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Statistische Riickschliisse beim Behrens-Fisher-Problem*

Von Franz Streit, Bern

Die Theorie der statistischen Riickschliisse ist seit ihrer systemati-
schen Begrindung, um die sich in erster Linie R. A. Fisher und J. Ney-
man sehr verdient gemacht haben, gewaltig ausgebaut worden und hat
als Forschungszweig zunehmend an Bedeutung gewonnen. Einerseits
sind die klassischen Verfahren weiter erforscht und ihre Nutzanwendun-
gen eingehend studiert worden; anderseits wurde besonders in den letz-
ten Jahren auf verschiedene andere Methoden aufmerksam gemacht und
ihre vermehrte Verwendung propagiert.

Angesichts dieser Sachlage scheint es zweckmaéssig zu sein, sich
Rechenschaft dariiber abzulegen, welche Techniken zur Lésung von sta-
tistischen Riickschlussproblemen grundsitzlich zur Verfiigung stehen
und welches die Voraussetzungen sind, unter welchen sie angewandt wer-
den diirfen. Ferner sollte abgekldrt werden, welche Aspekte des gemein-
samen Grundproblems mit den einzelnen Verfahren bewiltigt werden
konnen. Zwar gibt es viele Statistiker, die eine Methode, mit der alle
auftretenden Probleme zufriedenstellend behandelt werden koénnen,
guchen oder sogar glauben, eine solche gefunden zu haben. Angesichts der
grossen Vielfalt verschiedenster statistischer Fragestellungen ist es aber
eher unwahrscheinlich, dass ein derartiges universales Liosungsprinzip
existiert [32, p.921; 23, p.373]. Anstatt in dogmatischer Weise die Un-
fehlbarkeit eines einzelnen Verfahrens zu verfechten, scheint es daher
gewinnbringender zu sein, durch eine systematische Analyse die Lei-
stungsfihigkeit und Besonderheiten der verschiedenen Varianten zu
analysieren und auf diese Weise die notwendigen Kenntnisse, die zur
Wahl der brauchbarsten Methode im Einzelfall benttigt werden, bereit
zu stellen.

* Diese Arbeit entstand durch Uberarbeitung eines am 26. Juni 1970 vor der
Mathematischen Vereinigung in Bern gehaltenen Vortrages.
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In dieser Arbeit, die ein Beitrag zu derartigen Studien sein soll, wird
in einem ersten Abschnitt (§ 1) das Grundproblem der Theorie der stati-
stischen Riickschliisse kurz beschrieben. Als Illustrationsbeispiel dient
uns das sogenannte Behrens-Fisher-Problem. Einleitende Ausfithrungen
zu dieser Fragestellung, die sowohl in theoretischer Hinsicht als auch
vom Standpunkt der praktischen Anwendungen bedeutsam ist, findet
man in § 2. Derrestliche Teil der Arbeit ist einer Ubersicht tiber eine Aus-
wahl der wichtigsten Riickschlussverfahren und einer Zusammenstel-
lung ihrer Nutzanwendungen auf das Behrens-Fisher-Problem gewid-
met. In jedem Abschnitt wird die allgemeine Problemlage dargelegt und
Folgerungen, die sich daraus fiir das Behrens-Fisher-Problem ergeben,
hergeleitet oder auf entsprechende Resultate in der Fachliteratur hinge-
wiesen. Der Reihe nach gelangen die Methode der parametrischen Schét-
zungen (§ 8), die Methode der Konfidenzmengen (§ 4), die statistischen
Testverfahren (§ 5), das Verfahren von Bayes (§ 6) und die Methode der
strukturellen Ruckschlisse (§ 7) zur Darstellung.

§1 Zum Grundproblem der Theorie der
statistischen Riickschliisse

Zum besseren Verstdndnis der nachstehend angefithrten Formali-
sierung des allgemeinen Riickschlussproblems ist es vorteilhaft, auf die
Unterschiede in den Verhaltnissen, die bel wahrscheinlichkeitstheoreti-
schen und statistischen Methoden vorliegen, hinzuweisen.

Wahrscheinlichkeitstheoretische Betrachtungen nehmen Bezug
auf ein wahrscheinlichkeitstheoretisches Modell, das in den einfachsten
Fillen durch den sogenannten Wahrscheinlichkeitsraum gegeben ist.
Bekanntlich wird ein solcher Wahrscheinlichkeitsraum (X, U, P)
durch die Wahl einer abstrakten Menge X, einer o-Algebra 1l von X
und ein auf dem Messraum (X, U) definiertes Wahrscheinlichkeitsmass
P festgelegt. Aufgabe der Wahrscheinlichkeitstheorie ist es, Wahr-
scheinlichkeitsriume oder allgemeiner Klassen von Wahrscheinlich-
keitsrdumen zu erforschen.

Bei statistischen Untersuchungen — jedenfalls soweit sie nicht
bloss deskriptiver Natur sind — spielen wahrscheinlichkeitstheoretische
Uberlegungen eine grosse Rolle. Indessen sind zwel grundlegende
Unterschiede festzustellen. Einerseits werden Vergleiche der Modellbe-
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rechnungen mit den wirklichen Gegebenheiten vorgenommen. Dies er-
folgt durch Sammeln von experimentell gewonnenen Beobachtungsda-
ten, die zur Kontrolle der theoretischen Berechnungen dienen. Bei sta-
tistischen Rickschlussproblemen besteht ein weiterer Unterschied
darin, dass wir uns nicht von vornherein auf ein bestimmtes wahr-
scheinlichkeitstheoretisches Modell festlegen. Tatsédchlich ist dies viel-
fach nicht moglich oder zum mindesten nicht ratsam. Oft kénnen eine
Vielzahl von wahrscheinlichkeitstheoretischen Modellen als verniinftig
und realistisch angesehen werden. Es gilt dann auf Grund von wissen-
schaftlichen Betrachtungen Aussagen tiber die Eignung der einzelnen
Wahrscheinlichkeitsriume zu machen. Dies fithrt uns auf den Begriff
des statistischen Modells.

