Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 71 (1971)

Artikel: Diskussion einiger Näherungen der temporären Verbindungsrente

Autor: Jecklin, H.

DOI: https://doi.org/10.5169/seals-967163

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Diskussion einiger Näherungen der temporären Verbindungsrente

Von H. Jecklin, Zürich

Für die temporäre Verbindungsrente $\ddot{a}_{xy:\overline{n}|}$ kennt man verschiedene Näherungen, die im folgenden Gegenstand einer eingehenden Betrachtung bilden sollen. Zwar spielen heute, da moderne Rechengeräte zur Verfügung stehen, die Näherungen in der Praxis nicht mehr eine bedeutende Rolle, doch ist die Beschäftigung damit sicher nicht ganz nutzlos und zumeist in theoretischer Hinsicht reizvoll.

Zwecks Vereinfachung setzen wir

$$\begin{split} _tp_x &= a_t\,, & 0 < a_t \leqq 1\,, \\ _tp_y &= b_t\,, & 0 < b_t \leqq 1\,, \\ v^t &= c_t\,, & 0 < c_t \leqq 1\,. \end{split}$$

Die Summierungen gehen durchwegs von 0 bis n-1, und soweit kein Missverständnis entstehen kann, wird der Index t weggelassen. Es ist also beispielsweise

$$\ddot{a}_{xy:\overline{n}|} = \sum_{t=0}^{n-1} {}_{t}p_{x} {}_{t}p_{y} v^{t} = \sum a_{t} b_{t} c_{t} = \sum abc.$$

Soweit nichts anderes vermerkt, ist $x \neq y$ vorausgesetzt, und es braucht den beiden Eintrittsaltern x und y nicht die gleiche Sterbetafel zugeordnet zu sein. Wir bezeichnen die temporäre Verbindungsrente $\ddot{a}_{xy:\overline{n}|}$ im folgenden mit dem Buchstaben R und weisen auch den verschiedenen Näherungen grosse Buchstaben zu.

Eine erste Gruppe von Näherungen für die temporäre Verbindungsrente basiert auf Mittelbildungen aus Verbindungsrenten gleichaltriger Paare

wie
$$\ddot{a}_{xy;\overline{n}} \sim \frac{1}{2} \left(\ddot{a}_{xx;\overline{n}} + \ddot{a}_{yy;\overline{n}} \right)$$
,

und
$$\ddot{a}_{xy:\overline{n}|} \sim (\ddot{a}_{xx:\overline{n}|} \cdot \ddot{a}_{yy:\overline{n}|})^{\frac{1}{2}}.$$

Offenbar stellt A das arithmetische Mittel, G das geometrische Mittel von Verbindungsrenten gleichaltriger Paare dar, und es liegt nahe, auch das harmonische Mittel in Betracht zu ziehen

$$rac{1}{\ddot{a}_{xy:\overline{n}|}} \sim rac{1}{2} \left(rac{1}{\ddot{a}_{xx:\overline{n}|}} + rac{1}{\ddot{a}_{yy:\overline{n}|}}
ight)$$
 ,

woraus

$$\ddot{a}_{xy:\overline{n}|} \sim \frac{2 \ddot{a}_{xx:\overline{n}|} \ddot{a}_{yy:\overline{n}|}}{\ddot{a}_{xx:\overline{n}|} + \ddot{a}_{yy:\overline{n}|}}.$$

Wie Rufener gezeigt hat [1], ist die Überlebensordnung von Dormoy $l(x) = ks^x$ das einzige Sterbegesetz, für welches alle drei Näherungen A, G und H für $n < \infty$ exakt erfüllt werden.

Eine zweite Gruppe von Näherungen für die temporäre Verbindungsrente stellt auf die einlebigen Rentenwerte ab. Wir haben

$$\ddot{a}_{xy:\overline{n}|} \sim \ddot{a}_{x:\overline{n}|} + \ddot{a}_{y:\overline{n}|} - \ddot{a}_{\overline{n}|}$$
 N

und

$$\ddot{a}_{xy:\overline{n}|} \sim \frac{\ddot{a}_{x:\overline{n}|} \ddot{a}_{y:\overline{n}|}}{\ddot{a}_{\overline{n}|}}, \qquad M$$

