Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries
Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker
Band: 71 (1971)

Artikel: Numerical calculation of the Bohman-Esscher family of convolution-
mixed negative binomial distribution functions

Autor: Seal, Hilary L.

DOl: https://doi.org/10.5169/seals-967162

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-967162
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Numerical Calculation
of the Bohman-Esscher Family of Convolution-mixed
Negative Binomial Distribution Functions

By Hilary L. Seal, Yale University

The convolution-mixed negative binomial has been found to provide
at least a good first approximation to the probability distribution of the
aggregate claims of a casualty insurance company during a period of a
few years. Let X be the random variable representing the aggregate
claims in a period during which ¢ claims are expected, and write N (1)
and Y for the random variables representing the number of claims
during that interval and the amount of an individual claim, respec-
tively. The variable Y is supposed independent of N (¢) and its proba-
bility distribution invariate throughout the intervalt. The convolution-
mixed negative binomial distribution function is then (e.g., Seal, 1969)

PX<a}=Flat) =D p,0) P'(5) 0Za<e ()

n=0

where

i / _k) k k / —t \)u Cota (2)
pn()_(n/ <£+k (t_%_k h =U,1,4,...

P(.) is the distribution function of Y and P™(.) is the distribution
function of the sum of » individual claims given by

0 y<0]

- n =0
) 1y=0]
P(y) = (3)

Y
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We note that the mean of the probability distribution p,(t) of N(t) is ¢,
as stated, and its variance is t(1 +t/k). The mean and variance of the
distribution of X are %, = tp; and x, = tp, + 2 pi/k, respectively,

where p; = j y' dP(y). When k->co the negative binomial becomes a
0
Poisson distribution with parameter ¢. The distribution function (1)

AN
has a discontinuity at = = 0 since F(0,1) = (t , k) .

The Bohman-Esscher Family

Bohman & Lisscher (1963/64) proposed a general family of funec-
tions for P(-), namely

10

Jm-

Ply) =2 4;(1—¢"9) + X Pi(y) 0<y<oo (4)
j=1 j=1
where
0 Y = bj-‘Zd
(y—b; +2d)® B, /8d> b,—2d < y £ b,
I)j(y) — 7 7 , . ] ] (5)
Bj—(b,- + 2d—1vy) Bj/bd bj- <y = bj + 2d
B, b; + 2d < y
and
4 19‘
Z A;’ + 21 Bi = 1.
7=1 7=1

The frequency function corresponding to P,(+) is an isosceles triangle
of area B; with a base of length 4d, and this was chosen as an approxi-
mation to a spike of probability of height B, corresponding to a claim
of size b,. The Laplace-Stieltjes transtorm of P(-)is given by

v 4 A, sinh?(sd) 1 .
n(s) = [Vl (y) = ’+—_(12Bﬁ%ﬂ (M)
0

= ltas (sd)z =



The authors provided the numerical values of the parameters ob-
tained in four successful graduations of individual claim digtributions
of life, industrial and non-industrial fire, and third party automobile
insurance, respectively. As ig usual in such studies the mean value of
Y (namely, the average claim size) was chosen as unity.

The skewest of the four distributions was that of non-industrial
fire msurance claims. The least skew case of (4) 1s achieved when
Ay=a;=1and 4;,=0, 9+ 1; B;=0, all 9; this is the negative expo-
nential distribution. In this paper it is proposed to limit numerical
caleculations to the distributions of X obtaied from these two extreme
members of the Bohman-Tsscher family of individual claim distribu-
tions. We note that the parameters of P(.) in the non-industrial fire

distribution were:

A, = 54584 @, = 169061 B, = .00129 b, = 56.269
Ay = 83021 a4y, = .9220886 B, = .00080 b, = T79.715
Ay = 08118 @y — 1.929190 B, — .00005 b, — 103.160
Ay = 04074 @, — 11.751260 B, = .00010 b, — 126.606
By = .00009 by = 150.051

d=2.3 By = .00006 by = 173.497

py =1 p, = 47.5854 B, = .00007 b, = 208.665

By = .00007 by = 283.691

ps = 12,600.1 By, = .00002 b, = 398.574

By = .000038 b,, — 628.281

We add that for the negative exponential p; = !, § =1,2,35,...

In our own numerical work with the Bohman-Esscher family of
distributions (4) we found it convenient to “smooth” the corners of
the isosceles triangles defined by (5) by replacing these triangles by
Normal distributions of area B;, centered at b;(7 =1, 2, ... 10) and
with standard deviation d/2. This implies

Pi(y) = B; @ (JJ;’) (5)
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but the limitation of y-values to the positive axis means that we thus
10

ignore an aggregate probability equal to > B; @(—2b;/d). In the case
=1

of the non-industrial fire distribution th?is expression 1s of the order

of 101° and thus utterly insignificant. (However we must extend

the range of y-values throughout the negative axis if (5”) 1s to have a

simple (bilateral) Laplace-Stieltjes transform.) To this degree of ap-

proximation then (7) assumes the slightly simpler form

(s) X%‘ 4; 1 glsD®s {2 B.etis (7)
7§ = > ——— + e > b.e .
= 1+as =

The resulting distribution function (1) is continuous and differentiable
for all positive z.

