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Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portefeuille

Von Hans Biihlmann, Ziirich

1. Das klassische Modell

In der klassischen Risikotheorie ist der folgende Ansatz fiir den Risikoprozess
blich. Unter Verwendung der Bezeichnungen:

—Primieneinnahme im Intervall [0,t]: P(t) = ct
— Anzahl Schidenim Intervall [0,t]:  N(t)
~ Schadenhohe fiir den Schaden j: Y]

werden fiir die eben definierten Grossen folgende Voraussetzungen gemacht:

o ) {N(t);t = O} 1st ein homogener Poisson-Prozess mit unabhin-
gigen Zuwichsen und Poisson-Parameter A\t (=
erwartete Anzahl Schiaden in [0,t])

Y, Yo, LY, bilden eine Folge von Zufallsvariablen, welche
‘ alle die gleiche Verteilungsfunktion F(x) haben
und welche unter sich und auch vom Schaden-

zihlprozess |N(t);t > 0funabhingigsind.

Wir wihlen im folgenden die Geldeinheit so, dass E(Y;) = 1. Mittels der

eingefithrten Grundgréssen kann dann der akkumulierte Schaden S(t) (=

Total der Schadenbetrige im Intervall [0,t]) wie folgt dargestellt werden:
N{t)

S()=2 Y.
J=0

Fir einen Planungshorizont T (moglicherweise o) ist schliesslich die Ruin-
wahrscheinlichkeity,(u) bei anfinglichem Kapital u wie folgt definiert:

Y (u)="P [S(t) — P(t) > u fir mindestensein te [O,T]]. (1)
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2. Kritik am klassischen Modell

Die Pionierarbeiten von F. Lundberg [5] und die Untersuchungen von H. Cra-
meér |3, 4] wie auch von vielen seiner Schiiler, sind — mit gewissen Verallgemeine-
rungen — diesem eben zitierten klassischen Fall der Ruinwahrscheinlichkeit
gewidmet. Mit mathematisch anspruchsvollen Mitteln werden in diesen Arbei-
ten auch fiir die Praxis geeignete Formeln fiiry, (u) hergeleitet. Dieses klassi-
sche Modell steht hingegen von der Voraussetzungsseite her unter Kritik. In der
Praxis ist beobachtet worden, dass insbesondere die Annahme, es handle sich
beim Schadenzdhlprozess um cinen homogenen Poisson-Prozess mit bekann-
tem festem Parameter, ofters danebentrifft. Dies scheint davon herzuriihren,
dass die Risikoauswahl, welche das Portefeuille charakterisiert, nicht Elemente
eines homogenen Kollektivs zum Gegenstand hat. Diese Feststellung wie-
derum suggeriert ein Risikomodell, in welchem die Parameter der vorkommen-
den Verteilungen selbst ebenfalls Zufallsvariablen sind. Prinzipiell ldsst sich
dieser Gedankengang fiir Schadenzahl und/oder Schadenhéhe realisieren.
Lediglich der Einfachheit halber beschrianke ich mich hier auf den Fall schwan-
kender Grundwahrscheinlichkeiten bei der Schadenzahl allein und behalte fiir
die Schadenhohen die klassische Fiktion der festen Verteilungsfunktion bei. In
der Literatur sind dann zwei Wege vorgezeichnet, wie das klassische Modell
erweitert werden kann, um den erwidhnten Einwidnden Rechnung zu tragen.

3. Das Modell von Ove Lundberg

In seiner grundlegenden Arbeit von 1940 [6] fasst Ove Lundberg den Poisson-
Parameter Aals Zufallsvariable mit einer Verteilungsfunktion (Strukturfunk-
tion) auf. Sein Wert wird zu Beginn des Zeitablaufes gezogen und bleibt nachher
konstant. Die zufillige Zahl N(t) kommt nach dieser Vorstellung wie folgt
zustande:

a) Zichen eines Wertes fiir den Parameter A aus der Verteilung U(A);
b) Zichen eines Wertes fiir N(t) aus einer Poisson-Verteilung mit Parameter At.

Die Verteilung von N(t) entsteht also durch Gewichtung der Poisson-Wahr-
scheinlichkeiten mit der Strukturfunktion U():

3]
~—

PIN(t)=k] = f %?ie-ﬁdum, (
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wobei bekanntlich, im Falle dass U(\) eine Gamma-Verteilung ist, negativ
binomial verteilte Wahrscheinlichkeiten aus der Integration hervorgehen.

