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Statistische Rückschlüsse beim Behrens-Fisher-Problem*

Fora Fron; Streit, Bern

Die Theorie der statistischen Rückschlüsse ist seit ihrer systemati-
sehen Begründung, um die sich in erster Linie R.A.Fisher und J.Ney-
man sehr verdient gemacht haben, gewaltig ausgebaut worden und hat
als Forschungszweig zunehmend an Bedeutung gewonnen. Einerseits
sind die klassischen Verfahren weiter erforscht und ihre Nutzanwendun-

gen eingehend studiert worden ; anderseits wurde besonders in den letz-

ten Jahren auf verschiedene andere Methoden aufmerksam gemacht und
ihre vermehrte Verwendung propagiert.

Angesichts dieser Sachlage scheint es zweckmässig zu sein, sich

Rechenschaft darüber abzulegen, welche Techniken zur Lösung von sta-

tistischen Rückschlussproblemen grundsätzlich zur Verfügung stehen

und welches die Voraussetzungen sind, unter welchen sie angewandt wer-
den dürfen. Ferner sollte abgeklärt werden, welche Aspekte des gemein-
samen Grundproblems mit den einzelnen Verfahren bewältigt werden
können. Zwar gibt es viele Statistiker, die eine Methode, mit der alle

auftretenden Probleme zufriedenstellend behandelt werden können,
suchen oder sogar glauben, eine solche gefunden zu haben. Angesichts der

grossen Vielfalt verschiedenster statistischer Fragestellungen ist es aber
eher unwahrscheinlich, dass ein derartiges universales Lösungsprinzip
existiert [32, p. 921 ; 23, p. 373]. Anstatt in dogmatischer Weise die Un-
fehlbarkeit eines einzelnen Verfahrens zu verfechten, scheint es daher

gewinnbringender zu sein, durch eine systematische Analyse die Lei-

stungsfähigkeit und Besonderheiten der verschiedenen Varianten zu

analysieren und auf diese Weise die notwendigen Kenntnisse, die zur
Wahl der brauchbarsten Methode im Einzelfall benötigt werden, bereit

zu stellen.

* Diese Arbeit entstand durch Überarbeitung eines am 26. Juni 1970 vor der
Mathematischen Vereinigung in Bern gehaltenen Vortrages.
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In dieser Arbeit, die ein Beitrag zu derartigen Studien sein soll, wird
in einem ersten Abschnitt § 1) das Grundproblem der Theorie der stati-
stischen Bückschlüsse kurz beschrieben. Als Illustrationsbeispiel dient
uns das sogenannte Behrens-Fisher-Problem. Einleitende Ausführungen
zu dieser Fragestellung, die sowohl in theoretischer Hinsicht als auch

vom Standpunkt der praktischen Anwendungen bedeutsam ist, findet
man in § 2. Der restliche Teil der Arbeit ist einer Übersicht über eine Aus-

wähl der wichtigsten Bückschlussverfahren und einer Zusammenstel-

lung ihrer Nutzanwendungen auf das Behrens-Fisher-Problem gewid-
met. In jedem Abschnitt wird die allgemeine Problemlage dargelegt und

Folgerungen, die sich daraus für das Behrens-Fisher-Problem ergeben,

hergeleitet oder auf entsprechende Besultate in der Fachliteratur hinge-
wiesen. Der Beihe nach gelangen die Methode der parametrischen Schät-

zungen (§3), die Methode der Konfidenzmengen (§4), die statistischen
Testverfahren (§5), das Verfahren von Bayes (§ 6) und die Methode der
strukturellen Bückschlüsse (§ 7) zur Darstellung.

§ 1 Zum Grundproblem der Theorie der

statistischen Rückschlüsse

Zum besseren Verständnis der nachstehend angeführten Formali-
sierung des allgemeinen Bückschlussproblems ist es vorteilhaft, auf die
Unterschiede in den Verhältnissen, die bei wahrscheinlichkeitstheoreti-
sehen und statistischen Methoden vorliegen, hinzuweisen.

Wahrscheinlichkeitstheoretische Betrachtungen nehmen Bezug
auf ein wahrscheinlichkeitstheoretisches Modell, das in den einfachsten
Fällen durch den sogenannten Wahrscheinlichkeitsraum gegeben ist.
Bekanntlich wird ein solcher Wahrscheinlichkeitsraum (3Ê, II, P)
durch die Wahl einer abstrakten Menge 31, einer o-Algebra H von X
und ein auf dem Messraum (3£, II) definiertes Wahrscheinlichkeitsmass
P festgelegt. Aufgabe der Wahrscheinlichkeitstheorie ist es, Wahr-
scheinliehkeitsräume oder allgemeiner Klassen von Wahrscheinlich-
keitsräumen zu erforschen.

Bei statistischen Untersuchungen - jedenfalls soweit sie nicht
bloss deskriptiver Natur sind - spielen wahrscheinlichkeitstheoretische
Überlegungen eine grosse Bolle. Indessen sind zwei grundlegende
Unterschiede festzustellen. Einerseits werden Vergleiche der Modellbe-
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rechnungen mit den wirklichen Gegebenheiten vorgenommen. Dies er-

folgt durch Sammeln von experimentell gewonnenen Beobachtungsda-
ten, die zur Kontrolle der theoretischen Berechnungen dienen. Bei sta-
tistischen Bückschlussproblemen besteht ein weiterer Unterschied
darin, dass wir uns nicht von vornherein auf ein bestimmtes wahr-
scheinlichkeitstheoretisches Modell festlegen. Tatsächlich ist dies viel-
fach nicht möglich oder zum mindesten nicht ratsam. Oft können eine

Vielzahl von wahrscheinlichkeitstheoretischen Modellen als vernünftig
und realistisch angesehen werden. Es gilt dann auf Grund von wissen-
schaftlichen Betrachtungen Aussagen über die Eignung der einzelnen
Wahrscheinlichkeitsräume zu machen. Dies führt uns auf den Begriff
des statistischen Modells.

