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Numerical Calculation

of the Bohman-Esscher Family of Convolution-mixed

Negative Binomial Distribution Functions

By iïi/ary L. SeaZ, Ya/e L/riivemfy

The convolution-mixed negative binomial has been found to provide
at least a good first approximation to the probability distribution of the

aggregate claims of a casualty insurance company during a period of a

few years. Let X be the random variable representing the aggregate
claims in a period during which f claims are expected, and write IV (<)

and Y for the random variables representing the number of claims

during that interval and the amount of an individual claim, respec-
tively. The variable Y is supposed independent of IV(f) and its proba-
bility distribution invariate throughout the interval f. The convolution-
mixed negative binomial distribution function is then (e.g., Seal, 1969)

CO

P{X ^ *} F(M) V p„(t) p»*(s) 0 ^ a; < co (1)
n=0

where

P(-) is the distribution function of Y and P"*(-) is the distribution
function of the sum of 7!. individual claims given by

0/

0 2/<0]
n u

1 7/^Oj

J P^)*(2/-«)dP(z) 77 1,2,3,

(3)
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We note that the mean of the probability distribution p„(f) of W(i) is f,
as stated, and its variance is f(l +f/fc). The mean and variance of the
distribution of X are xy and ^ fyy + E p'/ft, respectively,

CO

where py j y' dP(y). When fe->oo the negative binomial becomes a
0

Poisson distribution with parameter f. The distribution function (1)

/' &
has a discontinuity at s 0 since B(0, f)

U-fc

The Bohman-Esscher Family

Bohman & Esscher (1963/64) proposed a general family of func-
tions for P(-), namely

4 10

P(y) =2^,-(l-^W) +VP.
j=i -=i

0 <c y < co (4)

where

A(y)

and

0 y <1 by— 2d

(y- by + 2d)* P. / 8 P 6,. - 2d < y ^ by

By—- (by + 2d —y)^ By/8d* by < y <7 by + 2d

By by + 2d < y

4

7=1

10

v B
j=i

1.

(5)

The frequency function corresponding to Py(-) is an isosceles triangle
of area By with a base of length 4d, and this was chosen as an approxi-
mation to a spike of probability of height By corresponding to a claim
of size by. The Laplace-Stieltjes transform of P(-) is given by

rc(s) ^ j>*dP(y) V •'/
Ô pil+UyS

sinlB (.sd)

(sd)"
e L ®, (7)

7=1
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The authors provided the numerical values of the parameters oh-

tained in four successful graduations of individual claim distributions
of life, industrial and non-industrial fire, and third party automobile
insurance, respectively. As is usual in such studies the mean value of
Y (namely, the average claim size) was chosen as unity.

The skewest of the four distributions was that of non-industrial
fire insurance claims. The least skew case of (4) is achieved when
A j aj 1 and Atj. 0, 7 A-1 ; By 0, all j ; this is the negative expo-
nential distribution. In this paper it is proposed to limit numerical
calculations to the distributions of Y obtained from these two extreme
members of the Bohman-Esscher family of individual claim distribu-
tions. We note that the parameters of P(-) in the non-industrial fire
distribution were :

.54584 a, .169061 Bi .00129 56.269

A, .33021 «g .220886 B* - .00030 ^2 79.715

Ng .08113 «3= 1.929190 B3 .00005 *>3 103.160

^4 .04074 «4 11.751260 B4 .00010 126.606

£5 .00009 150.051

d 2.3 Be .00006 ^6 173.497

1 Pa 47.5854 By .00007 208.665

Bs .00007 283.691

Ps 12,600.1 Bg .00002 398.574

Byo .00003 feio 628.281

We add that for the negative exponential p- j!, j 1, 2, 8,...

In our own numerical work with the Bohman-Esscher family of
distributions (4) we found it convenient to "smooth" the corners of
the isosceles triangles defined by (5) by replacing these triangles by
Normal distributions of area B-, centered at &. (?' 1, 2, 10) and
with standard deviation d/2. This implies

(5')
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where

but the limitation of (/-values to the positive axis means that we thus
10

ignore an aggregate probability equal to 2 ß 0 (—26-/^) • In the case
j=i

of the non-industrial fire distribution this expression is of the order
of 10~5io and thus utterly insignificant. (However we must extend
the range of //-values throughout the negative axis if (5') is to have a

simple (bilateral) Laplace-Stieltjes transform.) To this degree of ap-
proximation then (7) assumes the slightly simpler form

4 J 10

7r(s) V + «,<">'/• V B e-»#«. (7')
j'=l 1 + fl/S ,'=]

The resulting distribution function (1) is continuous and differentiable
for all positive ;r.