sowie die Lidstonesche Approximation für den reziproken Verbindungsrentenwert

$$\frac{1}{\ddot{a}_{xy:\overline{n}|}} \sim \frac{1}{\ddot{a}_{x:\overline{n}|}} + \frac{1}{\ddot{a}_{y:\overline{n}|}} - \frac{1}{\ddot{a}_{\overline{n}|}} ,$$

woraus

$$\ddot{a}_{xy:\overline{n}|} \sim \frac{\ddot{a}_{x:\overline{n}|} \ddot{a}_{y:\overline{n}|} \ddot{a}_{\overline{n}|}}{\ddot{a}_{x:\overline{n}|} \ddot{a}_{\overline{n}|} + \ddot{a}_{y:\overline{n}|} \ddot{a}_{\overline{n}|} - \ddot{a}_{x:\overline{n}|} \ddot{a}_{y:\overline{n}|}} . \quad L$$

Mit der Gruppe dieser drei Näherungen hat der Verfasser sich verchiedentlich befasst, indem einerseits eine einfache Begründung derelben gegeben und dieselben sodann sehr wesentlich verallgemeinert vurden [2]. Des weitern hat Rufener gezeigt [3], dass l(x) = k = onst. einziges Sterbegesetz ist, für welches L, M und N keine Näheungen darstellen, sondern exakte Werte liefern. Auch hat er Fehlerbschätzungen für die Approximationen M und N bei $l(x) \neq k$ egeben [4].

Die beiden Gruppen von Näherungen unterscheiden sich grundätzlich voneinander. Im Falle x=y resultiert bei der ersten Gruppe ediglich die Identität für die temporäre Verbindungsrente des gleichltrigen Paares. Bei der zweiten Gruppe jedoch erhalten wir Näherunen für die Verbindungsrente des gleichaltrigen Paares, im Falle der idstoneschen Approximation beispielsweise

$$\frac{1}{\ddot{a}_{xx:\overline{n}|}} \sim \frac{2}{\ddot{a}_{x:\overline{n}|}} - \frac{1}{\ddot{a}_{\overline{n}|}}$$
.

Über das grössenmässige Verhalten der vorstehenden sechs Näheungen zueinander und zum genauen Wert R der Verbindungsrente ist .W. bis anhin wenig bis nichts publiziert worden, obwohl es sich bei iesen Vergleichen im allgemeinen um ein recht elementares Problem andelt. Das Unterfangen ist im übrigen insofern nicht ganz unnütz, Is man bei der Benützung von Näherungen nach Möglichkeit jene ählen wird, die dem genauen Wert am nächsten kommt. Nachdem ir im ganzen sieben Werte zu vergleichen haben, gibt es $\binom{7}{2} = 21$ Verleiche. Weil sich jedoch die sieben Werte A, H, G, R, M, N und L mit ner Ausnahme grössenmässig in einer Reihe ordnen lassen, käme an mit etwa der Hälfte aus. Wir wollen uns aber durch die Mühe nicht erdriessen lassen, alle 21 Fälle durchzudiskutieren.

Die eben erwähnte Ausnahme sei vorweggenommen. Es ist

$$L \geqslant R$$

.h. für das Verhältnis der Lidstoneschen Näherung zum genauen Vert der temporären Verbindungsrente kann keine gerichtete Ungleinung angegeben werden. Es ist dies leicht einzusehen, denn es ist

einerseits
$$\dfrac{1}{\ddot{a}_{xy:\overline{n}|}}>\dfrac{1}{\ddot{a}_{x:\overline{n}|}}$$
 anderseits $\dfrac{1}{\ddot{a}_{\overline{n}|}}<\dfrac{1}{\ddot{a}_{u:\overline{n}|}}$

und in beidseitiger Addition folgt lediglich

$$rac{1}{\ddot{a}_{xy:\overline{n}|}}+rac{1}{\ddot{a}_{\overline{n}|}}\gtrlessrac{1}{\ddot{a}_{x:\overline{n}|}}+rac{1}{\ddot{a}_{y:\overline{n}|}}\;.$$

Man könnte auch wie folgt argumentieren:

Es gilt einerseits - siehe Ziff. 18) hiernach -

$$\sum abc + \sum c > \sum ac + \sum bc$$

anderseits - siehe Ziff. 17) hiernach -

$$\frac{1}{\sum abc \sum c} < \frac{1}{\sum ac \sum bc}$$

und aus beidseitiger Multiplikation folgt wieder

$$rac{1}{\sum abc} + rac{1}{\sum c} \gtrless rac{1}{\sum ac} + rac{1}{\sum bc} \ .$$

Es ist hiedurch aber keineswegs ein schlüssiger Beweis dafür erbracht, dass keine gerichtete Ungleichung vorliegen kann, wie die folgenden zwei Gegenbeispiele zeigen.

a) wenn
$$\sum ab > \sum b^2$$
 dann ist $\sum ab < \sum a^2$, und umgekehrt.