Ein statistisches Modell besteht aus einer Klasse 9 von Wahr-
scheinlichkeitsrdumen beziiglich desselben Messraumes und einer end-
lichen Anzahl von experimentell gewonnenen Beobachtungswerten,
die in der Regel erst nach der Festsetzung von It gesammelt werden
sollten. In symbolischer Schreibweise:

M= (M, = (EUWF@:0)[062)}; 2= (21,..., 3,)

Es haben sich dabei in der Statistik die folgenden Bezeichnungs-
weisen eingebiirgert, die z.T. von der Terminologie der Wahrschein-
lichkeitstheorie abweichen: Man nennt X den Stichprobenraum, U die
Familie der zufilligen Ereignisse, F'(z: 0) die Klasse der in Betracht
gezogenen Verteilungsfunktionen, 6 den Parameter und £ den Para-
meterraum. Die Aufgabe der Theorie der statistischen Rickschliisse
besteht darin, auf Grund der Beobachtungswerte £ Aussagen iiber die
Eignung der einzelnen Modelle M, zur Beschreibung des untersuchten
Zufallsvorganges zu machen. Setzen wir voraus, dass das den Beob-
achtungswerten effektiv zugrunde liegende Modell zu 9t gehért, so soll
dieses realisierte Modell M, und der wahre Wert 6, von 6 auf Grund
von g soweit wie moglich bestimmt oder charakterisiert werden.

In den Abschnitten 3-7 werden einige der wichtigsten Techniken,
die zur Bewiltigung dieses Problems zur Verfiigung stehen, kurz be-
sprochen. Die Wahl des Verfahrens wird verniinftigerweise weitge-
hendst durch die spezifische Problemstellung, die der Untersuchung zu-
grundeliegt, und eventuell durch das Vorhandensein zuséitzlicher In-
formation tiber den Zufallsprozess beeinflusst.
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§2 Das Behrens-Fisher-Problem

Es sind heute verschiedene Formulierungen des Behrens-Fisher-
Problems bekannt. In ihrer urspriinglichen, einfachen Fassung lautet
die Fragestellung wie folgt: (regeben seien zwei unabhingige Stich-
proben

CL'H, v ey Ilnl,

mzl ) . . . 3 mzm )

die von zwel normalverteilten Grundgesamtheiten mit Mittelwerten p,
und u, und mit Streuungen o2 und o7 stammen. Wir nehmen also an, dass
es sich bei den Beobachtungswerten xy,, ..., z;, um Realisierungen von

1 1 7d s — i \2
Zufallsvariablen mit der Dichtefunktion . exp _*(‘T“ “%)
VZZO']_ | 2\ o

und bei den Beobachtungswerten x,,, ..., z,, um Realisierungen von

/

\
Zufallsvariablen mit der Dichtefunktion 41,_ - exp _l(ﬂ% )2
]/2%0’2 2 9y J
handelt. Ferner wird vorausgesetzt, dass alle Beobachtungswerte
stochastisch voneinander unabhiingig seien und dass wir die effektiven
Parameterwerte u; = tyy, Mo = Moy, 0p = 01, und o, = o, der
untersuchten Grundgesamtheiten nicht kennen. Die Aufgabe besteht
darin, auf Grund des beschriebenen Modells und der Beobachtungs-
werte Aussagen iiber den wahren Wert {, der Grosse { = pu;— s,
also iber den Unterschied zwischen den Mittelwerten der beiden
Grundgesamtheiten zu machen. s liegt in der Natur einer derartigen
Problemlage, dass es natiirlich nicht moéglich ist, £, in unfehlbarer
Weise anzugeben, etwa zu berechnen. Vielmehr muss unter den gege-
benen Umstéinden nach Aussagen iiber die Mutmasslichkeit der Reali-
sation verschiedener moglicher Werte von { gesucht werden. Solche
Angaben werden zwar in Finzelfillen zu Fehlurteilen fithren, sollten
aber in gewissem — noch néher zu bezeichnendem Sinne — als optimale
Schlussfolgerungen angesehen werden kénnen.
Es braucht wohl nicht besonders betont zu werden, dass es sich
bei diesem Problem um eine fiir die praktischen Anwendungen bedeut-
same Fragestellung handelt. Sehr oft kommt man in die Lage, dass
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man auf Grund zweier Zufallsstichproben Aussagen iiber die Differenz
der Mittelwerte der zugehorigen Phinomene machen soll. Die Forde-
rung, dass die Grundgesamtheiten normalverteilt sein sollen, ent-
spricht zwar nicht 1mmer, aber vielfach den praktischen Gegebenhei-
ten. Als besonders realistisch erweist es sich, dass man keine restrikti-
ven Voraussetzungen iiber die Parameter macht und auch nicht for-
dert, dass die Umféinge der beiden Stichproben gleich gross sind.

Die letztgenannte Tatsache ist deshalb bemerkenswert, weil in
vielen Lehrbiichern der Statistik eine Loésung des vorliegenden Pro-
blems unter der Annahme hergeleitet wird, dass die beiden Streuungen
o} und o3, zwar unbekannt aber gleich gross seien. Unter dieser Ein-
schrinkung vereinfacht sich das Problem wesentlich, und es stehen
dann bekannte Resultate, die auf dem t-Test oder auf Konfidenzinter-
vallen der t-Verteilung beruhen, zur Verfigung (vgl. etwa [27] und
[17]). Es ist aber offensichtlich, dass die Forderung nach Gleichheit der
beiden Streuungen oft nicht realistisch ist und vor allem zur Vereinfa-
chung der mathematischen Schwierigkeiten erhoben wird. Wir werden
deshalb diese Bedingung nicht aufstellen und zulassen, dass o}, + o3,

Das Behrens-Fisher-Problem ldsst sich als Spezialfall der in § 1
beschriebenen allgemeinen Fragestellung unterordnen. Hierbei besteht
z aus den Beobachtungsdaten z,, ..., z,,, und x,, ..., 2y, ; fur X
ist /R™ x [R™ (/R* bezeichnet den k-dimensionalen euklidischen Raum
und x die cartesische Produktbildung) und far U die Klasse der
Borelschen Mengen von X zu wihlen.

F' bestimmt sich aus der Forderung, dass z,, normalverteilt mit
Mittelwert u, und Streuung o) sein soll. § schliesslich setzt sich aus
den vier Angaben (u,, us. 07, 0,) oder aus der dquivalenten Charakte-
risierung (£, py, 0f, 07) zusammen [g,, u,, (€ /R; o;, 0,>0].