Die Ruinwahrscheinlichkeit kann in diesem Falle ebenfalls durch Gewichiung
berechnet werden. Es gilt

b (u) = f 5. (u/N) U, (3)

wobeiy, (u/X) die Ruinwahrscheinlichkeit bei bekanntem Poisson-Parame-
ter A darstellt, also der im klassischen Fall auftretenden Ruinwahrscheinlich-
keit entspricht.

4. Das Modell von Hans Ammeter

Die Grundgedanken seines Pionierwerkes von 1948 [1] sind denjenigen von Ove
Lundberg nahe verwandt. Der wesentliche Unterschied ist aber darin zu sehen,
dass, wihrend bei O. Lundbergder Risikoparameter nur einmal gezogen wird —
namlich zu Beginn des zeitlichen Ablaufes —, das Modell von Ammeter davon
ausgeht, dass diese Ziehung immer wieder von neuem und unabhdngig von den
bereits erfolgten vorgenommen wird. Dabei sei die Zeiteinheit so festgelegt, dass
die Zeitpunkte der Ziehungen genau in die ganzzahligen Gitterpunkte der
Zeitachse fallen.

Bei Ammeter kommt also die zufillige Zahl N(t) — fir ganzes t — wie folgt
zustande:

a) N(t) =% [N()— N(¥—1)],

=1

wobei die Zuwichse [N(*c) — N(v— 1)} - 1.1 Unabhingige gleichverteilte
Zufallsvariablen sind.
b) Jeder Summand, z. B. N(1) — N(0) =N(1), wird wie nach dem Schema von
Ove Lundberg gezogen.

Nun hat Ammeter — im Falle einer Gamma-Strukturfunktion — gezeigt, dass fiir
alle Zuwiachse S(1)—S(7-1) die folgende verbliiffende Transformation immer
richtig ist

P[S(7) — S(7—1) < X] =f§ e‘l% E* (x) dUQY) (4)

oo _u uk Hp
= I(Z::o e ? G (X)
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fur ein geeignetes positives 4 und eine geeignete Verteillungsfunktion G(x).
Diese eigentliche «Trouvaille» der Ammeterschen Theorie — spéter flir beliebi-
ges unendlich teilbares U(X\) nachgewiesen —erlaubt somit auch in diesem Falle,
die klassischen Resultate zu ibernehmen, da der Prozess nach der Transforma-
tion — mindestens in den ganzzahligen Gitterpunkten — auf das klassische
Risikomodell zurtickgeftihrt ist.

5. Das erfahrungstarifierte Portefeuille und seine Ruinwahrscheinlichkeit

Je nach der praktischen Anwendung, welche man im Auge hat, wird man sich
fir das Modell von Ove Lundberg oder von Ammeter entscheiden. Beim
Ammeterschen Modell werden sich die vielen Parameterzichungen nach den
Gesetzen der Wahrscheinlichkeitsrechnung ausmitteln, nicht so aber, wenn
wir, wie Ove Lundberg, annchmen, dass der Risikoparameter nur einmal —
namlicham Anfang— gezogen wird. In diesem Falle wird der Versicherungsma-
thematiker versuchen, auf Grund seiner Erfahrungen mit dem Schadenprozess
den gezogenen Parameterwert zu schdtzen, um dann seine Primie entsprechend
anzupassen. Diese Moglichkeit wollen wir hier jetzt ausschopfen.

Die Theorie der Erfahrungstarifierung (siehe z. B. [2], Seite 100 ff.) lehrt uns,
dass fiir die Schiatzung A (t) (= Schitzung des Poisson-Parameters auf Grund
der Erfahrungen bis zum Zeitpunkt t) folgende Formel zu verwenden ist:

% o L) (5)

A
MY =55

wobei N(t) = beobachtete Anzahl Schiden in [0,t]

%: faduoy

%Z: fxaue - (jhdumf_

Dies bedeutet, dass die Pramieneinnahme — im klassischen Modell als konstan-
ter Strom der Intensitit (Steigung) ¢ aufgefasst — jetzt von der Erfahrung mit
dem Prozess bestimmt wird, genauer gesagt von der Anzahl der im Intervall
[0,t] eingetroffenen Schaden abhédngt.
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Wir haben somit fiir die Intensitit des Primienstromes

o+ N(t)
B+t

¢[N(t),t]=c¢ (c>1) 6)

und somit fiir die Differenz von Schadenbelastung und Prdmieneinnahme
N * _
S(1) ~B(1)= ZY; [ eIN(®), ldr. (7)