Ein sfcrfisfriscAes MocfeH besteht aus einer Klasse SR von Wahr-
scheinlichkeitsräumen bezüglich desselben Messraumes und einer end-
liehen Anzahl von experimentell gewonnenen Beobachtungswerten,
die in der Begel erst nach der Festsetzung von SR gesammelt werden
sollten. In symbolischer Schreibweise:

SR {i¥„ (£,ÎI,F(£:0)) [0eß]} ; œ (a^, zj
Es haben sich dabei in der Statistik die folgenden Bezeichnungs-

weisen eingebürgert, die z.T. von der Terminologie der Wahrschein-
lichkeitstheorie abweichen : Man nennt X den Stichprobenraum, U die
Familie der zufälligen Ereignisse, F (x : 0) die Klasse der in Betracht
gezogenen Verteilungsfunktionen, 0 den Parameter und ß den Para-
meterraum. Die Aufgabe der Theorie der statistischen Bückschlüsse
besteht darin, auf Grund der Beobachtungswerte œ Aussagen über die

Eignung der einzelnen Modelle Mg zur Beschreibung des untersuchten
Zufallsvorganges zu machen. Setzen wir voraus, dass das den Beob-

achtungswerten effektiv zugrunde liegende Modell zu SR gehört, so soll
dieses realisierte Modell und der wahre Wert 0g von 0 auf Grund

von x soweit wie möglich bestimmt oder charakterisiert werden.

In den Abschnitten 3-7 werden einige der wichtigsten Techniken,
die zur Bewältigung dieses Problems zur Verfügung stehen, kurz be-

sprochen. Die Wahl des Verfahrens wird vernünftigerweise weitge-
hendst durch die spezifische Problemstellung, die der Untersuchung zu-
grundeliegt, und eventuell durch das Vorhandensein zusätzlicher In-
formation über den Zufallsprozess beeinflusst.
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§2 Das Behrens-Fisher-Problem

Es sind heute verschiedene Formulierungen des Behrens-Fisher-
Problems bekannt. In ihrer ursprünglichen, einfachen Fassung lautet
die Fragestellung vie folgt: Gegeben seien zwei unabhängige Stich-
proben

-Gl ' • • • ' *Gn, >

®21 ' • • • » ®2n, '

die von zwei normalverteilten Grundgesamtheiten mit Mittelwerten
und ^2 und mit Streuungen of und cr® stammen. Wir nehmen also an, dass

es sich bei den Beobachtungswerten um Realisierungen von

Zufallsvariablen mit der Dichtefunktion -, —— • exp
j/2mri

und bei den Beobachtungswerten • • •, ajg,,. um Realisierungen von

Zufallsvariablen mit der Dichtefunktion — • exp
}/2tT(T2

handelt. Ferner wird vorausgesetzt, dass alle Beobachtungswerte
stochastisch voneinander unabhängig seien und dass wir die effektiven
Parameterwerte ^ » ^2 /"20 > ^ 10 und cr| cr^o der
untersuchten Grundgesamtheiten nicht kennen. Die Aufgabe besteht

darin, auf Grund des beschriebenen Modells und der Beobachtungs-
werte Aussagen über den wahren Wert Co der Grösse C — AG,

also über den Unterschied zwischen den Mittelwerten der beiden

Grundgesamtheiten zu machen. Es liegt in der Natur einer derartigen
Problemlage, dass es natürlich nicht möglich ist, Co in unfehlbarer
Weise anzugeben, etwa zu berechnen. Vielmehr muss unter den gege-
benen Umständen nach Aussagen über die Mutmasslichkeit der Reali-
sation verschiedener möglicher Werte von C gesucht werden. Solche

Angaben werden zwar in Einzelfällen zu Fehlurteilen führen, sollten
aber in gewissem - noch näher zu bezeichnendem Sinne - als optimale
Schlussfolgerungen angesehen werden können.

Es braucht wohl nicht besonders betont zu werden, dass es sich

bei diesem Problem um eine für die praktischen Anwendungen bedeut-

same Fragestellung handelt. Sehr oft kommt man in die Lage, dass

1/Ui AG\"

2\ /

1/ Zg —/"2 V
2\ /
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man auf Grund zweier Zufallsstichproben Aussagen über die Differenz
der Mittelwerte der zugehörigen Phänomene machen soll. Die Forde-

rung, dass die Grundgesamtheiten normalverteilt sein sollen, ent-
spricht zwar nicht immer, aber vielfach den praktischen Gegebenhei-
ten. Als besonders realistisch erweist es sich, dass man keine restrikti-
ven Voraussetzungen über die Parameter macht und auch nicht for-
dert, dass die Umfange der beiden Stichproben gleich gross sind.

Die letztgenannte Tatsache ist deshalb bemerkenswert, weil in
vielen Lehrbüchern der Statistik eine Lösung des vorliegenden Pro-
blems unter der Annahme hergeleitet wird, dass die beiden Streuungen
ofo und #20 zwar unbekannt aber gleich gross seien. Unter dieser Ein-
schränkung vereinfacht sich das Problem wesentlich, und es stehen
dann bekannte Besultate, die auf dem /-Test oder auf Konfidenzinter-
vallen der /-Verteilung beruhen, zur Verfügung (vgl. etwa [27] und
[17]). Es ist aber offensichtlich, dass die Forderung nach Gleichheit der
beiden Streuungen oft nicht realistisch ist und vor allem zur Vereinfa-
chung der mathematischen Schwierigkeiten erhoben wird. Wir werden
deshalb diese Bedingung nicht aufstellen und zulassen, dass

Das Behrens-Fisher-Problem lässt sich als Spezialfall der in § 1

beschriebenen allgemeinen Fragestellung unterordnen. Hierbei besteht
a? aus den Beobachtungsdaten x^, und Xji» •••> %!,> für X
ist /it"' x /it"® (/it' bezeichnet den /c-dimensionalen euklidischen Baum
und x die cartesische Produktbildung) und für II die Klasse der
Boreischen Mengen von iE zu wählen.

