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Methoden zur Berechnung der Verteilungsfunktion
des Totalschadens

Fora Jose/.Küpper, Züric/t

In der kollektiven Risikotheorie lassen sich in recht grober Ver-
einfachling zwei grosse Problemkreise unterscheiden. Die eine Gruppe
von Untersuchungen befasst sich mit der Bildung und dem Aufbau risiko-
theoretischer Modelle, während die zweite Gruppe diese Modelle zur
Lösung versicherungstechnischer Fragen wie Prämienkalkulation,
Selbstbehalte, Reserven, Solvabilität usw. benützt. Rü/ibwawra hat in
seinem neuen Buch [11]*) diese Zweiteilung sehr schön herausgearbei-
tet.

Mittelpunkt der Risikotheorie, d.h. Ziel des ersten und Ausgangs-
punkt des zweiten Problemkreises, bildet die Verteilungsfunktion des

Totalschadens innerhalb einer vorgegebenen Zeitspanne. An der Kennt-
ms dieser Funktion hat der Versicherer ein besonderes Interesse, das
sich nicht nur in rein theoretischen Belangen erschöpft, sondern gerade
im Hinblick auf die praktische Anwendung auch der numerischen Be-
handlung Beachtung schenkt.

Über die Möglichkeiten der numerischen Berechnung der Ver-
teilungsfunktion des Totalschadens sind in den letzten Jahren von ver-
schiedener Seite Beiträge publiziert worden. Insbesondere haben sich
skandinavische Autoren auf diesem Gebiet sehr fruchtbar gezeigt; be-
reits an dieser Stelle sei vor allem auf die wohl schon klassisch zu nen-
nende Arbeit von Ro/itocto und Ksscker [8] hingewiesen. Das Wissen
um die möglichen Verfahren zur Berechnung der Totalschadenvertei-
lung gibt natürlich auch die Mittel zur Hand, damit zusammenhän-
gende Mittelwerte wie die Netto-Risikoprämie oder eine Stop-Loss-
Prämie auf numerischem Wege zu bestimmen.

Das Ziel der vorliegenden Arbeit liegt nicht darin, neue Erkennt-
nisse zu vermitteln. Sie will den Leser vielmehr im Sinne einer Syn-

h Zahlen in [] beziehen sieh auf das Literaturverzeichnis am Schluss der Arbeit.
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these mit dem neuesten Stand der Theorie bekannt machen, die ver-
schiedenen Verfahren in eine Systematik einzuordnen und kurz zu
charakterisieren versuchen. Bevor damit begonnen werden kann, ist es

notwendig, in einem ersten Abschnitt das Wesentliche über das zu-

gründe liegende theoretische Modell zu sagen.

Der Bisikoprozess in der Nichtlebensversicherung lässt sich durch

zwei stochastische Variablen beschreiben, die Schadenanzahl und die

Schadensumme. Was für Modelle für diese beiden Basisvariablen ge-

wählt werden können, soll hier nicht eingehend erörtert werden, aus-

führliche Angaben darüber sind beispielsweise in der Arbeit [21] des

Verfassers zu finden. Es sei daher nur kurz an die wichtigsten Eor-

mein erinnert.

A. Die Verteilung der Schadenanzahl

Bezeichne P,(f) die Wahrscheinlichkeit, dass bei f zu erwartenden

Schadenfällen genau r eintreten, so lässt sich unter der Voraussetzung
eines heterogenen Bestandes mit Strukturfunktion [7(g) diese bekannt-

lieh durch die Beziehung

wiedergeben, wobei für die Verteilungsfunktion [7(g) notwendigerweise

Die charakteristische Funktion der Verteilung P sei mit 99^(0, i),
die Momente seien allgemein mit p • V F P^. (f), speziell Mittelwert

und Varianz mit und erj bezeichnet.
Im klassischen Fall eines homogenen Bestandes ist die Struktur-

funktion ausgeartet

1. Der grundlegende Aufbau des Modells

0

(1)

/% /" g <2[7(g) 1 gelten muss.
ö

[ 0 g<l
[7(g) - -m n I
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und es resultiert für die Verteilung der Schadenanzahl die Poisson
Verteilung

(2)

die auch heute noch, insbesondere als Approximation im Sinne einer
ersten Näherung, vielfache Verwendung findet.

Will man sich damit nicht begnügen, so bietet die Annahme einer
Gammaverteilung mit 1

1 ^
'W

als Strukturfunktion eine wertvolle Verallgemeinerung. Diese führt für
die SchadenzahlVerteilung auf eine negative Binomialverteilung

V+r—1\/ a A/' J V
- )(«Tr) U+T) ®

Die negative Binomialverteilung lässt auch andere Interpretatio-
nen zu und gilt als eines der vielseitigsten Hilfsmittel zur Darstellung
stochastischer Vorgänge in der Nichtlebensversicherung.

B. Die Verteilung der Schadensummen

Die Wahrscheinlichkeit dafür, dass ein Schaden, sofern er einge-
treten ist, eine Schadensumme X<ia; produziert, werde durch die Ver-

teilungsfunktion ,S'(r) wiedergegeben. Es ist üblich, im Falle einer ana-
lytischen Darstellung der Funktion S'(r) eine stetige - gegebenenfalls
stückweise stetige - unilaterale Verteilungsfunktion zu wählen. Eine
der einfachsten Möglichkeiten, die man gewissermassen als erste grobe
Approximation bezeichnen könnte, wird durch die Exponential-Vertei-
lung

S (s) 1—e"W z>0 (d)

gegeben.

Für charakteristische Funktion und Momente werde mit entspre-
chenden Indizes und Bezeichnungen, also 9^(2,f), s,-, fff, gearbeitet.
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C. Die Verteilung des Totalschadens

Der Totalschaden lässt sich aus den beiden Grundvariablen Scha-

denzahl und Schadensumme zusammensetzen. Unter gewissen verein-
fachenden Annahmen (stochastische Unabhängigkeit der beiden

Variablen, Zeitunabhängigkeit der Schadensummenverteilung) folgt
für die Wahrscheinlichkeit, dass bei A zu erwartenden Schadenfällen
der Totalschaden <1 a; ausfällt, die Beziehung

CO

F(u)=vp,(i)r(i), (5)
r=0

wobei die r-fache Faltung der Verteilungsfunktion >S'(:r) mit
sich selbst bedeutet. In der üblichen Terminologie gilt zudem

S*°(;c) e(a;) und S** (a) S (a;).

Die charakteristische Funktion der Totalschadenverteilung lässt

sich durch

9v(~, 0 e'~*MF (;r, i) <j?p — log 9^(2) f

oder unter direktem Bezug auf die Strukturfunktion durch

MM) 9?u j--v

ausdrücken. Die Momente der Verteilung F lassen sich ohne besondere

Mühe aus den Momenten der Grundverteilungen herleiten, was für die

praktische Anwendung von besonderer Bedeutung ist. So gelten bei-

spielsweise die Formeln

/V ~ AU ths

cr| + Up//| (7)

/3 AU U + 3cr|(p2~AU) + Abs (ïG + AU)
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In den beiden unter Punkt A besonders erwähnten Spezialfällen
lassen sich die angegebenen Beziehungen in einfacher Weise wie folgt
darstellen :

mit (2) : 9^(2, f) _ 0<!>s(z)-l]

/"f

^2

/» fSg + 3Sj Sgf^ + ;

mit (3) : <P0, f) Jl ^ [Vs(^) — 1]J

fSj

cr|
£2

fSg H Sj
a

/s
a + 1 (a + 1) (a + 2)

tSg + 3Sg Sj
a

Wird zusätzlich mit der Verteilung (4) gearbeitet, dann können
die Momentenformeln auf Grund der Beziehung

noch etwas vereinfacht werden.