Methods of Calculating F'(x, t)

A number of methods have been proposed for the approximate
evaluation of (1) for given P(.) on a desk caleulating machine. The
Bohman-Iisscher paper was devoted to determining the accuracy of
several of these and two further methods have since been examined
numerically by Bowers (1966) and Kauppi & Ojantakanen (1969), re-
spectively. Perhaps the most successful general method has proved to
be the two- or four-term HEsscher approximations (see, e.g., Seal,
1969), the former being labelled 42 in the paper by Bohman & Esscher.
Tts accuracy improves with inereasing ¢ and for larger k-values but 1s
only impressive when P(.) 1s the negative exponential and k —oco.

As an illustration of the relatively poor performance of the two-
term approximation when ¢ =100, the smallest ¢-value used by Boh-
man & Esscher, we cite the following results from that paper for the
non-industrial fire claim distribution. In only one of the twelve illus-
trations is accuracy achieved to the second decimal place and in four
cases even one-decimal accuracy is lacking.



Values of I (z,100)
- k=20 Jo — o0
L= (a;“t)/]’/’fz )

Exact Hsscher Exact Esscher
0 6199 L7330 6257 7552

.8994 . 3852 L9053 .8853
2 96479 .93354 . 96550 .93121
£ .98320 .96418 98291 L96188
4 .99145 .98128 199107 .97953
6 .99635 99512 .99622 .99438

It 1s to be noted that this failure of approximate desk machine
methods occurred for the relatively large parameter pair k = 20 and
t = 100. Periods during which expected claims number less than
100 are certainly of interest and k-values of the order of unity have
been found to apply in automobile insurance (see Seal, 1969). The
Iisscher approximations would presumably be totally inadequate in
these cases. However, the widespread availability of fast computers
through «time sharing» makes desk machine approximations only of
theoretical interest provided a simple and accurate computer cal-
culation of (1) can be achieved.

For values of ¢ less than 10 it would seem that the convolutions
P"(.) appearing in (1) could be calculated directly by means of ap-
proximate integration. However, for larger {-values this step-by-step
procedure (n = 2,3, 4,...) becomes increasingly time consuming. In
view of the functional simplicity of the Laplace-Stieltjes transform of
£(-), namely

p(s) = [ et dl (z, 1) = |'1¥]i{yz(s)—1}_]~€ (8)

0-

— exp [H{m (s) —1}] when k— co

where 7(s) is given by (7) or (7'), the most obvious computer approach
to the evaluation of (1) would be to invert (8) by standard formulag
and proceed to the quadrature of the resulting integral. In fact this
was the method used by Bohman & Esscher to produce their «exact»
values with which to compare the various desk machine approximations.
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Purpose of this Paper

The quadrature formula used by these authors was based on an
ingenious method (Bohman, 1963) of bracketing the true value of an
integral over an infinite range when, of necessity, the range was made
finite for the numerical calculations. Unfortunately the results of Boh-
man & Lisscher showed that the upper and lower approximations to (1)
were impractically far apart and the mid-range value was adopted as
the true value of the integral. In this paper we are proposing for general
use a simpler quadrature formula and to illustrate it numerically we
will apply it to the two «extreme» Bohman-Esscher P(.) distributions
mentioned above. We will make calculations for the smallest and larg-
est &t values used by the joint authors, namely I = 20 and ki = oo, re-
spectively, and also for the “difficult” k-value of unity. Besides illus-
trating the method for ¢ = 100, Bohman & Esscher’s smallest value,
we will examine what simplification occurs when #1s ten times as large,
namely ¢ = 1000, and what difficulties arise when ¢ 1s as small as 10.
Furthermore, we will illustrate the calculations for values of X both
below and above the mean instead of limiting ourselves to the larger
values as Bohman & Esscher did. Actually all our computational diffi-
culties occurred for parameter and variable values not considered by
those authors. Finally, we mention that while our objective has been
to produce correct five-decimal values of F(z,f) we have only achieved
three or four decimal accuracy in certain cases.