Das Behrens-Fisher-Problem wurde — wie der Name andeutet —
zuerst von W. V. Behrens [2] untersucht. Auf Grund dieser Studien hat
R.A.Fisher eine Liosung der Aufgabe vorgeschlagen [7]. Fishers Resul-
tat ist in Form einer Wahrscheinlichkeitsverteilung fir { gegeben. Bei
dieser Losung kann man also die Wahrscheinlichkeit berechnen, dass
der effektive Wert von { in einer vorgegebenen Menge von reellen Zah-
len liegt. Das Resultat von Fisher ldsst sich folgendermassen charakte-
risieren:

3 R g =5 1
&) = g s == g Ty (."V%; nl_l*;l;:ﬁj m-1 (71, Mg = 2]. (1)
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Hier und bei dhnlichen Situationen im folgenden reprisentieren

T, = - Z z,, den Mittelwert und Sp, = o Z, (z,—T,)? die

Streuung der p-ten Stichprobe, wihrend ¢, eine Zufallsvariable mit der
t-Verteilung von Student und » Freiheitsgraden bezeichnet. Die Ver-
teilung von { ist demnach durch einen linearen Ausdruck, in welchem
zwel voneinander unabhéngige ¢-Variablen auftreten, gegeben.

Zur praktischen Auswertung der Formel (1) wurden kurz nach
Auffindung des Resultats Tabellenwerke geschaffen[9, 30]. In der stati-
stischen Praxis wurde das Ergebnis verschiedentlich mit Erfolg ange-
wandt. Auf die Relation (1) wird in vielen Lehrbiichern der Statistik
hingewiesen, auch in solchen, die sich vorwiegend mit den statistischen
Anwendungen befassen.

Dessen ungeachtet wurde bald einmal Kritik an Fishers Herlei-
tung der Relation (1) laut. Fisher erhielt das Ergebnis mit Hilfe der
sogenannten «fiduziellen Methode». Diese Riickschlusstechnik wird
heute nicht mehr allgemein anerkannt. Es ist zweifelhaft, ob das Ver-
fahren mit den anerkannten Regeln der Wahrscheinlichkeitsrechnung
in Einklang gebracht werden kann. Wir brauchen uns aber mit dieser
Problematik mnicht auseinanderzusetzen. Im Jahre 1957 gelang
J.W. Tukey [31] ndmlich ein einwandfreier Beweis, dass Fishers Her-
leitung nicht stichhaltig ist. Es stellt sich heraus, dass selbst wenn man
die Zweckmissigkeit der fiduziellen Methode nicht in Irage zieht,
Schwierigkeiten auftreten. Die von Fisher vorgeschlagene Losung (1)
1st ndmlich nicht eindeutig. Vielmehr kénnen nach demselben Verfah-
ren eine Vielzahl anderer Verteilungen fiir { hergeleitet werden, ohne
dass die Technik einen Hinweis dafur liefern wiurde, welche dieser Ver-
teilungen die richtige ist.

Nach Bekanntwerden dieser Unzulidnglichkeiten, die in analoger
Weise auch bei andern mehrparametrigen Anwendungen des Verfahrens
aufgedeckt worden sind, versuchte man durch Modifikation der fiduziel-
len Methode die gewiinschte Eindeutigkeit zu erzwingen. Diese Versuche
sind aber bis anhin erfolglos geblieben. Man sah sich somit vor die gro-
teske Liage gestellt, dass fiir eine Relation, die sich in praktischen Anwen-
dungen bewéhrt hat, keine theoretische Begritndung bekannt war. Ange-
sichts dieser Sachlage ist es versténdlich, dass man andere zuverléssigere
statistische Ruckschlussmethoden zur Behandlung des Behrens-Fisher-
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Problems beanspruchte. Uber die dabei erzielten Resultate wird im rest-
lichen Teil der Arbeit ausfithrlich berichtet.

§3 Die Methode der parametrischen Schitzung

Allgemeine Problemlage: Aus der Klasse I = {Mﬂ} soll dasjenige
wahrscheinlichkeitstheoretische Modell M, ausgewihlt werden, das
sich auf Grund der Beobachtungswerte £ am realistischsten erweist.
Dies erfolgt durch geeignete Wahl einer Stichprobenfunktion T'. Hierbei
1st T eine Kollektion {T"} von Abbildungen T, — fur jeden méglichen
Stichprobenumfang n eine — welche den Beobachtungswerten z =
(xy,...,x,) einen Wert T, (z)e(2 des Parameterraums zuweist. Bei der
Anwendung der Schitztheorie stellen sich zwei Hauptprobleme. Einer-
seits werden Verfahren zur Konstruktion von Schétzfunktionen be-
notigt, andrerseits ist die Giite der Schétzfunktion zu untersuchen. Die
Eignung oder Giite der Stichprobenfunktion wird auf Grund gewisser
Kriterien, die sich auf die fiir 7', induzierte Verteilung beziehen, beur-
teilt.

Im Spezialfall des Behrens-Fisher-Problems besteht das Schétz-
problem darin, jeder Kombination von beobachteten Werten z,,, ...,
Ty, und o, ..., 7, auf eine von den Parametern unabhingige
Weise vier Zahlen zuzuordnen, welche dem wahren Wert 6, von
0 = (&, g, o}, 65) moglichst nahekommen.

Konstruktion der Schitzfunktion: Was die Konstruktion von
Schéitzfunktionen betrifft, so soll hier lediglich das gebrduchlichste
Verfahren, die Bestimmung einer Schéitzfunktion nach der Maximum-
Likelihood-Methode, erwihnt werden. Bei der Anwendung dieser
Technik bestimmt man denjenigen Wert § des Parameterraumes £,
fiir welchen die Wahrscheinlichkeit bzw. die Wahrscheinlichkeitsdichte
fir die Realisierung der registrierten Beobachtungswerte am grossten
wird. Als Schéitzfunktion fiir  wird dann § oder eine einfache Funk-
tion von § verwendet.

