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Schadenverteilung nach Grosse in der

Nicht-Leben-Versicherung

Von Gunnar Benktander, Ziirich

Die Art der Schadenverteilung nach der Grosse ist selbstverstédnd-
lich von grossem Interesse fiir den Schadenexzess-Riickversicherer. Es
ist daher wichtig, das zur Verfiigung stehende statistische Material
durch eine stetige Verteilungsfunktion mit moglichst wenig Parametern
gut zu approximieren. Durch sie gewinnt der Riickversicherer eine er-
hohte Stabilitdt und eine bessere Grundlage fiir eine richtige und ge-
rechte Preisfestsetzung. Es bestehen auf Grund verschiedener Argu-
mente Tendenzen nach einer als «distribution-free» zu bezeichnenden
Behandlung. Bei sehr geringem Schadenmaterial entsteht aber eine
arosse Unsicherheit in der Schétzung. Diese lasst sich vermindern, wenn
man eine Verteilungsfunktion annehmen kann, welche sich hinsichtlich
ihrer Form (nicht notwendigerweise ihres Niveaus) von Portefeuille zu
Portefeuille des gleichen Marktes nicht &ndert.

Riebesell schligt in seiner klassischen Arbeit von 1936 vor, dass man
die Exponential-Verteilung anwenden sollte. Er schreibt:

«Beidenmeisten Versicherungszweigen geniigt in erster Annaherung als Haufig-
keitsfunktion fiir die Hohe der Schiden die Gleichung

y = ae ™,

wo « die Summe ist und y die Wahrscheinlichkeit, mit der diese Schadensumme
auftritt. Diese Funktion ist auch fiir solche Versicherungszweige zu benutzen, wo es
eine Versicherungssumme nicht gibt. Hier ersetzt der Hochstschaden oder die Haf-
tungsgrenze die Versicherungssumme.»

Es zeigte sich inzwischen, dass diese Verteilung zu rasch konver-
giert und die Beschreibung der Frequenz der grosseren Schidden daher
unbefriedigend ausfiel. Almer versuchte dem abzuhelfen, indem er mit
einem Exponentialtrinom arbeitete. Im Intervall, das eine Direktversi-
cherungs- Gesellschaft interessiert, erhidlt man damit wohl eine befrie-
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digende bis gute Beschreibung. Die Wahrscheinlichkeitsmenge fiir ein
mit z > z,, definiertes Gebiet wird jedoch unterschétzt.

Die Exponential-Verteilung ist also nicht hinreichend schief. Man
erreicht eine Erhohung der Schiefe von 0 zu einem positiven Wert
durch den Ubergang von einer normalen zu einer log-normalen Vertei-
lung. Warum soll man also nicht analog von der Exponential- zu der
Log-Exponential-Verteilung tibergehen ? In der Praxis wird ofters die
log-exponentiale Verteilung angewandt, welche eher unter dem Namen
Papreto-Verteilung bekannt ist. Aus dem oben Gesagten geht hervor, dass
die log-normale Verteilung, auf die wir spéter zuriickkommen werden,
weniger schief als die Pareto-Verteilungist, denn: dienormale Verteilung
hat die Schiefe 0, wihrend die exponentiale eine positive Schiefe hat.

Meidell, Norwegen, hatte schon 1912 die Pareto-Verteilung in der
Lebensversicherung angewandt. In Schweden interessierte sich
K.G. Hagstrom frithzeitig (1925) fir die Pareto-Verteilung oder das
Pareto-Gesetz, wie es bisweilen etwas pritentios genannt wird, indem
eine Gesetzmissigkeit in der Einnahmenverteilung angedeutet oder
suggeriert wird. Schonin den dreissiger Jahren wurde sie fiir statistisches
Material aus dem Osterreichischen Autogeschift verwendet (Myslivec,
Prag 1939). In der Brandversicherung war auch Meidell etwas spéter
in dieser Richtung aktiv, ebenso Cvetnic 1930 am Aktuar-Kongress in
Stockholm. In Deutschland machte Lange ein paar Jahre spéter eine
Studie iiber die Schiden der Hamburger Feuerkasse.