Inversion Formula

We understand I'(z,t) to extend to the negative z-axis by means
of I'(z,t) =0, £<< 0, and define ¢(u), the characteristic function of X,
by

@(u) = f e™ dF (z, 1)

-0

P (—iu)

= [ 1— Z; {70 (—iu) ~1}]k = A(u) ¢ (9)



— 77 —

where (7') shows that (9) implies that

(¢ 2 Hl—»p 2 -k/2
Aw) = [awtu) [* ’1 ~.-{ s i (10)
e ] B
— g H1o(w) when koo
and
tw (u)
B(uw) = k arctan| ————— (11)
k4 t{1—v(u)}
—tw(u) when k-—>oo
where
v(u) = \“ £ - 4o gt Y B, cos (b, u) (12)
]Ll, 1 —r'ar ’M/g = l
and
4 Adia:u
SO Y e WYL '5‘ B, sin (b 13
() 2 1‘a?u +e 25 sin (b, u) . (13)

We note that wv(~u)=wv(w), wu)=—wu), v0)=w(0)=1 and
w(0) =" (0)=0.

For later use we have

B (u) = {A(u)}?‘/k " [1 + - {1 U( )}} tw’ (u) -+ tzw(u])cv’g)_] = tw’ (u)

] k

when koo, In the particular case where P(y) =1—e™ it is easily
verified that

bt PR AN
B (w) ={d@}2* —— 11— —u2—{1 —fr) wty  B'(0) =

(u) { (u)} 1 +u2)3] L (\ ke J (0)
This function changes from positive to negative when u is the single
real positive root of the equation (k+ t)u* + tu?—k = 0, namely
% = + (1+t/k)*. In general B’(u) becomes permanently negative
for some sufficiently large value of u.
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The Lévy inversion formula for F'(-, t) may be written (Moran,
1968)

1 o G"’*‘WW e—-iuan-l—_ﬁ
Fla+ht)—Flat) = f AR —F ),

27 1U

— 00

bo

where o -+ h and a are continuity points of F'(-, t). Writing a = 2 and
letting h — co we obtain the alternative form valid in our case for >0

1 |

Fz,) = 5 —- | —e— ) du
- ; o i Of w A (w) sin{zu — B (w)} du. (14)

0

Since F(0—,t) = 0 an alternative form would be

F(a,1) = 72; f w A (u) sin (zu) cos { B(u)} du.

0

Before we apply a quadrature formula to (14) we must investigate the
error introduced by replacing the upper, infinite limit of the integral
by T, where T 1s a suitably chosen finite number.

The Introduced Error

Both the non-negative functions v(u) and w(u), defined by (12)
and (13), respectively, tend towards zero for sufficiently large u-val-
ues. Except when the B;s are zero strict monotonicity is not attained
but, broadly, »(-) decreases from unity to zero while w(.) increases
from zero to a maximum (less than unity) and then decreases to zero.
When k- co (the Poisson case) 4(u) is a strictly decreasing function
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with A(0) =1, and for both types of P(.) considered here 4(u) ap-
pears to be monotonic downwards for k= 1. Furthermore lim 4(u) =

(1+t/k)"™ and we may expect a substantial simplification in our
quadrature procedures when k and { are large enough for this limit
to be essentially zero. The non-negative function B(-) increases (with
small oscillations that dampen down) from zero to a maximum from
which it decreases to become zero for large values of u.

Consider the error introduced into (14) by replacing the infinite
limit by 7'<C co. This error is

1 7 .
,,,,fu-iA(u) sin {zu— B(u)}du =
T

1 7 A({y+Bm)}/ ) 1 gin ¥ 3
- . . Y.

7 1+ B(u)/y 1 —B'(u)/z

Tz—B(T)

(15)

In the latter integral we have introduced the monotonic transfor-
mation ux— B(u) = y having supposed that B(-) has passed its larg-
est local maximum so that B’(u) has become permanently negative.
The positive function preceding sin y/y in the integral on the right of
(15) then has a decreasing denominator and a decreasing numerator. A
double application of Bonnet’s form of the second mean value theorem
enables (15) to be written

Te—B(T) < &< &y< o0, (x = &+ Blug)

where si(z) is a sine integral (Gautschi & Cahill, 1968)

(0] .
sin y

si(2) :f p dy  si(0) =m/2
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and hag been extensively tabulated. The absolute value of the mtro-
duced error 1s thus less than

A F
20 ey
7T

where &,<<&, is the first argument preceding &, at which si(z) assumes
a local maximum or minimum, namely at a multiple of 7. Now &, is not
known and to use for &, the multiple of & that is less than T'x— B(T)
could be unnecessarily stringent. In what follows we have accordingly
used 4(T) as our error criterion when 4 (7' is very small and in other
cases the approximation

A(T)

T

|si(Tz— B(T))] (16)

where Tx— B(T) = mz.