2. Versuch, einer Systematik der Berechnungsverfahren

Die bereits angetönte Wichtigkeit, die der Punktion (5) im
Kähmen der kollektiven Bisikotheorie zukommt, hat es mit sich ge-
bracht, dass man sich schon recht früh die Präge nach ihrer numeri-
sehen Berechnung gestellt hat. Das Verfahren von Ssscker, die sog.
Esscher-Transformation, ist bereits im Jahre 1932 [14] erstmals be-

schrieben worden.
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Zwei Gründe machen die Berechnung der Totalschadenverteilung
kompliziert und mühsam :

- die Faltungspotenz,

- die unendliche Summe.

Es ist daher nicht verwunderlich, class man, nachdem sich bald ein-

mal herausgestellt hatte, class eine explizite Berechnung nur in den sei-

tensten Fällen möglich war, auf verschiedenste Arten versucht hat, diese

Schwierigkeiten möglichst elegant zu umgehen. Als grosse Hilfe hat sich

dabei der Einsatz des Computers erwiesen.
Es dürfte die natürliche Reihenfolge sein, im folgenden zuerst kurz

Fälle zu erwähnen, die eine explizite Berechnung erlauben. Darnach

soll, dem historischen Ablauf die Referenz erweisend, ein Abschnitt über

Grenzwertbetrachtungen folgen, wobei hier zwischen direkten und incli-

rekten Methoden unterschieden werden kann. Als nächstes wird auf die

auf den Computer zugeschnittenen Näherungsverfahren aufmerksam ge-

macht; auch hier ist es möglich, wie im eben erwähnten Themenkreis,
zwischen zwei Hauptarten zu unterscheiden. Jedem dieser beiden wichti-

gen Kapitel ist ein Sonderabschnitt beigefügt, der auf eine Möglichkeit
hinweisen will, die nicht spezifisch für das vorliegende Problem ist, son-

dem bereits in anderen Bereichen ihre Bedeutung erlangt hat. Schliess-

lieh ist noch erwähnenswert, dass auch versucht werden kann, über die

Verteilungsfunktion (5) numerisch Aussagen zu machen, ohne dem in

Abschnitt 1 ausgestalteten Modell zu folgen. Zusammenfassend ergibt
sich folgende Einteilung:

- Explizite Berechnung

- Grenzwertbetrachtungen

- Direkte Methoden

- Indirekte Methoden

- Sonderfall Reliability
- Computerverfahren

- Direkte Methoden

- Indirekte Methoden

- Sonderfall Monte Carlo

- «Modellfreie» Versuche

Beim Umfang der Möglichkeiten, die sich zur Lösung des Problems

anbieten, ist es wohl klar, dass es im Rahmen einer solchen Arbeit kaum
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möglich ist, mehr als eine erste Orientierung zu geben. Der interessierte
Leser sei für das weitere Studium auf die zitierte Literatur verwiesen, wo
auch in den meisten Lallen präzisere Angaben über die Genauigkeit der
einzelnen Verfahren zu finden sind.

Im Anhang sind für einen Spezialfall einige numerische Vergleichs-
zahlen wiedergegeben.

Zwei Vorbemerkungen seien hier doch noch gemacht :

cg) Die Unterteilung in einzelne Verfahren, wie sie zuvor aufgezählt
worden sind, darf nicht den Eindruck einer scharfen Trennung er-
wecken. Es ist sehr wohl möglich, dass unter Umständen zwei
Methoden ineinandergreifen.
Wie aus verschiedenen Untersuchungen (siehe z.B. in [28]) her-

vorgeht, ist es oft nützlich, den Definitionsbereich von .F(a;,<) zu
zerlegen und für verschiedene Teilintervalle verschiedene Verfah-
ren zur Anwendung zu bringen.

Aus Gründen der Vereinfachung der Darlegung werden wir uns in
den folgenden Ausführungen, abgesehen von einigen Hinweisen, dar-
auf beschränken, den Eall der verallgemeinerten Poisson-Verteilung,
d.h. den Eall mit der Verteilung (2) als Schadenzahlverteilung, zu ana-
lysieren. Da man mit Hilfe der Ammeter-Transformation jederzeit eine

verallgemeinerte negative Binomialverteilung in eine verallgemeinerte
Poisson-Verteilung überführen kann, scheint uns diese Einschränkung
nicht allzu gravierend.

3. Explizite Berechnung

Die erste Bedingung, um die Berechnung der Verteilungsfunktion
E («, f) explizit durchführbar zu machen, liegt in der Möglichkeit be-

gründet, die Faltung der Verteilung ,S'(a;) wirklich vornehmen zu kön-
neu. Das ist in der Praxis zumeist nicht der Fall. Zwei wichtige Bei-
spiele seien hier jedoch erwähnt:

A. ,S'(;r) ist ausgeartet

Darunter verstehen wir, dass alle Schadensummen gleich gross,
nämlich gleich .s^ sind. Dann gilt
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und

»S(^) e(a;-Si)

S*'(a;) e(a;-rS]).

Damit erhält man als Endresultat

F (M) 2 ^r(<).

wobei die grösste ganze Zahl <i W bezeichnet.

Dieser Tatbestand wird kaum je erfüllt sein, am ehesten noch in
der Lebensversicherung, wenn wir an einen Bestand mit lauter gleich
hohen Todesfallsummen denken. Als Basistypus ist das Ergebnis trotz-
dem recht wertvoll. Weiter erlaubt es, mit relativ einfachen Mitteln
gewisse weitere Einblicke in die Prämienkalkulation zu gewinnen,
die sonst nicht so leicht erhältlich wären (siehe z.B. [17]).

B. £(a;) gehorcht der Verteilung (4)

Es ist eine bekannte Eigenschaft der Exponentialverteilung, dass

durch Faltung eine Gamma-Verteilung entsteht, deren Dichte durch

ausgedrückt werden kann. Eingesetzt in (5), ergibt sich für die Dichte
der Totalschadenverteilung

to e-0" + V«*)' 8; 4]/te) (9)

Mit ij ist in üblicher Bezeichnung eine Besselfunktion, mit jFj
eine konfluente hypergeometrische Funktion gemeint.
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Für grosse Werte von x lässt sich die folgende asymptotische Ent-
wicklung der Funktion verwenden:

JT* (Vi)
1^1 (m; w; x) e*x~" [1+0 (|x|~*)]

Damit lässt sich die Formel (9) approximativ folgendermassen
schreiben :

/(x,^^e-^-^(taxr^- (10)
Zj/Tr

Da die Korrekturglieder allesamt negativ sind, erhalten wir auf
diese Art eine obere Schranke für die Werte der Verteilungsdichte
/(x, £).

Trotz ihrer Einfachheit vermag die Schadensummenverteilung (4)
in manchen Fällen zur Darstellung des Sachverhaltes zu genügen. Es
wurde denn auch (natürlich ist dies vor allem auch eine Folge der ma-
thematischen Eigenschaften) in der Literatur davon reger Gebrauch
gemacht (u.a. [2], [12], [18], [26]).

4. Grenzwertbetrachtungen

4.1. Direkte Me£kode?r

A. Normalverteilung

Standardisiert man die Variable x, d.h. bildet man

^ ~
0> [A«2

so ist eine Folgerung des zentralen Grenzwertsatzes, dass für £ co

D(x,£) - 0(j/), (11)
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wobei mit 0(v) die standardisierte Normalverteilung

1 ''
0(?y) -= / e *^ l 2tt '

-00

bezeichnet ist.