Es bedarf indessen keines tiefergehenden Vergleiches zwischen
dieser Pareto-Funktion und einem praktischen statistischen Material,
um zu sehen, dass sie nicht ausreicht, um das ganze Intervall zu be-
schreiben, das den Direktversicherer interessiert. Dagegen gibt sie eine
Beschreibung des Schwanzes, welche besser ist als die der Exponen-
tial-Verteilung und, wenn man sich in der Schadengrosse aufwiirts be-
wegt, auf der sicheren Seite liegt. Sie konvergiert also eher zu langsam.
Wir werden darauf zuriickkommen.

Sousselier und Ramel schlugen daher in einem Preisaufsatz an-
fangs der funfziger Jahre vor, die mittelgrossen und grossen Autosché-
den mittels dreier sukzessiver Pareto-Verteilungen zu beschreiben mit
der Absicht, die Konvergenz zu beschleunigen. Hier liegt also eine ge-
wisse Parallelitdt mit Almers Exponentialtrinom vor. Almer approxi-
miert sozusagen von unten her, wihrend die Franzosen von oben her
approximieren, mit im Prinzip majorisierenden Funktionen.
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Die Pareto-Verteilung wurde und wird in der Praxis von einigen
Riickversicherern angewandt. Abgesehen vom Niveaufaktor, welcher
selbstverstandlich falsch geschitzt werden kann, kommt man struktu-
rell auf die sichere Seite fiir das hoher gelegene Intervall. Ein Vorteil
besteht darin, dass das statistische Material von verschiedenen Zeit-
spannen mit ungleichem Geldwert ohne Anpassung zusammengelegt
werden kann.

Als Zukunftsvision konnten wir uns denken, dass, statt iiber den
Prédmiensatz zu verhandeln, Zedent und Ruckversicherer einen spitz-
findigen Streit fithren, welcher Typus der Schadenverteilung ange-
wandt werden soll.

Die Pareto-Verteilung gibt unter gewissen Voraussetzungen beziig-
lich eines realistischen Niveaus (= Anzahl erwartete Ixzessschiden
uiber einer gewissen Grenze) eine Approximation auf der sicheren
Seite. Wenn wir die Pareto-Verteilung als Rechnungsgrundlage erster
Ordnung anwenden, so entsteht dadurch das Bediirfnis, die zweite
Ordnung genauer herauszufinden. Wir werden auf diesen Umstand
spater zuriickkommen.

Es wird zuweilen angefiihrt, dass die Pareto-Verteilung ungeeig-
net sein konnte, da nicht alle Momente existieren, wahrend in der
Praxis alle Momente konvergieren miissen.

Aber das Wesentliche ist wohl, eine gute Beschreibung mittels
einer einfachen Formel zu finden. In der zweiten Ordnung werden wir
indessen diejenigen Funktionen anwenden, fir welche alle Momente
konvergieren.

Im weiteren erwdhnen wir einige Verteilungstypen, welche zur
praktischen Anwendung kamen:

Die Pearson-Kurven: Es sei auf die Arbeit von Delaporte auf die-
sem Gebiet hingewiesen, welche am ASTIN-Kongress 1961 in Réattvik
vorgelegt wurde. Delaporte hatte in dieser Hinsicht einen Vorgénger in
Konau 1937. Er wendet Pearson Typ I und Typ IV fiir die Verteilung
des totalen Schadenbetrages an. Daneben kam auch eine logarithmische
Transformation des Typs III zur Anwendung [ Eckert].

FEin Verteilungstyp, welcher viele Verfechter hat und der, um
einen modernen Ausdruck zu verwenden, «in» ist, ist die log-normale
Verteilung.

In der praktischen Anwendung innerhalb der Unfall- und Haft-
pflichtversicherung waren die Italiener die Pioniere. Schon Anfang der
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dreissiger Jahre begannen Amoroso und d’Addario mit Publikationen.
Der frithere ASTIN-Prisident Marcel Henry wandte 1937 die log-nor-
male Verteillung in der Autohaftpflicht an, und in der modernen
ASTIN-Zeit kennen wir den Einsatz von Beard und Benckert auf die-
sem Gebiet.

Einige Versicherungsmathematiker sind jedoch nicht so erpicht
auf die Anwendung dieser Verteilung, da die Berechnungen etwas be-
schwerlich sind. Andererseits wurde aber auch behauptet, dass die log-
normale Verteilung die Frequenz der hohen Werte etwas unterschétze.

