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Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portefeuille

Von Hans Bühlmann, Zürich

/. Das klassische Modell

In der klassischen Risikotheorie ist der folgende Ansatz für den Risikoprozess
üblich. Unter Verwendung der Bezeichnungen:

-Prämieneinnahme im Intervall [0,t]: P(t) et

- Anzahl Schäden im Intervall [0,t]: N(t)
- Schadenhöhe für den Schaden j: Yj

werden für die eben definierten Grössen folgende Voraussetzungen gemacht:

ist ein homogener Poisson-Prozess mit unabhängigen

Zuwächsen und Poisson-Parameter At
erwartete Anzahl Schäden in [0,t])

ß) Y, Y2,Y„ bilden eine Folge von Zufallsvariablen, welche
alle die gleiche Verteilungsfunktion F(x) haben

und welche unter sich und auch vom Schaden-

zählprozess |N(t);t > 0' unabhängig sind.

Wir wählen im folgenden die Geldeinheit so, dass E(Yj) 1. Mittels der
eingeführten Grundgrössen kann dann der akkumulierte Schaden S(t)
Total der Schadenbeträge im Intervall [0,t]) wie folgt dargestellt werden:

NM

S(t) 2 Yj.
>o

1

Für einen Planungshorizont T (möglicherweise co) ist schliesslich die

Ruinwahrscheinlichkeit ^T(u) bei anfanglichem Kapital u wie folgt definiert:

a jN(t);t > oj

i//T(u) P [S(t) - P(t) > u für mindestens ein te [0,T]j (1)
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2. Kritik am klassischen Modell

Die Pionierarbeiten von F. Lundberg [5] und die Untersuchungen von FI. Cramer

[3,4] wie auch von vielen seiner Schüler, sind -mit gewissen Verallgemeinerungen

- diesem eben zitierten klassischen Fall der Ruinwahrscheinlichkeit
gewidmet. Mit mathematisch anspruchsvollen Mitteln werden in diesen Arbeiten

auch für die Praxis geeignete Formeln füri/'T(u) hergeleitet. Dieses klassische

Modell steht hingegen von der Voraussetzungsseite her unter Kritik. In der

Praxis ist beobachtet worden, dass insbesondere die Annahme, es handle sich

beim Schadenzählprozess um einen homogenen Poisson-Prozess mit bekanntem

festem Parameter, öfters danebentrifft. Dies scheint davon herzurühren,
däss die Risikoauswahl, welche das Portefeuille charakterisiert, nicht Elemente
eines homogenen Kollektivs zum Gegenstand hat. Diese Feststellung
wiederum suggeriert ein Risikomodell, in welchem die Parameter der vorkommenden

Verteilungen selbst ebenfalls Zufallsvariablen sind. Prinzipiell lässt sich

dieser Gedankengang für Schadenzahl und/oder Schadenhöhe realisieren.

Lediglich der Einfachheit halber beschränke ich mich hier auf den Fall schwankender

Grundwahrscheinlichkeiten bei der Schadenzahl allein und behalte für
die Schadenhöhen die klassische Fiktion der festen Verteilungsfunktion bei. In
der Literatur sind dann zwei Wege vorgezeichnet, wie das klassische Modell
erweitert werden kann, um den erwähnten Einwänden Rechnung zu tragen.

In seiner grundlegenden Arbeit von 1940 [6] fasst Ove Lundberg den Poisson-

Parameter Aals Zufallsvariable mit einer Verteilungsfunktion (Strukturfunktion)

auf. Sein Wert wird zu Beginn des Zeitablaufes gezogen und bleibt nachher

konstant. Die zufällige Zahl N(t) kommt nach dieser Vorstellung wie folgt
zustande:

a) Ziehen eines Wertes für den Parameter \ aus der Verteilung U(\);
b) Ziehen eines Wertes für N(t) aus einer Poisson-Verteilung mit Parameter At.

Die Verteilung von N(t) entsteht also durch Gewichtung der Poisson-Wahr-
scheinlichkeiten mit der Strukturfunktion U(X):

3. Das Modell von Ove Lundberg
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wobei bekanntlich, im Falle dass U(\) eine Gamma-Verteilung ist, negativ
binomial verteilte Wahrscheinlichkeiten aus der Integration hervorgehen.
Die Ruinwahrscheinlichkeit kann in diesem Falle ebenfalls durch Gewichtung
berechnet werden. Es gilt

wobeier (u/X) die Ruinwahrscheinlichkeit bei bekanntem Poisson-Parame-
ter X darstellt, also der im klassischen Fall auftretenden Ruinwahrscheinlichkeit

entspricht.