Die normale Approximation hat sich für praktische Zwecke, ins-

besondere wenn f gross ist oder der zu berechnende Wert in der Umge-

bung des Mittelwertes der Verteilung liegt, als gut verwendbar erwie-

sen. Eine gewisse Vorsicht ist jedoch stets angebracht, ob nicht ein ge-

naueres Verfahren zu Hilfe gezogen werden muss.

B. Edgeworth-Entwicklung

Die Formel (11) bedeutet eigentlich nur das erste Glied in einer

Entwicklung, die nach Edgeworth benannt ist und

TTi/ n ,*/ \
1 //j),

E(;c,f) <2>(j/) — -, g 0 (j/) +
O

^ (î/) - -J-, - v- r*'» 0"' (j/) + o (W) (12)
8! V"

lautet, mit andern Worten eine Entwicklung, in der die Ableitungen

S3 f*'®
der standardisierten Normalverteilung auftreten. Der Terra ^—

A '

stellt übrigens die Schiefe der Totalschadenverteilung dar.

Es muss allerdings im Hinblick auf den semikonvergenten Cha-

rakter der Reihe (an und für sich divergiert zwar die Reihe, sie konver-

giert jedoch, falls f gegen 00 strebt) nicht unbedingt so sein, dass (12)

mit dem ersten Korrekturglied eine bessere Approximation als (11) he-

fert. Zudem erfordert die Formel (12) die Kenntnis des dritten Momen-

tes der Schadensummenverteilung. Die Schätzung höherer Momente

ist vielfach sehr ungewiss und nicht dazu angetan, das Vertrauen m

die Richtigkeit der Lösung zu verstärken.
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C. NP-Entwicklung

Die NP-Entwicklung (NP steht für «Normal Power» - wir haben
diese Abkürzung, die in der englischen Literatur verwendet wird, über-
nommen) ist ein Verfahren, das unseres Wissens erstmals in der Arbeit
von lïawpjh und Ojawiafcanen [20] erwähnt wurde und dort dem Ein-
nen Lomarcmfa zugeschrieben wird. Es ist im Grunde genommen eine
Kombination von A und B. Eine genaue Beschreibung des Vorgehens
findet man in [6]. Die Methode beruht darin, dass man den durch die

Edgeworth-Entwicklung (12) gefundenen Wert für die standardisierte

TT *

Variable ?/ nach der durch die Gleichung E(ag f) 0(i/o)
ff;?

gegebenen Variablen ?/{, entwickelt. Diese Idee führt zur Beziehung

2/ i/o + -g Wh (i/o-1) + 0 (O • (13)

Vernachlässigt man die Glieder mit 7, so errechnet sich demnach

i/o aus ;/ gemäss der Gleichung

/W7-V+7
/ Wh Wh

oder anders ausgedrückt, da ?/„ normal verteilt ist, gilt angenähert die

Relation

F(œ, *) « # (— V ]/—g" + + 1 ' (14)
\Wh Wi Wh /

r •
wobei wie zuvor ?/ — — •

(Tpi

Lässt man in (18) schon das erste Korrekturglied weg, so gelangt
man wieder zur normalen Approximation (11).
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Das Verfahren wird noch etwas genauer, wenn man auch die Glie-

der von der Grössenordnung f' miteinbezieht. Diese lauten

^ (Z/o —S Z/o) + (2 I/o-5i/o) >

is4
wobei riVp den Exzess der Totalschadenverteilung darstellt.^ (fs^
2/q ist dann aus dieser Gleichung dritten Grades zu bestimmen, und dar-

nach kann der Wert der Funktion F(®, i) aus den Tabellen der Normal-

Verteilung entnommen werden.
Besonders einfach werden die Formeln im Falle der Verteilungs-

funktion (4) als Schadensummenverteilung. Zu beachten ist, dass in

diesem Fall

3 96 ^^w, - ^ - y »nd » ^
Setzt man diese Ausdrücke in (14) ein, so erhält man

F (a, f) ffö 0 (— |/2i + [/2a® +1). (14')

Auch die Mitberücksichtigung der Ausdrücke der Ordnung f" gestaltet
sich hier mühelos. Auf Grund der Beziehung

4
2

A/2 yA/i

fallen nämlich die Glieder mit i/jj gerade weg, so dass sich anstelle von

(14') die auch sehr einfach zu berechnende Beziehung

F(M)«0(-}2i (1-- 2 a® -

1 1

82 *
(14"

ergibt.
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Es ist interessant, dass der «Trick» mit der NP-Entwicklung er-
staunlich gute Resultate zu liefern scheint. Nach den vorgenommenen
Untersuchungen (es sei dazu auch auf [24] verwiesen) ist die Genauig-
keit viel grösser als bei den Methoden A und B, sie liegt ungefähr im
Rahmen der im folgenden besprochenen Esscher-Transformation, ohne
anderseits so rechenaufwendig wie diese zu sein.

4.2. IweErefcfe Mef/iodera

A. Esscher-Transformation

Um die Konvergenz der Methode 4.1 B zu verbessern, ist man
schon frühzeitig auf den Gedanken gekommen, die Yerteilungsfunk-
tion E (ag f) nicht direkt zu entwickeln, sondern vorerst eine gewisse
Transformation vorzunehmen. In der schon zitierten Arbeit von
Esscher [14] ist der Poisson-Fall, mit dem wir uns hier vor allem
auseinandersetzen, bereits enthalten, immeier hat in [1] erstmals die

Erweiterung auf die negative Binomialverteilung als Schadenzahlver-

teilung vorgenommen, und 1968 hat der Schöpfer der Methode den

Anwendungsbereich noch viel weiter gefasst [15].
Die Transformationsgleichung von Esscher führt allgemein mittels

_
dE(ag f) -y- dE (ag f) (15)

/o

die Verteilungsfunktion E in die Verteilungsfunktion E über. ist
CO

dabei als J e dE (ag f) definiert, über den Transformationsparameter c
0

wird später entschieden. Setzt man C (ag c) /[, e~^g so folgt

CO

1 —E (ag f) C (ag c) /' dE (*, i) (16)

Die Verteilungsfunktion E soll im Punkt a: berechnet werden. Es

scheint nun intuitiv vernünftig zu sein, den noch freien Parameter c so

zu wählen, dass der Mittelwert der transformierten Verteilung E in den

Punkt a; fällt. Da die Funktion Ë nachher mit Hilfe direkter Methode

weiter ausgewertet werden soll, bietet das für die Genauigkeit der
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Approximation grosse Vorteile, denn die Edgeworth-Entwicklung lie-

fert in der Umgebung des Erwartungswertes besonders gute Resultate.
Die genannte Wahl von c kann aber auch theoretisch so begründet
werden, dass sie die Forderung

a<7(x,c)
^ Q

de

als Lösung erfüllt.

Definiert« man die Momente einer entsprechend transformierten
Schadensummenverteilung

e

dS(^) -—AS (a;)

mit s, / ad AS' (:r)
ö

so führt die Bedingung a; /tj im Poisson-Fall auf die Beziehung

CO

a; fsi f / m e AS(-m) (17)

Die Bestimmungsgleichung (17) für c ist im allgemeinen nicht ex-

plizit nach der Unbekannten auflösbar, man muss dann zu inverser In-

terpolation seine Zuflucht nehmen. Bei gammaverteilten Schadensum-

men kann die Lösung jedoch direkt angeschrieben werden, speziell gilt
für (4) :

s —- (18)
(c — AD

wobei c<a gewählt werden muss, weil sonst die Momente s,- nicht exi-

stieren.
Für c 0 ist dF AF und anderseits a; fSj d.h. in diesem

Spezialfall ist eine Transformation überflüssig (ausgearteter Esscher).

