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Numerical calculation of the probability of ruin

in the Poisson/Exponential case

By Hilary L. Seal, Yale University

Consider a nonlife insurance company operating through an inter-
val of time (0,7). The probability distribution function of the indepen-
dent intervals between successive claims is

A(r) = 1—¢€* 0<z<<oo; A4>0 (1)

and the probability distribution function of individual claim size is
assumed to be

Bly) = 1—e™ D<y<<oo; u>0. (2)

The size of a claim is thus independent of its epoch of occurrence
and of the number of claims that have already occurred. This situation
may conveniently be called the Poisson/exponential model since
the assumption about claim occurrences implies that the probability
distribution of the number of claims in an interval (z,, 7,) is Poisson
with parameter 1 (7,—7,).

The Poisson assumption for claims is not unreasonable for a mul-
tiple line company ; if claims are oceurring randomly and independently
in each line of business the overall number of claims follows the
Poisson distribution. On the other hand the use of (2) as the distribu-
tion function of claim sizes is more unrealistic; the tail of the claim
distribution is known to be much longer for a given mean claim u'*
than (2) can accommodate. Nevertheless it may be defended as a first
approximation for which, as we shall see, the mathematics are beauti-
fully explicit.
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The distribution of aggregate claims

Under the assumed circumstances the distribution function of
X (t), the aggregate claims in the interval (0,f), written F(z,t), may be
derived as follows. Write B" (z) for the distribution funection of aggre-
gate claims stemming from exactly n claims. Then
| o A |
PX) <z} = Flz,1) = > ¥ BY(z), 0<x<co, (3)

=0 n!

since the probability of n claims i the interval 18 given by the Poisson
distribution with parameter Af. Now the distribution function of the
sum of n claim sizes may be obtained iteratively from

Y

BY(y) = [ BV (y—2) dB"()  w =123 ... (&
0
0 y <0
BY(y) = B BD*?,:[
(y) (y) (y) |1 y =0

the integrand of (4) being the probability of suffering a first claim of
size 2 followed by n—1 claims the aggregate of which does not exceed
Y —2.

It is well-known that when B(.) assumes the form (2) relation (4)
specializes to

n Y

I'(n)

F()

1,23, ... (5

and this can be substituted into (3). There 1s, however, a more conve-
nient formula for numerical calculations.

On differentiating (3) with respect to z (noting the discontinuity
at 2 = 0 where F(0,1) = ¢*' = f(0, {) by definition)

0 o (A" w"

F - z, = NV At M T um el 0

. (% 8 = flm §) ;;13 ol T) g >
(l,u ta:)” !

= aut et X )
n— 1 ’n' (n 1)



Define
J(2) = Z S— (6)

then

JE =S

=1l (n—w ’

and the foregoing expression for f(x,t) becomes in an obvious notation
(x> 0)

, t
Falet) = Aut e*+* J' (Autz) = ;f;b#(t, ) . (7)
We mention that J'(.) is related to the modified Bessel function
of unit order (Olver, 1967) by the formula
J'(z) = *1,(2)z).

Tt is convenient to derive the Laplace-Stieltjes transform (moment
generating function) of F(.,t), namely

frs) =F0,0 + [ e f(x1) do
0
= 7,ut)”‘ %
wﬂ.t -(st+mwax n]
+ Aut e ;1 n‘in 1 fe dz
— e‘/lt + 6._12 %O‘ (;{Lu'il_ s BXp{—/'{tS/(S +M)} (8)
=il (s+p)

The probability of ruin before epoch ¢

We now suppose that the insurance company receives a conti-
nuous stream of premiums from its customers. The aggregate premium
collected in the interval (0,) is equal to the expected claim outgo,
namely

E{X(#)} = hgﬁ(s) = il: from (8)
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plus a risk loading #n¢. The premium intensity is thus A/u+n payable
uniformly throughout the interval (0,#). It is usual and convenient to
write 4 = 1 so that the unit of time is the expected interval between
claim occurrences, and also g = 1 so that the average individual elaim
size is the monetary unit. The premium intensity throughout the inter-
val 18 then 1+ 7.

The insurance company 1s supposed to pay premiums as they are
received into a risk reserve whose value at the commencement of the
interval 18 B(0) = w. All claims are paid from this reserve as they occur
and interest on the reserve is paid out as a dividend to the stockholders.
The reserve at epoch 7 1s thus

Rr) =w+(A+nt—X(1), (9)

and if it becomes negative (technical) ruin is said to have occurred and
the insurance company is supposed to borrow capital to pay claims until
premiums accumulate to repay the capital and once again produce a
non-negative value of R(.).