Die Grundgedanken seines Pionierwerkes von 1948 [ 1 ] sind denjenigen von Ove
Lundberg nahe verwandt. Der wesentliche Unterschied ist aber darin zu sehen,
dass, während bei O. Lundberg der Risikoparameter nur einmal gezogen wird -
nämlich zu Beginn des zeitlichen Ablaufes -, das Modell von Ammeter davon
ausgeht, dass diese Ziehung immer wieder von neuem und unabhängig von den

bereits erfolgten vorgenommen wird. Dabei sei die Zeiteinheit so festgelegt, dass

die Zeitpunkte der Ziehungen genau in die ganzzahligen Gitterpunkte der
Zeitachse fallen.
Bei Ammeter kommt also die zufällige Zahl N(t) - für ganzes t - wie folgt
zustande:

a) N(t) £ [N(r) — N(r— 1)],

wobei die Zuwächse {N(r) — N(t— 1)} T, unabhängige gleichverteilte
Zufallsvariablen sind.

b) Jeder Summand, z. B. N(l) - N(0) =N(1), wird wie nach dem Schema von
Ove Lundberg gezogen.

Nun hat Ammeter - im Falle einer Gamma-Strukturfunktion - gezeigt, dass für
alle Zuwächse S(t)—S(r-1) die folgende verblüffende Transformation immer
richtig ist

(u) y* (X), (3)

4. Das Modell von Hans Ammeter

(4)
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fur em geeignetes positives ja und eine geeignete Verteilungsfunktion G(x)
Diese eigentliche «Trouvaille» der Ammeterschen Theorie - spater fur beliebiges

unendlich teilbares U(\) nachgewiesen erlaubt somit auch in diesem Falle,
die klassischen Resultate zu ubernehmen, da der Prozess nach der Transformation

- mindestens m den ganzzahligen Gitterpunkten - auf das klassische

Risikomodell zurückgeführt ist

5 Das erjahrungstanfierte Portefeuille und seine Ruinwahr scheinhchkeU

Je nach der praktischen Anwendung, welche man im Auge hat, wird man sich

fur das Modell von Ove Lundberg oder von Ammetei entscheiden Beim

Ammeterschen Modell werden sich die vielen Parameterziehungen nach den

Gesetzen der Wahrscheinlichkeitsrechnung ausmitteln, nicht so aber, wenn

wir, wie Ove Lundberg, annehmen, dass der Risikoparameter nur einmal -
namlicham Anfang -gezogen wird In diesem Falle wird der Versicherungsmathematiker

versuchen, auf Grund semer Erfahrungen mit dem Schadenprozess
den gezogenen Parameterwert zu schätzen, um dann seme Prämie entsprechend

anzupassen Diese Möglichkeit wollen wir hier jetzt ausschöpfen
Die Theorie der Erfahrungstanfierung (siehe z B [2], Seite 100 ff) lehrt uns,
dass fur die Schätzung"X (t) Schätzung des Poisson-Parameters auf Grund
der Erfahrungen bis zum Zeitpunkt t) folgende Foimel zu verwenden ist

wobei N(t) beobachtete Anzahl Schaden in [0,t]

-= jxdU(X)

^ Jx2dU(X)~ (jxdU(X)J

Dies bedeutet, dass die Pramienemnahme - im klassischen Modell als konstanter

Strom der Intensität (Steigung) c aufgefasst - jetzt von der Erfahrung mit
dem Prozess bestimmt wird, genauer gesagt von der Anzahl der im Intervall
[0,t] eingetroffenen Schaden abhangt



215

Wir haben somit für die Intensität des Prämienstromes

a + N(t)mm c-jTT^ (od (6)

und somit für die Differenz von Schadenbelastung und Prämieneinnahme

N(t> f
S(t)-P(t)= 2 Yj -j c[N(r),r]dr. (7)