Die vorliegende Arbeit soll sich mit dem Problem befassen, fiir das eben
beschriebene Modell des erfahrungstarifierten Portefeuilles die Ruinwahr-
scheinlichkeity; (u) (sieche Formel 1) zu bestimmen. Dazu ist es niitzlich, auf der
Zeitachse die zufilligen Punkte W; der Schadeneintritte zu betrachten. Um eine
moglichst einfache Bezeichnungsweise zu haben, wihlen wir W, = 0 und
verstehen unter W; den Zeitpunkt des Eintritts des Schadens j. Falls N(t) = n
(Zeichnung) triagt der letzte Zeitpunkt eines Schadeneintritts vor dem Zeit-
punkt t die Nummer n

o o o O © -
\‘:VQ W1_ VVj-i Wj Wn ‘ti
[m Intervall (Wj_,, Wj | betrigt die Pramieneinnahme
VL;_
~ ,Oiil;ll = - mj‘n
L5+T dr = c[x + ] Ianﬁ'i'Wj-i
Wi-q
und flr das (letzte) Intervall (W , t] ist sie
| B+t
¢[o=+n]fn GEW,
Somit gilt fiir die gesamte Pramieneinnahme in [0,t]
_n . B+ W \ Bt
P(t)= “;“1 [oc+j— 1]n 5T W + c[= + ntn G W,

= _ ot — ¢ JE: P(B + W) + c[e + n]fa(B+ 1)

:coc-{nﬁ ﬁ+t_'

o 4,
C 1
BB+ W
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Unter Verwendung von N(t) = nerhalten wir schliesslich

N 6+ N2 B+t .
Pil] =g fn—6~—+ ¢z n 5+W (8)

Damit geht (7) tiber in
s - P =—canf Yy ol ©)

6 F+W
Diese Darstellung zeigt recht anschaulich, wie beim erfahrungstarifierten Por-
tefeuille zundchst ein Pramienstrom vom Beginn an fliesst (erster Term auf der
rechten Seite) und wie nachher jeder Schadeneintrittspunkt W; Quelle eines
zusitzlichen Pramienstromes (zweiter Teil jedes Summanden) ist.

Wir werden im folgenden die letztgefundene Form verwenden, um die Ruin-
wahrscheinlichkeit y;(u) beim erfahrungstarifierten Portefeuille zu berechnen.

6. Die Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portefeuille fiir gegebe-
nen Parameterwert

Nehmen wir an, dass — obwohl wir selbst den entscheidenden Parameterwert
fiir den Risikoprozess nicht kennen und deshalb das Portefeuille nach seiner
Erfahrung tarifieren — jemand anders die uns entzogene Kenntnis hat. Dieser
mehrwissende andere soll nun auf Grund seiner Kenntnisse bestimmen, welche
Ruinwahrscheinlichkeit wir laufen.

Da ber bekanntem Risikoparameter X der Schadenzédhlprozess ein Poisson-
Prozessist, bilden unter der Bedingung N(t) = k die Zeitpunkte (Wj) j=1,2,...,k
eine Punktmenge, welche verteilt ist wie die Punktmenge (W;);j-1,2,...,k, die
durch das unabhingige Auswiirfeln von k zwischen [0,t] gleichverteilten Punk-
ten entsteht. Unter Verwendung der Schreibweise

Vi =t e (10)

giltalso firj < k

E[\G(t)lN(t):k]:%;fn gi: d'r=1+$ In (Bgt) (11)




217

o B[V 0o - ]% I

:B—:-l{({’n u)u — 2uffn u—-l]}

:ﬁ:t {z_ﬁﬁt(&qﬁﬁ-kt +’)—6f_ ,fnﬁﬁt—l]v}

+
) 5 (]fn u) du

I+t
L8

Somit finden wir wegen

Var [N Ol k] B[ Ol = k7 E Ol =)

- ebenfalls fiirj< k-

BBy B Y 5
Var[\/j(t_)‘N(t): ]— 1 - oz (fnﬁ+ t)' (12)

Zusammenfassend stellen wir fest, dass die rechten Seiten von (11) und (12)
nicht von k abhingen. Die Bedingung N(t) = k ist in diesen Formeln also nur
insofern von Bedeutung, als sie besagt, dass der j. Schaden vor dem oder im
Zeitpunkt t sich ereignet hat. Dies ist gleichbedeutend mit der Bedingung:

] < N(b).