Methods of Calculating P(x, t)

A number of methods have been proposed for the approximate
evaluation of (1) for given P(.) on a desk calculating machine. The

Bohman-Esscher paper was devoted to determining the accuracy of
several of these and two further methods have since been examined

numerically by Bowers (1966) and Kauppi & Ojantakanen (1969), re-

spectively. Perhaps the most successful general method has proved to
be the two- or four-term Esscher approximations (see, e.g., Seal,

1969), the former being labelled H2 in the paper by Bohman&Esscher.
Its accuracy improves with increasing f and for larger fo-values but is

only impressive when P(.) is the negative exponential and k->oo.
As an illustration of the relatively poor performance of the two-

term approximation when < 100, the smallest Lvalue used by Boh-

man & Esscher, we cite the following results from that paper for the

non-industrial fire claim distribution. In only one of the twelve illus-
trations is accuracy achieved to the second decimal place and in four

cases even one-decimal accuracy is lacking.
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Values of F (s, 100)

,r„ (x-0/y«2
fc 20 7c ->oo

Exact Esscher Exact Esscher

0 6199 .7330 6257 .7552

1 .8994 .8852 9053 8853

2 .9C479 .93354 .96550 .93121

3 .98320 .96418 .98291 .96188

4 .99145 .98128 .99107 .97953

6 .99635 .99512 .99622 .99438

It. is to be noted that this failure of approximate desk machine
methods occurred for the relatively large parameter pair fc 20 and
f 100. Periods during which expected claims number less than
100 are certainly of interest and fc-values of the order of unity have
been found to apply in automobile insurance (see Seal, 1969). The
Esscher approximations would presumably be totally inadequate in
these cases. However, the widespread availability of fast computers
through «time sharing» makes desk machine approximations only of
theoretical interest provided a simple and accurate computer cal-
culation of (1) can be achieved.

For values of f less than 10 it would seem that the convolutions
P"'(•) appearing in (1) could be calculated directly by means of ap-
proximate integration. However, for larger Evalues this step-by-step
procedure (n 2, 3, 4, becomes increasingly time consuming. In
view of the functional simplicity of the Laplace-Stieltjes transform of

P(-), namely

yj(s) [ <)

0-

exp [t {tt (s) — 1 j] when fc -> co

1 — y{er(s)-l} (8)

where tt(s) is given by (7) or (7'), the most obvious computer approach
to the evaluation of (1) would be to invert (8) by standard formulas
and proceed to the quadrature of the resulting integral. In fact this
was the method used by Bohman & Esscher to produce their «exact»
values with which to compare the various desk machine approximations.
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Purpose of this Paper

The quadrature formula used by these authors was based on an

ingenious method (Bohman, 1968) of bracketing the true value of an

integral over an infinite range when, of necessity, the range was made

finite for the numerical calculations. Unfortunately the results of Boh-

man & Esscher showed that the upper and lower approximations to (1)

were unpractically far apart and the micl-range value was adopted as

the true value of the integral. In this paper we are proposing for general
use a simpler quadrature formula and to illustrate it numerically we
will apply it to the two «extreme» Bohman-Esscher P(-) distributions
mentioned above. We will make calculations for the smallest and larg-
est fc values used by the joint authors, namely fe '20 and fc — co, re-

spectively, and also for the "difficult" /«-value of unity. Besidesillus-
trading the method for Z 100, Bohman & Esscher's smallest value,
we will examine what simplification occurs when Z is ten times as large,
namely Z 1000, and what difficulties arise when Z is as small as 10.

Furthermore, we will illustrate the calculations for values of A both
below and above the mean instead of limiting ourselves to the larger
values as Bohman & Esscher did. Actually all our computational diffi-
culties occurred for parameter and variable values not considered by
those authors. Finally, we mention that while our objective has been

to produce correct five-decimal values of F(aqZ) we have only achieved
three or four decimal accuracy in certain cases.

We understand F(u',Z) to extend to the negative ar-axis by means
of F(ag Z) 0, «<0, and define 99(1«), the characteristic function of A,

Inversion Formula

by

-co

1 — — {TT (—m) — 1} ee A («) e^<"' (9)
ft



where (7') shows that (9) implies that

.4 (it)
I he (it)

+ 1 ^t{l-i;(tt)}|a
I fc j I fc

e-i{i-«(«)} ^en

-7c/2

(10)

and

I? (it) fc arctan
he (it)

/c + f{l—n('tt)}

he (it) when /c ^ oo

(H)

where

73. 1 + a) it-
+ e V 77. cos (iqw) (12)

j=i

and

4 /4 • 77 • 7V ^ ^

w (it) 2] — •— + V 77 sin (6 it).
=i 1 + o| it-

We note that u(-it) e(it), ie(-tt) —ie(it), e(0) ie'
ie(0) =e'(0) =0.