We now consider U (w, t), the probability that the risk reserve does
not become negative in the interval (0,1), which may be written (w =0)

Uw,t) = P{R(z) =0, 0<z<t|R(0) = w}

= P{inf[w + (149 7—X(1)] =0}

¢

— Plsup[X (1) —(1+n) 7] = w}. (10)

7=t

Relation (10) shows that U(w,f) is a non-decreasing, non-negative
function of w for fixed ¢ and assumes the value unity as w — co. How-
ever wis not a specific value of a random variable W and Uf(w 1) is only
a pseudo probability distribution function over the non-negative
values of w.

Let us first consider U (0,t), the probability that ruin does not
occur in the interval (0,¢) given that the risk business started the inter-
val with a zero risk reserve. Suppose that the aggregate claims in the
interval amount to z where z must be less than the total premium paid,
namely (1 -+ n)t. The probability of this event is f{z,1) dz.
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Now if ruin has not occurred during the interval preceding epoch ¢
the premium received in any interval (0,7), namely (14 %)z, must
have exceeded the aggregate claim outgo of that interval. Since the
interval (0,¢) produced a claim outgo of # the excess income during the
period is (14 #)t—z and, intuitively, the probability that the income
throughout the interval has been larger than the claims is proportionate
to the size of (1 4 #)t—2 in relation to the total premiums (14 5) ¢ We
may guess, then, that the probability of non-ruin in the interval (0,%),
knowing that the aggregate claims amounted to 2 at the end of the inter-
val, is {(L+n)t—2z}/(1+n)t.

The foregoing result is proved as an extension of ““the ballot
theorem” (Feller, 1968, Ch. III) in which n claims of unit amount oceur
in m equal intervals of time during each of which a unit premium has
been paid. The excess income of the period is m—n and the probability
that the income has remained in excess of the aggregate claims at the
end of each of the m intervals is (m —n)/m (Feller, I ¢.). The extension
18 first to premiums of 1 + 7 per interval and then to the continuous
case in which the intervals between n claims and the claim amounts are
independent realizations of two random variables which, in our case,
are exponentially distributed with unit expectation (Finetti, 1970,
Ch. VIIL. 6). The result is found not to involve the number of claims but
only their aggregate amount and is thus true generally?).

Summing over all permissible values of z we have

U0, — ] m._.(-l__.:?mf(z,t) ds (11)
¢
~F(l+n-t1 wlt’7~ [eft+n- 21 de
t —
— FA+n-t,8) —(1+7) fe“‘z)”f(lJrn-t,z)dz (12)

0

by means of (7).

1) We will see later that U(0,t) is the probability of an empty single-server
queue at epoch t. A non-combinatorial inductive proof of our result may then be
obtained, for example, from Prabhu (1965, Sec. 2.3) or Tackécs (1962a, Lemma 1).
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The important specialization that (12) represents in comparison
with (11) 1s that in this Poisson/exponential case a fixed quantity w may
now be added to theriskreserve at time zero thereby inereasing the fixed
claim outgo throughout (12) by a similar quantity. Thus (w = 0)

14
Uw,t) = Flwt+1+q-t.0) —(1+n) [¢Dfo+1+n-t2dz  (13)
0

(14

1
=gty gt f'e‘(1+”)zJ’(z(w+ 1+ t)){(w+ 1+7 ,t)e‘wzlt_"(l + n)ze”w}dz
0

by means of (7).
We may use (13) to find an asymptotic value for U (w,t) as t -> oo,

conveniently written U (w, o). The first term on the right of (13) tends
to unity and using (7) we have

o~

Uw,o0) = 1—lm(1+n)e®? f 26T J (2 - w+ (1+m)t) de

t—>co 0
8—nw/(1+77) (A+nja-w
=1—lim———¢* ye ¥ J' (ay) dy
t>w <+ 0

with @ = ¢+ w/(1+7)

6*?711);'(1—%?7) 2 e—a l’/ (uﬁ“ﬁ)a—w

S T - 12 (2 Ja x)dw .
b o 1“%77 ]/CL Gf 1( I/ )

The above integral with an infinite upper limit is equal to ¢*J/a/2
(Magnus et al., 1966, 3 8.8) and it remains to investigate

2¢® -
o g2 ) .
[7& f x2e™ 1,2z [Ja)dx =
- Vdtmew
a e e2ala

= Ea,g._lf% f o e ”“V;' [1—0(z Ja) Y] da.

Ve



The expression on the right is less in absolute value than

1 . S _
{1+ n)a—wfT m x—)a)® + 2)a (z—)a)+ a) e Va2
& -Hla—af s o {(1+n)“a[:w}’/z (= =y) (z—ya)+a}

[1—0(z Ja) ] dz

which tends to zero as @ +co. Hence
Ulw, 00) = 1— (14 p)t gl (15)
There is a discontinuity at w = 0 where

U(0, c0) = T%

which is true generally.

The form assumed by (15) suggests that there is no particular
advantage in standardizing the pseudo random variable W. The moment
generating function (Laplace-Stieltjes transform) can be derived but
does not assume a simple form.