0

Die vorliegende Arbeit soll sich mit dem Problem befassen, für das eben
beschriebene Modell des erfahrungstarifierten Portefeuilles die Ruinwahr-
scheinlichkeit^T(u) (siehe Formel 1) zu bestimmen. Dazu ist es nützlich, auf der
Zeitachse die zufälligen Punkte Wj der Schadeneintritte zu betrachten. Um eine

möglichst einfache Bezeichnungsweise zu haben, wählen wir W0 0 und
verstehen unter Wj den Zeitpunkt des Eintritts des Schadens j. Falls N(t) n

(Zeichnung) trägt der letzte Zeitpunkt eines Schadeneintritts vor dem
Zeitpunkt t die Nummer n

W0 W-L Wj-! Wj wn

Im Intervall (W/-i, Wj ] beträgt die Prämieneinnahme

W
- ß+Wjf c^L^dr c[cc + j - Ij-fn

1

J ß + T Iß + T ß +Wj-1
wi-i

und für das (letzte) Intervall (Wn, t] ist sie

ß + t
ei« + nHn-1 1

ß + W„

Somit gilt für die gesamte Prämieneinnahme in [0,t]

n ß + W ß + t
P(t)=c2 [oc+J_ 1]n__o_ +clcc + nHn^Wr-

- c cc{nj3 - c 2 fei(|3 + W() + cfcc + n]fn(ß + t)

„ ß + t Ar ß+t
c cc • fn —— + c 2 fn -

ß j-i ß + Wj
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Unter Verwendung von N(t) n erhalten wir schliesslich

(8)

Damit geht (7) über in

„ ß + t N(t) ß + t
S(t) P(t) ~ccc{nL+E (Yj (9)

Diese Darstellung zeigt recht anschaulich, wie beim erfahrungstarifierten
Portefeuille zunächst ein Prämienstrom vom Beginn an fliesst (erster Term auf der
rechten Seite) und wie nachher jeder Schadeneintrittspunkt Wj Quelle eines

zusätzlichen Prämienstromes (zweiter Teil jedes Summanden) ist.

Wir werden im folgenden die letztgefundene Form verwenden, um die
Ruinwahrscheinlichkeit V'tCu) beim erfahrungstarifierten Portefeuille zu berechnen.

6. Die Ruinwahrscheinlichkeit hei erfahrungstarifiertem Portefeuille für gegebe¬

nen Parameterwert

Nehmen wir an, dass - obwohl wir selbst den entscheidenden Parameterwert
für den Risikoprozess nicht kennen und deshalb das Portefeuille nach seiner

Erfahrung tarifieren - jemand anders die uns entzogene Kenntnis hat. Dieser

mehrwissende andere soll nun auf Grund seiner Kenntnisse bestimmen, welche

Ruinwahrscheinlichkeit wir laufen.
Da bei bekanntem Risikoparameter X der Schadenzählprozess ein Poisson-

Prozessist, bilden unter der Bedingung N(t) k die Zeitpunkte (Wj)
eine Punktmenge, welche verteilt ist wie die Punktmenge (Wj)j i, die

durch das unabhängige Auswürfeln von k zwischen [0,t] gleichverteilten Punkten

entsteht. Unter Verwendung der Schreibweise

Vj(t) (h ß+t (10)
0 + Wj

gilt also für j < k

EMN ""
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und Vj(t) N(t) k =7$r^)dT=tr5(tnufda
0 ^

/3-H:

_ß+t
t

_ß + t

t

(fn u)*u - 2u[fn u- 1]
ß

/S+t

ß + t l ß+t) ß + t
£n

ß+t
Somit finden wir wegen

v" h "v.i-k] eK(,,in,.,-k]-(E[v'WtN(.). jy
- ebenfalls für j < k-

ß(ß + t)
Var|vj(tW) k] 1 <I2)i-Y

ß + tj

Zusammenfassend stellen wir fest, dass die rechten Seiten von (11) und (12)
nicht von k abhängen. Die Bedingung N(t) k ist in diesen Formeln also nur
insofern von Bedeutung, als sie besagt, dass der j. Schaden vor dem oder im
Zeitpunkt t sich ereignet hat. Dies ist gleichbedeutend mit der Bedingung:
j < N(t).
Also halten wir fest

<N(t)
ß

Cn 1 +-
(13)

Var Vj(t)L <N(t) hi.
Wegen tlirn [l + e sieht man, dass beide Ausdrücke unter (13) für t > 0

ebenfalls gegen Null streben. Andererseits streben beide Ausdrücke für t -> oo

gegen Eins.