Wollen wir die Maximum-Likelihood-Schétzfunktion fir den
Parameter (£, us, 0}, 0;) beim Behrens-Fisher-Problem bestimmen, so
miissen wir also die Wahrscheinlichkeitsdichte dafiir, die Werte 2,55 ...,
Ty, und Ty, ..., Ty, , zu beobachten in bezug auf die unbekannten
Grossen maximieren. Diese Dichte ist
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Statt das Maximum von I, kénnen wir dasjenige von In L bilden.
Wir erhalten also f indem wir das Gleichungssystem
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nach den unbekannten Parametern auflosen. Man iberzeugt sich leicht
davon, dass ’
1 ny 1 ng
0 — | 7 7T 7.)2 B 7)2
0 == [ B —&; Bpp — 2, (@8;=@) — > (29 —y)

Ny i=1 Ny j=1

die Maximum-Likelihood-Schitzfunktion fiir 8 ist. Wie ersichtlich, soll
fur die Schétzung der uns besonders interessierenden Komponente ¢
die Differenz der Mittelwerte der beiden Stichproben verwendet wer-
den. Dies 1st ein Ansatz, der aus anschaulichen Grinden unmittelbar
einleuchtet.

Giite der Schitzung: Die fiir die gesamte Theorie massgebenden
Begriffsbildungen stammen von E.A4.Fisher [5, 6]. Im folgenden wer-
den einige bedeutsame Kriterien zur Beurteillung der Giite einer
Schitzfunktion zusammengestellt und es wird untersucht, was fir
Schlussfolgerungen sich daraus in Bezug auf das Behrens-Fisher-Pro-
blem ergeben.
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1. Man kontrolliert, ob eine Schétzfunktion erwartungstreu ist,
um zu tberpriifen ob ihre Verteilung in gewissem Sinne richtig zen-
triert ist. Fine Schitzfunktion T fiir 0 heisst erwartungstrew fir 0, falls
fir jeden Stichprobenumfang n gilt E[T,:0]=0{0¢2; n=1,2,...].
Sofern — wie in unserem Beispiel — die Schéitzfunktion mehrdimensio-
nal ist, bezieht sich die Forderung auf jede Komponente gesondert,
also E[T?:0] = 6@ [q=1, ..., L; L Dimension von §].

Offensichtlich ist in unserem Beispiel die Maximum-Likelihood-
Schitzfunktion # nicht erwartungstreu fiir den gesuchten Parameter §.
Zwar zeigen die beiden ersten Komponenten das gewiinschte Ver-
halten FE[Z,—%,] = u; —ps, E[T,] = py, aber bekanntlich gilt

1 m G | 1 1 Ny — 1
E [_Z (mli—:ﬁl)z} =2 62 und E [7{ > (:czj—:ifg)z} =2 gl
2

Ny i=1 My i=1 Mo

4

Dem iiblichen Vorgehen entsprechend ersetzen wir Q daher durch
die modifizierte Maximum-Tikelihood-Schéitzfunktion

S = 2 o2 8 TR
T =T (2, 2)) =[%— T, Ty, 5,5 5] it Spy =

Wir stellen nun fest: Die Schitzfunktion T' ist erwartungstreu
fir 6.

2. Das asymptotische Verhalten einer Schétzfunktion kann bei-
spielsweise folgendermassen beurteilt werden: Eine Schétzfunktion T'
fiir 6 heisst konsistent, falls T, mit wachsender Zahl der Beobachtungs-
werte stochastisch gegen f konvergiert, d.h. sofern fiir jedes ¢>0 der
Grenzwert der Wahrscheinlichkeit lim Pr (|7 —0'%|>¢) = 0. Hierbei

n—>co

wird vorausgesetzt, dass 2 ein metrischer Raum ist [10, p.384].

Um zu tiberpriifen, ob die oben eingefiithrte Schétzfunktion I'(z,,
z,) fir die Parameterwerte des Behrens-Fisher-Problems konsistent
ist, erinnern wir uns an die bekannte Tatsache, dass die Stichproben-
nullmomente fiir die Nullmomente und bei einer Stichprobe mit n Ele-

n
menten ausserdem die Masszahlen — > (z;—&)" und somit auch
n =1
1 n
7 (z;—&)* fir die Hauptmomente der Verteilung der Grund-
n—1 =1
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gesamtheit konsistent sind [10, p.306]. Daraus ergibt sich, dass die
letzten drei Komponenten von T’ die gewiinschte Eigenschaft besitzen,
falls beide Stichprobenumfinge n, und n, gegen unendlich streben.
Weil die Differenz zweier unabhéngiger konsistenter Schitzfunktionen
fir u, bzw. u, konsistent 1st fiir w, — p,, strebt auch Z, — T, unter die-
sen genannten Voraussetzungen stochastisch nach ¢, und daraus folgt,
dass in unserem Beispiel T'(z,, Z,) konsistent ist fiir 6, sofern n,, ny >co.

8. Das nachstehende Kriterium kann verwendet werden, um zu
beurteilen, ob der Informationsgehalt einer Schétzfunktion optimal
ist: Eine Schétzfunktion T firr 6 heisst erschipfend, falls fir jede von
T verschiedene Schétzfunktion T* die bedingte Verteilung von T* bei
beliebigem, bekanntem Wert von T’ von 6 unabhéngig ist.

Dass die Schitzfunktion T'(z,. z,) fiir die Parameter des Behrens-
Fisher-Problems erschopfend ist, ergibt sich unmittelbar aus einem im
wesentlichen auf J.Neyman zuriickgehenden Faktorisationstheorem
(20, p.168; 15, p.219] in Anbetracht der Tatsache, dass sich die Dichte
Lz, Zo:y, Mo, 0f, 07] folgendermassen darstellen lisst:

1 —1 —1 Ty —C—pg)?
L= exp |t M=l mE=iom
@y ™ 20, 20,

4. Es liegt auf der Hand, dass bei erwartungstreuen Schétzfunk-
tionen eine starke Konzentration ihrer Vertellung um den Mittelwert
als vorteilhaft erachtet wird. Wir nennen eine erwartungstreue reell-
wertige Schitzfunktion T fir 6 deren Varianz endlich ist und stets nicht
grosser ausfillt als die Varianz jeder anderen erwartungstreuen Schétz-
funktion T* fir 0, fur die also Var[T': 0] < Var[T*:0], wirksamst
fiir 01). Es kann bewiesen werden, dass im allgemeinen die Varianz einer
erwartungstreuen Schétzfunktion 7' fiir eine vorgegebene Parameter-

1) In der Literatur wird diese Bezeichnung fiir verschiedenartige Tatbestéande
beniitzt. Wir iibernehmen hier die Begriffsbildung von S. Wilks [35, p.351].
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funktion 7(f) eine aus 7(f) und der Klasse {F(Q:Q)} berechenbare,
positive Schranke nicht unterschreiten kann. In der Tat gilt unter
schwachen Regularititsbedingungen die Cramér-Rao-Ungleichung [17,

p.16]:

A -1
==, . e

mit I, =E| - .- °" .¢

und L = L[z : §] : Dichte von g im Modell M.