Historical remarks

The risk process in which claims occur as a Poisson process and
their sizes are independent random variables was introduced by Lund-
berg (1903). The three opening paragraphs of Chapter T of his article
suffer from severe compression and have been regarded as impenetra-
ble, but we can rewrite them quite briefly in modern terminology and
notation without any distortion of the original. Let

p; = Pr{an individual claim size = yi} 1 =1,2,3, ...

and suppose that p,dt is the probability that a claim of size y; is made
in the time element (t,¢--df). [Lundberg writes p; for our p; and dp,
for our p,dt. Cramér (1969) says that he is considering p; as a function
of &.] The probability of two (or more) claims is of order (df)% and may
be ignored. Write f(x,1) for the density function of the aggregate
claims made in the interval (0,f), then by considering the mutually
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exclusive events that are produced by the occurrence of one claim or
no claims, respectively, in the interval (¢,¢-+ dt) we have

i=1 =1

flotrd) = a@t N pf(z—ya) + {1 N pi}f(a?,t). (16)

[ This relation occurs on p. 5 of Lundberg (1903).] Changing to conti-
nuous variables x and y the foregoing may be written

z,t+di)—f (=, of (x, =
[z, t+ ta)t flx t)_____-féf t)Z_i{f(fc—y,t)ﬂf(a:,t)}p(y)dy, an

and this is Lundberg’s relation (3) except that he suppresses ¢ in

f(z,1).

Taundberg goes on to consider the special case where p () degene-
rates into the unit probability at y = 1; (17) then becomes

MO femtiy—fle)  2=123... (8

which is relation (3) of Lundberg. In order to solve this Lundberg
considers (by implication)

aetf(xa t) af( ) t
73;7 = -+ e flx,t) =
= e'f(xz—1,7) by means of (18)

and says that the solution of (18) is

Fla,t) = f e f(z,5)d r—1,2,3, ... (19)
Lundberg does not state how he calculates the initial value f(0,?) for
insertion in (19) but we may assume that he rewrote (16) as

and obtained

f0,8) =&
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Repeated substitution into (19) then results in the Poisson process
defined by
ta:
flzl] = &% — g o= 010 e
4

We add that in his 1919 paper Lundberg stated that the above
equation (17) is satistied by

o8] t’ﬂ .
fat) = X et p (@) 20)
n=0
where
P = [p" @y pdy m = 1,28, ...
0
and
0 x=0
_—
P () ]1 v — 0

The explicit formula for the particular case in which p(z) is expo-
nential, namely (7), was first provided by Ackermann (1939).

Lundberg continued his general approach to the Poisson risk
process in his 1909 article. Attention is now paid to the random variable
R (7) defined by (9) except that: (i) w may be a random variable, (ii)
1s supposed to be a function of X (), (iii) negative claims are permitted,
and (iv) dividends may be paid from the risk reserve. The probability
of ruin is considered and a general inequality found for it as ¢ »oo.
However the argument is not particularized to the exponential claims
distribution and the result (15) was first given by Lundberg in 1926.
Twenty four years later Arfwedson gave the result for the Poisson/
exponential case valid for all . In the 1950 paper he obtained (7) and
(14) (his (77) and (48), respectively), the latter using rather deep mathe-
matics and the former by writing 1-+# = 0 in (14). In his 1952 paper
Arfwedson developed a series expansion for caleulating U (w,?) and
produced two-decimal values of it for w = 0, 11, 110, 1100 and ¢ = 10/,
] =1,2,8,4, 00, with n = 0 and 0.1, respectively. This numerical
achievement has not hitherto been duplicated.



Formulae (7) and (14), the explicit solutions of the two central prob-
lems of risk theory, are identical with two formulae in a queueing
theory model in which a single server, idle at epoch zero, handles the
service demands of customers who arrive as the realization of a Poisson
process with arrival intensity A. Customers are served in order and wait
in a queue 1f the server is busy. The lengths of customers’ service times
are independent of each other and of their arrival epochs and are dis-
tributed exponentially with mean u'. The density function of the
aggregate service load offered to the server through epoch ¢ conditional
on 7 customer arrivals is dB™ (y)/dy and the unconditional density is
then given by (7). However in order to translate (14) into the correspon-
ding queueing formula we must rescale the time and monetary units by
writing w' = w/u, t' =t/A and ¢! =u/d = 1+x. It turns out that
the probability on the right of (10) is then the distribution function of
the random variable W (t), the waiting time for service of a customer
assumed to join the queueing system at epoch £ These equivalences
were first made explicit by Prabhu (1961).

Although W (f) is an important random variable in queueing theo-
ry at least as much attention has been paid to Q (¢), the length of the
queue (including the customer being served) at epoch ¢. Of course when
Q (t) = 0 an arriving customer has no wait for service and the probabili-
ty of this empty system is U (0,7). In the Poisson/exponential case
(denoted M/M/1 in the queueing literature) the distributions of Q(?)
and W () are related as follows.