F bestimmt sich aus der Forderung, dass a: j normalverteilt mit
Mittelwert ^ und Streuung cr| sein soll. 0 schliesslich setzt sich aus
den vier Angaben (//j. /«g, oq, Ug) oder aus der äquivalenten Charakte-
risierung (£, ^ fff) zusammen /^> C üt ; oq, U2>0]-

Das Behrens-Fisher-Problem wurde - wie der Name andeutet -
zuerst von TU. F. Se fereres [2] untersucht. Auf Grund dieser Studien hat
ii'. /I .iUsisr eine Lösung der Aufgabe vorgeschlagen [7]. Fishers Besul-
tat ist in Form einer Wahrscheinlichkeitsverteilung für £ gegeben. Bei
dieser Lösung kann man also die Wahrscheinlichkeit berechnen, dass

der effektive Wert von f in einer vorgegebenen Menge von reellen Zah-
len liegt. Das Besultat von Fisher lässt sich folgendermassen charakte-
risieren :
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Hier und bei ähnlichen Situationen im folgenden repräsentieren

1 "/• l

a?p= —2 2pf den Mittelwert und sj ^ (^pi~die
Wp i=i P rip—1 i=i

Streuung der p-ten Stichprobe, während /„ eine Zufallsvariable mit der

i-Verteilung von Student und r Freiheitsgraden bezeichnet. Die Ver-
teilung von f ist demnach durch einen linearen Ausdruck, in welchem
zwei voneinander unabhängige <-Variablen auftreten, gegeben.

Zur praktischen Auswertung der Formel (1) wurden kurz nach

Auffindung des Resultats Tabellenwerke geschaffen [9, 30]. In der stati-
stischen Praxis wurde das Ergebnis verschiedentlich mit Erfolg ange-
wandt. Auf die Relation (1) wird in vielen Lehrbüchern der Statistik
hingewiesen, auch in solchen, die sich vorwiegend mit den statistischen
Anwendungen befassen.

Dessen ungeachtet wurde bald einmal Kritik an Fishers Herlei-

tung der Eelation (1) laut. Fisher erhielt das Ergebnis mit Hilfe der

sogenannten «fiduzieilen Methode». Diese Bückschlusstechnik wird
heute nicht mehr allgemein anerkannt. Es ist zweifelhaft, ob das Ver-
fahren mit den anerkannten Begeln der Wahrscheinlichkeitsrechnung
in Einklang gebracht werden kann. Wir brauchen uns aber mit dieser

Problematik nicht auseinanderzusetzen. Im Jahre 1957 gelang
J. 17. TWcep [31] nämlich ein einwandfreier Beweis, dass Fishers Her-
leitung nicht stichhaltig ist. Es stellt sich heraus, dass selbst wenn man
die Zweckmässigkeit der fiduziellen Methode nicht in Frage zieht,
Schwierigkeiten auftreten. Die von Fisher vorgeschlagene Lösung (1)

ist nämlich nicht eindeutig. Vielmehr können nach demselben Verfah-
ren eine Vielzahl anderer Verteilungen für ; hergeleitet werden, ohne
dass die Technik einen Hinweis dafür liefern würde, welche dieser Ver-

teilungen die richtige ist.
Nach Bekanntwerden dieser Unzulänghchkeiten, die in analoger

Weise auch bei andern mehrparametrigen Anwendungen des Verfahrens

aufgedeckt worden sind, versuchte man durch Modifikation der fiduziel-
len Methode die gewünschte Eindeutigkeit zu erzwingen. Diese Versuche
sind aber bis anhin erfolglos geblieben. Man sah sich somit vor die gro-
teske Lage gestellt, dass für eine Relation, die sich in praktischen Anwen-

düngen bewährt hat, keine theoretische Begründung bekannt war. Ange-
sichts dieser Sachlage ist es verständlich, dass man andere zuverlässigere
statistische Bückschlussmethoden zur Behandlung des Behrens-Fisher-
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Problems beanspruchte. Über die dabei erzielten Resultate wird im rest-
lichen Teil der Arbeit ausführlich berichtet.

§ 3 Die Methode der parametrischen Schätzung

AZZgrememe ProWemZcw/e: Aus der Klasse 911 {Mg} soll dasjenige
wahrscheinlichkeitstheoretische Modell Mg ausgewählt werden, das

sich auf Grund der Beobachtungswerte £ am realistischsten erweist.
Dies erfolgt durch geeignete Wahl einer Stichprobenfunktion T. Hierbei
ist T eine Kollektion von Abbildungen T„ - für jeden möglichen
Stichprobenumfang w eine - welche den Beobachtungswerten j
(%,..., a;„) einen Wert T„(a:)eß des Parameterraums zuweist. Bei der

Anwendung der Schätztheorie stellen sich zwei Hauptprobleme. Einer-
seits werden Verfahren zur Konstruktion von Schätzfunktionen be-

nötigt, andrerseits ist die Güte der Schätzfunktion zu untersuchen. Die

Eignung oder Güte der Stichprobenfunktion wird auf Grund gewisser
Kriterien, die sich auf die für induzierte Verteilung beziehen, beur-
teilt.

Im Spezialfall des Behrens-Fisher-Problems besteht das Schätz-

problem darin, jeder Kombination von beobachteten Werten a^,...,
a^ und a^, auf eine von den Parametern unabhängige
Weise vier Zahlen zuzuordnen, welche dem wahren Wert 0q von
0 (C, ^2> <*i> <*!) möglichst nahekommen.

KowsZniZcZ-ion der ScZiäfe/imZcZicm: Was die Konstruktion von
Schätzfunktionen betrifft, so soll hier lediglich das gebräuchlichste
Verfahren, die Bestimmung einer Schätzfunktion nach der Maximum-
Likelihood-Methode, erwähnt werden. Bei der Anwendung dieser

Technik bestimmt man denjenigen Wert 0 des Parameterraumes £?,

für welchen die Wahrscheinlichkeit bzw. die Wahrscheinlichkeitsdichte
für die Realisierung der registrierten Beobachtungswerte am grössten
wird. Als Schätzfunktion für 0 wird dann 0 oder eine einfache Funk-
tion von 0 verwendet.