Eine wirksamste Schéitzfunktion, deren Varianz tberdies stets
gleich der unteren Schranke der Cramér-Rao-Ungleichung ist, heisst
MYV B-Schitzfunktion (minimum variance bound estimator).

Durch direkte Verifikation kann man feststellen, dass beim Beh-
rens-Fisher-Problem &, —Z, eine MVB-Schitzfunktion und daher
auch wirksamste Schéatzfunktion fir den unbekannten Parameter
ist. Setzt man ndmlich 7 (u,, us, 04, 09) = { = u;— s, so erhidlt man
fiir die rechte Seite der Cramér-Rao-Ungleichung — unter Beriick-

o or ot oT ot 7,
sichtigung von — =——=1, —=—=0, I=—,
Ouy Ot vay 0o gy
n 2 2
I, =171, =0 und I,, =-—> — den Ausdruck = + —2, der mit
o? n Ny

der Varianz von &, —Z, iibereinstimmt.

Zusammenfassend darf festgestellt werden, dass beim Behrens-
Fisher-Problem Z, —Z, eine Schétzfunktion fiir { ist, die in mancher
Beziehung als besonders geeignet bezeichnet werden darf.

§4 Konfidenzmengen

Allgemeine Problemlage: Bei der Methode der Konfidenzmengen
wird unter gewissen Einschrinkungen aus der Klasse 9 = {M,[0e¢ .Q]}
der in Betracht gezogenen Modelle M, eine Unterklasse {M,[0¢2'(x)]}
ausgewdhlt, die sich — anhand der Beobachtungswerte beurteilt — am
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besten zur Beschreibung des Zufallsvorganges eignen. Genauer gesagt,
handelt es sich darum, zu einer vorgegebenen Zahl « [0 <« < 1] und
zu jeder moglichen Kombination von Beobachtungswerten z,, ..., z,
eine Teilmenge Q' (z; 1 —a«), genannt Konfidenzmenge von 2, so zu be-
stimmen, dass die Wahrscheinlichkeit dafiir, dass Q'(z; 1—«) 0 iber-
deckt, im Modell M, gleich 1 —a ist, d.h. Pr(0eQ(z;1—u):0) =1—«
tir alle 0eQ. Ist Q eine Teilmenge des L-dimensionalen reellen Zahlen-
raumes R%, so nennen wir Q' (z; 1—«), falls diese Menge zusammen-
héingend ist, einen Konfidenzbereich mit Konfidenzkoeffizienten 1—oa.
Fir L=1 nennen wir 2’ (z;1—a«) unter diesen Bedingungen einen
Konfidenzintervall fir 6. 2’ (z; 1 —«) lasst sich in diesem Fall durch
eine Bedingung der Form 0,(z;1—a) < 0 < 0, (z; 1—«) charakteri-
sieren, wobei 0, und 0, nur von £ und « abhéingig sind. Eine systema-
tische Begriindung dieser Riickschlussmethode verdankt man J. Ney-
man [ 21].

Anwendungen der Theorie auf das Behrens-IFisher-Problem: Es
handelt sich hier darum, zu vorgegebenem « auf Grund der Beobach-
tungswerte x,;,... ), und Ty, ..., T, ein Konfidenzintervall fiir { zu
ermitteln. S. Wailks [34] hat im Jahre 1940 festgestellt, dass im allge-
meinen — also abgesehen von einigen Spezialfillen wie z.B. n, =n, —
keine Liosung des Behrens-Figsher-Problems in dieser Form existiert.

Es kénnen aber approximative Losungen angegeben werden [1, 3,
4, 25, 26, 33]. Die bekanntesten unter ihnen beruhen auf der Idee,
durch unterschiedliche Beriicksichtigung der Beobachtungswerte der
grosseren Stichprobe die Schwierigkeiten, die sich aus den ungleichen
Stichprobenumfingen ergeben, zu eliminieren. Bartlett schlug vor, aus
der grosseren Stichprobe (max. (n,n,) —min. (ny, n,)) Beobachtungs-
werte zufillig auszulesen und wegzulassen. Demgegentiber verbesserte
H. Scheffé [25, 26] das Verfahren, indem er alle Beobachtungswerte in
die Rechnung einbezieht, aber ungleich bewertet. Die Gewichtung
wird so durchgefiithrt, dass der Erwartungswert der Lange der auf der
t-Verteilung beruhenden Konfidenzintervalle minimal austillt. Diese
Technik wird in der Literatur manchmal «exaktes Verfahren von
Scheffé» genannt. Die Bezeichnungsweise ist insofern etwas irrefith-
rend, als nicht alle beobachteten Werte gleichmiissig in Rechnung ge-
stellt werden.

Kiirzlich wurden auch Versuche unternommen, auf sequentielle
Weise Konfidenzintervalle zu konstruieren [24, 28]. Hierbei werden die
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Anzahlen n, und n, der Beobachtungswerte aus den beiden Stichpro-
ben nicht im voraus festgelegt, sondern sind von den Frgebnissen des
Experimentes abhingig. Auf ein solches Verfahren, das gewisse wiin-
schenswerte Eigenschaften besitzt, verwies Srivastava [29].

§5 Statistische Testverfahren

Allgemeine Problemlage: Auf Grund der beobachteten Werte soll
entschieden werden, ob eine im voraus getroffene Annahme H, tber
die Klasse M der Wahrscheinlichkeitsrdume M, als richtig oder falsch
anzusehen ist. Wir bezeichnen die Menge der Parameter 0, fiir welche
H, richtig ist, mit w. Die erforderliche Entscheidung hat auf Grund
eines statistischen Tests, d.h. durch Angabe der Teilmenge S des
Stichprobenraumes X, fir welche H,, verworfen wird, zu erfolgen. Hier-
bei sei das Maximum beziiglich 0 ew der Wahrscheinlichkeit dafiir, dass
H , tilschlicherweise in M, verworfen wird, gleich einer vorgeschriebe-
nen Zahl « (Sicherheitsschwelle des Tests). Ein Test heisst dhnlich be-
ziglich X, falls diese Wahrscheinlichkeit fiir alle 6 ew gleich o ist.