Für e gg 0 ist hingegen stets a; gg
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Das weitere Vorgehen entspricht jenem in 4.1. B. Man standardi-
siert in (16) die Variable « mittels

wobei man bereits weiss, dass ^ cc ist (oj |/<Sg), und entwickelt
die standardisierte Verteilung F in eine Edgeworth-Beihe.

Im Falle von c (A 0 bzw. 1> is^ ergibt sich dann die Beziehung

(19)

1 s.
1—F(a;,f) j ^(f)-öi -^-r* $>"(£) +3! Sg

Für c<0 bzw. a;<iSi lässt sich eine analoge Formel für F(ag i) her-
leiten, worin sich die Integration von — oo bis 0 erstreckt. Der grosse
Vorteil der Esscher-Transformation liegt in der Konvergenzbeschleuni-
gung durch die Faktoren

Die Berechnung von (19) erfolgt mit Hilfe der sog. Esscher-Funk-
tionen, die durch

F,» J e-«i)'#'"(»)ds

definiert sind und aus Tabellen (siehe z.B. [2]) entnommen werden
können. Als Endresultat erfolgt schliesslich

1 —F (ag f) e i(äo-l)

(20)

1 So

#oo(N - -ol ^77 ^03 l/«s» + • • •

ö Sa

für er )> <Sj

Mit der Verteilungsfunktion (4) lässt sich, da hier für die Momente

s,- die einfache Formel

s-, - .<. (.1)
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gilt, die Darstellung noch etwas vereinfachen. Es ist dann

1 —F (a;, f) e +

wobei c und x durch die Formel (18) verknüpft sind.

Die Esscher-Transformation ist zwar in der Handhabung nicht

ganz so einfach, der Aufwand in der Eegel aber doch noch mit relativ
geringen Hilfsmitteln bewältigbar, und die Resultate, falls der zu be-

rechnende Wert x wesentlich vom Mittelwert abweicht, viel besser

als bei den Methoden (11) und (12).

B. Pesonen-Modifikation

Aus der Konstruktion der Esscher-Transformation geht hervor,
dass in der Umgebung des zu berechnenden Wertes x die Approxima-
tion besonders gut ist. Ist man nun jedoch nicht nur an einem speziellen

Wert interessiert, sondern soll die ganze Verteilungsfunktion F(x, i)

berechnet werden, so sind in der Regel eine Reihe von Netzpunkten
notwendig, für die die Berechnung jeweils separat mit einem neuen

Transformationsparameter durchzuführen ist. Um dieser Komplika-
tion aus dem Wege zu gehen, hat Pesowe« [23] vorgeschlagen, nicht
einen konstanten Parameter c zu benützen. Dieser soll vielmehr über
das ganze Integrationsintervall stetig variieren, und zwar derart, dass

in jedem Punkt des Intervalls stets die Bedingung 2 ^ fSj erfüllt
ist.

Betrachtet man allgemein das Intervall (x,, a^), so lässt sich die

Beziehung

+

eine Vorstufe von Formel (19), durch die Substitution

0 fsi (c) mit P? fsg (c) de
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unter Berücksichtigung von $'(0) 7= und $TV)/q\ 0
J/2?t '

überführen in

e~'l/f~
F (an,, f -FK, f) -^JL- J e*°W-^(0 j/^^ ^ ^ ^2)

[/ 2?r ^

wobei fsi(cj) und a,2 fsi(c2) gegeben sind.

Benützt man speziell die Momente (21), d.h. eine Exponentialver-
teilung als Schadensummenverteilung, so lässt sich die Formel (22) in
die Formel (10) überführen.

4.3. Sowcfer/oF FeüiaWif?/

Es ist das Verdienst von Sfraufc [27], darauf hingewiesen zu
haben, wie gewisse Resultate aus der «Reliability Theory» dazu ver-
wendet werden können, die Verteilungsfunktion des Totalschadens
zwar nicht genau zu berechnen, aber immerhin Schranken für ihre
Werte anzugeben.

In der «Reliability Theory» hat der Begriff der Verlustrate

*"(*)
r(cc)

1—F(s)

einer Verteilungsfunktion F eine zentrale Bedeutung. Die Verteilungs-
funktionell werden denn auch nach 1ER (increasing failure rate) und
DER (decreasing failure rate) eingeteilt. Rarfcie und MarskaF [3]
haben nun für IFR-Verteilungen Abschätzungen angegeben, die, wenn
man zudem beachtet, dass jede Faltung von zwei IFR-Verteilungen
wieder 1ER ist, auch für die gefaltete Schadensummenverteilung
£ '(®)> vorausgesetzt die Grundverteilung >S(a;) sei wirklich IFR, An-
Wendung finden können.

Es gilt dann das Resultat

(23,
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wobei die erwähnte obere (tabellierte) Schranke für die Punktion

1-S(a:), welche IPR und für welche s^ l, mit U(a;, Sg) bezeichnet

wurde.
Palis über S(a;) noch etwas mehr bekannt ist als die PR-Klasse,

kann auch die folgende Ungleichung über die Faltungspotenz der

Schadensummenverteilung wertvoll sein (für IPR-Verteilungen, sonst

gilt das «?>»-Zeichen) :

V ,S'"(;r) V P,[.B(a;)] (24)

£

wobei B(x) r(M)üit
5

und P,(f) 1— e"' V 4r
,'=o

Die Verteilung (4) ist bekanntlich dadurch ausgezeichnet, dass sie

sowohl IPR wie DFR ist, d.h. es gilt r(ir) =a. Die beiden Grenzen in

(24) fallen dann zusammen, und es ist exakt

S*» P,(as) 1—e** V V,-/
jVo

was den früheren Ausführungen in 3 B entspricht.

Mit den in (24) gegebenen Schranken können nun wiederum

Näherungswerte für die Verteilungsfunktion P(ag f) berechnet werden.

In [27] findet sich ein numerisches Beispiel, wo von der Annahme aus-

gegangen wird, die Verteilungsfunktion S'(x) folge einer Pareto-Vertei-

lung.

5. Computerverfahren

Die Fortschritte in der Computertechnik haben es mit sich ge-

bracht, dass vermehrt versucht wurde, Methoden zu entwickeln, die

dem Computer angepasst sind. Um den enormen maschinellen Auf-

wand auf ein erträgliches Mass zu reduzieren, geht es allerdings auch

hier nicht ohne gewisse Vereinfachungen ab.

Pr rR
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5.1. Direkte Meffeoctew

A. Treppenfunktionen - Idee von Benktander

In der bereits erwähnten Arbeit [8] ist vorgesehlagen worden, die
Schadensummenverteilung S (x) durch eine Treppenfunktion zu erset-
zen, die in IV Punkten x^, Xg, Xg^ Sprungstellen aufweisen soll.
Die Höhe des Zuwachses im Punkte Xg^ sei durch die Zunahme der
Verteilungsfunktion tS'(x) zwischen zwei Zwischenpunkten, d.h. durch

gögsben. Als Bandbedingungen wurden x„ 0 und
•D.v M grösster in Betracht kommender x-Wert) gesetzt. Für die
Wahl der Stellen x^, 1 1,2,..., die «möglichst gut» gewählt werden
sollten, hat Benktander den Vorschlag gemacht, als Kriterium die Er-
füllung der Bedingung

iV

2 / | x — Xgy_i | dS (x) min
#2?-2

zu verlangen.