If there are & individuals in the system at epoch ¢ the aggregate
unsatisfied service load is made up of the remaining service demand of
the customer being served plus the sum of the service times of the k—1
customers in the queue. Since the distribution of a partially elapsed
interval whose length is distributed exponentially is also exponential
(without parameter change) we have, with appropriate choice of time
scale,

(0. = 3 P(t) B (21)

where P, () = P{Q(t) =k} and B¥(.) is given by (5).

Furthermore, a relation for P ({) in terms of U(., ) may be
obtained as follows. If the system contains k>0 customers at epoch



. 87

suppose that the customer receiving service arrived at epoch t—7,
commenced service at epoch t—7 -4y (so that his waiting time was )
and continued to be served at least until epoch ¢ (i.e., at least for a
period 7—y). The k—1 customers waiting in the queue arrived after
the designated customer, namely during the interval (t—7,f) with
probability ¢**(27)*!/(k —1)!. We thus have (k =1,2,3,...)

Pyt =

5

t AT (}“T)k_l J 71,
o o e feva, o e

0

The foregoing queueing model was introduced by Frlang in 1909
when heshowed that the assumption that telephone calls were uniformly
distributed in any interval of time led to a Poisson distribution for the
number of independent calls in a specified period. He proceeded to
derive the distribution of W (f) on the assumption that individual
service times were constant. His arguments and mathematics are easily
understood. Erlang’s first use of the exponential distribution for service
times was in 1917 and he there provided the asymptotic waiting time
distribution (15) as a special case of a formula valid for more than one
server.

The first major contribution to the so-called transient case (¢ finite)
of queueing theory (M/M/1) was made by Ledermann and Reuter (1954)
and then, more simply, by Bailey (1954) for the function ¢ P, (t)/¢t and
for G(.), the distribution function of the length of a (busy) period
during which ther server is never idle. No attempt seems to have been
made to obtain U (w,t) directly for w==0 and reference is invariably
made to (21) in text-books on the subject (e.g., Takacs, 19620; Prabhu,
1965; Cohen, 1969).

The probability of ruin before the nth claim

Another function of interest in queueing, and possibly also in risk
theory, is W, (.) the probability distribution function of the waiting
time for service of the nth arrival at the queue. This function has played
a central role in Pollaczek’s idiosyneratic contributions to telephone
engineering which commenced in 1930. It has received considerable
attention since the early fifties because of its connections with* fluctua-
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tion theory”. Lindley (1952) wrote down the following self-explanatory
recurrence relation

W (w) = an_l(w~z) AK(z), n=1,23,... (23
[0 w< 0
Wolw) = |1 w=o0

where K(-) is the probability distribution function of Z, the difference
between the service period of a customer and the interval of time be-
tween that customer and the next. In order for customer number 1 to
have a possibly non-zero waiting time we assume that customer 0
starts the system at epoch zero with a random service load from which
is deducted the arrival epoch of customer number 1 to provide the first
realization of Z. This is in conformity with the natural procedure in the
risk model where the premium for the interval until the first claim is
added to w and then reduced by the first claim amount corresponding
to the serviee load of customer 0.

Consideration shows that
r

J

y=ma;{(0, -z)

K() = Bz y) d4 (y)

or, in our doubly exponential case,

K - J‘ue’lz/(;t +u) <0 24)
| 1— Ae™/(A+p) 2>0

For this M/M/1 case a series expansion has been obtained by Cohen

(1969) namely (o = A/u)
(25)
W (w) o %1 2{_(?‘: //Llu}) \Fﬁ ?+ k + 1 '2m *""'j ~+ k + i i Qn—I—l -
n = F(?) IEZJ() 2(”_7 + k1 ( ’)’L*? ) (1 1 Q)2n-7'+k+1

where the gamma ratio is replaced by B (w) when j = 0.
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The last term of this series () = n) 13 equal to

y(pw) [0\ g Ympw) (o
NY (1 o)k Mad isoc A S0
I'(n) (1 ! ) - (1+0) I'(n) (1 0 ) ’

and the inner sum for the remaining j-values is 0" /(1 )* 7" times

k+1 [ k+%n—
SR A [

=0 n—] n—1—y
::_._.\ﬁ k1) (140 :
s S0 (50

on making use of the relation (Riordan, 1968)

() =200

Il!

Noting that

2( ) (1+0)* (1—{—‘9)9‘1_1 el i =01%9..-

the required sum becomes




We thus have

n-1 07:—1 y (?’ ‘LL’LU) n—-1 Qm,—y
w N\ 15 1 141 1+ s b
) = 2 ) T 2 1) D (Ll

where v (0, uw) /17(0) i3 understood to be unity. The right hand side 1s
a series of n(n+41)/2+1 terms.