Schliesslich bemerken wir, dass unter der Bedingung j < N(t) die Verteilungsfunktion

von Vj (t) explizit berechnet werden kann. Es gilt

Vj(t)<x| j<N(t)
P

P

f
ß + t < 1

(3 + WpX|j <N(t)

Wj>(ß+ t)e* -ßl.

mm

|j < N(t)J

(ß+t) (De^) (14)
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Graphisch sieht diese Verteilungsfunktion wie folgt aus:

rtx)

Für den Grenzfall t > zc erhalten wir - immer unter der Bedingung j < N(t) -
die gewöhnliche Exponentialfunktion mit Erwartungswert 1 und Varianz 1.

Wir bezeichnen die mit diesem Grenzfall verbundenen Zufallsvariablen mit
Vj (oo).
Nach diesen Vorbereitungen mochten wir nun die Rumwahrschemlichkeit

N(t) ß + f
tf/T(u) P[Z [Yj - c Vj (t)] — c cc fn-fh—>u für mindestens ein t < 11

bestimmen.

Unter X .wendung der Abkürzung

N(t) ß + j
Z(t) Z [Yj - c Vj (t)] - c cc fniL— (15)

bestimmen wir zunächst als Grössen, die uns über die «Belastung» Z(t) erste

Auskünfte geben: E[Z(t)] und Var[Z(t)].
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Wir finden E[Z(t)] Xt l-c + cV1-'1
t l ß

— c cc fn ß+t

oder durch Umformen

E[Z(t)J Xt[ 1—c] - c[cc — X(3]fn^-. (16)

Der erste TeilXt[ 1 c] ist - analog zum klassischen Modell - als Zuschlagsteil
zu verstehen, während c[a -Aß]tn dem Schcitzungsbias entspricht.

Für den Fall X. =J, d.h. wenn der wahre Parameterwert dem nach der
Strukturfunktion U(X) erwarteten Parameterwert entspricht, ist dieser Schät-

zungsbias Null. Bemerkenswert ist die Tatsache, dass in jedem Fall der Schät-

zungsbias nur logarithmisch zunimmt und somit gegenüber dem Zuschlagsteil,
der eine lineare Funktion in t ist, rasch an Bedeutung verliert. Diese Feststellung

stellt eine eindrückliche Empfehlung für die Prinzipien der Erfahrungstari-
fierung dar, welche uns - bis auf den Schätzungsbias - ermöglichen, auf dem
anvisierten Zuschlagsniveau zu operieren, obwohl wir den wahren Wert des

Risikoparameters nicht kennen.
Andererseits rechnet man nach, dass

Var Z(t) Xt j VaijYj - c Vj(t)|. < N(t)] + (E[Yj - c Vj (t)]/j

Xt |Var[Yj * ,M±ti^ß±iV+^_c + cifaßn^+ c - c
t ß

woraus durch Umordnung entsteht

Var Z(t)= 2Xt
+ VarfYj ] ic + c - Xcj3 In 13+t ein ^y~+ 2(c—1 )j. (17)

Auch hier entdecken wir einen linearen und einen logarithmischen (sowie auch

quadriert logarithmischen) Bestandteil in unserer Formel. Der lineare Teil stellt
wegen c > 1 zudem eine Majorante für die Varianzfunktion dar, d. h. wir haben

Var Z(t) < 2Xt
+ Var[Y, j

_ c + ffiraiie te[0,oo). (18)
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Man rechnet leicht nach, dass die Schranke 2 Xt [1 + g8t
Y

-c + c2] exakt erreicht
wird, wenn man in Z(t) alle Summanden Vj (t) durch die Grenzvariablen Vj (x)
ersetzt.

Da die Berechnung von <pT (u) P[Z(t) > u für ein t S [0,T]] auf erhebliche

Schwierigkeit stösst, legt die eben gemachte Bemerkung den Gedanken nahe,

statt
Nft) ß + f

Z(t)=X [Yj — c Vj(t)] — cocfn^

die stochastische Funktion

N(t) ß +
Z*(t) X I Yj - c Vj (oo)| - c[oc - Aß]fn

zu betrachten, welche die gleiche Erwartungswertfunktion wie Z(t) hat und

gleichzeitig die Varianzfunktion von Z(t) majorisiert. Es gilt nämlich

E[Z*(t)] E[Z(t)J

Var[Z*(t)J 2\t[l + V^|Yj
1

- c + c2] > VarfZ(t)l.