Systematische Behandlung

Wie schon vorher erwédhnt, ist der Ausgangspunkt verschieden, je
nachdem, ob man sich fir die ganze Verteilung interessiert oder sich
darauf begrenzt, die Verteilung der grosseren Schiden zu untersuchen.

Tm letzteren Fall mochte ich hier an die Studie erinnern, welche
Professor Segerdahl und ich fir den Aktuar-Kongress in Briissel mach-
ten und welche in gewisser Weise die nachfolgenden Diskussionen be-
einflusste.

Auf Grund emniger recht allgemein formulierter Kriterien konzen-
trierten wir uns auf den mittleren Exzessschaden als Funktion der
Schadengrenze, also in analytischer Form:

_of (z—z)d P(?) T H(2)dz
=T T H@
f dP(z)

T

wo P(z) die ubliche Cramersche Bezeichnung der Verteilung der Scha-
denhdhe ist, und H (2) die Anzahl Schidden darstellt, welche die Grenze
z tiibersteigen.

Also: H(z) = H(o)[1—P(2)].

Das Integral beim oben angefiithrten rechten Bruch entspricht der
Exzess-Risikopramie [ [(x). Wenn man sich nicht die Mithe machen
will, die partielle Integration, welche im Prinzip oben angewandt
wurde, auszufithren, kann man eine kleine Figur anwenden.
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> H(ﬁ:)

Zweitgrisster Schaden
Grosster Schaden

/////////1/

‘Wir haben also
m(z) = H (=)
H (z)
oder [[(x) = H(z) - m(z).

Aus Obenstehendem geht hervor, dass, falls die Funktion m(z)
bekannt ist, man H(z) bis auf einen Niveaufaktor berechnen kann
und dadurch auch [ [ (x)

Exponentialverteilung:

Wenn H(z) = H(0)e %=,
f e Evdy
dann m{z} = L—;Ez—- == konstant .

Wenn man will, kann man den mittleren Exzessschaden iber z
mit der verbleibenden mittleren Dauer eines Telephongesprichs, wel-
ches schon wihrend des Zeitraumes x lduft, vergleichen. Wir wissen,
dass Erlangs Annahme der konstanten mittleren Wartezeit in der Pra-
xis nicht stimmt. In gleicher Weise ist es in der Schadenversicherung,
m (z) wichst mit z. Wir kdnnen also symbolisch schreiben

m'(z) >0



Pareto-Verteilung:

H g = H(xo)(i> B> By
Lo
f ydy
Wir erhalten so ~ m(z) = = _ e
a:—a G(—-I

Hier steigt folglich der Mittelexzess-Schaden linear mit der Scha-
dengrenze z. Ein kleines o bedeutet eine gefdhrliche Verteilung und
tiihrt auch zu einem grésseren mittleren Exzessschaden.

Gleichzeitig mit dem theoretischen Studium untersuchten wir das
statistische Material aus verschiedenen Léndern und Branchen und be-
rechneten m (z). In sdmtlichen Féllen wuchs m () mit z, aber mit stei-
gendem x nahm die Zuwachsschnelligkeit ab. Fiir jedes praktische sta-
tistische Material, welches ja einen hochsten Wert fiir x besitzt, muss
von einem gewissen Punkt an das beobachtete m(z) abnehmen, um
gegen 0 zu sinken, wenn z sich seinem Maximum néhert. Fiir ein ana-
lytisches Modell, welches fiir ein im Prinzip unendliches Intervall zur

Anwendung kommt, ein fallendes m (z) anzunehmen, dirfte jedoch un-
realistisch sein.

Ein analytisches Modell sollte also die drei Bedingungen

erfilllen.

In der Praxis verwendbare Modelle scheinen also im Gefdhrlich-
keitsgrad zwischen der Exponential- und der Pareto-Verteilung zu lie-
gen, und zwar niher bei der letzteren.

In der Arbeit von Segerdahl und mir findet sich eine kleine
Tabelle mit solchen Verteilungen.
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Die Verteilungen, welche in der Nicht-Leben-Versicherung von
Interesse sind, haben eine Eigenschaft gemeinsam: sie sind schief. In
der klassischen Definition wurde die Schiefheit als eine Abweichung
von der Symmetrie aufgefasst, und sie warde mit dem normierten drit-

M3 . : ;
ten Moment — gemessen. Fir unseren Zweck ist eine solche Messung
o

von begrenztem Wert, besonders weil sich unser Interesse auf die
hoheren Werte der Variablen konzentriert. Vor einigen Jahren fithrte
ich in Analogie zur Lebensversicherung die Schadensterblichkeit ein.
w(x)dx soll die Wahrscheinlichkeit bezeichnen, dass ein Schaden,
welcher mindestens gleich z ist, z+dx nicht ibersteigen wird.
w(z)dz stellt also die Wahrscheinlichkeit dar, dass die stochastische Va-
riable, welche dem Schaden entspricht, in = «lebt», aber im Intervall
x+ dx «stirbty.