In rigk theory W, (w) is the probability of non-ruin through the
nth claim starting with a risk reserve of w. Only one example occurs in
the literature, namely Beard’s (1971) note in which he used (23) to
derive the values of W, () for n =1, 2 (and for » = 3,4 when % = 0)
for the Poisson/exponential case. His results agree with (25) with

o= (1+n)".

Numerical calculations

The calculation of F'(z,t) by numerical integration of (7) poses no
substantial problems, particularly since I,(z) can be approximated
with better than seven significant figure accuracy by polynomials
(Olver, 1967, Sec. 9.8.3/4). Tt is well known that if X (¢) is the random
variable having F'(.,{) as distribution function then X; — i;ﬁ%j_t— 18
asymptotically standard Normal in distribution. This suggests that i-
wise interpolation of F'(x,#) is likely to be more successful for constant
xo—, rather than x—, values.

We accordingly calculated F'(z,f) for z, = —5(1)5 and ¢ =
1(1) 50(50) 2000. Trapezoidal quadrature with 128 panels was used first
on F(—5,t) and then on each F(xy -+ 1,1) - Fy(xe, ), 1y = —5(1)4 where
Fyhas been written for F' when z is replaced by the corresponding stan-
dardized value ,. Actually the Trapezoidal Rule was used with 4, 8,
16, 32, 64 and 128 panels and the Romberg extrapolate based on the
six resulting values (Henrici, 1964, §13.7) was found to agree with the
128 panel result to at least five decimal places. The following Table 1



Table 1

Byig: s Zg = (z—1)/ )2

b oxy = —4 -3 -2 ~1 0 1 2 3 4 5
1 - - — - 65425 .86099 94679 .98036 .99296 .99753
2 - = = .13534 .60850 85194  .95123 .98528 .99583 .99888
3 — - - 14133 58333 84875 195419 98777 .99703 199933
4 = £ = .14653 BTLT2 84707 L95628 .98932 .99768 199954
5 - - - . 14952 56392 84604 95786 .99040 .99810 .99966
10 - - .00234 .15470 54489 84384 96236 .99308 .99897 .99987
20 - .00001 .00844 .15685 53164 .84266 .96609 199493 .99944 .99995
30 - .00003 01124 15749 52581 84224 96790 .995T1 .99960 .99997
40 - .00009 .01289 15780 52234 .84203 .96903 .99616 .99968 .99998
50 = .00015 .01400 15798 51997 84190 96982 .99647 .99973 .99999

100 — .00037 .01669 .15833 51411 84163 97186 .99718 199983 -99999

150 = .00051 .01785 15844 51152 84154 97280 .99748 99987 1.

200 - .00060 .01853 115850 .50998 84149 97337 .99765 99989 1.

400 .00001 .00079 .01980 115858 .50705 84142 97447 .99796 99992 1.

600 .00001 .00088 .02036 .15860 .50576 84139 97497 .99810 .99993 1.

800 .00001 .00094 .02068 15862 50499 .84138 97527 .99818 99994 1.

1000 .00001 .00098 .02091 15862 .50446 84137 97547 .99823 .99994 .99999

1500 .00002 .00104 02125 15863 50364 84136 .97578 .99830 .99994 .99999

2000 .00002 .00108 .02145 .15864 .50315 84135 .97598 .99835 .99994 .99999
oo .00003 .00135 .02275 115866 .50000 84134 97725 .99865 99997 1.

16



extracted from the computer output may thus be regarded as correct
to within a unit in the fifth decimal place. It 18 interesting to note how
quickly Iy converges towards its asymptotic value when z, = +1 but
how relatively incorrect the asymptotic F is at the mean z, = 0 even
for fairly large t-values.

Relation (14) allows U (w,t) to be calculated by approximate inte-
gration for any combination of %, w and £. The following arbitrary rule
was adopted: if the Romberg extrapolate based on six approximations
by the Trapezoidal Rule with successive halving of the panel width
differed from the sixth quadrature by 8 or less in the fifth decimal place
the extrapolate was to be judged essentially correct to five decimals.

Experiments were carried out with # = 0.1 (a 109, risk loading).
Using up to 64 panels calculation of U (w,?) for w = 0(11) 22 and ¢ =
1(1)100(2) 150 resulted in five decimal accuracy for U (0,¢) through-
out, for U (22,7), t =9(1)66, and for a few other 1solated sets of values.
In order to produce five decimal accuracy throughout the number
of panels was mereased to 128, and the ranges were extended to w =
0(11) 110 and ¢ = 50 (50) 2000. All the resulting values of U (w,t)
satisfied the arbitrary accuracy criterion, very few fifth place differen-
ces being as large as 7 or 8. Finally, a further set of 128-panel quadra-
tures produced values of U (w,f) for w = 1 (1) 10 and ¢ = 1 (1) 50, the
extrapolate now never differing from the final quadrature by more than
5 in the fifth place.