For later use we have

(13)

1 and

-B' (it) {B(it)f* ji + dimw>jto'(«) + -W>l • tie' (it)

when fc^oo. In the particular case where P(?/) 1 — e " it is easily
verified that

.B'(it) {B (it)ph - I]
(1 + «*)»[

"IT -1 +
ft

B'(

This function changes from positive to negative when 'it is the single
real positive root of the equation (fc + t)iF + hP — fe 0, namely
it + (1 + f/fc)W In general 77'(it) becomes permanently negative
for some sufficiently large value of it.
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The Lévy inversion formula for F(-, f) may be written (Moran,

1968)

J Wfl g- +/l
F (a //.f)— F (a, / i — I ; 99(m) dw

2sr 9 m-00

where a + 7i and a are continuity points o/ F •, f). Writing a a: and

letting F-> oo we obtain the alternative form valid in our case for x>0

1 1 e"'"
F(M) — — p(u)du

2 2TT ' im
-CO

1 1 r
— H J w~W4 (w) sinjaiM — dît. (14)

Since F(0—, /) 0 an alternative form would be

2 r r 1F (as, !)=—«' .4 (-m) sin (am) cos {.B(m)} (7m
•

Before we apply a quadrature formula to (14) we must investigate the

error introduced by replacing the upper, infinite limit of the integral
by T, where 2' is a suitably chosen finite number.

The Introduced Error

Both the non-negative functions b(-m) and ic(w), defined by (12)

and (13), respectively, tend towards zero for sufficiently large w-val-

ues. Except when the J5js are zero strict monotonicity is not attained

but, broadly, »(•) decreases from unity to zero while w(-) increases

from zero to a maximum (less than unity) and then decreases to zero.

When 7r->cx3 (the Poisson case) -d(w) is a strictly decreasing function
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with A(0) 1, and for both types of P(-) considered here J(w) ap-
pears to be monotonie downwards for /c > 1. Furthermore lim J (m)

M —> CO

(1 + f/fc)~'' and we may expect a substantial simplification in our
quadrature procedures when fc and f are large enough for this limit
to be essentially zero. The non-negative function £>(•) increases (with
small oscillations that dampen down) from zero to a maximum from
which it decreases to become zero for large values of m.

Consider the error introduced into (14) by replacing the infinite
limit by T< oo. This error is

1 ^
— f îTM(m) sinjxM — jB(m)}<Zm

• f ^ '
(15)

7i l + £(tt)/y 1—B'(îi)/a: y

In the latter integral we have introduced the monotonie transfor-
mation wa:—B(w) y having supposed that B(-) has passed its larg-
est local maximum so that P'(w) has become permanently negative.
The positive function preceding sin y/y in the integral on the right of

(15) then has a decreasing denominator and a decreasing numerator. A
double application of Bonnet's form of the second mean value theorem
enables (15) to be written

-4(C) r sin y A(C)
-- <% =—W£i)—^(£2)}

71 4 y 7i

Tx—B(T)^fi<fa<°°» Cx fi + B(«f,)

where si (2) is a sine integral (Gautschi & Cahill, 1968)

/• sinw
si (2) dy si (0) tt / 2

7 ?/
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and has been extensively tabulated. The absolute value of the intro-
duced error is thus less than

2-4 (T)
M£o)l

:7i:

where fo<fi is the first argument preceding at which si(2) assumes

a local maximum or minimum, namely at a multiple of 7t. Now is not
known and to use for |q the multiple of sr that is less than Ta;—B(T)
could be unnecessarily stringent. In what follows we have accordingly
used A (2') as our error criterion when N(T) is very small and in other
cases the approximation

^^|si(Ta:-B(r))| (16)
(7T

where Ta; — B (T) mar.