Je niedriger also die Schadensterblichkeit, desto schiefer und ge-
fahrlicher ist die Verteilung.

Auf Grund der oben gemachten Voraussetzungen haben wir

dH
pa)ds =— 2.
H (x)
oder u(z)de = —dIn H (x)
In = natiirlicher Logarithmus,
was zu _ x”“) .
H(z) = const e
fithrt.
Es 1st leicht, zu beweisen,
1 ’
dass u(x) = __+ﬂxl ,
m(z)
denn H(z)m(x) = [ H(2)dz
differenziert

H(x)m'(x) + H (z) m(z) = —H ()

' 1+m'(z) H'(x)
ergibt (@) = — Hx) = n{x)-.
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Wenn die stochastische Variable z unbegrenzt hohe Werte anneh-
men kann, so ist H (z) > 0 fiir alle endlichen 2.
Aus H(oo) =0 folgt, dass das Integral

f w(t)dt divergiert.

Ist speziell u(z) =k . 2P, dann sind diese Bedingungen erfiillt fiir
alle p = -1.

Konstante Sterblichkeit [p=0] ergibt die Exponentialfunktion,
und p = —1 fithrt zur Pareto-Verteilung, denn

H(z) =c-e ' =c-.a¥,

Innerhalb der gegebenen Klasse von Verteilungen stellt die, wel-
che p=—1 entspricht, eine Grenzklasse dar, gekennzeichnet mit der
denkbar niedrigsten Schadensterblichkeit.

Innerhalb des gegebenen Rahmens stellt also die Pareto-Klasse
eine maximale Schiefe dar, in Ubereinstimmung mit der von uns gege-
benen Definition.

Suchen wir Verteilungen, welche schiefer sind als die Pareto-Ver-
teilung, miissen wir ausserhalb der Klasse gehen, welche durch

p(r) = K- o
definiert ist.

Wir untersuchen den Ansatz
u(x) =Kz + K aPr+ KqaPs + ...,

wobel Py > Pg > Pgass
und alle K, >0.

Fiir grosse # wird das Verhalten dieser Frequenzfunktion vom
Term mit p; bestimmt.

Beispiel: p(z)=K,z'+ K,z

.
H(z) =c-x7F1.¢e °

Diese Funktion konvergiert schnell gegen die Pareto-Verteilung.
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Wir kénnen also die Pareto-Klasse im weiten Sinne definieren als
die Verteilungen, welche der Formel

limzu(z) = K>0

genugen.
K :
Wenn u(z) = P gilt,
so divergiert f w(t)dt.
Fir alle z>x, besteht eine niedrigere Sterblichkeit als im
K
Pareto-Fall u(r) =—.
x
_[Ee i
Wir haben H®) = ¢ ”nt:c.w.

Diese Verteilung hat keinen endlichen Mittelwert und ist fiir die
praktische Anwendung nicht interessant.
Das gleiche gilt fiir alle Verteilungen, welche mit

K
e 0 1
u(z) 2(nz)? WO <g<

definiert sind.

Wenn wir einen endlichen Mittelwert verlangen, wird schon ein
Teil der Pareto-Klasse mit K > 1 definiert. Eine Verteilung mit nied-
rigerer Sterblichkeit als die der Pareto-Klasse kann folglich intuitiv
nicht einen endlichen Mittelwert haben.

Segerdahl hat dies bewiesen, als er zeigte, dass

pu(r) = —~ mit lim g(z) =0
HA T->00
zu einer Verteilung mit unendlichem Mittelwert fithrt. Schliessen wir
pathologische Fille aus, so konnen wir fiir Verteilungen, deren u(z)
fiir £ > x, monoton sind oder durch monotone Funktionen majori-
siert werden, folgende Aussage machen:
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Die Pareto-Klasse im weiten Sinne ist eine Grenzklasse, welche
die Verteilungen, fiir welche alle Momente existieren, von denjenigen,
fiir welche alle Momente divergieren, scheidet.