Wollen wir die Maximum-Likelihood-Schätzfunktion für den

Parameter (Ci./Ug.ffi, <rf) beim Behrens-Fisher-Problem bestimmen, so

müssen wir also die Wahrscheinlichkeitsdichte dafür, die Werte
und ^2i > • • • > beobachten in bezug auf die unbekannten

Grössen maximieren. Diese Dichte ist
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#2*Ci> /^2> 0*1» ^2]

l
r»i + 7i2

exp

(2*)

l/^i (a^,- 1, ^2)"- -
1 V

2 \i=l
V
J=1

(^2; ^2)"

CT.,

CT " CT,

Statt das Maximum von L können wir dasjenige von Zw L bilden.
Wir erhalten also 0 indem wir das Gleichungssystem

^ Ä /Xi--C-//2\ ^at - '
CT/

0Z?JL ^ ^ •& p2/-^\ ~

0^2 "I' "
CTf ,/

'

MV ff| i

aZnL
^ lÄ /afi{-t-/«2? _ „

0CTi 2fff
'

2 MV <7? /

0Z«L
^ _

n, 1 ^ /a^; n
0ct| ~ 2ct| " 2,MV "fff V

nach den unbekannten Parametern auflösen. Man überzeugt sich leicht
davon, dass

1 "1 J "2

®1 ^2> ®2> "" S ^
1

% M '»2 j=i
iE,; —^2

die Maximum-Likelihood-Schätzfunktion für 0 ist. Wie ersichtlich, soll

für die Schätzung der uns besonders interessierenden Komponente £

die Differenz der Mittelwerte der beiden Stichproben verwendet wer-
den. Dies ist ein Ansatz, der aus anschaulichen Gründen unmittelbar
einleuchtet.

Güte der Sckätewif/: Die für die gesamte Theorie massgebenden

Begriffsbildungen stammen von K.M.Kisker [5, 6]. Im folgenden wer-
den einige bedeutsame Kriterien zur Beurteilung der Güte einer

Schätzfunktion zusammengestellt und es wird untersucht, was für
Schlussfolgerungen sich daraus in Bezug auf das Behrens-Fisher-Pro-
blem ergeben.
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1. Man kontrolliert, ob eine Schätzfunktion erwartungstreu ist,
um zu überprüfen ob ihre Verteilung in gewissem Sinne richtig zen-
triert ist. Eine Schätzfunktion T für 0 heisst eraiartonpsfreii für 0, falls
für jeden Stichprobenumfang n gilt E[T„:0] 0[0 £?; » 1, 2,...].
Sofern - wie in unserem Beispiel - die Schätzfunktion mehrdimensio-
nal ist, bezieht sich die Forderung auf jede Komponente gesondert,
also E[Tj'> : 0] 0''' [g 1, L ; L Dimension von 0].

Offensichtlich ist in unserem Beispiel die Maximum-Likelihood-
Schätzfunktion 0 nicht erwartungstreu für den gesuchten Parameter 0.

Zwar zeigen die beiden ersten Komponenten das gewünschte Ver-
halten E[ä^ — ®J ^= ^2> aber bekanntlich gilt

E
-i

-<K und E
1 »2

2 (^2) "^2)^
'«2 Fi

Dem üblichen Vorgehen entsprechend ersetzen wir 0 daher durch
die modifizierte Maximum-Likelibood-Schätzfunktion

T (Si, ®2) [®x - ^2. ^2 - 4 ^ «£] mit — 3 2-1 i l

Wir stellen nun fest: Die Schätzfunktion T ist erwartungstreu
für 0.

2. Das asymptotische Verhalten einer Schätzfunktion kann bei-

spielsweise folgendermassen beurteilt werden: Eine Schätzfunktion T
für 0 heisst fconrisieizf, falls T„ mit wachsender Zahl der Beobachtungs-
werte stochastisch gegen 0 konvergiert, d.h. sofern für jedes e>0 der
Grenzwert der Wahrscheinlichkeit limPr(|T^> — 0'''|>e) =0. Hierbei

n -> 00

wird vorausgesetzt, dass ß ein metrischer Raum ist [10, p. 384].
Um zu überprüfen, ob die oben eingeführte Schätzfunktion T(ä?i>

£2) für die Parameterwerte des Behrens-Fisher-Problems konsistent
ist, erinnern wir uns an die bekannte Tatsache, dass die Stichproben-
nullmomente für die Nullmomente und bei einer Stichprobe mit n Ele-

1 "
menten ausserdem die Masszahlen — V (2^— ä;)* und somit auch

1 » « i=i
v-2 für die Hauptmomente der Verteilung der Grund-

w—1 Fi
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gesamtheit konsistent sind [10, p. 306], Daraus ergibt sich, dass die

letzten drei Komponenten von T die gewünschte Eigenschaft besitzen,
falls beide Stichprobenumfänge % und «g gegen unendlich streben.
Weil die Differenz zweier unabhängiger konsistenter Schätzfunktionen
für /r, bzw. //g konsistent ist für /i, — /<g, strebt auch x, — Xg unter die-

sen genannten Voraussetzungen stochastisch nach £, und daraus folgt,
dass in unserem Beispiel T(x,,Xg) konsistent ist für 0, sofern u.,, Wg

3. Das nachstehende Kriterium kann verwendet werden, um zu
beurteilen, ob der Informationsgehalt einer Schätzfunktion optimal
ist: Eine Schätzfunktion T für 0 heisst erseköp/end, falls für jede von
T verschiedene Schätzfunktion T* die bedingte Verteilung von T* bei

beliebigem, bekanntem Wert von T von 0 unabhängig ist.
Dass die Schätzfunktion T(x,. Xg) für die Parameter des Behrens-

Fisher-Problems erschöpfend ist, ergibt sich unmittelbar aus einem im
wesentlichen auf JWepman zurückgehenden Faktorisationstheorem
[20, p. 168; 15, p. 219] in Anbetracht der Tatsache, dass sich die Dichte

-kQfi! 3?2'£i> j"2> <*i> <^2] folgendermassen darstellen lässt:

nj+na
exp

(2?r) O*#

% 1
2 ^2 1

2 i(®i £ ^2)^

* 2of^ 2orf

exp

2 tr,

^2 (*®2 A^2)^

2ff|

4. Es liegt auf der Hand, dass bei erwartungstreuen Schätzfunk-
tionen eine starke Konzentration ihrer Verteilung um den Mittelwert
als vorteilhaft erachtet wird. Wir nennen eine erwartungstreue reell-

wertige Schätzfunktion T für 0 deren Varianz endlich ist und stets nicht
grösser ausfällt als die Varianz jeder anderen erwartungstreuen Schätz-
funktion T* für 0, für die also Var[T:0] <i Var [T* : 0], tüfrksamsf

für 0 *). Es kann bewiesen werden, dass im allgemeinen die Varianz einer

erwartungstreuen Schätzfunktion T für eine vorgegebene Parameter-

i) In der Literatur wird diese Bezeichnung für verschiedenartige Tatbestände
benützt. Wir übernehmen hier die Begriffsbildung von S. WiWcs [35, p.351].
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funktion r(0) eine aus r(0) und der Klasse {F(x : 0)} berechenbare,

positive Schranke nicht unterschreiten kann. In der Tat gilt unter
schwachen Regularitätsbedingungen die Cramér-Rao-Ungleichung [17,

p. 16]:

0t(0) 0T (0)
Var [ T : 0] > V, V —IL ~J — _l ^g(i) pg(m) Im

1 1 m=l

mit £
1 0L 1 dL

L 00'" L 00'"'»

und L L [x : 0] : Dichte von x im Modell M g.