Actually the T-value obtained by the foregoing procedure can be

replaced by a smaller quantity when f and fe are large. This is because

the function A(-) has become very small long before B'(-) is perma-
nently negative. Writing T' for the value of m at which A( •) is suitably
small we may utilize T' instead of T when

A(T') A(T')
< V..A I - - _> Wn(T/T') (17)

7C J, % TT

A(T') sin { ot — B (-it))

is sufficiently small to be neglected. Since we are seeking five decimal

accuracy we must find T' from the relation

A (T') log (T/T') < 5 x 10"®tc log e 6.8x10"®. (18)

On the other hand when (1 + f//c)~* is not essentially zero we have

to make use of (16). The following Table 1 provides some auxiliary val-

ues which will assist us in the determination of T. For values of m well

in excess of unity B(«) is relatively small compared to « and, in view

of the constancy of A(m), it is desirable to choose 2' to be an even mul-

tiple of tt.
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Tafele I

J 10« (1 h t/fc)-* 5JI/10«(1+ 'WW 2 si (tt.z)

1 10 90909 .000173 2 .152645

100 9901 .001587 4 .078634

1000 999 .015724 6 .052762

8 .039665

20 10 301 .052233 10 .031757

00 10 45 .345991 12 .026489

14 .022713

16 .019879

18 .017673

20 .015907

22 .014463

Calculation of T

Coincidentally the range fc ^ 20 and t ih 100 which was chosen by
Bohman & Esscher for their numerical calculations leads to limiting
values of ^l(-) that are close to zero. Table 2 shows some values of

h(-) and -B'(-) for the two fc-values at the ends of the Bohman-Esscher

range and for our two selected hvalues, namely 100 and 1000. In
each case we have indicated by T a value of % after which B'(«) is per-
manently negative. Eor the non-industrial fire distribution this T-value
has been determined rather roughly by inspection of the computed
values of The T'-values were calculated in each case by using
(18). They are all very small in comparison with the Bohman-Esscher
choice of T 90^/1'^.

Turning to the smaller values of fc and f we observe that the

expression on the right of (16) is rather sensitive to the size of x which
can range from unity to several multiples of [/^ in excess of f. In
fact the quantity /10® (1 + l/fc)~* shown in Table 1 represents the
largest value of .si(Tx—B(T)) that will result in an introduced error
not affecting the fifth decimal place. We conclude that three decimal
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TaWe 2

Non-industrial Eire

J 7c |/*2 10X4 « B»

100 20 72.5158 .70 16 3.11(1

.71 14 f 3.463

.72 13 [2.193
COt-IIÈ1 12 I 2.291

.74 11
'

2.439

2.4 5X10-» 0.011

T= 2.6 2X10-1 -0.121

100 oo 68.9822 .76 10 15.375

.77 9 16.221

.78 9 19.60!

CiJ! <s 21.839

.80 7 19.62;

5.14 <10-» 0.049

T= 5.16 <io-» -0.059

1000 20 312.387 .029 10 152.6

.030 7 138.0

.031 5 121.2

T'= .032 3 104.6

033 2 90.7

.1.88 2x10-2» 0.069

T 1.90 2X10-2» -0.591

1000 OO 218.141 .040 18 533.4

.041 12 523.5

042 8 508.1

T'= .043 6 490.2

.044 4 473.6

5.14 <10» 0.391

T=5.16 <io-» -0.499

<
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Negative Exponential

10» N («) B»

T'

.21

.22

.23

.21

.25

T .408

33

.34

.35

.36

.37
T'

r=i.o

114

67

39

23

14

2X10-2

54

32

18

10

6

<io-»

27.22
24.68
22.32
20.13
18.10

0.000

72.47
71.06
69.64
68.21
66.78

0.000

.026

.027

.028
T' .029

030

T:

T'

1400

.107

.108

.109

.110

.111

T=1.0

39

24
15

9

8x10-12

12

10

8

6

5

<10-»

349.8
332.2
315.6
300.0
285.3

0.000

966.3
965.7
965.1
964.4
963.8

0.000



TafcZe 3: ^pjjrcmmaZe paZwes 0/ T saZis/i/mty Ta;— B(T) myr

Non-industrial fire Negative Exponential

1 1 1 1 1 1 OCQII 7v 00 1 1 1=1 1 1 1 20 1 OD

£ OT—1Jl 4 100 4 1000 4 10 01-HII 4 10 4 100 4 1000 4 10 4 10

TO 18 to 20 Ocqii TO 6 TO 2 TO 18 ?» 20 ?» 20 ?» 6 ?» 2

1 56.6 62.9 62.8 20.3 10.0 56.6 62.85 62.83 19.2 7.6
4/2 11.7 2.16 1.08 6.9 5.7 11.4 1.77 .94 5.1 3.8