Aus beidseitiger Multiplikation folgt

$$(\sum ab)^2 \geqslant \sum a^2 \sum b^2$$
.

Nun gilt aber nach der Ungleichung von Cauchy [5] für positive Reihenwerte a_t und b_t stets

$$(\sum ab)^2 \leq \sum a^2 \sum b^2$$
,

wobei das Gleichheitszeichen nur bei Proportionalität von a_t und b_t gelten kann.

b) Es ist
$$\sum abc < \sum ac$$
 and $\sum c > \sum bc$.

Aus beidseitiger Multiplikation folgt

$$\sum abc \sum c \geqslant \sum ac \sum bc$$
.

Nun besagt aber die Ungleichung von Steffensen [6]: Sind a_t und b_t zwei positive nicht fallende Funktionen und c_t eine positive Funktion, so gilt sicher

$$\sum abc \sum c > \sum ac \sum bc$$
.

Wenn wir bei der Ungleichung von Cauchy b=1 setzen, bzw. wenn wir bei der Ungleichung von Steffensen a=b und c=1 setzen, so ergibt sich in beiden Fällen die Ungleichung

$$n \sum a^2 > (\sum a)^2$$

Die Ungleichungen von Cauchy und von Steffensen werden uns im folgenden sehr von Nutzen sein.

Der Verfasser hat sich in einer früheren Arbeit [7] eingehend mit der Lidstoneschen Näherung befasst und veranschaulicht, weshalb hier zwischen genauem Wert und Näherung tatsächlich keine gerichtete Ungleichung bestehen kann. Wir betrachten die Verbindungsrente für ein gleichaltriges Paar und schreiben die Differenz zur Approximation

$$\triangle = \frac{1}{\ddot{a}_{xx:\overline{n}|}} - \left(\frac{2}{\ddot{a}_{x:\overline{n}|}} - \frac{1}{\ddot{a}_{\overline{n}|}}\right)$$

n der Gestalt
$$\triangle = \frac{1}{\ddot{a}_{x:\overline{n}|}} \left(\frac{\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{xx:\overline{n}|}} + \frac{\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{\overline{n}|}} - 2 \right).$$

Ersetzen wir $\frac{\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{xx:\overline{n}|}}$ durch die Näherung $\frac{\ddot{a}_{\overline{n}|}}{\ddot{a}_{x:\overline{n}|}}$, so folgt

$$\triangle \sim \frac{1}{\ddot{a}_{x:\overline{n}|}} \left(\frac{\ddot{a}_{\overline{n}|}}{\ddot{a}_{x:\overline{n}|}} + \frac{\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{\overline{n}|}} - 2 \right).$$

Nennen wir kurz $\frac{\ddot{a}_{\overline{n}|}}{\ddot{a}_{x:\overline{n}|}}=x$, so repräsentiert der Klammerausdruck offenbar eine Hyperbel

$$y = x + \frac{1}{x} - 2.$$

Uns interessieren lediglich die Funktionswerte positiver x, es ist dies ein sich nur im ersten Quadranten erstreckender Hyperbelast. Die eine Asymptote ist die y-Achse, die andere läuft parallel zur Geraden y = x mit Achsenabschnitt -2 auf der y-Achse. Im Punkte y = 0, x = 1 berührt die Hyperbel die x-Achse.

Nun wurde aber vorhin näherungsweise $\frac{\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{xx:\overline{n}|}}$ durch $\frac{\ddot{a}_{\overline{n}|}}{\ddot{a}_{x:\overline{n}|}}$ er-

setzt, und da $\frac{\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{xx:\overline{n}|}} < \frac{\ddot{a}_{\overline{n}|}}{\ddot{a}_{x:\overline{n}|}}$ (gem. Steffensenscher Ungleichung),

wird der Scheitel der Hyperbel gesenkt, sodass sich negative Funktionswerte ergeben können. Es ist darum nicht möglich, eine gerichtete Ungleichung herzuleiten.