Die Idee ist an und für sich bestechend. Durch die Zerlegung der

Schadensummenverteilung in eine Treppenfunktion, also in eine dis-
krete Verteilung, wird die Faltung sehr einfach und computerkonform.
Dadurch wird auch die Berechnung von F(x, f) erleichtert. Leider er-
wiesen sich numerische Versuche mit der Verteilungsfunktion (4) als
nicht ganz befriedigend.

In ähnlicher Bichtung geht ein Programm, das vor kurzem unter der
Leitung von Prof.Amsler in Lausanne entwickelt worden ist. Die Schaden-

Summenverteilung ist auch hier eine Treppenfunktion, nur wird ange-
nommen, diese sei in 32 äquidistanten Stützwerten empirisch gegeben.

£>• Treppenfunktionen - Idee von Pesonen

Das unter A geschilderte Verfahren kann man sich so verwirklicht
denken, dass das Intervall (0, oo) vertikal in Abschnitte gegliedert wird,
innerhalb deren die Schadensummenverteilung als konstant angenommen
wird. Durch den Übergang auf eine solche Treppenfunktion wird das

Faltungsprozedere zwar, wie schon erwähnt, wesentlich vereinfacht, im
Grunde genommen sind aber weiterhin unendlich viele Faltungen durch-
zuführen.
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Pesowen hat nun in [23] darauf hingewiesen, dass man sich die

Zerlegung statt vertikal auch horizontal vorgenommen denken kann.

Das läuft darauf hinaus, die Punktion S in eine endliche Zahl ausgear-
teter Verteilungsfunktionen S-(a;) zu zerlegen, wobei

IV IV

S (®) =2 cg >5] (a) mit V cg- 1 (25)

j=i )=i

gilt. Nach den Angaben, welche in Abschnitt 3 A gemacht worden

sind, ist es einfach, die einzelnen Komponenten F,-(a;), welche auf

Grund der entsprechenden S- (a;) gebildet werden können, zu berech-

nen. Die Gesamtschadenverteilung entsteht dann, wie auf Grund der

folgenden Ausführungen hervorgeht, mittels einiger weniger Faltungen
von diskreten Verteilungsfunktionen.

Sei die Sprungstelle der Verteilungsfunktion <S]-(x) mit x- be-

zeichnet, so erhält man für die charakteristische Funktion der Schaden-

Summenverteilung unter der Voraussetzung (25) den Wert

9>s(*0

,=i

Beim Poisson-Modell - und dies ist gerade eine der wichtigen

Eigenschaften dieses Modells - folgt nun

ç>*.(M) e^Wd-i] _ g ,=i

IV

oder 9?f(v 0 IT
7=1

IV

17 9^ (2, to.) •

Das heisst mit anderen Worten, dass sich die Verteilungsfunktion
F darstellen lässt als

F(;r, f) 17*F,-(®, ^7 (27)



wobei die Fy analog zu (8) aufgebaut sind, nämlich

F(agta,-) Y e-'«*
r-r:, r!

Von wesentlicher Bedeutung für die Anwendung ist es natürlich,
ob man mit möglichst wenig Stufen auskommen kann, so dass das Pal-
tungsprodukt (27) nicht allzu viele Glieder enthält.

Ergänzend mag noch erwähnt werden, dass man natürlich die
Approximation durch eine Treppenfunktion stets so einrichten kann,
dass man eine Majorante bzw. eine Minorante für die Verteilungsfunk-
tion F erhält. Das kann zum Zwecke der Abschätzung der Genauigkeit
von Vorteil sein.

C. Exponentialformen

Schon in 8 B wurde auf die Tatsache aufmerksam gemacht, dass

die Darstellung der Schadensummenverteilung durch eine Exponen-
tialverteilung grosse Rechenvorteile bietet. Leider ist die Anpassung
durch eine so einfache Kurve im allgemeinen kaum befriedigend. Es
hat sich aber herausgestellt, dass man mit einer Linearform von Ex-
ponentialausdrücken in vielen Fällen recht gute Resultate erzielt,
vielleicht mit Ausnahme von hohen œ-Werten, wo noch eine spezielle
Korrektur vorzunehmen ist. Ein Ansatz für G (x) in dieser Richtung
wäre

m

S (a) 2 a,-(l-e °F) + y a,-e(a;-a,-)
j=m+l

(28)

n

mit y «,. 1

Der springende Punkt der Betrachtung liegt auch hier in der

Eigenschaft des Poisson-Modells, welche durch die Beziehungen (26)
bzw. (27) verdeutlicht wird.



Bezeichnet man die charakteristischen Funktionen der einzelnen

in (28) aufgeführten Verteilungen mit • • •, <p„, so folgt
analog

9>s(*0

W

l)

und F(a;, 1) (29)

Gilt beispielsweise m 2 und n 8, so muss praktisch, da die Fal-

tung mit F g sehr einfach ist, nur mehr eine einzige wesentliche Fal-

tung F\ *Fg durchgeführt werden. Man kann dazu ein Programm für
numerische Integration verwenden.

Wichtig ist in diesem Zusammenhang die Tatsache, dass die Ver-

teilungen Fy (j 1, m) computerkonform mit Hilfe einfacher

Rekursionsformeln ermittelt werden können. Es lässt sich zeigen [8]
dass, ausgehend von den Randbedingungen

Z)o=0, e-<*V+"F>,

mit Hilfe der Relationen

r+1

die Verteilungsfunktion F- als

Fy (a;, lay) 1 — 2 (80)

hergeleitet werden kann.

Man beachte, dass bei negativen Binomialverteilungen als Scha-

denzahlverteilungen die eben beschriebenen Methoden versagen.
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5.2. Jwdtrefcie Meikoden

Es ist schon aus den Erwägungen, die im letzten Abschnitt ange-
stellt wurden, hervorgegangen, dass gewisse Probleme viel durchsichti-

ger werden, wenn man sie nicht im Originalraum, sondern im Bild-
räum der charakteristischen Funktionen betrachtet. Es ist daher nicht
verwunderlich, dass verschiedene Autoren sich dieses Verhalten zu-
nutze zu machen suchten. Im Grunde genommen handelt es sich nur
um eine Verlagerung der Schwierigkeiten, denn schliesslich muss man,
will man die Verteilung H(x, f) berechnen, eine Bücktransformation
mit Hilfe der Inversionsformel vornehmen, und diese erweist sich (un-
eigentliches Integral!) in der Begel auch nicht als ein Kinderspiel.

A. Idee von Filon

Es liegt nahe, den Versuch zu machen, die charakteristische
Funktion von jF(i, f) im Bildraum so zu approximieren, dass die Bück-
transformation explizit und exakt möglich ist. Das einfachste wäre,
hiezu eine Schar von Geraden zu verwenden, Filon hat in seiner Arbeit
[16] mit Parabeln zweiten Grades gearbeitet. Das Wrfahren hat inso-
fern seine Bedenken, als es sehr schwierig ist, etwas über die Genauig-
keit der Abschätzung auszusagen.