4 6.2 1.56 .1.02 5.3 5.1 5.8 1 .28 90 3.63 3.4

«+y^ 2.4 1.21 .99 4.1 4.6 3.0 1.06 .88 3.20 3.3
^ 4~ 1.4 1.06 .97 3.7 4.4 1.8 .95 .87 2.89 3.2

<+ 5|/^2 1.1 1.02 .96 3.6 4.4 1.5 .92 .87 2.75 3.1

Values of y*„ 2:3.9970 121.485 1023.52 21.9284 21.8141 10.9545 100.995 1001.00 5.000 4.47214
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accuracy is obtained for the first case (fc 1, f 10) when T:c —5(2')
IStt, and that four decimal accuracy is achieved in the second case

(fc=l, f 100) when Ta; — ,B(T) =20tt. The approximate values of
Tit — B(T) for fifth decimal accuracy in the last three cases are 20a:,
Gar and 2ar, respectively. Table 3 shows the approximate values of 2'

obtained in each of these five cases for selected values of a;. It will
be observed that the smaller the value of a: the longer the range of

integration and thus, other things being equal, the grater the difficulty
of achieving a given degree of accuracy in the approximate quadrature.

Computation of T'(:r, f)

The "brute force" approach to the calulation of the integral in
(14) over a finite interval (0,2') is to divide the range of integration
into a large number IV of panels of equal with d and apply the trape-
zoidal rule to each of them. The result is

T

J A (it) sin { ot — B (it)} dit ^ (19)
0

~ + S sin{jd*-B(jd)} + J2"M(T) sin{Ta;-B(T)}
^ 1=1 ^

with Ah T.

An advantage of the trapezoidal rule is that it can be combined

very effectively with the procedure of "extrapolation to the limit"
(Henrici, 1964). We initially choose <5 2' and effect the quadrature
by calculating two ordinates; then change <5 to 2"2 and repeat the
quadrature by calculating only one new ordinate. When d is changed
to T/4 two further new ordinates are required. Repeated halving of d

thus produces a series of approximations to the integral with a mini-
mum of computational effort. If A •„ represents the result of the trape-
zoidal rule applied with a panel width (-J )' T, j 0,1, 2, it can be

shown that save in exceptional circumstances (Henrici, Zoe. cii.) the
series Z 1, 2, 3, is an improvement on the corresponding A „
where

4' A; —A,-
A, Z l,2,...j. (20)



TaWe FaZwes 0/ F(ce, Z)

2-0 ~ ~ 0 / ]/^2

Non-industrial Fire Negative Exponential

/c x„ #0 So

100 20 -5 1 .89943* 256 -5 1 .84311*, 16

-3 3 .98320*, 1024 -3 .00001, 32 3 .99493*, 16

-1 .03635, 512 5 99474, 256 -1 .15621, 16 5 .99995, 32

100 00 -5 1 .90533*, 256 -5 .00000, 32 1 .84163*, 8

-3 3 .98291*. 256 -3 .00037, 16 3 .99718*, 16

-1 .02334, 512 5 .99436, 1024 -1 .15833, 16 5 99999, 16

1000 20 -5 1 .84983*, 32 -5 1 .84309*, 16

-3 .00000, 64 3 .99107*, 64 -3 .00002, 32 3 .99508*, 16

-1 14559, 32 5 .99968, 32 -1 .15625, 16 5 99996, 512

1000 OO -5 1 .86359*, 32 -5 00000, 128 1 .84137*, 16

-3 .00000, 64 3 .98599*, 32 -3 .00098, 16 3 .99823*, 16

-1 .12553, 32 5 .99911, 32 -1 .15863, 1024 5 1.00000, 16

* These values agree with Bohman and Esscher to within a unit in their final decimal place.
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Although the trapezoidal approximation is known to be periodic in a;

(Hamming, 11162) the 'dropout' region near r 2d/jr, so clearly illus-
trated by Tuck (1967), implies that IV afT/2^ and the successive

doubling of IV can quickly remove the approximation from this danger
zone.

Table 4 shows the results of applying the trapezoidal rule to (14)
for ;x'g (#-t)/|/xg -5, -8, -1,1, 8, 5 and the „large" fe and f values
for which the appropriate T-values were given in Table 2. In each case
the value of E(-) is followed by the value of IV which provided the
same five-decimal result as quadrature with half that number of

panels without further change through 1024 panels. (Occasional
anomalies arise because of a 5 in the sixth decimal place. Thus, for ex-
ample, when f 1000 and fc oo, the distribution fuction in the nog-
ative exponential case with -1 is 1586254 when IV 8, 1586243

when IV 16 and .1586254 when IV 1,024.) Except for the non-in-
dustrial fire case with fe 20 and f 100 the number of ordinates

necessary for five decimal accuracy is relatively small and in every
case well below the 1081 chosen by Bohman & Esscher for all their il-
lustrations.