Eine wirksamste Schätzfunktion, deren Varianz überdies stets

gleich der unteren Schranke der Cramér-Rao-Ungleichung ist, heisst

MF-B-ScMte/wwkfiow (minimum variance bound estimator).
Durch direkte Verifikation kann man feststellen, dass beim Beh-

rcns-Fisher-Problem Xj— Xg eine MVB-Schätzfunktion und daher
auch wirksamste Schätzfunktion für den unbekannten Parameter £

ist. Setzt man nämlich r(^, ^ «R. ^2) C /R—j"2> so erhält man
für die rechte Seite der Cramér-Rao-Ungleichung — unter Berück-

0T 0T 0T 0T
sichtigung von — — -- 1, — =0,

C7/^2 <7ö"i tfög

"1
2

0,

2 1 2
/21 0 und ^22 — — den Ausdruck 1 der mit

t2

der Varianz von x,.— Xg übereinstimmt.

Zusammenfassend darf festgestellt werden, dass beim Behrens-
Fisher-Problem Xj—Xg eine Schätzfunktion für £ ist, die in mancher
Beziehung als besonders geeignet bezeichnet werden darf.

§4 Konfidenzmengen

M%ememe ProWemZagre: Bei der Methode der Konfidenzmengen
wird unter gewissen Einschränkungen aus der Klasse 9K {Mg[0 ß]}
der in Betracht gezogenen Modelle Mg eine Unterklasse {Mg[0eß'(x)]j
ausgewählt, die sich - anhand der Beobachtungswerte beurteilt - am
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besten zur Beschreibung des Zufallsvorganges eignen. Genauer gesagt,
handelt es sich darum, zu einer vorgegebenen Zahl a [0 <[ a ^ 1] und
zu jeder möglichen Kombination von Beobachtungswerten aq, aq
eine Teilmenge ß' (x; 1 —a), genannt Konfidenzmenge von ß, so zu be-

stimmen, dass die Wahrscheinlichkeit dafür, dass ß' (x ; 1—a) 0 über-
deckt, im Modell Mg gleich 1 —a ist, d. h. Pr (0«ß(x; 1—a) :0) 1 —a
für alle 0 eß. Ist. ß eine Teilmenge des L-dimensionalen reellen Zahlen-
raumes E^, so nennen wir ß'(x; 1—«), falls diese Menge zusammen-
hängend ist, einen Konfidenzbereich mit Konfidenzkoeffizienten 1 — sc.

Für L 1 nennen wir ß' (x; 1—a) unter diesen Bedingungen einen
Konfidenzintervall für 0. ß'(x; 1—oc) lässt sich in diesem Fall durch
eine Bedingung der Form 0j (gj; 1—a) ^ 0 ^ 0j («; 1 — a) charakteri-
sieren, wobei 0^ und 0g nur von x und a abhängig sind. Eine systema-
tische Begründung dieser Rückschlussmethode verdankt man •/. AVy-
man [21].

Mnwendnngen der f/ieone an/ das Be/we-ras-FisTter-ProMera: Es
handelt sich hier darum, zu vorgegebenem a auf Grund der Beobach-

tungswerte x^,... und ein Konfidenzintervall für £ zu
ermitteln. >S'. IFiücs [34] hat im Jahre 1940 festgestellt, dass im allge-
meinen - also abgesehen von einigen Spezialfällen wie z. B. n, -
keine Lösung des Behrens-Fisher-Problems in dieser Form existiert.

Es können aber approximative Lösungen angegeben werden [1, 3,

4, 25, 26, 33]. Die bekanntesten unter ihnen beruhen auf der Idee,
durch unterschiedliche Berücksichtigung der Beobachtungswerte der

grösseren Stichprobe die Schwierigkeiten, die sich aus den ungleichen
Stichprobenumfängen ergeben, zu eliminieren. BartZetf schlug vor, aus
der grösseren Stichprobe (max. (%, nj) —min. (%, ?%)) Beobachtungs-
werte zufällig auszulesen und wegzulassen. Demgegenüber verbesserte
H. Sc/(c//e [25, 26] das Verfahren, indem er alle Beobachtungswerte in
die Rechnung einbezieht, aber ungleich bewertet. Die Gewichtung
wird so durchgeführt, dass der Erwartungswert der Länge der auf der

f-Verteilung beruhenden Konfidenzintervalle minimal ausfällt. Diese
Technik wird in der Literatur manchmal «exaktes Verfahren von
Scheffé» genannt. Die Bezeichnungsweise ist insofern etwas irrefüh-
rend, als nicht alle beobachteten Werte gleichmässig in Rechnung ge-
stellt werden.

Kürzlich wurden auch Versuche unternommen, auf sequentielle
Weise Konfidenzintervalle zu konstruieren [24, 28]. Hierbei werden die
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Anzahlen % undwg der Beobachtungswerte aus den beiden Stichpro-
ben nicht im voraus festgelegt, sondern sind von den Ergebnissen des

Experimentes abhängig. Auf ein solches Verfahren, das gewisse wün-
sehenswerte Eigenschaften besitzt, verwies Srràastam [29]-

§ 5 Statistische Testverfahren

A%emewe ProWemto/e: Auf Grund der beobachteten Werte soll
entschieden werden, ob eine im voraus getroffene Annahme JÎq über
die Klasse TR der Wahrscheinlichkeitsräume Mg als richtig oder falsch
anzusehen ist. Wir bezeichnen die Menge der Parameter 0, für welche

Pg richtig ist, mit «. Die erforderliche Entscheidung hat auf Grund
eines statistischen Tests, d.h. durch Angabe der Teilmenge S des

Stichprobenraumes A, für welche Hg verworfen wird, zu erfolgen. Hier-
bei sei das Maximum bezüglich Otcu der Wahrscheinlichkeit dafür, dass