Anwendungen auf das Behrens-Fisher- Problem: Im Rahmen der
Theorie der statistischen Tests ist es zum Beispiel sinnvoll, nach einem
Test fir die Hypothese { = 0 beim Behrens-Fisher-Problem zu
suchen. Es scheint noch keine zufriedenstellende Losung dieser Frage-
stellung gefunden worden zu sein [18, p.230]. Die von R. A. Fisher vor-
geschlagene Verteilung (1) beruht nicht auf dem Prinzip wiederholter
Stichprobenbildung beziiglich X und kann daher nicht verwendet wer-
den [22]. Grundlegende Untersuchungen iiber die Existenz dhnlicher
Tests beim Behrens-Fisher-Problem stammen von Lannik [19].

§ 6 Das Verfahren von Bayes

Allgemeine Problemlage: Vielfach stehen bei statistischen Untersu-
chungen auf Grund fritherer Experimente oder theoretischer Betrach-
tungen abgesehen von den genannten Modellvoraussetzungen noch zu-
satzliche Kenntnisse iiber den zu untersuchenden Zufallsvorgang zur
Vertiigung. Fiir die Anwendung der Methode von Bayes ist erforder-
lich, dass der unbekannte Parameter 6 als Zufallsvariable, dessen Wahr-
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scheinlichkeitsverteilung bekannt ist, interpretiert werden kann. Wir
haben es dann mit einem speziellen statistischen Modell

ME = (M, (X, U, F(2:0)[0e0]; G(O)}; &

zu tun, bei dem abgesehen von den ublichen Angaben noch eine Ver-
teilungsfunktion G (6) gegeben ist, welche charakterisiert, mit welchen
Wahrscheinlichkeiten die einzelnen Modelle M, realisiert werden. Sind
diese Voraussetzungen erfillt, so kann man nach Durchfilhrung des
Experimentes diese Vorkenntnisse mit der Information, welche durch
die Beobachtungswerte geliefert wird, kombinieren. Auf Grund des
Theorems von Bayes gewinnt man aus der sogenannten A-priori-Ver-
teilung G () die A-posteriori-Verteilung G*¥ (0|, , ..., z,), welche die
dem Statistiker nach Abschluss des Versuches zur Verfiigung stehen-
den Kenntnisse wiederspiegelt. Sind sowohl G (6) als auch F(z:6) ab-
solut stetige Verteilungsfunktionen mit Dichtefunktionen ¢(6) und
f(z:6) so nimmt die der Analyse von Bayes zugrunde liegende Bezie-
hung die folgende Gestalt an

f(x:6) g(6)
AG® (0:3) = ¢P(0:2)d0 = — —do,
R [ f(z:6)g(6)db

Q2

wobei mit ¢'# (0 : ) die Dichtefunktion der A-posteriori-Verteilung be-
zeichnet wird.

Bei praktischen Anwendungen ist die Voraussetzung, dass die
A-priori-Verteilung von 6 bekannt sein soll, vielfach nicht erfillt. Ge-
wisse Anhénger der Bayesschen Methode empfehlen in diesem Fall die
Bestimmung von G (6) auf Grund von theoretischen Uberlegungen.
Ein héaufig gebrauchtes Verfahren ist das Prinzip der gleichméssigen
Unkenntnis (Law of equal ignorance). Es basiert auf der Idee, dass bei
volliger Unkenntnis der A-priori-Verteilung die Gleichverteilung fur
alle Parameterwerte die Wahrscheinlichkeitsverhéltnisse am besten
wiedergibt. Demzufolge ist jeder Wert des Parameterraumes gleich-
wertig in Rechnung zu stellen. Die Anhénger der subjektiven Wahr-
scheinlichkeitstheorie befiirworten demgegeniiber die Bestimmung
einer personlichen A-priori-Verteilung, die nicht auf objektive Weise
verifizierbar zu sein braucht.
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Anwendungen auf das Behrens-Fisher- Problem: Sofern eine A-priori-
Verteilung fiir den Parameter (u, us, 0y, 65) resp. (C, ps, of, 05) ob-
jektiverweise vorliegt, so sollte die Methode von Bayes unbedingt an-
gewandt werden, weil gemiiss eines allgemein anerkannten Grundsat-
zes alle zur Verfiigung stehende Information bei statistischen Riick-
schliissen in Rechnung zu stellen ist [8, p.55]. Eine Nichtberiicksichti-
gung der Kenntnis von () konnte zu verfilschten Resultaten fithren.
Uber die Anwendung des Verfahrens in allen andern Fillen ldsst sich
in Unkenntnis der beabsichtigten Nutzanwendung nichts Allgemein-
verbindliches sagen. Es sei hier lediglich noch erwéihnt, dass die von
Fisher gefundene Reziehung (1) unter Anwendung der Analyse von
Bayes hergeleitet werden kann, falls speziell

do, do.
AG (1, fys 01, 05) = dy Ay —
R . 8
als Wahrscheinlichkeitselement fiir den Parameter gewéhlt wird (vgl.

do

[17, p.151]). Griinde fiir die Wahl von du bei Lageparametern und —
o

bei Streuungsparametern als Wahrscheinlichkeitselement der A-priori-
Verteilung, sofern diese nicht empirisch bestimmt werden kann, wer-
den in [16] angefiibrt.