It seems possible that trapezoidal quadrature may always be pre-
ferable to the two-term Esscher formula for desk machine calculations.
For example, in the non-industrial fire case with fc 20, t 100 and

8, trapezoidal quadrature with 64 panels has already produced
the result 9831 which is a substantial improvement over the two-
term Esscher value given earlier.

Finally we apply the values of T provided in Table 3 to produce
Table 5. Anticipating the necessity of using a larger number of panels
than the 1024 required in three exceptional illustrations in Tabled, all
computer runs were made with (up to) 4096 panels. Once again the
number of panels shown in Table 5 is that which provided the same re-
suit to the number of decimals shown as quadrature with half that
number of panels. Exceptionally the result for 4096 panels was accept-
ed if it differed from that for 2048 panels by no more than one unit in
the last decimal place retained. In one case (non-industrial fire with
£ 10, fc 20, a; 1) it was necessary to use (20) and this is shown by
affixing an asterisk to 4096.

When k 1 and a: is as small as unity trapezoidal quadrature be-

gins to break down as f increases in size. This is illustrated by applying



TaWe5: Faites o/F(x, f)

Non-industrial Fire Negative Exponential

f /c cc a? £

10 oo 1 .07090, 4096 £~f" ]/^2 93424, 1024 i .00208, 128 £-f" "j/^2 .84384, 32

f/2 .58035, 2048 £-{- 3-|/^2 98864, 1024 t/2 .11980, 64 £-f- 3"j/%2 .99308, 32

f .75450, 2048 t+ 5^2 99524, 1024 f .54489, 32 £-f- 5|/«2 .99987, 64

10 20 1 .09545, 4096* £+ |/^2 .93369, 1024 1 .00567, 4096 £ -f-1/^2 .84463, 4096

t/2 .58174, 2048 £-j- 3|/^2 .98850, 1024 f/2 .15309, 64 £ -f- 3"j/%2~ 99220, 32

t .75334, 2048 £-{- 5|/«2 .99520, 1024 f .55089, 256 £~b 5]/^2 .99981, 128

10 1 1 .344, 2048 £-f- "J/^2 .926, 256 1 .169, 2048 £~b "|/^2 .864, 64

f/2 032, 2048 £"4 3]/^2 986, 256 f/2 .422, 512 £~4 3]/^2 .981, 64

f .755, 2048 £-]- 5"j/?<2 .995, 2048 f .634, 512 £+ 5-J/^2 .999, 64

100 1 1 .0456, 16384* £+ ]/^2 8774. 512 1 .0193. 16384* t+]/*2_ .8647, 512

t/2 .4530, 2048 £-f- 3-J/«2 .9802, 512 t/2 .3965, 1024 £~4 3]/*2 .9817, 256

f 6552, 1024 £-}- 5|/«a 9954, 4096 £ .6321, 512 £+ .9975, 256

1000 1 1 failure, 16384 £+"|/*2 .86469, 4096 i failure, 16384 £ +1/^2 .86466, 4096

f/2 .40222, 4096 i-f- 3"j/%2 .98161, 4096 f/2 39377, 4096 £+ 3"j/%2 .98168, 4096

f 63290. 4096 £~4 Sj/^2 .99750, 2048 f .63212, 4096 £ + S]/^2 .99752, 2048



(20) to the non-industrial fire case with 1 100, fc 1 and a; 1 as

follows :

J
Z 0 1 2 3 4

10 -.550995
11 -.134022 .004969

12 .014124 .063506 .067408

13 .043280 .052999 .052299 .052059

14 .045436 .046155 .045698 .045593 .045568

The supposed improved results for j 18 (8192 panels) are disap-
pointing and the negative values for 1024 and 2048 panels very unsa-
tisfaetory. It is clear that we must seek another method of calculating
F (r, T) for very small a; when f is large and fc is of the order of unity.

Other Quadrature Formulas

There is a wide choice of quadrature formulas (Davis & Eabinow-
itz, 1967). One possibility is to retain the general framework of the
simple trapezoidal (19) and to modify it to conform with various
objectives. If the standard procedures of Fourier analysis are applied
to a function F (agf) assumed to be zero outside the interval (0,tw) the
result is formula (14) with the integral replaced by the right hand ex-
pression of (19) with <5 2jt/ci), A" arbitrary, the last term in brackets
suppressed and the first term replaced by (co/2 — f)/2. A modification of
this to secure faster convergence (Lanczos, 1956) is to multiply the jth
term in the summation by sin (ttj d / T) / (ttj d / T).