Herr Green, London, hat vor einigen Jahren versucht, ein Gegen-
beispiel zu konstruieren durch Studium der Verteilung

A

a? (In )2

f(x) =

Fir £ =¢>1 zeigt sich indessen,dass diese Verteilung der Pareto-
Klasse im weiten Sinne angehort.
Wir haben also bewiesen, dass fiir die Exponentialverteilung

u(x) = konstant

und fiir die Pareto-Verteilung

u(z) = — 1st.

Bevor wir weitergehen, beweisen wir noch einige allgemeine For-
meln. Wenn H(z) die erwartete Anzahl Schiden iiber z bezeichnet

und [ [ (z) bzw. [ [ (x, Kz) der Exzess-Risikopriimie fiir das Intervall
(z, o0) bzw. (z, Kz) entspricht, dann haben wir:

und da [ (z) = f H(t)dt,

gilt H’ () = —H(x).
Weiter haben wir

dln J[(z) [['(x)  H(z) 1

do [He  [[@  me’

und gemiss der Definition von u(z) ist

dIn H ()
B I
z
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Wir haben auch bewiesen, dass

_ 1+m'(2)
— m(a)

() ist.

Wir versuchen nun, die Berechnungsgrundlage der zweiten Ord-
nung zu finden, indem wir von der Pareto-Verteilung ausgehen:

T T
mz) = ——=—.
a—1 a

Wir verlangen, dass die Bedingungen
m’(z) >0 und m”"(z) <0
erfillt sein sollen.

Zwei Modifikationen bieten sich sogleich an, ndmlich

I m(z) = ——
" a+2hnz
xl—b
und 11 mz) = . 0<b=l
a

Daraus folgt, dass

H; (z) = cx® a7 "% (¢ 4+ 2bIn z)

_8.b

Hy () = caz™e °

und TE ) = carg®h®
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Daher gilt:
In [[,(z) =lnc—alnz—bln’x
In [[y(x) =Ine )
nl\t = b &z
1 (@) a+1+2blnzx 2b
) = —
o o x z(a+ 2b1In x)
a 1—0b
pr(®) = —5 + =

Es ist leicht zu sehen, dass fur I und II

lim zu(z) = o gilt,

I —>0o0

was die Konvergenz simtlicher Momente sichert.

Die Inflationseffekte sind von besonderer Bedeutung innerhalb
der Schadenexzedenten-Riickversicherung. Wenn alle Schiden mit
dem Faktor 7+ > 1 anwachsen, erhdlt man

1
L (1) =
(@) a—2blnt+2bInz
oI
I1: m;(x) = —1° = m(x)1°.
a

Beide Resultate werden leicht aus der Relation

H iz} =H (%) abgeleitet.

Aus Obenstehendem ersehen wir, dass in I und II der Durch-
schnittsschaden mit der Inflation anwdchst, was mit unseren Beobach-
tungen tatsdchlich ibereinstimmt.
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Fir das Pareto-Modell bleibt der Durchschnittsschaden konstant.

Bei einem franzosischen Versicherungsmaterial fiir Autohaft-
pflicht habe ich herausgefunden, dass, wenn jeder Schaden um 109,
anwéchst, der durchschnittliche Exzessschaden um 69 ansteigt.

Wir haben folglich fiir den Fall IT die Gleichung zu lésen

1.1 = 1.06

und erhalten b =05
Die Herren Depoid-Duchez haben auf Grund der Abwicklungssta-
tistik fiir frithere Jahrgéinge eine Schadenverteilung in Frankreich fur

Autohaftpflicht fiir den Jahrgang 1966 geméss nachstehender Tabelle
(Kolonne 2) abgeleitet.

Die Zahlen beziehen sich auf 100 000 Schéiden:

Schadengrenze Anzahl Exzess- Hj (x) Hiy ()
in 100 000 schiidden gemiiss
Depoid-Duchez

0,6 202 196,6
0,8 144 141,0
1,0 106 106,0 106,0
1,5 58 63,6 58,6
2,0 36 38,5 35,8
3,0 17 16,0 15,8
4,0 8 7,7 8,0
5,0 4 4,0 44

Man erwartet folglich, dass von 100000 Schédden 106 100000
tibersteigen werden.