§7 Strukturelle Riickschliisse

Ennfiihrendes Beispiel (Formulierung des Behrens-Fisher- Problems
vm Rahmen eines strukturellen Modells): Bei den bisher beschriebenen
Losungsversuchen des Behrens-Fisher-Problems werden die Beobach-
tungswerte x,,, ..., ;, und Ty, ..., Ty, als die priméren Grossen des
statistischen Experimentes angesehen und angenommen, dass die
Werte der ersten Stichprobe von einer normalverteilten Grundgesamt-
heit mit unbekanntem Mittelwert u; = u,, und unbekannter Streuung
of = o, und die Werte Ider zweiten Stichprobe von einer normalver-
teilten Grundgesamtheit mit unbekanntem Mittelwert w, = uy, und
unbekannter Streuung o) = o4, stammen. Demgegeniiber bilden bei
der strukturellen Riuckschlussmethode die auf die Beobachtungswerte
wirkenden Zufallsschwankungen den Ausgangspunkt der Betrachtun-



gen und es wird angenommen, dass diese durch eine Zufallsvariable
(zufillige Fehlergrosse) erzeugt werden. Bei dieser Deutung entspre-
chen den oben angegebenen Beobachtungswerten die Fehlerwerte
€115 -5 €1y, UNd €51, ... €y, €, gibt hierbei den Einfluss des Zufalls auf
die Beobachtung z,, an. Im Hinblick auf die spezifische Problemlage
setzen wir voraus, dass e, eine von den iibrigen e-Werten unabhingige
Realisation einer standartisiert normalverteilten Zufallsvariablen ist.
Natiirlich besteht eine Bindung zwischen ¢, und z,. Es ist nahelie-
gend und sinnvoll, zu fordern, dass der Zusammenhang zwischen

und ¢, durch die Beziehung (sogenannte strukturelle Gleichung)

wzll = lup - Gp epl = [nu’p’ Gp]o 6p£

[p=12; Il=1,....m,; w,us€R; 0y, 0,>0]

gegeben ist. Die Werte der ersten bzw. zweiten Stichprobe ergeben sich
somit, indem man die zugehorigen Fehlerwerte mit der unbekannten
Standartabweichung der Grundgesamtheit multipliziert und den unbe-
kannten Mittelwert der Grundgesamtheit addiert. Bemerkenswert ist,
dass man den unbekannten Parameterwerten in eineindeutiger Weise
ein Flement einer Gruppe von Transformationen des Stichproben-
raumes /R™" gimtlicher Beobachtungen auf sich selbst zuordnen
kann. In der Tat entspricht den Angaben u,, u,, of, o5 das Paar der
sich auf /R™ bzw. /R"* beziehenden linearen Transformationen
(1> 01]s [p2s 05]>, welches zur Gruppe G = {([or.l, B, (%2 Bal)rs
%y % € IR By, B > 0} gehort. In der obigen Anschrift und im fol-
genden kennzeichnet das Zeichen o die Ausitbung einer Transformation.
In [12] wird gezeigt, dass bei den meisten wichtigen Riickschluss-
problemen (wie z. B. bei der Regressions-, Varianz- und Faktoranalyse)
eine derartige eineindeutige Entsprechung zwischen den unbekannten
Parametern und den Elementen einer auf den Stichprobenraum wir-
kenden Transformationsgruppe aufgedeckt werden kann.

Man beachte, dass auch bei dieser Deutung der Problemlage die
Beobachtungswerte z,, normalverteilt mit Durchschnitt &, und Streu-
ung o)[p =1,2] sind. An der Grundkonzeption hat sich also nichts
gedndert. Durch die Interpretation im Sinne der strukturellen
Methode erhélt man indessen zusétzliche Information itber die Art und
Weise, wie die Beobachtungswerte entstehen, was mit Hilfe der struk-
turellen Analyse verwertet werden kann (vergleiche hierzu auch [11]).
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Allgemeine strukturelle Modelle und strukturelle Analyse: Gegen-
iiber dem wiblichen statistischen Modell

M = {M, = (%X, U, F(z:0)) [0e2]}; 2

ist ein strukturelles Modell durch folgende Spezifikationen ge-
kennzeichnet :

M = (M = (X, U, X = 00F, F(E) [0¢G]}; z.

Strukturelle Modelle sind also spezielle statistische Modelle, bei
denen der unbekannte Parameter als Element einer Transformations-
gruppe G interpretiert werden kann und ausserdem die Verteilung
F(z:0) des Modells M}® mmplizite durch Angabe einer strukturellen
Gleichung X =00F und der Verteilung der Fehlergrossen E festgelegt
wird. Vielfach sind hierbei — wie etwa im Beispiel des Behrens-Fisher-
Problems — die Grossen X — welche die Beobachtungswerte reprisen-
tiert — 0 und E durch mehrere Zahlenangaben charakterisiert. Beim
Behrens-Fisher-Problem ist X = /Rm*", U die o-Algebra der Borel-
mengen von /R™ ™" und F(E) durch die Forderung bestimmt, dass die
Fehlergrossen voneinander unabhéngig und standartisiert normalver-
teilt sein sollen. Die massgebende Deutung der Parameter als Grup-
penelemente und die fiir dieses Beispiel zustdndige strukturelle Glei-
chung wurden bereits besprochen.