Also halten wir fest

ﬂ B U (13)
O o] =1 e[+

Var[Vj(t)L_ éN(t)] = ] = ﬁ(fii—tl (fn [l +é])

Wegen Jim [i # %}% = ¢ siecht man, dass beide Ausdriicke unter (13) fiir t -0
ebenfalls gegen Null streben. Andererseits streben beide Ausdriicke fiir t - o
gegen Eins.

Schliesslich bemerken wir, dass unter der Bedingung j < N(t) die Verteilungs-
funktion von Vj (t) explizit berechnet werden kann. Es gilt

1 B+t <
P[\G(t)gxtjél\l(t] {311B+Wj,\x

_P[m>(5+t)e

jgN(t)}

]

= min [1,@(1% )}. (14)
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Graphisch sieht diese Verteilungsfunktion wie folgt aus:

F(x)
A

G+t

—t—(1~e"‘)

T

\

J

l

|

|

|

|

i

l

& > X
5 @gj

1

Fiir den Grenzfall t ~ =« erhalten wir — immer unter der Bedingung j < N(t) -
die gewdhnliche Exponentialfunktion mit Erwartungswert 1 und Varianz 1.
Wir bezeichnen die mit diesem Grenzfall verbundenen Zufallsvariablen mit
V; (o).

Nach diesen Vorbereitungen mochten wir nun die Ruinwahrscheinlichkeit

(®)
%UU:HE[YjCWUﬂ~C@m6;t

>u firmindestensein t < T]
bestimmen.
Unter V. wendungder Abkiirzung

N(t)
2(0=3 Y ~ e (O] - cortn O

(15)

bestimmen wir zunachst als Grossen, die uns iiber die «Belastung» Z(t) erste
Auskiinfte geben: E[Z(t)]und Var[Z(t)].
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Wir finden E[Z(t)] = ?\t[l —c+ cﬂ?fn(ﬁ—;—t)}m c o fn Bg L

oder durch Umformen
g+t .
EIZ(0)] = M{-c] — c[e — Agen = (16)

Der erste TeilAt[] — c]ist — analog zum klassischen Modell - als Zuschlagsteil
zu verstehen, wihrend c[« — AS8Jn £

gt dem Schdtzungsbias entspricht.

Fir den Fall X = %, d.h. wenn der wahre Parameterwert dem nach der
Strukturfunktion U(A) erwarteten Parameterwert entspricht, ist dieser Schit-
zungsbias Null. Bemerkenswert ist die Tatsache, dass in jedem Fall der Schat-
zungsbias nur logarithmisch zunimmt und somit gegeniiber dem Zuschlagsteil,
der eine lineare Funktion in t ist, rasch an Bedeutung verliert. Diese Feststel-
lung stellt eine eindriickliche Empfehlung fiir die Prinzipien der Erfahrungstari-
fierung dar, welche uns — bis auf den Schitzungsbias — ermdglichen, auf dem
anvisierten Zuschlagsniveau zu operieren, obwohl wir den wahren Wert des
Risikoparameters nicht kennen.

Andererseits rechnet man nach, dass

Var Z(t) = Rtl\/ar[Yj - \/j(t)j <N(t)]+ (E[Y; ~¢ ¥ (t)])z]

woraus durch Umordnung entsteht

Var Z,(l) - 2?\ti:l + Vir[Y'J] B+ Cz] N ?\CB {n ﬁ[;’ t [C{n Bﬁ+ t

+ 2((:—1)]. (17)
Auch hier entdecken wir einen linearen und einen logarithmischen (sowie auch
quadriert logarithmischen) Bestandteil in unserer Formel. Der lineare Teil stellt
wegenc > | zudem eine Majorante fiir die Varianzfunktion dar, d. h. wir haben

Var Z(t) < 2?\1‘[£+—V5{;—[m

— ¢+ cz] fiiralle te[0,09). (18)
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. . Vat[¥ .
Man rechnet leicht nach, dass die Schranke 2 '\t {Ltng‘_li[‘ﬂ_c + c3] exakt erreicht

wird, wenn man in Z(t) alle Summanden V; (t) durch die Grenzvariablen Vj (=)
ersetzt.
Da die Berechnung von v, (u) = P[Z(t) > u fir ein t € [0,T]] auf erhebliche
Schwierigkeit stosst, legt die eben gemachte Bemerkung den Gedanken nahe,
statt
N(t) 6 t
Z(t)= }, Y, —c Vi(t)] - LOCfnT

die stochastische Funktion

(3] '
250 =% 1Y, ¢ Y ()] c[Ot?\B]fn%

zu betrachten, welche die gleiche Erwartungswertfunktion wie Z(t) hat und
gleichzeitig die Varianzfunktion von Z(t) majorisiert. Es gilt ndmlich

E[Z#(1)] = E[Z(1)]

1+Vdr[Y| ]>

Var[Z*(1)] = ”P\t[ Var[Z(1)].