Actually the T-value obtained by the foregoing procedure can be
replaced by a smaller quantity when ¢t and k& are large. This is because
the function A(-) has become very small long before B’(-) is perma-
nently negative. Writing 7" for the value of  at which A(.) is suitably
small we may utilize 7" instead of 1" when

A(T) [ Sm{mumi’i‘)}_ | e 22D / o _A@) iy an

is sufficiently small to be neglected. Since we are seeking five decimal
accuracy we must find 7" from the relation

A(T) 1og (T]T") < 5% 10°zloge = 6.8 x 10 (18)

On the other hand when (14 ¢/k)™ is not essentially zero we have
to make use of (16). The following Table 1 provides some auxiliary val-
ues which will agsist us in the determination of 7. For values of u well
in excess of unity B(u) 13 relatively small compared to w and, in view
of the constancy of A(u), it is desirable to ¢hoose 7' to be an even mul-
tiple of 7.
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Table 1

k t 106 (1 ¢/kY"* |5m/108 (1 ¢/ k)™ z st (mz)
1 10 90909 .000173 2 152645
100 9901 .001587 4 078634
1000 999 015724 6 .052762
8 .039665
20 10 301 .052233 10 031757
oo 10 45 345991 12 .026489
14 022713
16 .019879
18 017673
20 .015907
22 .014463

Calculation of T

Coincidentally the range k = 20 and ¢ = 100 which was chosen by
Bohman & Esscher for their numerical calculations leads to limiting
values of A(.) that are close to zero. Table 2 shows some values of
A(-)and B'(+) for the two k-values at the ends of the Bohman-Esscher
range and for our two selected t-values, namely 100 and 1000. In
each case we have indicated by T a value of w after which B’(u) is per-
manently negative. For the non-industrial fire distribution this T-value
has been determined rather roughly by inspection of the computed
values of B’(.). The T’-values were calculated in each case by using
(18). They are all very small in comparison with the Bohman-HEsscher
choice of T' = 907/|/s, .

Turning to the smaller values of k and ¢ we observe that the
expression on the right of (16) is rather sensitive to the size of z which
can range from unity to several multiples of [/», in excess of t. In
fact the quantity 57/108(1 + t/k)™ shown in Table 1 represents the
largest value of si( T'z—B(T)) that will result in an introduced error
not affecting the fifth decimal place. We conclude that three decimal
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Table 2
Non-industrial Fire Negative Exponential
¢ k N % 1084 (u) B' () Voa u 1054 (w) B'(w)
100 20 79.5158 .70 16 3.10 06.4575 a1 114 27.92
.1 14 08,46 .29 67 24.68
72 13 (215 23 39 22,32
I'= .73 12 (2.2 T'= .24 23 20.13
.74 i 2.43 95 14 18.10
2.4 53 10-4 0.017 T — 408 9% 10-2 0.000
T=2.6 2104 ~0.1%
100 oo 68.9822 16 10 15.87 14.14921 .83 54 79.47
77 9 16.2% .34 32 71.06
.78 9 19.608 .85 18 69.64
T'= .79 s 21.83% T — .36 10 68.21
.80 7 19.62 37 6 66.78
5.14 <107 0.04 T=1.0 <10° 0.000
T=5.16 <10 -0.080
1000 20 312.387 .029 10 152.6 298.035 .026 39 349.8
.030 7 138.0 027 24 332.2
031 5 121.2 .028 15 315.6
T'= .032 3 104.6 T = 029 9 300.0
.033 2 90.7 .030 6 285.3
1.88 23102 0.060 T — 1400 §x10-12 0.000
T=1.90 2 10-20 —0.591
1000 ® 218.141 .040 18 533.4 44.7914 107 12 966.3
.041 12 523.5 108 10 965.7
.042 8 508.1 .109 8 965.1
T'= .043 6 490.2 T'—= .110 6 964.4
044 4 473.6 111 5 963.8
5.14 <10 0.3 T=1.0 <10+ 0.000
T=5.16 <10 0.4




Table 3: Approximate values of T satisfying Te— B(T) = man

Non-industrial Fire

Negative Exponential

/o | pg | k=1 k=20 k=00 k=1 e 1 B 1 k=20 s BB
z t=10 f==100 | 1=10001 <=1 b 1 t—=10 t=100| t=1000 t=10 t=10
m=18 | m =20 m =20 m=06 m =32 m =18 m =20 |m=20 m=>06 mo=2
1 56.6 62.9 62.8 20.3 10.0 56.6 62.85 62.83 | 19.2 7.8
t/2 1.7 2.16 1.08 6.9 5.7 11.4 1.77 94| 5.1 3.8
t 6.2 1.56 1.02 5.8 5.1 5.8 1.28 .90 | 3.63 3.4
t—ir]/;; 2.4 121 28 1 4.1 4.6 3.0 1.06 88 | 3.20 8.8
bt 81/%2 1.4 1.06 a7 8.7 4.4 .8 .95 87| 2.89 2.2
t-+ 51/%, 1.1 1.02 .96 3.6 4.4 .5 .92 B | 2.T6 3.1
Values of ys, 23.9970 | 121.485 | 1023.52 | 21.9284 | 21.8141 | 10.9545 | 100.995 | 1001.00 | 5.000 | 4.47214