Hg fälschlicherweise m Mg verworfen wird, gleich einer vorgeschriebe-
nen Zahl a (Sicherheitsschwelle des Tests). Ein Test heisst ähnlich be-

züglich A, falls diese Wahrscheinlichkeit für alle 0«co gleich a ist.
MwicendwiM/en um/ das PeMens-Pisfeer-Pi-oWem: Im Kähmen der

Theorie der statistischen Tests ist es zum Beispiel sinnvoll, nach einem
Test für die Hypothese C 0 beim Behrens-Fisher-Problem zu
suchen. Es scheint noch keine zufriedenstellende Lösung dieser Frage-
Stellung gefunden worden zu sein [18, p.230]. Die von R.A.Fisher vor-
geschlagene Verteilung (1) beruht nicht auf dem Prinzip wiederholter
Stichprobenbildung bezüglich A und kann daher nicht verwendet wer-
den [22]. Grundlegende Untersuchungen über die Existenz ähnlicher
Tests beim Behrens-Fisher-Problem stammen von Lràrafc [19].

§ 6 Das Verfahren von Bayes

Mlgremewe Pro&lmlcw/e: Vielfach stehen bei statistischen Untersu-
chungen auf Grund früherer Experimente oder theoretischer Betrach-

tungen abgesehen von den genannten Modellvoraussetzungen noch zu-
sätzliche Kenntnisse über den zu untersuchenden Zufallsvorgang zur
Verfügung. Für die Anwendung der Methode von Bayes ist erforder-
lieh, dass der unbekannte Parameter 0 als Zufallsvariable, dessen Wahr-
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scheinlichkeitsverteilung bekannt ist, interpretiert werden kann. Wir
haben es dann mit einem speziellen statistischen Modell

zu tun, bei dem abgesehen von den üblichen Angaben noch eine Yer-
teilungsfunktion G(0) gegeben ist, welche charakterisiert, mit welchen
Wahrscheinlichkeiten die einzelnen Modelle Mg realisiert werden. Sind
diese Voraussetzungen erfüllt, so kann man nach Durchführung des

Experimentes diese Vorkenntnisse mit der Information, welche durch
die Beobachtungswerte geliefert wird, kombinieren. Auf Grund des

Theorems von Bayes gewinnt man aus der sogenannten A-priori-Ver-
teilung G(0) die A-posteriori-Verteilung G'"®'(0|aq, x„), welche die
dem Statistiker nach Abschluss des Versuches zur Verfügung stehen-
den Kenntnisse wiederspiegelt. Sind sowohl G(0) als auch F(x:0) ab-
solut stetige Verteilungsfunktionen mit Dichtefunktionen c/(0) und
/ (x : 0) so nimmt die der Analyse von Bayes zugrunde hegende Bezie-

hung die folgende Gestalt an

wobei mit </^'(0 : x) die Dichtefunktion der A-posteriori-Verteilung be-

zeichnet wird.
Bei praktischen Anwendungen ist die Voraussetzung, dass die

A-priori-Verteilung von 0 bekannt sein soll, vielfach nicht erfüllt. Ge-

wisse Anhänger der Bayesschen Methode empfehlen in diesem Fall die

Bestimmung von G (0) auf Grund von theoretischen Überlegungen.
Ein häufig gebrauchtes Verfahren ist das Prinzip der gleichmässigen
Unkenntnis (Law of equal ignorance). Es basiert auf der Idee, dass bei

völliger Unkenntnis der A-priori-Verteilung die Gleichverteilung für
alle Parameterwerte die Wahrscheinlichkeitsverhältnisse am besten

wiedergibt. Demzufolge ist jeder Wert des Parameterraumes gleich-
wertig in Rechnung zu stellen. Die Anhänger der subjektiven Wahr-
scheinlichkeitstheorie befürworten demgegenüber die Bestimmung
einer persönlichen A-priori-Verteilung, die nicht auf objektive Weise
verifizierbar zu sein braucht.

5R<*> {M„(£, II, E(x:0))[0ß]; G(0)}; x

dG<®>(0:x) =</<*> (0:®)d0 <20,
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Mrarendwm/ew ctw/das Beferews-Fis^er-ProfcZem.- Sofern eine A-priori-
Verteilung für den Parameter (p^, pg» 02) resp. (£, p,, of, <r|) ob-

jektiverweise vorliegt, so sollte die Methode von Bayes unbedingt an-
gewandt werden, weil gemäss eines allgemein anerkannten Grundsat-
zes alle zur Verfügung stehende Information bei statistischen Bück-
Schlüssen in Rechnung zu stellen ist [8, p. 55], Eine Nichtberücksichti-

gung der Kenntnis von G(0) könnte zu verfälschten Resultaten führen.
Über die Anwendung des Verfahrens in allen andern Fällen lässt sich

in Unkenntnis der beabsichtigten Nutzanwendung nichts Allgemein-
verbindliches sagen. Es sei hier lediglich noch erwähnt, dass die von
Fisher gefundene Beziehung (1) unter Anwendung der Analyse von
Bayes hergeleitet werden kann, falls speziell

clcTj
; ^2 5 J 0*2/ —

"«1 »2

als Wahrscheinlichkeitselement für den Parameter gewählt wird (vgl.
du

[17, p. 151]). Gründe für die Wahl von bei Lageparametern und —
CT

bei Streuungsparametern als Wahrscheinlichkeitselement der A-priori-
Verteilung, sofern diese nicht empirisch bestimmt werden kann, wer-
den in [16] angeführt.