Es ist also zu vermuten, dass {Z*(t); t > O} einen «gefdahrlicheren» Prozess
darstellt als {Z(t);t > O}, was die Ungleichung

P[L ) >u furemte[()ﬂ]) v (u) (19)

fir grosse Werte von u als plausibel erscheinen ldsst.

Wir interessieren uns deshalb fiir die Berechnung von

NG B+t .
PL\% [ ¢ Y (e=)] > u+ ol — Mgl S fircinte 1] 0
in der Meinung, damit fiir grosse u-Werte eine vorsichtige Schranke fiir ¥ (u) zu
bestimmen. Dabei profitieren wir von der gliicklichen Koinzidenz, dass unter
der Bedingung j < N(t) die V;j (=) exponentiell verteilt und unabhiingig sind
und die Glieder in der auftretenden stochastischen Summe gerade dieser
Bedingung geniigen.
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k
) too *kK )
Es gilt also P[JN;: Y, *--c\/j(w)]éx]=extk§°(—7\%(F(x)*H (%‘-)) 1)

(man beachte, dass die in der Formel auftretenden Sterne (*) die Faltungsope-
ration bezeichnen),

wobel F(x) die (gemeinsame) Verteilungsfunktion der Y darstellt und
H(x) =1 —e™X ist.

Die stochastische Summe N:[Yj —c¢ Vj(oc)] kann aber auch wie folgt aufgefasst
werden (siehe z. B. [2], Seite 145): Die Summanden stellen genau die Differenz
von Schadenbelastung und Pramieneinnahme dar, welche in einem klassischen
Modell mit Poisson-Parameter A = 1 zwischen dem (j — 1). (exklusive) und j.
(inklusive) Schadenereignis anfillt

Yj 1st der einzige Schadenbetrag, der wihrend dieses Intervalles anfillt;
(W) — W) istdie Praimieneinnahme in diesem Intervall, wobei

Wi — Wj-j exponentiell verteilt ist mit Parameter 1, also der gleichen Vertei-
lung geniigt, wie sie fiir Vj (o0 ) unter der Bedingungj < N(t) gilt.

Wir sind somit fir die Berechnung der Ruinwahrscheinlichkeit geméss Formel
(20) wie im klassischen Fall beim Problem angelangt, den diskreten Random
Walk

S0 80 S, o Sm . S,=0

ar >~
Snz;’;« (Y; — cVj()) firn=>1

zu studieren. Fiir den Fall A = % (d. h. falls der wahre Wert des Risikoparame-
ters gleich dem nach der Strukturfunktion U(A) erwarteten ist) ist Ruin
gleichbedeutend mit dem Ereignis, dass das Maximum des Random Walks
liber [0,T] die anfinglichen Mittel u iiberschreitet, d. h. es gelten die tiblichen
Formeln, welche aus dem klassischen Modell hergeleitet worden sind. Der Fall
A+ 3 bietet einige Schwierigkeiten, da der Schitzbias je nach Zeitpunkt des
Eintretens des Maximums die Grenze u, deren Uberschreiten Ruin bedeutet,
nach oben oder nach unten verschiebt.

Wir beschridnken uns hier auf grobe Schitzungen fiir den Fall X # %. Zunéchst
ist fir A<% der zusdtzliche Pramienstrom aus dem Schétzungsbias positiv, also
ist fiir diesen Fall die Ruinwahrscheinlichkeit fiir A = % eine Majorante. Im
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Falle A > % wollen wir annchmen, dass wir das Ruinereignis nur in den
Gitterpunkten (nh) . o, 4, 2,... zuvermeiden wiinschen. Dann ist der erstmog-
liche Eintritt des Ruins im Zeitpunkt h moglich. Bis dann ist der negative
Pramienstrom auf ¢[o«—AB]{n ﬁ”‘ angewachsen, und wir erhalten wiederum
eine Majorante fiir die Rumwahrschemhchkelt falls wir annehmen, dass in den
weiteren Perioden der Lange h die Belastung durch den Schiatzungsbias eben-
falls cloe— AB] tn B0 betrdgt Damit haben wir aber die Mdglichkeit, durch
Ubergang voncauf

o = C[] +— (@ — AB)n Prh (22)

wiederum den Wert dieser Majorante aus dem klassischen Modell zu entneh-
men.

