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Risk Theory and the Single-server Queue

By Hilary L. Seal, Yale University

In certain circumstances the probability that (a) a risk business with positive
sums at risk and an initial risk-reserve of w will not be technically ruined in an
interval (0,t) is exactly the same as the probability that (b) a potential (virtual)
customer arriving at an orderly queue at an epoch ¢ after the server commenced
business with an empty queue would not have to wait longer than an interval w
for his service to commence. Under the same conditions the probability that (c)
arisk business whose latest claim has just left it with a risk-reserve of w will not
be technically ruined through the nth following claim is equivalent to the
probability that (d) the nth customer arriving after the single server commenced
business by serving a customer (number zero) would have not more than an
interval w to wait for the commencement ofhis service.

There is a substantial literature on queueing theory with excellent texts that
include detailed treatment of the first problem (Benes, 1963; Cohen, 1969
Prabhu, 1965) or the second (Cohen, 1969; Feller, 1971; Pollaczek, 1957,
Prabhu, 1965) or both. Many of the theoretical results of risk theory were
discovered independently by queueing theoreticians (Seal, 1969, passim) and
there are queueing formulas that could well be applied to risk theoretical
models. It may be convenient for actuaries to have a short, simple article
demonstrating the probability equivalences mentioned in the first paragraph so
that they may save themselves from developing risk formulas that are already in
the queueing literature.

Basic assumptions

There are several random variables that are basic to both risk and queueing
models:

(i) A series of random variables representing successive interclaim (inter-
arrival) intervals. In the general formulation the process of claim (arrival)
epochs is supposed stationary — and stationarity may sometimes be
achieved only after rescaling of time measurements. Successive intervals are
not necessarily independent and multiple claims (arrivals) are not excluded.
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Because of stationarity the intervals all have the same distribution function
A(-) with mean «. The mathematics of such stationary point processes is
found in Mc¢Fadden (1962), McFadden & Weissblum (1963) and Kuznecov &
Stratonovic (1956). Simple examples of stationary point processes are
Poisson and renewal processes, the latter introduced in queueing theory by
Palm (1943). Others are listed by Sea/ (1969, Ch.4).

Expressions for probabilities (a) and (b) can be obtained in the general case
(Benes, 1963 ; Seal, 1969) but they are only equivalent (as we shall see) when the
intervals between claims (arrivals) are independently and identically distributed
(11d) or, more exactly, are exchangeable random variables. This restriction
applies also to probabilities (¢) and (d).

(1) The random variable B denoting the individual claims sizes (service times)
supposed to be independent of one another and of the epoch of occurrence
of the claim (customer arrival). We write B(-) for the distribution function
of Band b for its mean.

(ii1) The random variable X(t) representing the aggregate claim amounts
(service times) that are presented for payment (service) in the interval (0,1).
This random variable is the sum of the N(t) random claim (customer
arrival) variables B that have occurred in the interval. Note that N(t) is itself
a random variable whose distribution can be determined in terms of the
distribution function of the interval between an arbitrary epoch and the
occurrence of the mth following claim (arrival), m = 1, 2, 3, ... (McFadden,
1962). Write pa(t) = Pr{N(t) = n}.

The basic results presented in this paper are obtained under the assumption
that X(t) has independent and stationary increments.

The random variable X(t) is related to the A(+) and B(-) of (i) and (ii) above by
means of the following formula common to risk and queueing theory:

Pr{X(t) < x}=F(x.1) = Sp(0) B"(x) (1)

B™(+) being the distribution function of the aggregate of n claims (service times).
Let us adopt the convention that the Laplace-Sticltjes transform of a
nonnegative random variable A(+), say, is written as A(s) so that

Als) = [“edA(x)

[\
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the 0—in the lower limit of the integral denoting that any spike of probability at
x = (1sincluded. Then

Fy9)= £ 0B6)" )
Nonruin by epoch t

We will now consider the first pair of probabilities (a) and (b) introduced in the
first paragraph. The risk-reserve of a risk business at an epoch ¢ after the
business commenced with a capital of w > 0 is defined by

R(t)=w + (1+n) bt/a — X(t) (3)

where (1 +7) bt/ais | +ntimes the expected claim outgo in the interval (0,t) and
N > 0Ois called the risk loading. An essential feature of (3) is that the premiums
are supposed to be payable continuously throughout the interval.