Es ist also zu vermuten, dass Jz*(t); t > oj einen «gefährlicheren» Prozess

darstellt als Z(t);t > 0 was die Ungleichung

P jz*(t) > u für ein te[0.T]j> i//T(u) (19)

für grosse Werte von u als plausibel erscheinen lässt.

Wir interessieren uns deshalb für die Berechnung von

M ß + t 1

^ lYJ - c Vi (°°)] > U + c[a - Xj3]fn~— für ein te [0,T]J (20)

in der Meinung, damit für grosse u-Werte eine vorsichtige Schranke für fr(u) zu

bestimmen. Dabei profitieren wir von der glücklichen Koinzidenz, dass unter
der Bedingung j < N(t) die Vj (od) exponentiell verteilt und unabhängig sind

und die Glieder in der auftretenden stochastischen Summe gerade dieser

Bedingung genügen.
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Es gilt also Pf^Vj -c Vj(°o)l<x] eXtS ^(f(x)*H (21)

(man beachte, dass die in der Formel auftretenden Sterne (*) die Faltungsoperation

bezeichnen),

wobei F(x) die (gemeinsame) Verteilungsfunktion der Yj darstellt und
H(x) 1 -e~* ist.

N(t)
Die stochastische Summe ^JYj —c Vj(oo)] kann aber auch wie folgt aufgefasst
werden (siehe z. B. [2], Seite 145): Die Summanden stellen genau die Differenz
von Schadenbelastung und Prämieneinnahme dar, welche in einem klassischen
Modell mit Poisson-Parameter A 1 zwischen dem (j — 1). (exklusive) und j.
(inklusive) Schadenereignis anfällt:

Yj ist der einzige Schadenbetrag, der während dieses Intervalles anfällt;
c(Wj — Wj-0 ist die Prämieneinnahme in diesem Intervall, wobei
Wj — Wj-i exponentiell verteilt ist mit Parameter 1, also der gleichen Verteilung

genügt, wie sie für Vj (oo) unter der Bedingung j < N(t) gilt.

Wir sind somit für die Berechnung der Ruinwahrscheinlichkeit gemäss Formel
(20) wie im klassischen Fall beim Problem angelangt, den diskreten Random
Walk

•V s,. S2 X. s0 o

Sn X (Yj -- cVj (oo)) für n > 1

zu studieren. Für den Fall X ^ (d. h. falls der wahre Wert des Risikoparameters

gleich dem nach der Strukturfunktion U(A) erwarteten ist) ist Ruin
gleichbedeutend mit dem Ereignis, dass das Maximum des Random Walks
über [0,T] die anfänglichen Mittel u überschreitet, d.h. es gelten die üblichen
Formeln, welche aus dem klassischen Modell hergeleitet worden sind. Der Fall
X 4= TT bietet einige Schwierigkeiten, da der Schätzbias je nach Zeitpunkt des

Eintretens des Maximums die Grenze u, deren Überschreiten Ruin bedeutet,
nach oben oder nach unten verschiebt.
Wir beschränken uns hier auf grobe Schätzungen für den Fall X ^ Zunächst
ist für A<| der zusätzliche Prämienstrom aus dem Schätzungsbias positiv, also

ist für diesen Fall die Ruinwahrscheinlichkeit für X ^ eine Majorante. Im
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Falle A > wollen wir annehmen, dass wir das Ruinereignis nur in den

Gitterpunkten (nh)n= 0j 1; 2 zu vermeiden wünschen. Dann ist der erstmögliche

Eintritt des Ruins im Zeitpunkt h möglich. Bis dann ist der negative
Prämienstrom auf c[o£—Aß]-En angewachsen, und wir erhalten wiederum
eine Majorante für die Ruinwahrscheinlichkeit, falls wir annehmen, dass in den
weiteren Perioden der Länge h die Belastung durch den Schätzungsbias ebenfalls

c[<x—Aß] Cn beträgt. Damit haben wir aber die Möglichkeit, durch
Übergang von c auf

l+> - Aßling (22)

wiederum den Wert dieser Majorante aus dem klassischen Modell zu entnehmen.