Ohne auf die technischen Finzelheiten einzutreten soll hier kurz die
Hauptidee erlidutert werden, die den strukturellen Riickschliissen zu-
grunde liegt. Wir gehen von der Feststellung aus, dass die Beobachtungs-
daten X nicht von einem beliebigen Element E von X herrithren kén-
nen. Bei bekanntem X fallen nur diejenigen Werte fiir £ in Betracht,
welche durch Anwendung einer Transformation der Gruppe ¢ in X
iibergefithrt werden konnen. Mit andern Worten muss gelten: I e
{g0X[geG]} oder — wie man auch sagt —, £ muss zum G-Orbit von X
gehoren. Bei allen Anwenaungen der strukturellen Theorie ist diese
Menge stets eine echte Untermenge des Stichprobenraumes X. Betrach-
ten wir die Verhéltnisse beim Behrens-Fisher-Problem: X besteht hier
aus der Zusammenfassung von /R™ mit /R™. Wenn man bei gegebenem
X, also gegebenem z; und z,, den G-Orbit von X bestimmt, indem
man o-Vielfache von z; bzw. Z, bildet und p-Vielfache des 1-Vektors in
/R™ und /R™ bildet, so erhilt man das cartesische Produkt einer Halb-
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ebenein /R™ und /R™, also eine Teilmenge von X. Aus dem bisher Gesag-
ten folgt, dass nach Bekanntwerden von X der G-Orbit, auf welchem
das zugehorige F liegt, festgelegt ist. Fur die Beurteilung der wahr-
scheinlichkeitstheoretischen Situation ist dann nicht die Verteilung
F(E) iber dem gesamten Stichprobenraum relevant; von Interesse ist
vielmehr die Verteilung von F iiber dem G-Orbit von X. In der struk-
turellen Analyse ist es iiblich, jeden Wert E durch zwei Angaben
«D(E), [E]> zu kennzeichnen. Hierbei ist D (E) ein passend ge-
withlter Bezugspunkt auf dem Orbit von FE, welcher diesen Orbit
charakterisiert, und [E] bezeichnet dasjenige Element der Transfor-
mationsgruppe, welches D(F) in E tberfihrt. In der allgemeinen
Theorie wird — unter schwachen Voraussetzungen - aus dem be-
kannten allgemeinen Wahrscheinlichkeitselement dF (E) das Wahr-
scheinlichkeitselement dG([E]:D) der bedingten Verteilung der Posi-
tion [E] von E auf dem Orbit, bei bekanntem Orbit, also bekanntem D
hergeleitet. Nun interessiert uns aber nicht primir die Verteilung die-
ser Fehlercharakteristik. Vielmehr mochten wir Aufschluss iber den
unbekannten Parameter 6 erhalten. Aus der strukturellen Gleichung
X =0oFE folgt aber unmittelbar [X] = 6.[E] und [E] = 071.[X]
(Das Symbol - deutet hier Gruppenmultiplikation an.). Wir kénnen also
durch eine einfache Transformation aus der Fehlerverteilung die Ver-
teilung fiir den Parameter 6 erhalten. Diese sogenannte «strukturelle
Verteilung» des Parameters ist durch ein Wahrscheinlichkeitselement
dG*(0: X) gegeben. dG*(0:X) gibt das Wahrscheinlichkeitselement
dafiir an, dass der Parameter gleich 0 ist unter Beriicksichtigung der
durch die Beobachtungsdaten X gelieferten Information. Die struktu-
relle Analyse liefert uns also ein natiirliches Restriktionsprinzip, wel-
ches uns gestattet, den Ubergang von dF(E) zu dem fiir die Fragestel-
lung bedeutsameren dG*(6:X) zu machen. G* reprisentiert unsere
Kenntnisse iitber den wahren Wert 6, von 6 nach Durchfithrung des
Experiments. Mit diesen Angaben ist im wesentlichen dargelegt, wie
man zu strukturellen Riickschliissen gelangt. Alle erforderlichen De-
tails der Theorie findet man in [12].

Strukturelle Analyse des Behrens-Fisher-Problems: In einer kirz-
lich fertiggestellten Arbeit [14] konnten Prof. D. 4.S.Fraser (Universi-
tdt Toronto) und der Autor zeigen, dass die Methode der strukturellen
Riicksehliisse zur Losung des Behrens-Fisher-Problems und einer Viel-
zahl von Verallgemeinerungen dieser Fragestellung herangezogen wer-
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den kann (vgl. auch [13]). Wir begniigen uns an dieser Stelle damit,
kurz darzulegen, dass man mit Hilfe dieses Verfahrens als Lésung der
von uns betrachteten urspiinglichen Version des Behrens-Fisher-Pro-
blems die von R.A.Fisher vorgeschlagene Beziehung (1) erhilt. Auf
Grund der strukturellen Analyse des zu Beginn dieses Paragraphen be-
sprochenen Modells findet man durch Spezialisation einer allgemeinen
Formel aus der Theorie [12, p.64] fiir die strukturelle Dichtefunktion
der Parameter den Ausdruck

g*y,, le, Gy, O (415 o, 01, 051 X) dpy dpy doy doy =

1
(x, —u,)? :3:“%13 do d
A I

p

[—oo <puys pte < +005 01,0, > 05 ny, my = 2]

n (n —1)
mit ¢ = l/-R 2 - [p =1, 2].
2

I'" bezeichnet hier die Gammafunktion. Die Randverteilung der Liage-
parameter p; und u, erhédlt man, indem man iiber alle mdglichen
Werte von ¢, und o, integriert, wobei sich die Transformation

1
Up = &5 E
20,

(z,; —u,)* als niitzlich erweist.

9'_:1, s (115 poo 2 X) dpy duy =

2 oo 1 ™ 827"1
- g l:(f G, €XPp [_"Q";— Z (x'pl—nup)zl ;’;:ﬁ do‘,p) . dfup]

2
P P

—

—-



2 n 1
1 B [1 —?P:—lj 8 V"p_l (1 ER -._i__. (B”_(ﬁ?’f:f?)_ ) 2

=1 Sz

Es zeigt sich also, dass die Grossen u, und u, voneinander unab-
hiingig und im wesentlichen ¢ -verteilt sind. Es gilt

SI'-
By = Tp+ V'n% - [p=1,2].

Die uns insbesondere interessierende strukturelle Verteilung von
{ = uy —py 18t durch

+co
@08 = ([ gl 0 =0) dun)

gegeben. Dieses Resultat kann auf dquivalente Weise auch folgender-
massen dargestellt werden:

P, 2 Srs =>2
= My — g = Ly — Ty — V'n tnrl—Vn tnz—l ['nl! Ny = ]
1 2

Dies ist die urspriinglich von Fisher vorgeschlagene Losung (1)
des Behrens-Fisher-Problems. Damit haben wir diese Relation im

Rahmen der strukturellen Theorie neu begriindet und auf wider-
spruchlose Weise hergeleitet.
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Zusammenfassung

In dieser Arbeit wird nach einer Beschreibung des Grundproblems der Theorie
ein Uberblick iiber die wichtigsten statistischen Riickschlussverfahren vermittelt.
Diese Ausfithrungen werden am Beispiel des Behrens-Fisher-Problems illustriert,
bei dem es sich darum handelt, auf Grund von Stichprobenwerten Aussagen iiber
die Differenz der Mittelwerte zweier normalverteilter Grundgesamtheiten mit even-
tuell verschiedenen Streuungen zu machen.

Summary

In this article a survey on some of the most important methods of statistical
inference is given after a description of the basic problem of the theory. The appli-
cations of these procedures to the Behrens-Fisher problem, which is concerned in
making inference about the difference of the means of two normal populations with
possibly different variances, is demonstrated.

Résumé

Dans la présente note aprés une bréve deseription du probléme général de la
théorie un résumé sur quelques-unes des plus importantes méthodes pour I'infé-
rence statistique est présenté. L’application de ces idées au probléme de Behrens-
Fisher, qui concerne I'inférence & propos de la différence des moyens de deux popu-
lations avec distributions normales, ayant possiblement des variances différentes,
est démontrée.
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