B. Methode von Bohman

Eine der Schwächen, die dem Umweg über die charakteristische
Funktion anhaften, liegt wie gesagt darin, dass die Umkehrformel ein

Integral ist, dessen Integrationsbereich sich von —oo bis + oo erstreckt.
Um eine numerische Integration durchführen zu können, hat Bohman
[7] folgende aussergewöhnlich interessante Idee entwickelt :

Die charakteristische Funktion der Totalschadenverteilung soll
mit einer gewissen Funktion multipliziert werden, welche ausserhalb
eines endlichen Intervalls identisch verschwindet. Dadurch wird er-
reicht, dass der unendliche Integrationsbereich durch einen endlichen

ersetzt werden kann. Um die Genauigkeit der Methode unter Kon-
trolle zu halten, wird die Funktion einmal so gewählt, dass die zum
Produkt gehörige «Verteilungsfunktion» für alle ® durchwegs grösser,
dann für alle rr durchwegs kleiner ausfällt als die wahre Verteilungs-
funktion F(a;, <).
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Bohman hat in seiner Arbeit gezeigt, class eine Verteilung mit der

Dichte

1 + cos ,r
V» 2 7t -• (31)

7t~)

sich für den beabsichtigten Zw. Ai. als besonders günstig erweist. Diese

Verteilung hat die charakteristische Funktion

1(1 — DI) C0S7T2 + - sin |ti2| DI < 1

Vo(2) ^ (32)

I
o M >1

welche ausserhalb des Intervalls D|W1 identisch verschwindet. Es ist

nun so, dass sich die Funktion (32) unter den charakteristischen
Funktionen, welche in |^|>1 verschwinden, dadurch auszeichnet, dass

die zugehörige Verteilung die kleinstmögliche Varianz aufweist. Mit
9>c'(£)/,=o 0 und ç>c(^)/,=o h^t diese minimale Varianz den

Wert cr| ^. Die getroffene Wahl kann daher in dem Sinne als opti-
mal angesprochen werden, als sie die Abweichungen von der gesuchten

Verteilungsfunktion möglichst klein zu halten erlaubt.
27/orm hat erst kürzlich bewiesen [28], dass einzig die zu (31) ge-

hörige Verteilungsfunktion die von Bodman geforderte Minimaleigen-
schaff erfüllt.

Mit Hilfe der charakteristischen Funktion (32) definiert Bo/tmaw

die beiden Funktionen

Vi (^) Vc(D)— 0,421 <^,(2)

%(«) 9>c(s) + 0,42i 9^(2)

die derart beschaffen sind, dass für die Bücktransformation des Pro-
duktes

9>j(*0 V,' 1=1,2

— - / Vn(M) V/f V 'fe, =1,2 (33)
2 2 TT ^ V ^ ^
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die Näherungsbeziehungen

2^i(he, f) V F(ag i) V Fj(a;, f) (34)

für alle Werte von ,i gelten. Zur Berechnung der Integrale (33) dienen
wiederum numerische Integrationsmethoden (Simpson!). Je grösser 0

gewählt wird, desto kleiner wird die Differenz zwischen Fj und Ihj.
Die Ergebnisse, welche mit der Methode von Bohman erzielt wor-

den sind, dürfen als sehr befriedigend bezeichnet werden.

C. Modifikation von Seal

In seiner Arbeit [25], die dem ASTIN-Kolloquium in Banders
1970 eingereicht worden war, behandelt der Verfasser ebenfalls das

Problem, das unendliche Integrationsintervall der Inversionsformel

-F(M) ——— / -7— 9V(M) (35)
2 2 TT S

-CO

durch ein endliches Intervall zu ersetzen. Mit der Zerlegung

?VCM) A(g)e^),
wobei M (2) und B(^) reellwertige Punktionen sind [im Poisson-Modell
gilt M(^) _g(^)=ft(2) und 9^(2) 0(2) + $(2)] geht
Formel (35) über in

1 1
CO

F(ir, i) /"^(z) sin[2.7; —!!(«)] — (36)
2 TT ^ £

Der Autor versucht nun eine obere Grenze T< 00 des Integrations-
00 T

Intervalls derart zu bestimmen, dass | | gegenüber dem Bestintegral J
T 0

vernachlässigbar klein wird.

Im Falle der Verteilungsfunktion (4) haben die in (36) eingehen
den Funktionen M (2) und .£>(2) die Gestalt

M (2) e

<U2

BW -TF—£ •
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M(z) ist monoton fallend und strebt für 0->oo gegen e~'; 5(2)
steigt vorerst von Null bis zu einem Maximum (hier bei 0 o) an und

strebt danach für 0^-00 gegen 0. Dieses Verhalten der Funktionen M und

B gilt nicht nur in diesem Spezialfall.
Seal wählt nun den Wert von T so, dass £"(0) im verbleibenden

Intervall (T, 00) dauernd negativ bleibt. Die Anwendung gewisser Mit-
telwertsätze der Integralrechnung erlaubt es ihm dann zu zeigen, dass

eine Abschätzung von der Form

1 r 2H(T) TT
^~ ./ ^(«) sin [za:- B(z)] ^

~
^

' | y—S<£o)| @0

sin %

gilt, wobei Sd(B) / dît den Integralsinus darstellt und |g als
6 "

Vielfaches von tt geeignet zu wählen ist, was allerdings praktische
Schwierigkeiten bietet.

Im Poisson-Fall bei grossem f wird ,1(0) sehr klein, lange bevor

B(z) den maximalen Wert überschreitet. Man kann dann eine Grenze
T

T' wählen, so dass bereits das Integral 1j [ vernachlässigbar klein wird.
T'

Die Berechnung von B(aW) erfolgt anschliessend mit Hilfe der

Formel (36) mit oberer Integralgrenze T bzw. T' auf numerischem

Wege (Trapezoidregel/Verfahren von Romberg).
Die Methode, welche Seal vorschlägt ist in der Handhabung doch

etwas einfacher als jene von Bohman. Sie scheint bezüglich der Genau-

igkeit ebenso gute Resultate zu liefern, doch sind für eine exakte Ab-

Schätzung weitere Untersuchungen notwendig.

5.3. Sonder/nid Morde CarZo

Die Simulationsmethoden, welche unter dem Namen Monte-Car-
lo-Methoden bekannt wurden, haben mit den Fortschritten der Com-

putertechnik in verschiedenen Wissenszweigen Einzug gehalten. In un-

serem Fall geht es darum, mit Hilfe von Zufallszahlen eine genügend

grosse Stichprobe für eine stochastische Variable mit der Verteilungs-
funktion F(cc, f) zu simulieren. Aus dieser Stichprobe lässt sich dann
die gesuchte Funktion schätzen.
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Das Verfahren ist in der Arbeit von Personen [23] für das ASTIN-
Kolloquium in Luzern beschrieben worden. Weitere Einzelheiten, ins-
besondere auch bezüglich der praktischen Anwendung, hat ITorinen
[19] beim selben Anlass mitgeteilt. Als erstes werden für die Vertei-
lungsfunktion der Poisson-Verteilung (2)

iV iV /r
VP,(f) =e-'2-f (38)
r=0 r=0 ^

Zufallszahlen erzeugt, welche zu einer Eolge stochastischer Zahlen-
werte W- führen.

Zur Vereinfachung des folgenden Schrittes ist es üblich, vorerst
die Faltungspotenzen der Verteilungsfunktion »S'(a;) für Zweierpoten-
zen 2'', fc =0,1, 2 zu bilden. Die W- werden nun in Binärschreib-
weise

K 0oderl)
fc

geschrieben, und Zufallszahlen für die Je 0, 1, 2, V,
gebildet.