Damit ist aber auch der Fall $x \neq y$ erledigt. Denn die ungleichaltrige Verbindungsrente kann ja gleichwertig durch eine Verbindungsrente gemeinsamen mittleren Alters ersetzt werden. Bei gegebener Sterbetafel wird demnach das Verhältnis von L zu R durch das gemeinsame mittlere Alter der Rentner und durch die Rentendauer bestimmt, wobei es nicht möglich ist, eine gerichtete Ungleichung herzuleiten.

Immerhin kann ausgesagt werden: je niedriger das gemeinsame mittlere Alter, desto eher ist R-L<0, und je länger die Rentendauer, desto eher ist R-L>0 (siehe Tabelle I). Für die praktisch in Frage kommenden Kombinationen von Alter und Dauer ist der Unterschied zwischen R und L generell äusserst gering.

$$A > G$$
.

Wir setzen

$$\ddot{a}_{xx:\overline{n}|} = \alpha \,, \quad \ddot{a}_{yy:\overline{n}|} = \beta \,.$$
 $0 < (\alpha - \beta)^2$

Dann ist

$$2\alpha\beta < \alpha^2 + \beta^2$$

$$4\alpha\beta < \alpha^2 + 2\alpha\beta + \beta^2$$

$$4\alpha\beta < (\alpha + \beta)^2$$

$$(\alpha \, eta)^{rac{1}{2}} < rac{1}{2} (lpha + eta)$$

w.z.b.w.

Es ist dies einfach ein Beispiel für die Tatsache, dass das arithmetische Mittel zweier positiver Grössen stets grösser ist als deren geometrisches Mittel.

3) Behauptung:

$$A > H$$
.

Wir setzen

$$\ddot{a}_{xx:\overline{n}|}=lpha\,, \qquad \ddot{a}_{yy:\overline{n}|}=eta$$
 $4\,lphaeta<(lpha+eta)^2, \qquad \qquad ext{wie vorhin}$

$$\frac{2\alpha\beta}{\alpha+\beta} < \frac{1}{2}(\alpha+\beta)$$
 w.z.b.w.

Dies ist lediglich ein Beispiel für die Tatsache, dass das arithmetische Mittel zweier positiver Grössen stets grösser ist als deren harmonisches Mittel.

4) Behauptung:

$$A > R$$
.

Zufolge der Positivität eines Quadrates gilt

$$egin{align} 0 &< (ac^{rac{1}{2}} - bc^{rac{1}{2}})^2 \,=\, a^2\,c - 2\,abc \,+\, b^2\,c \ & 2\,abc \,<\, a^2\,c \,+\, b^2\,c \ & 2\,\sum\,abc \,<\, \sum\,a^2\,c \,+\, \sum\,b^2\,c \ & \sum\,abc \,<\, rac{1}{2}\,ig(\,\sum\,a^2\,c \,+\, \sum\,b^2\,cig) \ & ext{w.z.b.w.} \end{aligned}$$

5) Für das Verhältnis von A zu L lässt sich keine gerichtete Ungleichung angeben. Man ersieht dies u.a. daraus, dass man für x=y auf die Lidstonesche Relation

$$\frac{1}{\ddot{a}_{xx:\overline{n}|}} \sim \frac{2}{\ddot{a}_{x:\overline{n}|}} - \frac{1}{\ddot{a}_{\overline{n}|}}$$

geführt wird, worauf bereits hingewiesen wurde.

Es ist zwar, wie eben gezeigt A > R, und die Differenz zwischen R und L ist nach Ziff.1) im allgemeinen äusserst klein. So wird bei jenen Positionen, für welche R > L, sicher auch A > L sein. Für $x \neq y$ liegt der Übergang zur positiven Differenz von A - L wegen A > R bei kleinerem n als beim Verhältnis von R zu L, und man darf A > L etwa für $n \geq 20$ ansetzen.

6) Behauptung: A > M.

Es ist $2\sum abc < \sum a^2c + \sum b^2c$, wie vorhin. $2\sum abc \sum c < \sum a^2c \sum c + \sum b^2c \sum c$.

Nun benutzen wir die Ungleichung von Steffensen, siehe Ziff. 1).

