ (z;) + A A g™ ouAet A g™ sont tirés du développement de [d“™| d’aprés les
puissances dex.
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Riassunto

Per stabilire simultaneamente tutte le radici n di un polinomio p - dato con valori di appoggio p(z;)
a punti di appoggio z;, in coppie diverse nell’n—la p interativa ¢ approssimata con una successione
di polinomi g™, le radici dei quali sono conosciute, in modo tale che [d"™V| = T |p(z)— g™z / |
p(zi) | converge monotonamente verso lo zero. La successione q{™ risulta essenzialmente dalla
variazione dalla qm) (z) alla g(™)(z;) + A A q;0"), tenuto conto cheNela A ¢;(™ sono stabilite
dall’evoluzionedi | d (™| secondo potenze di.
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