§ 7 Strukturelle Rückschlüsse

.Em/wkrendes Beispiel [Eormwiierirogf des Belwews-Pisker-Problems

im Pabmen eines slraklrtrellen ModellsBei den bisher beschriebenen

Lösungsversuchen des Behrens-Fisher-Problems werden die Beobach-

tungswerte 2;^ und • • •, als die primären Grössen des

statistischen Experimentes angesehen und angenommen, dass die

Werte der ersten Stichprobe von einer normalverteilten Grundgesamt-
heit mit unbekanntem Mittelwert /«j und unbekannter Streuung
of ofo rmd die Werte [der zweiten Stichprobe von einer normalver-
teilten Grundgesamtheit mit unbekanntem Mittelwert ^ ^20 und
unbekannter Streuung of of, stammen. Demgegenüber bilden bei

der strukturellen Rückschlussmethode die auf die Beobachtungswerte
wirkenden Zufallsschwankungen den Ausgangspunkt der Betrachtun-
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gen und es wird angenommen, dass diese durch eine Zufallsvariable
(zufällige Fehlergrösse) erzeugt werden. Bei dieser Deutung entspre-
chen den oben angegebenen Beobachtungswerten die Fehlerwerte

und egi, eg,,^ • e j gibt hierbei den Einfluss des Zufalls auf
die Beobachtung an. Im Hinblick auf die spezifische Problemlage
setzen wir voraus, dass eine von den übrigen e-Werten unabhängige
Realisation einer standartisiert normalverteilten Zufallsvariablen ist.
Natürlich besteht eine Bindung zwischen c und a^,. Es ist nahelie-
gend und sinnvoll, zu fordern, dass der Zusammenhang zwischen x
und e durch die Beziehung (sogenannte strukturelle Gleichung)

i"p + SS» • V
[21 1,2; Z 1, ^^e/A; Oi, O2>0]

gegeben ist. Die Werte der ersten bzw. zweiten Stichprobe ergeben sich
somit, indem man die zugehörigen Fehlerwerte mit der unbekannten
Standartabweichung der Grundgesamtheit multipliziert und den unbe-
kannten Mittelwert der Grundgesamtheit addiert. Bemerkenswert ist,
dass man den unbekannten Parameterwerten in eineindeutiger Weise
ein Element einer Gruppe von Transformationen des Stichproben-
raumes sämtlicher Beobachtungen auf sich selbst zuordnen
kann. In der Tat entspricht den Angaben /^, /«g, of, of das Paar der
sich auf /A"* bzw. /A"» beziehenden linearen Transformationen
<[/«i, oi], [^2> 02] >, welches zur Gruppe G {<[o-i, /SJ, [otg, /Sg]);

aj, a.2«/A; /S^, ^ > 0} gehört. In der obigen Anschrift und im fol-
genden kennzeichnet das Zeichen 0 die Ausübung einer Transformation.
In [12] wird gezeigt, dass bei den meisten wichtigen Rückschluss-
Problemen (wie z. B. bei der Regressions-, Varianz- und Faktoranalyse)
eine derartige eineindeutige Entsprechung zwischen den unbekannten
Parametern und den Elementen einer auf den Stichprobenraum wir-
kenden Transformationsgruppe aufgedeckt werden kann.

Man beachte, dass auch bei dieser Deutung der Problemlage die

Beobachtungswerte x normalverteilt mit Durchschnitt ^ und Streu-

ung Op[p =1,2] sind. An der Grundkonzeption hat sich also nichts
geändert. Durch die Interpretation im Sinne der strukturellen
Methode erhält man indessen zusätzliche Information über die Art und
Weise, wie die Beobachtungswerte entstehen, was mit Hilfe der struk-
turellen Analyse verwertet werden kann (vergleiche hierzu auch [11]).
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MRgeweme sfru/cfwreZte ModeHe wnd strwkfttreMe Mnodose; Gegen-
über dem üblichen statistischen Modell

9Ji {M« (iE, it, Ffe:0)) [0eßj}; z

ist ein strukturelles Modell durch folgende Spezifikationen ge-
kennzeichnet :

{Mf »

(iE, IX, Z 0 0 F, F(F)) [0 G]) ; g.

Strukturelle Modelle sind also spezielle statistische Modelle, bei
denen der unbekannte Parameter als Element einer Transformations-

gruppe G interpretiert werden kann und ausserdem die Verteilung
F (and) des Modells implizite durch Angabe einer strukturellen
Gleichung V 0oF und der Verteilung der Fehlergrössen F festgelegt
wird. Vielfach sind hierbei - wie etwa im Beispiel des Behrens-Fisher-
Problems - die Grössen V - welche die Beobachtungswerte repräsen-
tiert - S und F durch mehrere Zahlenangaben charakterisiert. Beim
Behrens-Fisher-Problem ist iE /R"> "V XI die er-Algebra der Borel-

mengen von und F(F) durch die Forderung bestimmt, dass die

Fehlergrössen voneinander unabhängig und standartisiert normalver-
teilt sein sollen. Die massgebende Deutung der Parameter als Grup-
penelemente und die für dieses Beispiel zuständige strukturelle Glei-

chung wurden bereits besprochen.
Ohne auf die technischen Einzelheiten einzutreten soll hier kurz die

Hauptidee erläutert werden, die den strukturellen Rückschlüssen zu-

gründe liegt. Wir gehen von der Feststellung aus, dass die Beobachtungs-
daten V nicht von einem beliebigen Element F von 31 herrühren kön-

nen. Bei bekanntem V fallen nur diejenigen Werte für F in Betracht,
welche durch Anwendung einer Transformation der Gruppe G in X
übergeführt werden können. Mit andern Worten muss gelten: F e

{,goZ[gÖ]} oder - wie man auch sagt -, F muss zum G'-Orbit von V
gehören. Bei allen Anwendungen der strukturellen Theorie ist diese

Menge stets eine echte Untermenge des Stichprobenraumes iE. Betrach-
ten wir die Verhältnisse beim Behrens-Fisher-Problem: iE besteht hier
aus der Zusammenfassung von ZR"* mit /R"®. Wenn man bei gegebenem
A*. also gegebenem 2h und 2h >

den G-Orbit von A' bestimmt, indem
man cr-Vielfaehe von 2h bzw. 2h bildet und ^-Vielfache des 1-Vektors in
/F"' und ZR"- bildet, so erhält man das cartesische Produkt einer Halb-
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ebene in ZR"* und ZR"*, also eine Teilmenge von X. Aus dem bisher Gesag-
ten folgt, dass nach Bekanntwerden von X der G-Orbit, auf welchem
das zugehörige X liegt, festgelegt ist. Für die Beurteilung der wahr-
scheinlichkeitstheoretischen Situation ist dann nicht die Verteilung
X(X) über dem gesamten Stichprobenraum relevant ; von Interesse ist
vielmehr die Verteilung von I? über dem G-Orbit von X. In der struk-
turellen Analyse ist es üblich, jeden Wert X durch zwei Angaben
<D(X), [X]> zu kennzeichnen. Hierbei ist X(X) ein passend ge-
wählter Bezugspunkt auf dem Orbit von X, welcher diesen Orbit
charakterisiert, und [X] bezeichnet dasjenige Element der Transfor-
mationsgruppe, welches D(X) in X überführt. In der allgemeinen
Theorie wird - unter schwachen Voraussetzungen - aus dem be-