7. Ein numerisches Beispiel

Wir nehmen an, dass der Poisson-Parameter Anach der Gamma-Dichte

53 B-1 =B

k) = 3

verteilt sei. Es gilt dann

E(M) =1 und Var()\) =

und die Erfahrungstarifierungsformel lautet

Ay =B N()
i) = B+t

Die Parameterwerte seien wie folgt angenommen:

= 1 fiir die Strukturfunktion,
¢ = 1.1 fiirdie Intensitit des Primienstromes.

Der Planungshorizont T sei co.

Schliesslich wollen wir noch annehmen, dass die Yj exponentiell verteilt seien,
d.h.PlY; <x]=1—¢",
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Wir tabellieren im folgenden die Ruinwahrscheinlichkeit (besser: deren vor-
sichtige Schitzung) fiir verschiedene wahre Werte A, von A. Es gilt dabei
vergleichsweise

. 1 —C~—1u 1 - 0094 u
=_—pg £ = — !
woo(u) cC 1.1 ¢

im klassischen Modell mit )= 1.

h =100 h = 1000 PIA < A,
A=Yz 1 costu L 0091y %
’ 1° e 39,3%
No=1 Rl (0091 U Ml_c- 0.091u 63.2%
o 1.1 1.1 ’
A= 112 1 - o-0f0u 1 o~ 0-088u 77.7%
1.075 1.096 T
_ 1 _costu 1  _o.0g4u "
=2 1.049 © 1.092 ° 86.5%
1 0.023u I _o.082u ;
s 1 v T aaes weem — CU
hg= 2z 1024 °© 1,089 ° B8

Wir verwenden hierc* = ¢[1 + (1 — N %{n (1 + %)] fir A,> 1 und tabellieren
in der letzten Kolonne die Werte der Strukturfunktion, welche die Wahrschein-
lichkeit angeben, mit welcher der Risikoparameter unter dem Niveau A bleibt.

8. Die Ruinwahrscheinlichkeit bei erfahrungstarifiertem Portefeuille, falls der
Parameterwert nicht bekannt ist

Nachdem wir die Ruinwahrscheinlichkeit bei bekanntem Risikoparameter
prinzipiell bestimmen konnen — auf die praktischen Schwierigkeiten haben wir
im vorletzten Abschnitt hingewiesen —, erhilt man nun bei unbekanntem
Risikoparameter die uns interessierende Grosse durch Integration mittels der
Strukturfunktion. Wir verzichten auf die praktische Durchfithrung des Verfah-
rens und mochten darauf hinweisen, dass fiir die Praxis erst dann sinnvolle
Resultate bei dieser Integration zu erwarten sind, wenn die im vorletzten
Abschnitt gegebenen groben Abschitzungen noch wesentlich verbessert wer-
den konnen. Es ist deshalb zu hoffen, dass eine Verfeinerung der Abschétzun-
gen bald gefunden wird.
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Zusammenfassung

Die Frage nach der Ruinwahrscheinlichkeit bei schwankendem Risikoparameter wird hier fiir den
Fall diskutiert, wo dieser Parameter auf Grund der Erfahrung laufend geschétzt wird. Es resultiert
ein wesentlich komplizierteres «Random-Walk-Problem» als im klassischen Fall, wobei es aber
gelingt, geeignete Abschétzungen fiir die numerische Berechnung zu finden.

Summary

The probability of ruin is discussed in the case of a fluctuating risk parameter which is continuously
estimated on the basis of past experience. There results a random walk problem which is
considerably more complicated than in the classical case. However one can derive cautious bounds
which are convenient for numerical calculations.

Resume

On discute le probléme de la probabilité de ruine dans le cas d’un paramétre de risque variable. S
I'on estime ce paramétre continuellement & la base de I'expérience faite dans le passé, on obtient un
probléme du type «marche aléatoire» qui est beaucoup plus compliqué que dans le cas classique. Au
moins on peut dériver des bornes qui sont convenables pour I’évaluation numérique.

Riassunto

Sidiscute il problema della probabilita di rovina nel caso di un parametro di rischio variabile. Se si
stima questo parametro di modo continuo alla base dell’esperienza nel passato, si arriva ad un
problema del tipo «cammino stochastico» molto piu difficile del caso classico. Almeno si puo
trovare formole approssimative che sono adatte all’evaluazione numerica.
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