X

= log = dekadischer Logarithmus.
0.9+ 2logz

Hierist  m(z)

Hy(z) = 117.8 710 21¢ = (0.9 4 2log ) .
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Zur einfacheren Berechnung wurden die 10er-Logarithmen ver-
wendet. Das b ist also hier loge = 0,434 (2loge - In x = 2 log z)

$1—0.6

0.94

my (z) =

Hy(z) = 507.8 2704 ¢ 15725

Wie es scheint, geben beide Formeln I und IT eine ausgezeichnete
Beschreibung, besonders die Formel II, welche ein Extrapolation bis
zu 60000 hinunter zulédsst.

Das obige Modell bezieht sich auf 1966. Vorausgesetzt, dass die
Inflation das Muster nicht dndert, sondern fiir alle Schiden die gleiche
Tendenz des Zuwachses beibehélt, d.h. dass

Hi) = H (—) ,

kénnen wir ohne weiteres die Berechnungen fur 1967, 1968, 1969 und
1970 austithren, wenn der Inflationsfaktor bekannt ist.

Wir stellten fest, dass es nicht ausreicht, einen Lohnindex anzu-
wenden, sondern dass es notwendig ist, den Lohnindex mit einem Fak-
tor zu erhohen, fiir welchen ich die Bezeichnung «superimposed infla-
tion» eingefithrt habe. [Siehe . Benktander, «The effect of inflation on
excess layers».] Der Hauptteil der Schadeninflation kann mit der
Lohnsteigerung erklért werden, aber dariiber hinaus existiert eine «In-
flation» in der Gerichtspraxis, der Schadenregulierungspraxis und den
Spitalkosten. Ferner wirkt sich der medizinische Fortschritt aus, wel-
cher darauf hintendiert, in jedem Fall die grisseren Schiden, an wel-
chen wir beteiligt sind, zu erhéhen.

Eine mathematische Beschreibung der Schadenverteilung erleich-
tert den Vergleich des Resultats fiir verschiedene Zeitspannen.

Aus fritherem Material, welches 209, des franzosischen Marktes
umfasst, konnte 1ch ableiten, dass

T

i 1.2 +2logzx
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Wenn bis 1966 eine Schadeninflation von 509, angenommen wird,
was angemessen scheint, ergibt sich

T T

s (7) = 1.2—2log1.5+ 2logz - "O.iég:—_mog:n '

Dies liegt nahe bei der Formel fiir m(z), in welcher wir 0,90 an -
statt 0.85 hatten.

Was 1st nun der Sinn dieser Untersuchungen, vom Standpunkt
des Exzess-Riickversicherers aus gesehen ?

Die Tarifierung kann daraus Nutzen ziehen, dass man in der Lage
ist, prézisere Schidtzungen zu machen. Fir sogenannte Working
Covers konnen die Fehler in der Festsetzung der Risikopramie stark
vermindert werden. Eine weitere Reduktion der Fehler ist méglich,
wenn die Information iber das Intervall unterhalb der aktuellen Scha-
dengrenze zugénglich ist.

Die Bedeutung dieger hoheren Prézision wird klar, wenn man den
Effekt der Konkurrenz zwischen den Exzess-Rickversicherern be-
trachtet. Eine fehlende Exaktheit in der Schétzung der Risikopriémie
wirkt sich zum Nachteil des ganzen Marktes aus. Besonders die Riick-
versicherer, welche mit niedriger Prézision arbeiten, werden im Kon-
kurrenzkampf bei reiner Preiskonkurrenz geschidigt, da die Porte-
feuilles, die sie erhalten, die Tendenz aufweisen, stark untertarifiert zu
sein. Weiter ist die Kenntnis der Struktur der Schadenverteilung von
unschétzbarem Nutzen bei der Tarifierung von hohen Layers mit
wenig oder keinen Schiden.

Varianzberechnung

Von besonderem Interesse ist die Varianz des totalen Schadenex-
zess-Betrages, denn die Sicherheitsbelastung auf den Pramien sollte
aus der Varianz oder deren Quadratwurzel berechnet werden.