¥8
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accuracy 1s obtained for the first case (k =1, t =10) when Tax— B(T)
= 187, and that four decimal accuracy 1s achieved in the second case
(k=1,1=100) when Tx— B(T) = 20s. The approximate values of
Tx— B(T) for fifth decimal accuracy in the last three cases are 20,
6x and 27, respectively. Table 3 shows the approximate values of T
obtained in each of these five cases for selected values of z. It will
be observed that the smaller the value of 2 the longer the range of
mtegration and thus, other things being equal, the grater the difficulty
of achieving a given degree of accuracy in the approximate quadrature.

Computation of F(x, 1)

The “brute force” approach to the calulation of the integral in
(14) over a finite interval (0,7 1s to divide the range of integration
imto a large number N of panels of equal with 6 and apply the trape-
zoidal rule to each of them. The result is

&
fu‘lA(u) sin {zu— B(u)} du =~ (19)
0
=t &t o e [ o L -
=~ 0 ~5 + SV (50) T A(70) sin{jdz— B(jo)} + T A(T) sin{Tz— B(T)}
=1

with N§ = T.

An advantage of the trapezoidal rule is that it can be combined
very effectively with the procedure of “extrapolation to the limit”
(Henrici, 1964). We initially choose d = 1" and effect the quadrature
by calculating two ordinates; then change ¢ to 1/2 and repeat the
quadrature by calculating only one new ordinate. When ¢ is changed
to T'/4 two further new ordinates are required. Repeated halving of
thus produces a series of approximations to the integral with a mini-
mum of computational effort. If 4, represents the result of the trape-
zoidal rule applied with a panel width (1)'T, 7 =0,1,2, ..., it can be
shown that save in exceptional circumstances (Henrici, loc. eit.) the
series 4, 1=1,2,8, ... is an improvement on the corresponding A4,
where

4! Aj., i _Aj—l, -1
449

A, = 1=1,2,...9. (20)



Table 4: Values of F(x, 1)

2y = (&~1) [/

Non-industrial Fire

Negative Exponential

l k Ty Ty Ty T
100 20 -5 — | .89943* 256 -5 — 1 .84311*, 16
-3 — 3 .98320%*, 1024 -3 .00001, 32 3 .99493*%, 16
-1 .03635, 512 5 99474, 256 -1 15621, 16 5 H9995, 32
100 co -5 — i .90533%, 256 -5 .00000, 32 1 84163 %, 8
-3 — 3 L98201%*, 256 -3 .00037, 16 3 L99718*, 16
-1 02334, 512 5 99436, 1024 -1 15833, 16 5 890499, 16
1000 20 -5 — 1 .B4983*, 32 -5 — 1 .84309%, 16
—3 . 00000, 64 3 J99107*, 64 -3 .00002, 32 a .99508*, 16
-1 . 14559, 32 5 99968, 32 -1 15625, 16 5 .999986, 512
1000 oo ~5 — 1 .86359%, 32 -5 .00000, 128 1 .84137*, 16
-3 .00000, 64 3 J96599%, 32 —: 00098, 16 3 90823%, 16
-1 . 12553, 32 5 99811 32 -1 .15863, 1024 5 1.00000, 16

* These values agree with Bohman and Esscher to within a unit in their final decimal place.

98
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Although the trapezoidal approximation is known to be periodic in z
(Hamming, 1962) the ‘dropout’ region near z = 24/, so clearly illus-
trated by Tuck (1967), implies that N = zT/2x and the successive
doubling of N can quickly remove the approximation from this danger
zone.

Table 4 shows the results of applying the trapezoidal rule to (14)
for a=— (,r~t)/]/x2 =-5,-3,-1,1,8,5 and the ,,large” k and ¢ values
for which the appropriate T-values were given in Table 2. In each case
the value of I'(+) 1s followed by the value of N which provided the
same five-decimal result as quadrature with half that number of
panels without further change through 1024 panels. (Occasional
anomalies arise because of a 5 in the sixth decimal place. Thus, for ex-
ample, when ¢ = 1000 and k = oo, the distribution fuction in the neg-
ative exponential case with z, =—-1 1% .1586254 when N =8, .1586243
when N = 16 and .1586254 when N = 1,024.) Except for the non-in-
dustrial fire case with &k = 20 and ¢ = 100 the number of ordinates
necessary for five decimal accuracy is relatively small and in every
case well below the 1081 chosen by Bohman & Esscher for all their il-
lustrations.

It seems possible that trapezoidal quadrature may always be pre-
terable to the two-term Hsscher formula for desk machine calculations.
For example, in the non-industrial fire case with k& = 20, ¢ = 100 and
Ty = 3, trapezoidal quadrature with 64 panels has already produced
the result .9831 which is a substantial improvement over the two-
term Isscher value given earlier.