Table 2 summarizes the results obtained in the foregoing computa-
tions. We notice that there is at most a unit difference in the third
decimal place between U (w,1000) and the corresponding asymptotic
value. The final line of the Table provides Segerdahl’s Normal approxi-
mation to U (w,1000) (see Seal, 1969, p. 115). While the values are, for
w = 22, slight improvements over the asymptotic results they do not
justify the extra calculations involved.

The upper part of the Table is interesting because it shows how
quickly U (w,t) tends to unity for given small ¢. The step at w = 0 18
larger than one-half when ¢ — 1 showing that, with no initial capital
and a 10 9, risk loading, there is only slightly better than an even chance
of avoiding ruin during the interval at the end of which the first claim
18 expected.

Table 3 provides the corresponding values of U (w,t) for the no-
loading case, = 0.0. Ruin is eventually certain whatever w is but for



Table 2

U(w,t), n=0.1

i w=20 1 p 3 4 5 6 7 8 9 10
1 .53660  .76194  .88029  .94085 97121 98616 99342 299690 .99855  .99933  .99969
2 40714 64543 79433 88367  .93560 .96499 98127 299012 99486  .99735  .99865
3 34479 57402 73154 .83524 90118 .94191  .96645 98093 .98932  .99409  .99677
4 .80669 52472 68359 79471 .86979  .91907  .95061 97035 .98246  .98977  .99410
5 28040 48811  .64558  .76049 84164  .89734 93464 95906 97474 198463 99077
6 .26088  .45957 .61455 .73125  .81646  .87701  .91901 L94752 196649 97890  .98688
T 24566 43653  .58863  .70596  .79389  .85812  .90397 L93600 95797 97277 .98258
8 .23337 41745 56658  .68384  .77359  .84064  .88962 92469 .94934 96637  .97796
9 .22319 40130 54753 .66430  .75524 82444 87601 91369 .9407T4 195983 97311
10 .21457  .38742 53087  .64690 .73857  .80943 86312 .90305  .93224  .95323  .96810
20 .16816  .30939  .43267  .53879  .62889  .70438 76683 81785 .85904  .89191  .91785
30 14798 27393 (38578 48419 57000 64413 ST07T60  .T6147 80678 84458  .87584
40 13621 .25289  .35738  .45033  .53247  .60458 66744 72188  .76871 80872 84269
50 12836 .23872  .33804  .42696 .50618 57639  .(3827 (69253 .T3985 78090  .81631
i w=20 11 22 33 44 55 66 T 88 99 110
50 12836 .84671  .98438  .99904  .99996 1. 1. 1. 1. 1. 1.
100 .11001  .77244  .95621  .99373  .99933  .99994 1, 1 1. 1. 1.
150 .10282 73611  .93517  .98695  .99786  .99971 .99997 1. i 8 1. 1.
2000 .09902 71512 .92050  .98080  .99602  .99999 .99989 99998 99999 1. 1.
400 .09343 68177  .89287  .96584  .98979  .99716 .99927 99982 99994  .99998  .99999
600 .09191 67215  .88372 95977  .98652  .99565 299865 .99960 99986 .99996  .99998
800 .09136  .66853  .88009  .95715  .98494 99489 99826 .99943 199980  .99993  .99997
1000 .09112  .66698  .87848 95593  .98416  .99437 299802 .99932 199976 .99991  .99996
1500 .09095  .66582  .87725  .95496  .98350  .99397 99780 199920 99970  .99989 99996
2000 .09092  .66562  .87702 95478  .98337  .99387 9773199914 199966 99985 99993
© 09091 .66556  .87697  .95474  .98335  .99387  .99775 99917 199970 99989  .99996
1000 .09091  .66556  .87698  .95492  .98376  .99431 299807 199936 .99979  .99994 99998

66



Table 3

U(w,t), n=20.0

Ot W W DD =

-

w =0
.5237
.38575
31871
27757
.24910
22789
.21131
.19789
.18674
17729
12576
.10279
.08907
.07969