The probability of nonruin of the business during the interval (0,t) is the
probability that R(t), T < t, is always nonnegative or, equivalently, that the
smallest value of R(x), T< t, is nonnegative. Write

U(w,t) = Pr{iTQf R(7) = 0}

= Pr{irni[w +(1+n) 7b/a — X(7)] = 0}

= Priw + inf[(1+n) 7b/a — X(7)] = 0f

= Pr{iLéE[X('r) — (14n) th/a] < w} (4)
The last expression is the probability that the excess of claims over premiums
does not exceed w, the initial risk-reserve, at any epoch in the interval (0,t). We
notice particularly that both functions within the brackets refer to the first part
ofthe interval, namely to (0,7).

Turning now to the single-server queue in which the server is supposed idle at
epoch 0 we introduce an indicator event Q (+) (read as “no queue”) such that
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—. [ Oifserver busy with a customer at epoch u
QU = | 1 ifserveridle at epoch u

and a random variable W(t) representing the time a customer would have to
wait for the commencement of his service if he arrived at the server (or the end
of the queue) at an arbitrary epoch 7.

The interval (0,t) commences with an idle period during which the server is
waiting for his first customer. This customer arrives and, in effect, presents the
server with a service load that is a realization of the random variable B. The
server immediately starts to reduce this service load (the size of which is
unknown to him) and will again become idle unless a second customer arrives
before the server has finished with the first. The waiting time of a customer
arriving for service at epoch 7 1s thus equal to the aggregate service load imposed
on the server by customers arriving during the interval (0,t) minus the time
during which the server has been reducing this load by providing service. The
deductive item is equal to the time elapsed ¢ less the aggregate of the server’s idle
periods. We thus have

W(t) = X(1) — t + £ Q(u) du (5)
and will demonstrate (Benes, 1963 Lemma 1, 1) that
W(t) = sup [X(t) — X(7) — t + 7] (6)
T<t
Using (5) forany epoch 7< t we have
W(r)=X(1) — 7+ f':Q(u) du
and on subtracting this from (5)

W(t) = W(r) + X(1) — X(r) - t+7+] Q(u)du

> X(t) — X(7) — t + 7 since the other terms are nonnegative.

On the other hand supposing thatis the last epoch prior to ¢ at which the server
wasidle.
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W(t)=X(t) — X(0) —t+0 namely the overload since epoch g
éggg[X(t) — X(1) =t+ 7] bydefinition of a supremum

Combining the inequalities for W(t) (6) results.
Now in general sup [X(t) — X(7) —t + T]!i sup {X(7) —7].
Tt Tet

But if the discrete increments in X(t) are independently and identically dist-
ributed we can, as it were, reverse the time scale and write X(t)—-X(x) = X(t-7) in
probability. Then

PriW(t) < w}= Pr{sgp[X(t) —~X(r)—-t+71]= Pr{sgp[X(T) -71<w}  (7)
Tt vt
Comparing (4) and (7) we see that they are equivalent provided

a

1+n= 5 (8)
This is not a restriction since, in the risk model, b is in monetary units which
may be chosen arbitrarily but consistently so that w and R(r) are also expressed
in those units. In bothmodels a is in time units and is often chosen as unity. We
note that the ratio b/a is sometimes written as p in queueing theory. Fur-
thermore U(w,t) in risk theory, defined as zero when w = 0-, written as U(0,t)
> 0 when w = 0, and increasing monotonically to unity as w >o0, can be
regarded as the distribution function of a random variable W(t).

Nonruin through the nth claim

The initial conditions are different for the second pair of probabilities (c) and
(d) specified in the first paragraph. The time origin must be chosen at the
occurrence of a claim (customer arrival). In the risk theoretic case w is the risk
reserve after paying this claim and in the queueing model the initial customer is
assumed to be served before the count of n (n = 1, 2, 3, ...) further customers
begins.