Finally we apply the values of 1" provided in Table 3 to produce
Table 5. Anticipating the necessity of using a larger number of panels
than the 1024 required in three exceptional illustrations in Table4, all
computer runs were made with (up to) 4096 panels. Once again the
nummber of panels shown in Table 5 is that which provided the same re-
sult to the number of decimals shown as quadrature with half that
number of panels. Exceptionally the result for 4096 panels was accept-
ed if it differed from that for 2048 panels by no more than one unit in
the last decimal place retained. In one case (non-industrial fire with
t =10, k =20, z = 1) it was necessary to use (20) and this is shown by
affixing an asterisk to 4096.

When k = 1 and z is as small as unity trapezoidal quadrature be-
gins to break down as ¢ increases in size. This is illustrated by applying



Table 5: Values of F(z,1)

Non-industrial Fire Negative Exponential

t 15 x x x @
10 o |1 .07090, 4096 i+ ]/;; .93424, 1024 1 .00208, 128 i1 1/;; 84384, 32
t/2 58035, 2048 t4- 31/5%; .98864, 1024 t/2 .11980, 64 £ :-31/;:; .99308, 32
t .75450, 2048 t4- 51/;; .99524, 1024 t .54489, 32 t-+ 51/2 .99987, 64
10 20 | 1 09545, 4096% | t4- ]/Z 93369, 1024 1 .00567, 4096 t4 1/}; .84463, 4096
/2 58174, 2048 t4- SVZ .98850, 1024 t/2 15309, 64 t- BV"Z .99220, 32
t .75334, 2048 t- 51/2 .99520, 1024 t .55089, 256 t4 51/;; .99981, 128
10 1 |1 .844, 2048 £ ]//cz .996, 256 | .169, 2048 - 1/}; .864, 64
t/2 632, 2048 t-4- 3]/:42 . 986, 256 t/2 422, 512 t ‘%1/2 981, 64
t T 2048 t- 5]/72 1995, 2048 t .634, 512 i1 51/12; .999, 64
100 1|1 L0456, 16384% | {49/, 8774, 512 1 0193, 16384* | t+9/%,  .8647, 512
t/2 .4530, 2048 t4 31/;; .9802, 512 t/2 3965, 1024 t-- ‘3]/4_ 9817, 256
t L6552, 1024 t4 51/;2— 19954, 4096 t .6321, 512 el 5]/2; L9975, 256
1000 1 |1 failure, 16384 - ]/Z .86469, 4096 1 failure, 16384 t-4 ]/§2 .86466, 4096
t/2 40222 4096 t4 3]/;}; .98161, 4096 t/2 39377, 4096 fol 31/2 98168, 4096
t .63290. 4096 t4- 51/;5; .99750, 2048 t 63212, 4096 1 5]/;}: .99752, 2048
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(20) to the non-industrial fire case with ¢ = 100,k = 1 and z = 1 as
follows:

j 1=0 1 2 3 4
10 550995

11 ~.134022  .004969

12 014124 063506 067408

13 .043280 052999 052299 .052059

14 045436 046155 045698 045593 045568

The supposed improved results for 4 = 13 (8192 panels) are disap-
pointing and the negative values for 1024 and 2048 panels very unsa-
tisfactory. It is clear that we must seek another method of calculating
F(x,T) for very small x when ¢ is large and k is of the order of unity.

Other Quadrature Formulas

There 15 a wide choice of quadrature formulas (Davis & Rabinow-
itz, 1967). One possibility is to retain the general framework of the
simple trapezoidal (19) and to modify it to conform with various
objectives. If the standard procedures of Fourier analysis are applied
to a function F'(z,t) assumed to be zero outside the interval (0,w) the
result 1s formula (14) with the integral replaced by the right hand ex-
pression of (19) with 0 = 2x/w, N arbitrary, the last term in brackets
suppressed and the first term replaced by (w/2—1)/2. A modification of
this to secure faster convergence (Lanczos, 1956) is to multiply the 7th
term m the summation by sin(796/T)/(776/T) .

A formally similar procedure was used by Bohman and Esscher
(loc.eit.) who, in effect, multiplied each term of (19) by the discontinuity

1
factor (1 —46/7T) cos(mjd/T) + —sin (76/T). Another modification of
7

(19), named after its originator Filon (Tuck, 1967), is to multiply the
whole expression on the right of (19) by {sin(xé/%)/(xé/ﬁ)}z. All the
multipliers mentioned above are fairly close to unity throughout most
of the range (0,7). Our experiments with them suggest that they do
not produce any worthwhile improvements over the straightforward
use of (19).