(e ]

w =10
.07969
.05638
.04605
.03988
.02821
.02303
.01995
.01784
.01457
.01262

1

75406
62804
54911
49389
. 45252
. 42005
.39368
37172
.35307
.33697
24501
.20198
LATETT
15768

11

74543
.09118
.50370
. 44602
.32649
26976
.23503
21098
17310
.15028

2

87580
18207
.71164
.65684
.61280
57647
.H4586
.51963
.49683
47678
.35614
.29653
.25939
23343

22

96330
.87760
.80017
.73716
.BTT55
.48941
.43204
.39098
.32433
28314

3

. 93842
87572
.82083
JT7381
73344
69846
.66786
.64085
.61680
.59522
45764
. 38535
33912
.30632

33

.99701
.97439
.93780
.89789
.76124
66709
.59985
54918
.46300
.40761

4

.96993
.93072
.89140
85457
.82085
.79019
.T6234
.73699
.T1384
69263
.54860
46767
41433
.87584

44

.99985
.99617
.98492
.96746
.87868
79802
.73294
.68043
.58528
.52083

always zero for finite w

5

.98551
.96212
93557
.90852
.88216
.85703
.83332
81105
.79020
LTT066
.62869
.04295
.48454
. 44158

55

. 99958
.99712
.99145
. 94462
88612
.83137
.78330

.68902
.62083

6

.99309
.97963
.96249
. 94357
.92399
.90442
.88524
.86666.
84879
.83168
. 69804
61092
54942
.50321

66

99997
.99956
.99818
97728
. 94037
.89935
.85956
JT7373
.T0663

.7

.99674
.98921
.97853
. 96580
95183
93721
. 92233
90745
.89276
.8T837
.T5713
67157
.60878
.56053

77

99995
.99966
.99161
97100
. 94323
. 91305
.84033
LT7815

8

.99848
99436
98789
.97960
. 96996
95941
. 94825
93675
. 92508
91338
80675
72505
.66260
.61341

88

.99995
99721
98690
96975
94859
89077
.83608

[

9

99929
.99708
99327
98802
98154
.97414
.96603
.95740
94840
.93916
.84783
.T7168
71093
.66181

929

99999
. 99916
.99450
. 98477
97098
92758
.88171

=

10

.99967
.99851
.99630
.99304
.98881
.98376
.97800
.97169
.96493
95782
.88137
81191
75395
LT0578

110

.99977
99786
99275
.98436
95348
.91663

¥6
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small #-values the values of U (w,?) are not much smaller than the
corresponding values for # = 0.1 particularly when w is about 10.
This conforms with intuition. It is mentioned that the whole of Table 3
was produced 1n 90 seconds of computation on an TBM 7094.

Large values of n pose a problem in the numerical computation of
W, (w) and, after puttingu=1and o™ =1+, werewrite (26) in the form

1

i

W B n-1 1']‘77 on—g | ) ) | .
L) = S Pl e S by Plnw) @40

M

l

]

N\ 204 D9 —1q
- (1) < Wi?) 71 =0,12,... n—1
2/ \n—1—7

(n~l~j{)! (n+1)! _(l+ 1) @+n)/(1+n—] (1 )P 1

T = 1—D! mt1+i—g)! -

and P+1,w) = Plw) —we?/j! §=01,2 ... n—1.

In these expressions a; decreases from a,~1/)(nz) to a,, =1/2""!

which may be very small. The initial value of b;; 1

e 5 ijﬂ and the final value is
17 n_?
2+ )n“(l ~{_7])7 n—=7- 2%_—?
S ( : . (1 + 77) = / 1 :
’ n—/ n—1—7

the latter being very small for the lower values of j. We thus watch
for excessively small values of the terms of the inner sum when 7 is
small and stop calculations when increasing § causes the outer factors to

evanesce.
Table 4 provides the values of W, (w) corresponding to the values
of U (w,t) given in the top part of Table 2. Bearing in mind that

lim U (w,t) = lim W, (w),

{—> co n-—> w

we are not surprised to see that the two distribution functions are

already quite close for ¢ = n = 50.



Table 4

W,(w), n=0,1
n  w=20 1 2 3 4 5 6 7 5 9 10
1L .52381  .82482 93555  .97629  .99128  .99679  .99882  .99957  .99984  .99994  .99998
2 .40503  .69770  .85810  .93651  .97249  .98835  .99515  .99801  .99919  .999G7. 99987
3 .34578 61443 79024 .89247  .94730  .97505  .98851  .99482  .99771 99900 99957
4 .30883 55687  .73500  .85047  .91957  .95840  .97917  .98985  .99517  .99774 99896
5 .28302 51461  .69034  .81268  .89182  .93997  .96782  .98326 .99151  .99579  .99795
G .26371 48206  .65379 77935  .86535  .92096  .95518  .97534  .98680  .99310 99647
T .24857 45607 .62338 75012 .84070  .90212  .94184 96647 .98120 98971  .99450
6 .23630  .43473 59766  .72440 .81801  .88390  .92827  .95697  .97488 98569 99904
9  .22610  .41681 57560 .T0167 79722 .86653 91477 94710 . 96803 98114 98913
10 .21744 40150  .55644  .68145 77819  .85010 .90156  .93708  .96080 97616 98582
200 17052 31702 44618 55793 .65276  .73165  .79598  .84741  .88773  .91871  .94907
30 14996 .27939  .39510  .49739  .58673  .66381  .72048  .78472  .83057 .86815  .89854
40  .13793  .25723 36459 46045 54534  .61987 68472 .T74063  .78839 .8B2880  .86266
50 12988 24236  .384396 43521 51665 58887 65248 70812  .75645  .T9812  .83377
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Zusammenfassung