Darnach ist $\sum ac \sum bc < \sum abc \sum c$ und daher $2\sum ac \sum bc < 2\sum abc \sum c < \sum a^2c \sum c + \sum b^2c \sum c$ $\frac{\sum ac \sum bc}{\sum c} < \frac{1}{2}(\sum a^2c + \sum b^2c)$ w.z.b.w.

7) Behauptung: A > N.

Es ist $(a-1)^2 > 0$ und $(b-1)^2 > 0$ $a^2 > 2a-1, \qquad b^2 > 2b-1$ $a^2 + b^2 > 2a + 2b - 2$ $\sum a^2c + \sum b^2c > 2\sum ac + 2\sum bc - 2\sum c$ $\frac{1}{2}(\sum a^2c + \sum b^2c) > \sum ac + \sum bc - \sum c, \qquad \text{w. z. b. w.}$

$$G > H$$
.

Wir setzen

$$\ddot{a}_{xx;\overline{n}|} = \alpha, \qquad \ddot{a}_{yy:\overline{n}|} = \beta$$
 $4 \, \alpha \beta < (\alpha + \beta)^2 \qquad ext{siehe Ziff. 2}$
 $rac{4 \, (\alpha \beta)^2}{\alpha \beta} < (\alpha + \beta)^2$
 $rac{4 \, (\alpha \beta)^2}{(\alpha + \beta)^2} < \alpha \beta$

 $rac{2\,lphaeta}{lpha+eta}<(lphaeta)^{rac{1}{2}}$ w.z.b.w.

Es ist dies einfach ein Beispiel für die Tatsache, dass das geometrische Mittel zweier positiver Grössen stets grösser ist als deren harmonisches Mittel.

9) Behauptung:

$$G > R$$
.

Wir benutzen die bekannte Ungleichung von Cauchy, siehe Ziff. 1)

$$(\sum \alpha_t \, \beta_t)^2 < \sum \alpha_t^2 \sum \beta_t^2$$
 and setzen
$$\alpha = ac^{\frac{1}{2}}, \qquad \beta = bc^{\frac{1}{2}}$$
 voraus
$$(\sum abc)^2 < \sum a^2c \sum b^2c$$

$$\sum_1 abc < (\sum_1 a^2c \sum_1 b^2c)^{\frac{1}{2}} \qquad \text{w. z. b. w.}$$

.0) Für das Verhältnis von G zu L kann keine gerichtete Ungleichung ingegeben werden. Es ist hiezu mutatis mutandis dasselbe zu sagen, vas bezüglich des Verhältnisses von A zu L unter Ziff.5) ausgeführt vurde. Bei langen Rentendauern ist immerhin G > L zu erwarten.

11) Behauptung:
$$G > M$$
.

Nach der Ungleichung von Steffensen - siehe Ziff. 1) - gilt

$$\sum ac \sum bc < \sum abc \sum c$$

bzw. für
$$a = b$$
 $\frac{(\sum ac)^2}{\sum c} < \sum a^2c$ und $\frac{(\sum bc)^2}{\sum c} < \sum b^2c$.

Links- und rechtsseitig multipliziert ergibt

$$\left(\frac{\sum ac \sum bc}{\sum c}\right)^{2} < \sum a^{2}c \sum b^{2}c$$

$$\frac{\sum ac \sum bc}{\sum c} < (\sum a^{2}c \sum b^{2}c)^{\frac{1}{2}} \qquad \text{w.z.b.w.}$$

12) Behauptung:
$$G > N$$
.

$$\sum bc < \sum c$$

$$(\sum c - \sum ac) \sum bc < (\sum c - \sum ac) \sum c$$

$$\sum c (\sum ac + \sum bc - \sum c) < \sum ac \sum bc$$

$$\sum ac + \sum bc - \sum c < \frac{\sum ac \sum bc}{\sum c}$$

$$(\sum ac + \sum bc - \sum c)^{2} < \frac{(\sum ac)^{2}}{\sum c} \frac{(\sum bc)^{2}}{\sum c}$$

Gemäss der Ungleichung von Steffensen - siehe Ziff. 1) - gilt

$$\frac{(\sum ac)^2}{\sum c} < \sum a^2c, \quad \text{bzw.} \quad \frac{(\sum bc)^2}{\sum c} < \sum b^2c$$
also
$$(\sum ac + \sum bc - \sum c)^2 < \sum a^2c \sum b^2c$$

$$\sum ac + \sum bc - \sum c < (\sum a^2c \sum b^2c)^{\frac{1}{2}} \quad \text{w.z.b.w.}$$

$$H > R$$
.

$$\sum a^2c + \sum b^2c > 2\sum abc$$
 siehe Ziff. 4)

Wenn
$$a > b$$
: $\sum b^2 c - \sum abc > \sum abc - \sum a^2 c$
 $\sum a^2 c \left(\sum b^2 c - \sum abc\right) > \sum b^2 c \left(\sum abc - \sum a^2 c\right)$.