Alternative Method for Small x

An integral equation for F'(z,t) can be derived as follows. By dif-
ferentiating (8) we obtain

k
(1+ t-)w’(s) = by (57 () + ' () als) 1)
Now

y: i = 4 =
J et ol (x,f)de = — Pz, ) | +— { ¢ F(x, t)dx +
0 S 0 S J

1 7 ’

+ - [ e 2dF(z,1) — v v
S ' s2 S

0

Multiplying (21) by —1/s and adding v (s)/s? whenever —y’(s) /s occurs
we obtain after appropriate adjustment to preserve equality

t 52 5

[1(s)

§>} PO 7O

Writing this in terms of Laplace transforms
k "k >
(1 o ) SlaF(z, 1)} = (1 + ?> 53{0] F(y,t) cly} + kL{F (2, 8)* zp(x)} +
= Sl{azF(:v, ok p(m)}mB{F(sc, t)* P(:c)}

where p(z) = P’(z) and the convolution notation is standard. This
relation may now be inverted to yield

1+ - )a:Fmt Fy,t)
[ -}

—f K (z,y) F(y, t)dy (22)

1 + i (hz—y+ y)P(w—y)—P(%y)}dy
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k
where K (z,y) = 14—+ (ka—y +y) pla-y) — Pla—y).

A similar type of equation in terms of density functions hag been given
for the case k—co by Plackett (1969) but (22) itself appears to be new.

The integral equation (22) may be solved approximately by
means of repeated trapezoidal quadrature. Choose h = 2/ N suitably
small and (22) gives

)
(1 )hf (h,t f K () Fy ) dy 2 o {K(1,0)F(0, 6 + K (b, 1) P11 1)
and on solving for I'(h, t)
F(h, 1 'uk)} "ol “raol T\ 23
e | (14 =g KO | gm0 (S e

Similarly (n = 2,3, ... N)
B (nh,t) ~

k I} _
I[ ( 1+ t) nh— 26 K (nh, nh) |

|2
The relations (28) and (24) thus produce approximate numerical values
of F'(h,1), I'(2h,t), F(3h,t), ... F(Nh,t) =F(xz,1) seriatim. The procedure
may then be repeated with an h-value one-half its previous size, and so
on until the resulting set of values of I'(x,f) converge. It will be ob-
served, however, that each series requires fresh computations and that
if the final series is to contain N =2" terms it will have been based

+ i

on 2”7 (2™ + 1) calculations of K(-, -) implying a total of > 2771(27 + 1)
=1
= (2xX 4™+ 8 x 2™ —5)/3 such calculations. This feature makes the method

very costly and it is not to be recommended except as a last resort.

The two values of F'(z,t) designated “failure” in Table 5 were cal-
culated by the foregoing procedure with m = 7. The successive values
of I'(1,1000) are shown in Table 6 commencing with N =8 (so that
the initial A = 1/8)1). It would seem that five-decimal accuracy has
been achieved by using extrapolation to the limit, namely (20).

1) Computer execution time for the non-industrial fire case was about two
minutes on an IBM 7094 which was only 17 seconds less than that required for the
application of (19) with 16,384 terms!

*lj hr k k n-1 ) .
K (nh, 0) (t—]> +1 S K (nh, k) F(jh, 1
j=1

}. (24)
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Table 6: Approzvmations to 109F(1,1000)

N Non-ndustrial Fire | Negative Exponential
8 9049 3735
16 5479 2473
32 4893 2187
64 4751 2083
128 4714 2038
256 4703 2017
(20) 4700 2009

References

Bohman, H. (1963) : “ To compute the distribution function when the characteristic
function is known.” Skand. Aktu. Tidskr. 46 41-46.

Bohman, H. & Esscher, I'. (1963/64): ** Studies in risk theory with numerical illu-
strations concerning distribution functions and stop loss premiums.” Skand.
Aktu. Tadskr. 46 173-225, 47 1-40.

Bowers, N. L., Jr. (1966): “ Expansion of probability density functions as a sum of
gamma densities with applications in risk theory.” T'rans. Soc. Actu. 18 125-147.

Dawvis, P.J. & Rabimowtz, P. (1967): Numerical Integration. Blaisdell, Waltham,
Mass.

Gautschy, W. & Calull, W.F. (1968): “ Exponential integral and related functions.”
Handbook of Mathematical Functions, Fds. M. Abramowitz & L. A. Stegun. Natio-
nal Bureau of Standards, Washington.

Hammang, R.W. (1962): Numerical Methods for Scientists and Fngineers. McGraw
Hill, New York.

Henricv, P. (1964): Elements of Numerical Analysis. Wiley, New York.

Kawppr, L. & Ojantakanen, P. (1969): ““ Approximations of the generalized Poisson
function.” Astin Bull. § 213-226.