In einer wenig bekannten Arbeit leitete Arfwedson (1950) einen expliziten Aus-
druck fiir die Wahrscheinlichkeit her, dass eine Nichtlebensversicherungs-(iesell-
schaft innerhalb von ¢ Jahren nicht ruiniert wird, wenn die Anfangsrisikoreserve w
ist, die Schiiden Poisson—und ihre Betriige exponentiell—verteilt sind. Dies entspricht,
der Verteilungsfunktion der Wartezeit bis zur Bedienung fiir einen Kunden, der, im
Fall M/M/1, sich einer einfachbedienten Warteschlange im Zeitpunkt ¢ anschliesst.
Diese Funktion wird in einer einfachen Weise hergeleitet, und es werden numerische
Werte geliefert fir

@w=0(1)10 und =1 (1)10 (10)50,
(i)w = 0 (11)110 und ¢ = 50 (50) 200 (200) 1000 (500) 2000
in den beiden Fallen o !=1-+4% = 1.0 und 1.1.

Ein neuer Ausdruck wird fiir die numerische Berechnung der Wahrscheinlichkeit
des Nichtruins durch den n-ten Schaden (oder die Verteilungsfunktion der Warte-
zeit des sich der Warteschlange anschliessenden n-ten Kunden) hergeleitet, und dieser
wird ausgewertet fiir

w=0(1)10 und n=1(1)10(10)50 mit gl=1-+75=1.1.

Summary

In a little-known paper Arfwedson (1950) derived an explicit expression for the
probability that a nonlife insurance company will not be ruined within ¢ years when
the initial risk reserve is w and claims and their amounts are Poisson/exponential.
Equivalently this is the distribution function of the waiting time for service of a
customer joining a single-server queue at epoch ¢ in the M/M/1 case. This function is
derived in a simple way and numerical values are provided for

Hw=0(1)10 and =1 (1)10(10)50,and
({)w = 0(11)110 and ¢ = 50(50) 200 (200) 1000 (500) 2000,
in the two cases ol=14+7np=1.0and1.1.

A new expression is provided for the numerical calculation of the probability
of nonruin through the nth claim (or the distribution function of the waiting time
of the nth customer joining the queue) and this is evaluated for

w=0(1)10 and n=1(1)10(10)50 with ¢!l=1+4+75n=11.
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Résumé

Dans un article pas trés connu Arfwedson déduisait une expression explicite de
la probabilité qu’une société d’assurances non-vie ne soit pas ruinée dans t années
lorsque la réserve initiale est w et le nombre des sinistres est distribué selon la loi de
Poisson et les montants des sinistres selon la loi exponentielle. Cela correspond a la
fonction de distribution de la période d’attente d’un client, qui— dans le cas M/M/1 —
se joint a une queue au moment t. Cette fonction peut étre dérivé de fagon simple et

on ajoute des valeurs numériques pour

Hw=01)10 et t=1(1)10(10)50,
(i) w = 0(11) 110 et ¢ = 50(50)200 (200)1000 (500)2000,
danslesdeuxcas o l=1+n=1.0et1.1.

Une nouvelle expression est déduite pour le calcul numérique de la probabilité
que le dommage n» n’entraine pas la ruine de la société (ou de la fonction de distri-
bution de la période d’attente du client n qui se joint a la queue) et on utilise I'ex-
pression pour

w=0(1)10 et n=1(1)10(10)50 avec gl=1+7n=1.1.

Riassunto

In un articolo non molto conosciuto Arfwedson deriva una espressione esplicita
per la probabilita che una societa assicurativa del ramo generale non vadi in rovina
entro ¢t anni quando la riserva iniziale sia w e il numero dei danni abbia la distribu-
zione di Poisson mentre gli importi di questi siano distribuiti di modo esponenziale.
Questa distribuzione corrisponde alla funzione di distribuzione del tempo di atteso
di un cliente che —nel caso M/M/1 —si unisce a una coda allinstante t. Questa funzione
viene ottenuta in modo semplice e vengono forniti valori numerici per

()w=01)10 e t=1(1)10 (10)50,
(i) w = 0(11)110 e t = 50(50)200(200)1000 (500)2000,
neicasi gl=1+7=1.0 e 1.1.
Una nuova espressione viene sviluppata per il calcolo numerico della probabilita

che I'n-esimo danno non mandi in rovina la societd (o la funzione di distribuzione del
tempo di attesa dell'n-esimo cliente che si unisce alla coda) e vengono dati valori

numerici per
w=01)10 e 5 =1(1)10(10)50 nelcaso gl =1+7n=1.1.



	Numerical calculation of the probability of ruin in the Poisson/exponential case