Da ,S'*V 77* ,5*2 gilt, ergeben die Summen der auf diese Weise
ojs=l

gefundenen Lösungen a;^

»# S (39)
03/=l

Stichprobenwerte der gesuchten Totalschadenverteilung P(ec, f). Damit
eine relativ genaue Schätzung erfolgen kann, muss das Prozedere sehr
oft durchgespielt werden, d. h. ] läuft in der Eegel von 1 bis 10* oder 10®.

6. «Modellfreie» Versuche

Die Schwierigkeiten, die sich in der Berechnung der Verteilungs-
funktion (5) stellen, lassen sich am einfachsten überwinden, indem
man sich von der darin zum Ausdruck kommenden Modellvorstellung
formelmässig befreit. Dieser naturgegebenermassen ziemlich «rabiate»
Schritt kann, wie praktische Beispiele gezeigt haben, in vielen Fällen
zu durchaus nützlichen Ergebnissen führen.
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A. Momentenmethode

Schon in Abschnitt 1 ist auf die einfachen Zusammenhänge hinge-
wiesen worden, die zwischen den Momenten der zugrunde liegenden
Verteilungen existieren. Die Idee, sich bei Untersuchungen irgendwel-
eher Art vor allem dieser Beziehungen zu bedienen, liegt deshalb nicht
besonders ferne. Bühlmann hat auf diese Möglichkeit in seiner Arbeit
[10] aufmerksam gemacht. Eine praktische Anwendung der Methode

findet sich in [5] ; allerdings wurde hier die Schadensummenverteilung
iS'(«) vorerst durch eine analytische Verteilungsfunktion (logarithmi-
sehe Normalverteilung) ausgeglichen, was im Sinne dieser Ausführun-

gen nicht unbedingt notwendig ist.
Unter der Poisson-Hypothese ergeben sich für Schiefe und Exzess

der Totalschadenverteilung (siehe auch Abschnitt 4.1) die einfachen

Ausdrücke

1/ o _ ^3
Vi— 1'nPi

F/2 — FP2& "" S

Oa) 2

Will man eine Verteilungsfunktion nach ihrem Typus gemäss dem

Pearson-System klassifizieren, so kann dazu (siehe z.B. [13]) die

Grösse

0i(Ä+3)*
4(4&-3^) (2&-3/Î1-6)

(41)

dienen. Je nachdem, was * für einen Wert annimmt, können daraus

Rückschlüsse für die zugrunde liegende Verteilungsfunktion gezogen
werden. So gilt

«<0 Typus I Beta-Verteilung I.Art.
x=0 (ß-L=0, /SgVS) Typus II
«=0 (/Sj=0, /3,=3) Typus VII Normalverteilung
0<x<l Typus IV
x 1 Typus V

lOCoo Typus VI Beta-Verteilung 2. Art
x oo Typus III Gamma-Verteilung
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Auf Grund der mit (41) berechneten Masszahl « kann daher die
Art der Verteilungsfunktion des Totalschadens gefunden werden. Das
tönt sehr schön, in der Praxis dürfte es aber trotz solcher Regeln nicht
immer einfach sein, auf Grund der empirischen Daten einen vertretba-
ren Entscheid zu fällen.

Man muss im Prinzip nicht so weit gehen, dass man das dritte und
vierte Moment zu Hilfe zieht, sondern man kann versuchen, bereits
auf Grund der ersten beiden Momente Schlüsse zu ziehen und die
Form der Verteilung des Totalschadens festzulegen.

Eine solche Möglichkeit, welche theoretisch wohl begründet ist -
die Normalverteilung -, wurde unter 4.1. A erwähnt. Verschiedene
Autoren benützen zur Darstellung der Totalschadenverteilung eine un-
vollständige Gammafunktion (als Beispiel siehe [4]). Diese Wahl ist
ebenfalls nicht völlig willkürlich, sondern hat ihren theoretischen Hin-
tergrund, der dann zum Vorschein kommt, wenn man nicht das Pois-
son-Modell sondern das allgemeinere Modell (3) den Untersuchungen
zugrunde legt. Als Stichwort sei nur an den Satz von Lundberg [22]
erinnert, der besagt, dass für i-»-oo bei endlichem œ die Verteilungs-
funktion E(/rf, f) gegen die Strukturfunktion 77(7c) strebt.

B. Verfahren von Bowers

Bowers hat in [9] die soeben erwähnte Möglichkeit insofern verfei-
nert, als er für die Totalschadenverteilung neben der unvollständigen
Gammafunktion eine Summe von Gammadichten ansetzt. Dies er-
laubt ihm hinwiederum, beliebig viele Momente der empirischen Ver-

teilung des Totalschadens mit seinem Modell in Übereinstimmung zu

bringen.
Die Herleitung, welche ohne Bezug auf das Modell (5) erfolgt und

nur die Kenntnis der Momente der Verteilung H erfordert, beruht auf
einer Eigenschaft der Laguerre-Polynome. Diese, üblicherweise defi-
niert durch

L'">(s) (-1)" H"« 7 -f - (œ"+^ W) (42)
aar

stehen bezüglich der Gammadichte
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auf der reellen positiven Achse orthogonal, d.h. es gilt die Beziehung

1

— / AL<«>A) L^(«) d«W c(

0 ra=£n

H(a + ?i)
w • m n/»

(43)

Nimmt man nun für die Yerteilungsdichte des Totalschadens eine

Entwicklung der Form

/(z, f) gf (,-r, a) 2 My E<?>(z)
7 0

(44)

an, so lassen sich die Koeffizienten My mit Hilfe der Orthogonalitätsre-
lationen (43) bestimmen. Geht man weiter davon aus, Mittelwert und

Varianz dieser Verteilung seien gleich, und zwar gleich a, so folgt

A 1; A=A 0: A r(a)
3 H(a + 3)

(^3 -2a)

usw., wobei das entsprechend transformierte dritte Zentralmoment
der Verteilung H bezeichnet.

Setzt man die Polynome (42) sowie die berechneten Koeffizienten

A in die Formel (44) ein, so erhält man, wenn noch der Einfachheit

jT(a+ y)
halber By My postuliert wird, eine Summe von Gamma-

B(a)
dichten von der Form

/(n 0 — g (®, a) [1 Bg + B^ ] + (/ (ag a +1) [3 Bg 4B^ + ]

+ g (ag a + 2) [ 3 Bg + 6 B^ —...] +

Für die Verteilungsfunktion B ergibt sich somit unter Benützung
der Rekursionsformel für die unvollständige Gammafunktion

1 *

y A B(a', a + 1) B(x, a) — <7(2:, a -f 1)
Aa + 1) /
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die Beziehung

B(a;, f) /"(x, a) — Bg [gr(a:, a +1) —2g (a:, a +2) + 3 (a:, a + 3)]

+ B„[g(a;, a + 1) —33(a:, a + 2) + 3$(a:, a + 3) + g (a;, a +4)]

- (45)

Beim Poisson-Modell, wo bekanntlich nach (7) die Relationen

isj und of, feg gehen, muss, um die für die Berechnung der
h erwähnte Bedingung zu erfüllen, die Yariablentransformation

Y — Y (Y ursprüngliche Totalschadenvariable) durchgeführt
^2

werden. Dann ergibt sich

2 1 4 _yWjçi — CT ci — î — 0C

^2

und für die Koeffizienten B„ :

Bs
6

Si S3

B, -Y-î- —12 + 18 usw.
®i ^4 H ^3

24 Sg sf

Nimmt man zur Darstellung der Schadensummenverteilung die

Exponentialverteilung (4) zu Hilfe, so erhält man die einfachen Bezie-

hungen

a t/2, Bg —2/24, B4 f/16,

was die Auswertung von (45) noch wesentlich leichter gestaltet.
Die numerischen Beispiele, die Bowers gerechnet hat, erweisen

sich im Vergleich zu anderen Verfahren nicht in allen Teilen als befrie-
digend.
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Anhang : Einige numerische Werte