A formally similar procedure was used by Bohman and Esscher
(foe. cif.) who, in effect, multiplied each term of (19) by the discontinuity

factor (1—jd/T) cos(jrjd/T) H sin(ttjd/T). Another modification of

(19), named after its originator Filon (Tuck, 1967), is to multiply the
whole expression on the right of (19) by {sin (rd/2) / (rd/2)}'h All the
multipliers mentioned above are fairly close to unity throughout most
of the range (0,T). Our experiments with them suggest that they do
not produce any worthwhile improvements over the straightforward
use of (19).
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Alternative Method for Small a;

An integral equation for F(x, f) can be derived as follows. By dif-
ferentiating (8) we obtain

1 + y'(s) fc y (s)tt'(s) + yi'(s) jt(s) (21)

Now

<-r> CO -i CO

£ 1 r
S

I e xF (,x, 1) da; — .F(x, t)e~^ +- e~®*F(x, t)dx +•' «
o

«
Ô

1 f V M v' (•')
+ f e ®"MdF(x,f)

<? «/s
0

Multiplying (21) by —1/s and adding ^(s)/s" whenever —y/(s)/s occurs

we obtain after appropriate adjustment to preserve equality

/ fe\ |v»(s) y'(s)| / &\v(*) v(s) r ,,y,r|-1'+ ,« +"-{-»(«)} +

fv(s) ?'(*)] x v(s) ^(s)
+ — — •

Writing this in terms of Laplace transforms

^1 + £{x.F(:r,t)} ^1 + --j ß j j F(y, t) dr/j + fc£{F(x, t)*^p(A)} +

+ Jß{asF(a;, t)* p(x)} —£{F(x, f)* P(x)}

where p(x) P'(cc) and the convolution notation is standard. This

relation may now be inverted to yield

/ /A * f fc

(^1+-Ja;F(:r,f) J P(//A) |l + -- + (7cac—y+ ?y)yo(m—7/) — P(m — ?/)|<5t/

J life 7/) P(/y,f)dy (22)
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where If (at, y) 1 + — + (fc a; — y + y) y (œ-y) — P (a;— y).

A similar type of equation in terms of density functions has been given
for the case fc—>00 by Plackett (19(59) but (22) itself appears to be new.

The integral equation (22) may be solved approximately by
means of repeated trapezoidal quadrature. Choose I at/H suitably
small and (22) gives

1+ ^>i\M)
A

If (A, y) I\y, f) ly ^ {if(A,0) F(0, f) + If(I, I)F(A, f)}

/ A \ A
1 - - A —

V ' / 2

and on solving for .F(A, f)

F(A,f)

Similarly (n

I" (nA, f) ^
fe\

1 + - j '«I -

If (I, I)
-1 I

-- if (1,0)
fc

t -f- /c
(23)

2,3, ...H)

A

If (nA, nA)
-if A

i *<•*<> fe- -A2Z(«A,?A)F(yA,f) .(24)

The relations (23) and (24) thus produce approximate numerical values
of F(A,f), I\2A,f), A(3/i,f),... ^(iVA, t) A(a;, f) smafim. The procedure

may then be repeated with an A-value one-half its previous size, and so

011 until the resulting set of values of A(r,t) converge. It will be ob-

served, however, that each series requires fresh computations and that
if the final series is to contain IV 2 terms it will have been based

m

on (2 +1) calculations of If •, •) implying a total of 2 2'~*(2' + 1)
?=1

(2x4+ 3 x2 — 5)/3 such calculations. This feature makes the method

very costly and it is not to be recommended except as a last resort.
The two values of I\r,t) designated "failure" in Table 5 were cal-

culated by the foregoing procedure with m 7. The successive values
of A(l, 1000) are shown in Table 6 commencing with ÏV =8 (so that
the initial A 1/8)*). It would seem that five-decimal accuracy has
been achieved by using extrapolation to the limit, namely (20).