Fir einen begrenzten Layer haben wir die Varianz

Kz
V(z,Kz) =2 [ ] (pdy—2z(E—-1) [] (Kz)
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und fiir einen unendlichen Layer

Vig)=2 [ [])dy,
vorausgesetzt, dass die Anzahl Exzessschiiden Poisson-verteilt sind.

i ) . ) o [V
Von besonderem Interesse ist die relative Varianz —— — ﬁ )

Es gilt:

a1 Ve
IT*)  H@ m@-[]@°

Wir untersuchen den unendlichen Layer (z, oo).

Fiir den Ansatz I: [ [ (z) = ca™®a®™”

erhalten wir V(z) =2 f T dy = 2 f Yyt dy

(a-1)2
et e ?E
Die Umformung ergibt Viz)=2ce *° 1/7 (1—2(2))

1 F e
lv!Q% -o0
a o (e 200
za S R .
un z l | T + o

, %T*
Fir ¢ =0,9 und b =log e~0,434 tabellieren wir l/——(w)—

m(z) [[(x).



Schadengrenze T / V(z)
pro Tausend l/ __(E)im
100 1 1,62
200 2 1,66
300 3 Lfd
400 4 1,64
500 5 1,64
1000 10 1,60

Fiur die Pareto-Verteilung mit « = 3 wird der entsprechende Fak-
tor 2, und fiir andere Werte von « liegt er in der Niahe von 2.

Wir werden darauf im Anschluss an eine einfache und praktische
Belastungsformel zuriickkommen.

Im Ansatz IT war J[(@) =c-e ’

Dann 1st ¥iz) = 2¢ f e
. a :

Setzen wir — 3’ =1, so erhalten wir

1
1 /b\bv L
_ R b ~1
V(z) = 2¢ b(a) afbt etdt,

also eine [-Funktion.

|

b war oben 0,6; Wir untersuchen den niherliegenden einfacheren
Fall mit b = 0,5,

d.h. m(z) = Ve
a
und J[(@ =c- g=Ve
1 —Za]f/; o
und Vizg) =c.—e (1+2a)z).

a
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Damit wird

1 ,
—2an a
V() 1 V(z) af  (r2ape) 1/ 1
T H >(“ )

[[’@ H@ m@ - [[@ _ ';sz H(2)

Vor einigen Jahren leitete ich eine einfache Belastungsformel ab,
die unter folgenden Voraussetzungen giiltig ist:

1. Anzahl Exzessschiden 1st Poisson-verteilt,
2. die Schadengrosse ist Pareto-verteilt mit o = 3.

Fir den Layer (z, Kz) erhalten wir

o 2

H‘;Z(H;{.) |

wobel n = H die erwartete Anzahl Schiden und K das Verhaltnis zwi-
schen oberer und unterer Grenze des Layers ist. Fur einen unendlichen

o 2

I

: . o i
Wenn alle Exzessschiden gleich gross wiren, hitten wir —— = —

I yn’

Hier besteht nur eine Variation in der Anzahl, nicht in der Grosse.

Layer erhalten wir also

Nachdem der Ansatz IT eine bessere Beschreibung als nach Pareto

. . G . . .
gibt, kann es von Interesse sein, das H der beiden Fille zu vergleichen.

Der Fall 11, der schneller konvergiert als nach Pareto, pflegt ein nied-

) o
rigeres ——- zu haben.

11

Wir erhalten folgende Relationszahlen fiir (- -~) / ( G--)
II Pareto

11



Schaden- Obere Grenze des Layers

grenze
pro Tausend 350 400 450 500 750 1000 1250 oo

150 090 090 090 090 09 091 091 0,85
175 091 091 091 091 09 091 091 0,84
200 093 092 09 09 091 091 0091 0,83
250 096 095 094 093 093 092 0,92 0,82
300 098 097 09 09 094 093 0,93 0,81

Aus der Tabelle ist ersichtlich, dass fiir beschrénkte Layer gilt:

(7 20 (e

Noch einige abschliessende Bemerkungen:

Wir haben
normal — log-normal

exponential < log-exponential = Pareto.

Nicht von Interesse ist die Normalverteilung, von Interesse ist
das Dreieck, welches von der exponentialen, der log-exponentialen und
der log-normalen Verteilung gebildet wird.

Die beiden Ansétze I und II, wie oben beschrieben, liegen tatséch-
lich sehr nahe bei der log-normalen Verteilung, insbesondere der Fall 1.
Der Vorteil der Ansitze I und II ist, dass die Handhabung angeneh-
mer ist, weil m (z), u(z), H(z), [ [(x) eine einfachere Form erhalten.