Um die Grössenordnung der Abweichungen der verschiedenen
Verfahren voneinander doch noch etwas plastischer zu machen, seien

im folgenden für ein einfaches Beispiel die numerischen Zahlenwerte
einiger wichtiger Methoden zusammengestellt. Dabei verzichten wir
praktisch auf die in Abschnitt 5 erwähnten Computerverfahren, zah-

lenmässige Beispiele hierfür findet man beispielsweise in [8] und [25].
Die Berechnungen beruhen auf der einfachen Verteilungsfunktion

(4) mit a 1 als Schadensummenverteilung. Die mittlere zu erwar-
tende Schadenanzahl f wurde gleich 16 gesetzt. Dies erlaubte, die in
den Arbeiten von Drawer [12] und .Bowers [9] publizierten numeri-
sehen Angaben über die Methoden 4.1. A - Normalverteilung, 4.1. B -
Scfr/eworfÄ, 4.2. A - Ebsc/ier, 5.1. C - für den exakten Wert, 6 A -
Gammaverteilung und 6 B - Bowers zu übernehmen. Für die NP-

Entwicklung wurden die Formeln (14') und (14") verwendet.
In der folgenden Tabelle 1 ist der absolute Wert der Funktion

.F(x, f) an verschiedenen Stellen der x-Achse aufgeführt. Die beiden wei-

teren Tabellen 2 und 8 geben einmal die Zunahme der Verteilungs-
funktion von Intervall zu Intervall an, anderseits die Grössenrelation
dieser Zunahmen, wenn der exakte Wert auf 100 normiert wird.

Aus den wiedergegebenen Zahlenwerten geht eindeutig hervor,
wie weitgehend die Esscher-Transformation, vorausgesetzt, man be-

rücksichtigt eine genügende Anzahl Terme (schon zwei dürften viel-
fach genügen), den exakten Werten nahekommt. Man sieht aber auch,

wie gut die erst vor kurzem vorgeschlagene NP-Entwicklung die ge-

suchten Funktionswerte wiedergibt.



Ta&eZfe 7

Numerische Werte der Verteilungsfunktion 10® f) für f 16

£ Exakt Normal EVgeworfk NP NP -Essc/ier Essc/ier Gamma Powers

(4 Terme) (14') (14") (1 Term) (4 Terrae) (inkl. Z>\)

0 0 234 -64 0 0 0 0 0 0

4 342 1 696 264 393 353 308 341 110 216

8 6 039 7 868 6 165 G 254 6 055 5 470 6 033 5 110 6 255

12 25 385 23 979 25 375 25 559 25 370 23 125 25 370 25 589 25 518

16 53 540 50 000 53 526 53 498 53 526 50 000 53 526 54 687 53 166

20 77 387 76 021 77 373 77 226 77 382 75 350 77 376 77 990 77 324

24 91172 92 132 91 241 91 040 91 176 90 440 91 168 91 054 91 338

28 97 150 98 304 97 134 97 080 97 151 96 944 97 150 96 839 97 234

32 99 218 99 766 99 160 99 191 99 217 99 169 99 218 99 000 99 204

36 99 814 99 980 99 991 99 S07 99 812 99 803 99 814 99 711 99 782

40 99 961 99 999 100 010 99 960 99 960 99 959 99 960 99 922 99 944
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Zunahmen der Verteilungsfunktion 10® F (2;, f) in aufeinanderfolgenden
Intervallen der a>Achse

Intervall Exakt Normal Edgtejaorife NP NP Essc/ier E'ssc/ier Gamma Bowers
(4 Terme) (14') (14 " (1 Term) (4 Terme) (inkl. Bj)

0- 4 342 1 462 328 393 353 308 341 110 216

4- 8 5 697 6 172 5 901 5 861 5 702 5 162 5 692 5 000 6 039

8-12 19 346 16 III 19 210 19 305 19 315 17 655 19 337 20 479 19 263

12-16 28 155 26 021 28 151 27 939 28 156 26 875 28 156 29 098 27 648

16-20 23 847 26 021 23 847 23 728 23 856 25 350 23 850 23 303 24158
20-24 13 785 16 111 13 868 13 814 13 794 15 090 13 792 13 064 14 014

24-28 5 978 6172 5 893 6 040 5 975 6 504 5 982 5 785 5 896

28-32 2 068 1 462 2 026 2 111 2 066 2 225 2 068 2 161 1 970

32-36 596 214 831 616 595 634 596 711 578

36-^0 147 19 19 153 148 156 146 211 162

40—co 39 1 —10 40 40 41 40 78 56



TaèeZfe 3

Prozentuale Abweichung der Zunahmen in den einzelnen Intervallen
vom exakten Wert 100)

Intervall Exakt Normal EMgrettiortfi NE NP .Essener -Esscfoer Gamma Bowers
(4 Terme) (14') (14") (1 Term) (4 Terme) (inkl. Bs)

0- 4 100 427,5 95,9 114,9 103,2 90,0 99,7 32,2 63,24- 8 100 108,3 103,6 102,9 100,1 90,6 99,9 87,8 106,0
8-12 100 83,3 99,3 99,8 99,8 91,3 100,0 105,9 99,6

12-1G 100 92,4 100,0 99,2 100,0 95,5 100,0 103,3 98,2

101,3
16-20 100 109,1 100,0 99,5 100,0 106,3 100,0 97,7
20-24 100 116,9 100,6 100,2 100,1 109,5 100,1 94,8 101,7

98,6
21-28 100 103,2 98,6 101,0 99,9 108,8 100,1 96,8
28-32 100 70,7 98,0 102,1 99,9 107,6 100,0 104,5 95,3

97,0

110,2

32-36 100 35,9 139,4 103,4 99,8 106,4 100,0 119,3
36-10 100 12,9 12,9 104,1 100,7 106,1 99,3 143,5
40— oo 100 2,6 —25,6 102,6 102,6 105,1 102,6 200,0 143,6
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Zusammenfassung

In den vergangenen Jahren sind viele Verfahren entwickelt worden, die die

Berechnung der Verteilungsfunktion des Totalschadens, eines der zentralen Pro-
bleme der kollektiven Risikotheorie, zum Ziele haben. Der Autor versucht, einen

systematischen Überblick über die verschiedenen Möglichkeiten zu geben und diese

in ihren wesentlichen Belangen kurz zu charakterisieren.

Summary

In the past, several procedures have been developped to solve one of the main

problems of the collective theory of risk: The evaluation of the distribution func-
tion of the accumulated claims. The author gives a systematic survey of the
various methods and describes their essential properties.

Résumé

Au cours des années écoulées, plusieurs procédés ont été développés ayant
tous pour but le calcul de la fonction de distribution du sinistre total - cm des pro-
blêmes cruciaux de la théorie collective du risque. L'intention de l'auteur est de

donner cm aperçu systématique des diverses possibilités et d'en relever succincte-

ment les principales caractéristiques.

Riassunto

Negli anni trascorsi sono stati sviluppati molti procedimenti che hanno come

meta il calcolo délia funzione di ripartizione del sinistra totale, uno dei problemi
centrali délia teoria collettiva di rischio. L'autore cerca di fare un'esposizione siste-

matica delle diverse possibilità e di caratterizzare brevemente le stesse secondo la
loro importanza essenziale.
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