*) Computer execution time for the non-industrial fire case was about two
minutes on an IBM 7094 which was only 17 seconds less than that required for the
application of (19) with 10,384 terms!
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TaWe6: Hjtproatow.af-icms to 10®jP(1,1000)

A' Non-ndustrial Fire Negative Exponential

8 9049 3735

16 5479 2473

32 4893 2187

64 4751 2083

128 4714 2038

256 4703 2017

(20) 4700 2009
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Zusammenfassung

Es gibt verhältnismässig wenige Beispiele in der versicherungsmathemati-
sehen und statistischen Literatur über die Berechnung einer Verteilungsfunktion
auf ihrem ganzen Definitionsbereich durch Inversion ihrer charakteristischen
Funktion oder Laplaee-Transformierten. Eine Ausnahme bildet die von Bohman
und Esscher (Skand. Aktu. Tidskr. 1963/64) benutzte originelle Inversions-
Formel, uni die Verteilungsfunktion der « convolution-mixed negative binomial»
mit relativ grossem Mittelwert und negativem Binomialindex zu berechnen.
Tabelle 4 dieser Arbeit zeigt, dass die detaillierte Analyse des numerischen
Verhaltens der charakteristischen Funktion uns erlaubt, die einfache Trapez-
quadratur anzuwenden, mit selir viel weniger als den 10S1 Termen, welche
Bohman und Esscher benötigt haben. Es wird weiter gezeigt, dass eine Ausdeh-

nung des Verfallrens auf kleinere Mittelwerte und Binomialindizes möglich ist,
wenn man ein beträchtliches Anwachsen der Anzahl der in der Quadratur be-

nutzten Ordinate» in Kauf nimmt. Eine andere Berechnungsmethode wurde für
sehr kleine Werte der Zufallsvariablen entwickelt.

Summary

There are relatively few examples in the actuarial and statistical literature of
the calculation of a distribution fuction over its whole range by inversion of its
characteristic function or Laplace transform. An exception is the use by Bohman
& Esscher in the 1963/64 Scandinavian actuarial journal of an original inversion
formula to calculate the distribution function of the convolution-mixed negative
binomial with relatively large mean value and negative binomial index. Table 4

of this paper shows that detailed analysis of the numerical behavior of the cha-
raeteristic function permits the use of simple trapezoidal quadrature with far
fewer than the 1081 terms used by Bohman & Esscher. Extension of the proce-
dure to smaller mean values and binomial indices is shown to be possible at the

expense of a substantial increase in the number of ordinales used in the quadra-
true. An alternative method of computation is developed for very small values of
the random variable.
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Résumé

Il y a relativement peu d'exemples dans la littérature des assurances et des

statistiques du calcul d'une fonction de répartition sur tout son domaine de défi-
nition par inversion de sa fonction caractéristique ou de sa transformée de

Laplace. Une exception est l'emploi par Bohman et Esscher (Skand. Aktu.
Tidskr. 1963/64) d'une formule d'inversion originale pour calculer la fonction de

répartition de la « convolution-mixed negative binomial» avec une espérance rela-

tivement grande et un grand indice binomial négatif. Le tableau 4 de cet article
montre que l'analyse détaillée du comportement numérique de la fonction caracté-

ristique permet l'usage de la règle de quadrature trapézoïdale simple avec beau-

coup moins que les 1081 ternies utilisés par Bohman et Esscher. En outre, il est

montré que l'extension du procédé à des valeurs plus petites de l'espérance et des

indices binômiaux est possible mais entraîne un accroissement substantiel des

nombres des ordonnés utilisés dans la quadrature. Une autre méthode de calcul
est développée pour de très petites valeurs de la variable aléatoire.

Riassunto

Ci sono relativamente pochi esempi nella letteratura matematica assicurativa
e statistics sul calcolo d'una funzione di distribuzione in tut.to il suo campo di de-

finizione mediant« inversione délia sua funzione caratteristica o mediant« la sua
trasformata di Laplace. Un'eccezione è l'uso fatto da Bohman e Esscher (Skand.
Aktu. Tidskr. 1963/64) d'una formula originale d'inversione per calcolare la fun-
zione distributiva délia « convolution-mixed negative binomial» con una media
relativamente grande e un grand 'indice binomialenegativo. La ta vola 4 di quest'ar-
ticolo mostra che 1'analisi dettagliata del comportamento numerico della fimzione
caratteristica permette l'uso della semplice integrazione trapezoidale con molto
meno dei 1081 termi usati da Bohman e Esscher. Si dimostra anche possibile
Tapplicazione del metodo per valori minori della media e degli indici binomiali,
questo implicando tuttavia mi sostanziale aumento del numéro clelle ordinate
usate nel integrazione. Un altro metodo di calcolo viene sviluppato per dei valori
molto piccoli della variabilis casuale.
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