Wenow write Aj for the random variable representing the interval between the
occurrence (arrival) of the (j—1)th and jth claim (customer), j = 1, 2, 3, ..., A4
thus being the epoch of the first claim (customer arrival) after the new time
origin. Let Bj be the amount (service time) of the jth claim (customer). The Aj’s
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and Bj’s have distribution functions A(s) and B(s), respectively. For conveni-
ence we choose a, the mean of A(:), to be the unit of time in both models.
In the risk theoretic model Bj — (1 +7m)bA; is the reduction in the risk-reserve
between the (j—1)th and jth claims. Write

§,= 5B, — (lrmbAj} (9)

for the aggregate of such depletions through the nth claim ; then the risk reserve
after the nth claim is defined to be

R.=w S n=1,2,3,.. (10)

n n

and technical ruin will have occurred at or before the nth claim if any member of
the series Ry, Ry, ... R is negative.

Writing W, (w) for the probability of nonruin through the nth claim

W (w) = Pr{min[R,, R, ... R,] = 0}
= Primax [0.S;, Sy, ... SplI< w} by (10) (11)

Reverting to the queueing model write Wj for the waiting time of customer j(j =
1, 2, ...). This customer arrives at epoch A, + A, + ... + Aj, his service
commencesatepochA, + A, + ... + A; + Wj and it terminates at epoch Aq T
A+ ... + Aj + Wj + Bj. The next customer arrives at epoch Ay + Az + ... +
Aj + Aja and has a waiting time

Wj+1 = (A1+AZ+ AJ+Wj+BJ) - (A1+Az‘|’ +Aj*'1)
=Wj+Bj — Ajse

provided this is positive; and in the opposite case Wj.q = 0 implying that the
customer 18 served immediately.

Itisconvenient to write Bj—Aj+1= Zj«a(j = 0, 1,2, ...), B, being the service time
of the customer whose service commences at the time origin. Assuming that
both A’sand B’sare iid the Z’s are iid. We then have
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W, =max(W,_+Z,,0)

n-b
= max [{max(Wa.o+ Z,.,), 0} + Zn4, O]
— max [max(wn-2+ Zn—2+ Zn-ta Zn-1)7 0]
= max(Wyyt Zys* Zoy o, 0]

ES X

= max [ Wyt S Spas 0]

where 8= B2
namely the sum of the last n—k Z’s through Z,_qwhere each Z has the same
distribution. Continuing the recurrence it is seen that

W, = max|[S;, Sf, ... Sp.i, 0] n=1,2,3, ..

k-1
Ifwe now write 8. Z Z k=1,2,3, ..

Sy_1has the same distribution as S* _ since each is the sum of k random
variables Z. Hence W,, has the same distribution as max[S4, S, --. S,, 0] and

Pr{W, < w}=Pr{max|0, S, ... S, ] < W} (12)

[fwe write (1 +n)b = 1 [cp.(8)] S,,of relation (9) is the sum of n random variables
each of which has the same distribution as B-A = Z. With this choice of
monetary units in the risk theoretic case Sy, has the same distribution as S,,_,and
(I1)and (12) are identical.
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Zusammenfassung

Diec Wahrscheinlichkeitsverteilung der Wartezeit eines Kunden in einer Warteschlange und dieje-
nige des Maximums des Verlustes im Risikoprozess sind eng miteinander verbunden. In dieser
Arbeit wird dieser Zusammenhang unter besonderer Beriicksichtigung versicherungsmathemati-
scher Terminologie und Interessen dargestellt.

Summary

The probability distribution of the waiting time of a customer in a single-server queue and that of
the maximum loss in the risk process are closely related. The connection is discussed with particular
emphasis on actuarial language and interest.

Résume

Les fonctions de distribution de la période d’attente d’un client qui se joint 4 une queue et du
maximum de la perte dans un processus stochastique du risque sont étroitement li¢es. Dans cet
article on déduit ce rapport en tenant compte spécialement de la terminologie et de I'intérét dans les
assurances,

Riassunto

Le funzioni di distribuzioni del tempo di attesa di un cliente che si aggiunge a una fila d’attesa e del
massimo della perdita in un processo aleatorio del rischio sono strettamente unite. )

In questo articolo si dimostra questo rapporto con particolare riguardo alla terminologia €
all’interesse assicurativo.
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