Wenn
$$b > a$$
: $\sum a^2c - \sum abc > \sum abc - \sum b^2c$
 $\sum b^2c \left(\sum a^2c - \sum abc\right) > \sum a^2c \left(\sum abc - \sum b^2c\right)$.

In beiden Fällen folgt

$$\frac{2\sum a^2c\sum b^2c}{\sum a^2c+\sum b^2c} > \sum abc$$
 w.z.b.w.

14) Für das Verhältnis von H zu L besteht keine gerichtete Ungleichung, was sich u.a. aus dem nahen Zusammenhang der beiden Näherungen erklärt. Nach Lidstone haben wir für x=y

$$\frac{1}{\ddot{a}_{xx:\overline{n}|}} \geqslant \frac{2}{\ddot{a}_{x:\overline{n}|}} - \frac{1}{\ddot{a}_{\overline{n}|}}$$

bzw.

$$\frac{1}{\ddot{a}_{yy:\overline{n}|}} \geqslant \frac{2}{\ddot{a}_{y:\overline{n}|}} - \frac{1}{\ddot{a}_{\overline{n}|}}$$

woraus durch beidseitige Addition

$$\frac{1}{2}\left(\frac{1}{\ddot{a}_{xx:\overline{n}|}}+\frac{1}{\ddot{a}_{yy:\overline{n}|}}\right) \geqslant \frac{1}{\ddot{a}_{x:\overline{n}|}}+\frac{1}{\ddot{a}_{y:\overline{n}|}}-\frac{1}{\ddot{a}_{\overline{n}|}},$$

d.h.

$$1/H \geqslant 1/L$$
.

Doch wurde vorhin gezeigt, dass H > R ist. Anderseits weicht L nur äusserst wenig von R ab, wobei für lange Rentendauern R > L ist und zufolgedessen auch H > L.

$$H > M$$
.

$$2\sum abc < \sum a^2c + \sum b^2c$$

siehe Ziff. 4)

andernteils

$$2\sum ac\sum bc < 2\sum abc\sum c$$

siehe Ziff. 6)

mithin

$$2rac{\sum ac \sum bc}{\sum c} < 2\sum abc < \sum a^2c + \sum b^2c$$
 $2\sum ac \sum bc < \sum c \sum a^2c + \sum c \sum b^2c$

Wenn
$$a > b$$
: $\sum ac \sum bc - \sum c \sum a^2c < \sum c \sum b^2c - \sum ac \sum bc$
$$\sum b^2c (\sum ac \sum bc - \sum c \sum a^2c) < \sum a^2c (\sum c \sum b^2c - \sum ac \sum bc)$$

Wenn
$$b > a$$
: $\sum ac \sum bc - \sum c \sum b^2c < \sum c \sum a^2c - \sum ac \sum bc$
 $\sum a^2c (\sum ac \sum bc - \sum c \sum b^2c) < \sum b^2c (\sum c \sum a^2c - \sum ac \sum bc)$

In beiden Fällen folgt

$$(\sum a^2 c + \sum b^2 c) \sum ac \sum bc < 2 \sum c \sum a^2 c \sum b^2 c$$

$$\frac{\sum ac \sum bc}{\sum c} < \frac{2 \sum a^2 c \sum b^2 c}{\sum a^2 c + \sum b^2 c}$$
 w. z. b. w.