Lanczos, C' (1956): Applied Analysis. Prentice-Hall, Iinglewood Cliffs, N. J.

Plackett, 3. L. (1969): “Stochastic models of capital investment.” .J. Roy. Statist.
Soc., B 31 1-28.

Seal, H.T.. (1969): Stochastic Theory of a Risk Business. Wiley, New York.

Tuck, E.0. (1967): “A simple ‘Filon-Trapezoidal’ rule.” Math. Computation 21
259-241.



Zusammenfassung

Fs gibt verhiltnisméssig wenige Beispiele in der versicherungsmathemati-
schen und statistischen Literatur iiber die Berechnung einer Verteilungsfunktion
auf ihrem ganzen Definitionsbereich durch Inversion ihrer charakteristischen
Funktion oder Laplace-Transformierten. Eine Ausnahme bildet die von Bohman
und Iisscher (Skand. Aktu. Tidskr. 1963/64) benutzte originelle Inversions-
Formel, um die Verteilungsfunktion der «convolution-mixed negative binomial»
mit relativ grossem Mittelwert und negativem Binomialindex zu berechnen.
Tabelle 4 dieser Arbeit zeigt, dass die detaillierte Analyse des numerischen
Verhaltens der charakteristischen Funktion uns erlaubt, die einfache Trapez-
quadratur anzuwenden, mit sehr viel weniger als den 1081 Termen, welche
Bohman und Esscher benotigt haben. Iis wird weiter gezeigt, dass eine Ausdeh-
nung des Verfahrens auf kleinere Mittelwerte und Binomialindizes mdoglich ist,
wenn man ein betrichtliches Anwachsen der Anzahl der in der Quadratur be-
nutzten Ordinaten in Kauf nimmt. Eine andere Berechnungsmethode wurde fiir
sehr kleine Werte der Zufallsvariablen entwickelt.

Summary

There are relatively few examples in the actuarial and statistical literature of
the caleulation of a distribution fuction over its whole range by inversion of its
characteristic function or Laplace transform. An exception is the use by Bohman
& Hsscher in the 1963/64 Scandinavian actuarial journal of an original inversion
formula to calculate the distribution function of the convolution-mixed negative
binomial with relatively large mean value and negative binomial index. Table 4
of this paper shows that detailed analysis of the numerical behavior of the cha-
racteristic function permits the use of simple trapezoidal quadrature with far
fewer than the 1081 terms used by Bohman & Esscher. Extension of the proce-
dure to smaller mean values and binomial indices is shown to be possible at the
expense of a substantial increage in the number of ordinates used in the quadra-
ture. An alternative method of computation is developed for very small values of
the random variable.



Résumé

11 y a relativement peu d’exemples dans la littérature des assurances et des
statistiques du calcul d’une fonction de répartition sur tout son domaine de défi-
nition par inversion de sa fonction caractéristique ou de sa transformée de
Laplace. Une exception est Pemploi par Bohman et Tsscher (Skand. Aktu.
Tidskr.1963/64) d’une formule d’inversion originale pour calculer la fonction de
répartition de la «convolution-mixed negative binomial» avec une espérance rela-
tivement grande et un grand indice bindmial négatif. Le tableau 4 de cet article
montre que analyse détaillée du comportement numéricque de la fonction caracté-
ristique permet I'usage de la régle de quadrature trapezoidale simple avec beau-
coup moing que les 1081 termes utilisés par Bohman et Ilsscher. Iin outre, il est
montré que Iextension du procédé a des valeurs plus petites de I'espérance et des
indices binémiaux est possible mais entraine un accroissement substantiel des
nombres des ordonnés utilisés dans la quadrature. Une autre méthode de calcul
est développée pour de trés petites valeurs de la variable aléatoire.

Riassunto

Ci sono relativamente pochi esempi nella letteratura matematica assicurativa
e statistica sul calcolo duna funzione di distribuzione in tutto il suo campo di de-
finizione mediante inversione della sua funzione caratteristica o mediante la sua
trasformata di Laplace. Un’eccezione & I'uso fatto da Bohman e Esscher (Skand.
Aktu. Tidskr, 1963/64) d’una formula originale d’inversione per calcolare la fun-
zione distributiva della «convolution-mixed negative binomial» con una media
relativamente grande e un grand’indice binomiale negativo. La tavola4 di quest’ar-
ticolo mostra che I'analisi dettagliata del comportamento numerico della funzione
caratteristica permette 'uso della semplice integrazione trapezoidale con molto
meno dei 1081 termi usati da Bohman e Iigscher. Si dimostra anche possibile
Papplicazione del metodo per valori minori della media e degli indici binomiali,
questo implicando tuttavia un sostanziale aumento del numero delle ordinate
usate nel integrazione. Un altro metodo di caleolo viene sviluppato per dei valori
molto piceoli della variabile casuale.
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