Um zu illustrieren, dass die Ansidtze nahe bei der log-normalen
Verteilung liegen, gehen wir von I bzw. II aus und anti-logarithmieren
sie,

P[X >Inz] = const - 277 . "™ % (g + 2bInz)
g =32, &=
H,(s) = P[X >2] = const - e@+2782% (g 4 9p )
InH(z) = const— (a+ 1)2—bz2+ In (a+ 2b2z),

woraus fi(e) = e@tV2-02 (g 4 9p2)2 + (a + 2b2)—2b]  folgt.
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Wenn die Parameter so gewdhlt werden, dass I und log-normal in
einem niedrigeren Intervall relativ gleich sind, dannist [ >log-normal
in einem hoheren Intervall.

Auf gleiche Weise erhalten wir:
P[X >Inz] = const . 27" '

Inz = z, T = é°

a
Y

P[X >z] = const - ¢(t-0z¢ °
InHy (2) = —(l—b)z—%ebz

~(1-1) z-—‘;-- eb?
fi(2) = const . ¢ [(1—b) + ae].

Diese Verteilung konvergiert fiir grosse z schneller als eine log-
normale Verteilung, mit welcher sie in einem niedrigeren Intervall eini-
germassen itbereinstimmt. Also 1st Ansatz II im Limes weniger gefihr-
lich als die log-normale Verteilung.

Aus fritheren Formeln 1st leicht zu ersehen, dass

zp(r) =>a+1+2bnz schwichere Sterblichkeit

und T pg(z) = az’ stdrkere Sterblichkeit

Die log-normale Verteilung liegt zwischen diesen beiden mit Ten-
denz zu I.

Aus der Tabelle sehen wir, dass fiir die beiden Verteilungen expo-
nential und log-exponential (= Pareto)

1 exponential

m(z) - u(x) = const o ailt.
Pareto

a—



Wenn m(z) u(x) = ¢,
dann 1+m'(z) =c, m'(z) = c—1
und m(r) = (c—1)z+ ¢,

¢c=1 exponential

¢>1 Pareto-Klasse.

Fir die in der Praxis interessanten Verteilungstypen gelten:
m(z) p(z) > 1

limm(z) u(z) = 1.

I —>Cco
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Zusammenfassung

Der Verfasser behandelt einige analytische Verteilungsfunktionen, die zur Be-
schreibung der Schadenverteilung gebraucht werden, z.B. die Exponential-,
Pareto- und Log-Normal-Verteilung. Er schligt zwei weitere Funktionen vor, mit
denen er gearbeitet hat. Um die Verteilungstypen zu klassifizieren, beniitzt er ver-
schiedene Mittel, wie den durchschnittlichen Exzessschaden und die «Sterblich-
keitsintensitit» der Schiden.

Die Varianz der totalen Exzess-Schadenlast wird berechnet und eine einfache
Approximation angegeben.

Résumé

L’auteur part de quelques fonctions de distribution utilisées pour décrire la
distribution des sinistres, par exemple la distribution exponentielle, celle de Pareto
et la distribution logarithmique normale. Il propose deux autres fonctions avec les-
quelles il a operé. Pour classer les types de distribution, il utilise différents moyens
tels que le sinistre moyen en excédent, I'intensité de «mortalité» des sinistres, etc.

11 calcule la variance de la charge totale des sinistres en excédent et donne une
simple formule d’approximation.

Riassunto

L’autore spiega le distribuzioni analitiche che sono state usate per descrivere
la distribuzione dei sinistri, come per esempio quella esponenziale, quella di Pareto,
la log-normale, ecc., e contribuisce con due proprie proposte. Egli si occupa poi di
certi mezzi analitici da usare nella classificazione delle distribuzioni, come il valore
medio degli eccessi di sinistri, I'intensita di «mortalita» di un sinistro, ecc.

L’autore calcola la varianza dell'importo totale degli eccessi di sinistri, e ne
formula una semplice approssimazione.

Summary

The author mentions the analytical distributions which have been used to
describe the claims distribution, e.g. exponential, Pareto, log-normal, etc. and con-
tributes two suggestions of his own. He further discusses some analytical tools to
be used when classifying distributions, such as the average excess claim, the force
of «mortality » of a claim, etc.

The variance of the total excess claims amount is calculated and a short-cut
approximation formula is given.
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