16) Behauptung:

$$H > N$$
.

$$0 < \sum a^2c - 2\sum ac + \sum c + \sum b^2c - 2\sum bc + \sum c$$
, gem. Ziff. 7)

Wenn
$$a > b$$
: $\sum ac + \sum bc - \sum c - \sum a^2c < \sum b^2c + \sum c - \sum ac - \sum bc$
 $\sum b^2c \left(\sum ac + \sum bc - \sum c - \sum a^2c\right) < \sum a^2c \left(\sum b^2c + \sum c - \sum ac - \sum bc\right)$
Wenn $b > a$: $\sum ac + \sum bc - \sum c - \sum b^2c < \sum a^2c + \sum c - \sum ac - \sum bc$
 $\sum a^2c \left(\sum ac + \sum bc - \sum c - \sum b^2c\right) < \sum b^2c \left(\sum a^2c + \sum c - \sum ac - \sum bc\right)$

In beiden Fällen folgt

$$\left(\sum a^2c + \sum b^2c\right)\left(\sum ac + \sum bc - \sum c\right) < 2\sum a^2c \sum b^2c$$

$$\sum ac + \sum bc - \sum c < \frac{2\sum a^2c \sum b^2c}{\sum a^2c + \sum b^2c}$$
 w. z. b. w.

17) Behauptung:

$$R > M$$
.

Nach der Ungleichung von Steffensen gilt – siehe Ziff. 1) –

$$\sum abc \sum c > \sum ac \sum bc$$

$$\sum abc > \frac{\sum ac \sum bc}{\sum c}$$
w.z.b.w.

18) Behauptung:

$$R > N$$
.

Es ist

$$1 - a > b(1 - a)$$

$$1 + ab > a + b$$

$$c + abc > ac + bc$$

$$\sum abc > \sum ac + \sum bc - \sum c$$
 w. z. b. w.

19) Behauptung:

$$M > N$$
.

Es ist

$$\sum c > \sum bc$$

$$\sum c(\sum c - \sum ac) > \sum bc(\sum c - \sum ac)$$

$$\sum ac \sum bc > \sum ac \sum c + \sum bc \sum c - \sum c \sum c$$

$$\frac{\sum ac \sum bc}{\sum c} > \sum ac + \sum bc - \sum c \quad \text{w. z. b. w.}$$

20) Behauptung:

$$L > N$$
.

$$rac{\sum ac \sum bc}{\sum c} > \sum ac + \sum bc - \sum c$$
 wie vorhin $rac{\sum c}{\sum ac \sum bc} < rac{1}{\sum ac + \sum bc - \sum c}$ $rac{\sum ac + \sum bc}{\sum ac \sum bc} < rac{\sum ac + \sum bc}{\sum c(\sum ac + \sum bc - \sum c)}$

$$\frac{1}{\sum ac} + \frac{1}{\sum bc} < \frac{1}{\sum ac + \sum bc - \sum c} + \frac{1}{\sum c}$$

$$\frac{1}{\sum ac} + \frac{1}{\sum bc} - \frac{1}{\sum c} < \frac{1}{\sum ac + \sum bc - \sum c}$$

$$1/L < 1/N \quad \text{also} \quad L > N \qquad \text{w.z.b.w.}$$

21) Behauptung:

$$L > M$$
.

$$\sum ac + \sum bc < \frac{\sum ac \sum bc}{\sum c} + \sum c, \text{ siehe Ziff. 19}$$

$$\frac{\sum ac}{\sum ac \sum bc} + \frac{\sum bc}{\sum ac \sum bc} < \frac{1}{\sum c} + \frac{\sum c}{\sum ac \sum bc}$$

$$\frac{1}{\sum ac} + \frac{1}{\sum bc} - \frac{1}{\sum c} < \frac{\sum c}{\sum ac \sum bc}$$

$$1/L < 1/M \text{ also } L > M. \text{ w. z. b. w.}$$

Zusammenfassend ist festzustellen: Streng erwiesen sind die nachstehenden beiden Grössenfolgen $(x \neq y)$

$$A > G > H > R > M > N$$
$$L > M > N.$$

Was speziell die Lidstonesche Formel anbelangt, so liegt die originale Näherung für den reziproken Wert der temporären Verbindungsrente aus den dargelegten Gründen für kurze und mittlere Rentendauern unter dem genauen Wert, für lange Dauern – etwa von n=25 an aufwärts – liegt sie darüber. Für die temporäre Verbindungsrente selbst liegen die Verhältnisse umgekehrt.

Auch bei den Näherungen A, G und H lassen sich in bezug auf L keine gerichteten Ungleichungen angeben. Immerhin darf bei langen Rentendauern damit gerechnet werden, dass sie grösser L ausfallen. Da A > G > H, wird dieser Sachverhalt bei steigender Dauer n zuerst von A, dann von G und zuletzt von H erreicht.