kannten allgemeinen Wahrscheinlichkeitselement dX(X) das Wahr-
scheinlichkeitselement dG([E]:D) der bedingten Verteilung der Posi-
tion [X] von X auf dem Orbit, bei bekanntem Orbit, also bekanntem X
hergeleitet. Nun interessiert uns aber nicht primär die Abteilung die-
ser Fehlercharakteristik. Vielmehr möchten wir Aufschluss über den
unbekannten Parameter 0 erhalten. Aus der strukturellen Gleichung
X 0oX folgt aber unmittelbar [X] 0-[X] und [X] 0~*-[X]
(Das Symbol • deutet hier Gruppenmultiplikation an.). Wir können also

durch eine einfache Transformation aus der Fehlerverteilung die Ver-
teilung für den Parameter 0 erhalten. Diese sogenannte «strukturelle
Verteilung» des Parameters ist durch ein Wahrscheinlichkeitselement

dG*(0:X) gegeben. dG*(0:X) gibt das Wahrscheinlichkeitselement
dafür an, dass der Parameter gleich 0 ist unter Berücksichtigung der
durch die Beobachtungsdaten X gelieferten Information. Die struktu-
relie Analyse liefert uns also ein natürliches Restriktionsprinzip, wel-
ches uns gestattet, den Übergang von dX(X) zu dem für die Fragestel-
lung bedeutsameren dG*(0:X) zu machen. G * repräsentiert unsere
Kenntnisse über den wahren Wert 0q von 0 nach Durchführung des

Experiments. Mit diesen Angaben ist im wesentlichen dargelegt, wie
man zu strukturellen Rückschlüssen gelangt. Alle erforderlichen De-

tails der Theorie findet man in [12].
Strukturelle Mnol|/se des Bekrens-Xisker-Problems: In einer kürz-

lieh fertiggestellten Arbeit [14] konnten Prof. D.M.S.Xraser (Universi-
tat Toronto) und der Autor zeigen, dass die Methode der strukturellen
Rückschlüsse zur Lösung des Behrens-Fislier-Problems und einer Viel-
zahl von Verallgemeinerungen dieser Fragestellung herangezogen wer-
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den kann (vgl. auch [13]). Wir begnügen uns an dieser Stelle damit,
kurz darzulegen, dass man mit Hilfe dieses Verfahrens als Lösung der

von uns betrachteten urspünglichen Version des Behrens-Fisher-Pro-
bleins die von R.A.Fisher vorgeschlagene Beziehung (1) erhält. Auf
Grund der strukturellen Analyse des zu Beginn dieses Paragraphen be-

sprochenen Modells findet man durch Spezialisation einer allgemeinen
Formel aus der Theorie [12, p. 64] für die strukturelle Dichtefunktion
der Parameter den Ausdruck

p,, o,, CT, (l"l ' l"2> • -^0 <^2

P=1 \

[-oo ,«2 < —f-co ; ff, ffj > 0; Wj, TOg Sä 2]

1 "P

2 (^i -^p)"
ï i2ff^ "p+i P<#>

mit c
«

P

2jr

(%—1)

1

2

r 2

[P 1. 2].

H bezeichnet hier die Gammafunktion. Die Randverteilung der Lage-
parameter ^ und ^ erhält man, indem man über alle möglichen
Werte von op und op integriert, wobei sich die Transformation

1

7i - V (x — ,« )* als nützhch erweist.
2ff„

ilp=l

dpi, P2 C"l > i"2 • ^P2 —

1

c exp o„2 2
p ;=i

s^-i
dffp • d,Mp
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2

ilp=l "p

(2("w-PF)')'

/ r >-1
J e~" m ^ dw J d^

o„r."' P-l
2 ^ s>"'

Xp

(K-i) *4+ V*p-<"?)*)

dpp

2

77
p=i

77
1 «p-1 K-i i + -

i /K(/"p-^P) 'Y?

«p-i

ty,

Es zeigt sich also, dass die Grössen und voneinander unab-

hängig und im wesentlichen i -verteilt sind. Es gilt

<"p — ^p + V' tP — 1» 2]•

Die uns insbesondere interessierende strukturelle Verteilung von
£ y"i — /<2 ist durch

+ 00 s

.'7* (C : V) d£ (//i, y"i — C) d/*ij dC

gegeben. Dieses Resultat kann auf äquivalente Weise auch folgender-

massen dargestellt werden :

£ Pl -P2 W-.^- (j^- «„1-1 - j/=
[«1 > »2 ^ 2]

Dies ist die ursprünglich von Fisher vorgeschlagene Lösung (1)

des Behrens-Fisher-Problems. Damit haben wir diese Relation im
Rahmen der strukturellen Theorie neu begründet und auf wider-

spruchlose Weise hergeleitet.
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Zusammenfassung

In dieser Arbeit wird nach einer Beschreibung des Grundproblems der Theorie
ein Überblick über die wichtigsten statistischen Riickschlussverfahren vermittelt.
Diese Ausführungen werden am Beispiel des Behrens-Fisher-Problems illustriert,
bei dem es sich darum handelt, auf Grund von Stichprobenwerten Aussagen über
die Differenz der Mittelwerte zweier normalverteilter Grundgesamtheiten mit even-
tuell verschiedenen Streuungen zu machen.

Summary

In this article a survey on some of the most important methods of statistical
inference is given after a description of the basic problem of the theory. The appli-
cations of these procedures to the Behrens-Fisher problem, which is concerned in
making inference about the difference of the means of two normal populations with
possibly different variances, is demonstrated.

Résumé

Dans la présente note après une brève description du problème général de la
théorie un résumé sur quelques-unes des plus importantes méthodes pour l'infé-
rence statistique est présenté. L'application de ces idées au problème de Behrens-

Fisher, qui concerne l'inférence à propos de la différence des moyens de deux popu-
lations avec distributions normales, ayant possiblement des variances différentes,
est démontrée.




	Statistische Rückschlüsse beim Behrens-Fisher-Problem