7. Ein numerisches Beispiel

Wir nehmen an, dass der Poisson-Parameter Anachder Gamma-Dichte

verteilt sei. Es gilt dann

E(A) 1 und Var(X)

und die Erfahrungstarifierungsformel lautet

7+ t

Die Parameterwerte seien wie folgt angenommen:

ß 1 für die Strukturfunktion,
c 1.1 für die Intensität des Prämienstromes.

Der Planungshorizont T sei oo.

Schliesslich wollen wir noch annehmen, dass die Yj exponentiell verteilt seien,

d. h. P[Yj < x] 1 —e"*.
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Wir tabellieren im folgenden die Ruinwahrscheinlichkeit (besser: deren
vorsichtige Schätzung) für verschiedene wahre Werte A0 von X. Es gilt dabei
vergleichsweise

1 1 -0,091"
^Ju) ce =Ue

im klassischen Modell mit \= 1.

h 100 h 1000 P[A < A0]

A D='h _i_c-o.o9<La _Le-o.o91u 39j3%

A„=l _i_e-0,O51u _j^c.0.O91U 63^2%

A =l'/2 _JL_ 0.0*0 u 1 -o-QS8u
1 mc L

1 nnc L 11,1/01.075 1.096

T
1 -0.0«U 1 .l.OHu O, c„A=2 T7092 6 86'5%

\ _ o l /
^

_ 0.023 u 1 —0.08Z LI rt 1 o"0"2/2 LÖ24C 17089 91'8

Wir verwenden hier c* c [1 + (1 — X)^{n(l +~)]fürA0> 1 und tabellieren
in der letzten Kolonne die Werte der Strukturfunktion, welche die Wahrscheinlichkeit

angeben, mit welcher der Risikoparameter unter dem Niveau A bleibt.

8. Die Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portefeuille, falls der

Parameterwert nicht bekannt ist

Nachdem wir die Ruinwahrscheinlichkeit bei bekanntem Risikoparameter
prinzipiell bestimmen können - auf die praktischen Schwierigkeiten haben wir
im vorletzten Abschnitt hingewiesen erhält man nun bei unbekanntem
Risikoparameter die uns interessierende Grösse durch Integration mittels der
Strukturfunktion. Wir verzichten aufdie praktische Durchführung des Verfahrens

und möchten darauf hinweisen, dass für die Praxis erst dann sinnvolle
Resultate bei dieser Integration zu erwarten sind, wenn die im vorletzten
Abschnitt gegebenen groben Abschätzungen noch wesentlich verbessert werden

können. Es ist deshalb zu hoffen, dass eine Verfeinerung der Abschätzungen

bald gefunden wird.
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Zusammenfassung

Die Frage nach der Ruinwahrscheinlichkeit bei schwankendem Risikoparameter wird hier fur den

Fall diskutiert, wo dieser Parameter auf Grund der Erfahrung laufend geschätzt wird Es resultieit
ein wesentlich komplizierteres «Random-Walk-Problem» als im klassischen Fall, wobei es aber

gelingt, geeignete Abschatzungen fur die numerische Berechnung zu finden

Summary

T he probability of ruin is discussed m the case ofa fluctuating risk pai ameter which is continuously
estimated on the basis of past experience There results a random walk problem which is

considerably more complicated than m the classical case However one can derive cautious bounds

which are convenient for numerical calculations

Resume

On discute le probleme de la probabilite de rume dans le cas d'un paiametre de risque variable Si

l'on estime ce parametre continuellement ä la base de Pexperience faite dans le passe, on obtient un

probleme du type «marche aleatoire» qui est beaucoup plus complique que dans le cas classique Au

moms on peut denver des bornes qui sont convenables pour 1'evaluation numenque

Riassunto

Si discute ll problema della probabihtä dl rovma nel caso di un parametro di nschio variabile Se si

stima questo parametro di modo contmuo alia base dell'esperienza nel passato, si arriva ad un

problema del tipo «cammino stochastico» molto piü difficile del caso classico Almeno si puo
trovare formole approssimative che sono adatte all'evaluazione numerica
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