Tabelle II hiernach zeigt auf Basis von SM 1958/63 zu 3½% einige numerische Beispiele für die vorstehend diskutierten Grössenverhältnisse.

Literatur

- [1] H. Rufener, Sterbegesetze, für welche der Barwert einer Verbindungsrente gewisse Mittelwerteigenschaften erfüllt, Mitteilungen der Vereinigung schweiz. Vers. Math. Bd. 56, 2 1956.
- [2] H. Jecklin, Prämienzerlegungen und Approximationen in der Lebensversicherungstechnik, Mitteilungen der Vereinigung schweiz. Vers. Math. Bd. 44, 2 1944.
 - -, Näherungswerte für die gemischte Versicherung mehrerer verbundener Leben, Mitteilungen der Vereinigung schweiz. Vers. Math. Bd. 46, 1 1946.
 - -, Algebraische Begründung einer Klasse versicherungstechnischer Approximationen, Mitteilungen der Vereinigung schweiz. Vers. Math. Bd. 50, 1 1950.
- [3] H. Rufener, Sterbegesetze, für welche gewisse Lidstonesche Näherungen exakt erfüllt sind, Blätter der deutschen Ges. für Vers. Mathematik, Bd. III, 2 1957.
- [4] H. Rufener, Fehlerabschätzungen für Lidstonesche Approximationen, Blätter der deutschen Ges. für Vers. Mathematik, Bd. V, 4 1962
- [5] siehe z.B. Hardy-Littlewood-Pòlya, Inequalities, Seite 16, University Press Cambridge 1934.
- [6] siehe z.B. H. Berger, Mathematik der Lebensversicherung, S. 101, Verlag Jul. Springer, Wien, 1939.
- [7] H. Jecklin, Über gewisse Approximationen der Versicherungs-Mathematik, Blätter der deutschen Ges. für Vers. Mathematik, Bd. I, 2 1951.

 $Tabelle \ \ I$ SM 1958/63 à 3½%

n	x = y = 25			x = y = 35			
	L	R	Diff.	L	R	Diff.	
5	4.64722	4.64714	+0.00008	4.63855	4.63853	+ 0.00002	
10	8.50408	8.50387	+0.00021	8.44977	8.44948	+ 0.00029	
15	11.69630	11.69602	+0.00028	11.53860	11.53764	+ 0.00096	
20	14.31974	14.31864	+0.00110	13.98088	13.97953	+0.00135	
25	16.44524	16.44385	+0.00139	15.82540	15.82713	0.00173	
30	18.12454	18.12431	+0.00023	17.11253	17.12992	0.01739	
35	19.38951	19.39583	0.00632	17.89616	17.95911	0.06295	

 $Tabelle\ II$

SM $1958/63 \ \text{à} \ 3\frac{1}{2}\%$

		0 4		~~
r		25.	01	 25
L,	-	400	u	 .) .)

	A	G	H	R	L	M	N
5	4.64284	4.64283	4.64283	4.64283	4.64288	4.64281	4.64276
10	8.47668	8.47664	8.47660	8.47659	8.47684	8.47636	8.47588
15	11.61683	11.61656	11.61629	11.61628	11.61705	11.61527	11.61343
20	14.14909	14.14807	14.14705	14.14683	14.14828	14.14343	14.13843
25	16.13549	16.13254	16.12960	16.12825	16.12938	16.11831	16.10661
30	17.62712	17.62010	17.61309	17.60754	17.60400	17.58104	17.55620
35	18.67747	18.66365	18.64984	18.63389	18.61293	18.56870	18.51951

Zusammenfassung

Es wird untersucht, wie sich die bekanntesten sechs Näherungen der temporären Verbindungsrente grössenmässig zueinander und zum genauen Wert verhalten.

Summary

The author examines the relation of the 6 best known approximations for temporary joint lives annuities among each other and in respect to the exact value.

Résumé

Pour une rente temporaire sur deux têtes, l'auteur étudie le comportement des 6 approximations les plus connues. Il examine dans quelle mesure celles-ci s'écartent de la valeur exacte.

Riassunto

L'autore esamina in quale misura le 6 approssimazioni più conosciute delle rendite temporanee su due teste divergono fra di loro e dal valore essato.