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Schadenverteilung nach Grösse in der

Nicht-Leben-Versicherung

Fori Gimnar Berc/ctam/er, Zürich

Die Art der Schadenverteilung nach der Grösse ist selbstverständ-
lieh von grossem Interesse für den Schadenexzess-Bückversicherer. Es

ist daher wichtig, das zur Verfügung stehende statistische Material
durch eine stetige Verteilungsfunktion mit möglichst wenig Parametern

gut zu approximieren. Durch sie gewinnt der Bückversicherer eine er-
höhte Stabilität und eine bessere Grundlage für eine richtige und ge-
rechte Preisfestsetzung. Es bestehen auf Grund verschiedener Argu-
mente Tendenzen nach einer als « distribution-free » zu bezeichnenden

Behandlung. Bei sehr geringem Schadenmaterial entsteht aber eine

grosse Unsicherheit in der Schätzung. Diese lässt sich vermindern, wenn
man eine Verteilungsfunktion annehmen kann, welche sich hinsichtlich
ihrer Form (nicht notwendigerweise ihres Niveaus) von Portefeuille zu
Portefeuille des gleichen Marktes nicht ändert.

Biebesell schlägt in seiner klassischen Arbeit von 1936 vor, dass man
die FirpowentiaZ-Ferfeihmg anwenden sollte. Er schreibt:

« Bei den meisten Versicherungszweigen genügt in erster Annäherung alsHäufig-
keitsfunktion für die Höhe der Schäden die Gleichung

j/ oe-^,

wo a; die Summe ist und j/ die Wahrscheinlichkeit, mit der diese Schadensumme
auftritt. Diese Punktion ist auch für solche Versicherungszweige zu benutzen, wo es

eine Versicherungssumme nicht gibt. Hier ersetzt der Höchstschaden oder die Haf-
timgsgrenze die Versicherungssumme. »

Es zeigte sich inzwischen, dass diese Verteilung zu rasch konver-
giert und die Beschreibung der Frequenz der grösseren Schäden daher

unbefriedigend ausfiel. Almer versuchte dem abzuhelfen, indem er mit
einem Exponentialtrinom arbeitete. Im Intervall, das eine Direktversi-
cherungs-Gesellschaft interessiert, erhält man damit wohl eine befrie-
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digende bis gute Beschreibung. Die Wahrscheinlichkeitsmenge für ein
mit x > definiertes Gebiet wird jedoch unterschätzt.

Die Exponential-Verteilung ist also nicht hinreichend schief. Man
erreicht eine Erhöhung der Schiefe von 0 zu einem positiven Wert
durch den Übergang von einer normalen zu einer log-normalen Vertei-
lung. Warum soll man also nicht analog von der Exponential- zu der

Log-Exponential-Verteilung übergehen In der Praxis wird öfters die

log-exponentiale Verteilung angewandt, welche eher unter dem Namen
Pareio-Ferteifowwjf bekannt ist. Aus dem oben Gesagten geht hervor, dass

die log-normale Verteilung, auf die wir später zurückkommen werden,
weniger schief als die Pareto-Verteilung ist, denn : die normale Verteilung
hat die Schiefe 0, während die exponentiale eine positive Schiefe hat.

Meideil, Norwegen, hatte schon 1912 die Pareto-Verteilung in der

Lebensversicherung angewandt. In Schweden interessierte sich

K.G. Hagström frühzeitig (1925) für die Pareto-Verteilung oder das

Pareto-Gesetz, wie es bisweilen etwas prätentiös genannt wird, indem
eine Gesetzmässigkeit in der Einnahmenverteilung angedeutet oder

suggeriert wird. Schon in den dreissiger Jahren wurde sie für statistisches
Material aus dem österreichischen Autogeschäft verwendet (Myslivec,
Prag 1939). In der Brandversicherung war auch Meideil etwas später
in dieser Richtung aktiv, ebenso Cvetnic 1930 am Aktuar-Kongress in
Stockholm. In Deutschland machte Lange ein paar Jahre später eine

Studie über die Schäden der Hamburger Feuerkasse.
Es bedarf indessen keines tiefergehenden Vergleiches zwischen

dieser Pareto-Funktion und einem praktischen statistischen Material,
um zu sehen, dass sie nicht ausreicht, um das ganze Intervall zu be-

schreiben, das den Direktversicherer interessiert. Dagegen gibt sie eine

Beschreibung des Schwanzes, welche besser ist als die der Exponen-
tial-Verteilung und, wenn man sich in der Schadengrösse aufwärts be-

wegt, auf der sicheren Seite liegt. Sie konvergiert also eher zu langsam.
Wir werden darauf zurückkommen.

Sousselier und Ramel schlugen daher in einem Preisaufsatz an-
fangs der fünfziger Jahre vor, die mittelgrossen und grossen Autoschä-
den mittels dreier sukzessiver Pareto-Verteilungen zu beschreiben mit
der Absicht, die Konvergenz zu beschleunigen. Hier liegt also eine ge-
wisse Parallelität mit Almers Exponentialtrinom vor. Almer approxi-
rniert sozusagen von unten her, während die Franzosen von oben her

approximieren, mit im Prinzip majorisierenden Funktionen.
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Die Pareto-Verteilung wurde und wird in der Praxis von einigen
Rückversicherern angewandt. Abgesehen vom Niveaufaktor, welcher
selbstverständlich falsch geschätzt werden kann, kommt man struktu-
rell auf die sichere Seite für das höher gelegene Intervall. Ein "Vorteil
besteht darin, dass das statistische Material von verschiedenen Zeit-

spannen mit ungleichem Geldwert ohne Anpassung zusammengelegt
werden kann.

Als Zukunftsvision könnten wir uns denken, dass, statt über den

Präiniensatz zu verhandeln, Zedent und Rückversicherer einen spitz-
findigen Streit führen, welcher Typus der Schadenverteilung ange-
wandt werden soll.

Die Pareto-Verteilung gibt unter gewissen Voraussetzungen bezüg-
lieh eines realistischen Niveaus Anzahl erwartete Exzessschäden
über einer gewissen Grenze) eine Approximation auf der sicheren
Seite. Wenn wir die Pareto-Verteilung als Rechnungsgrundlage erster

Ordnung anwenden, so entsteht dadurch das Bedürfnis, die zweite

Ordnung genauer herauszufinden. Wir werden auf diesen Umstand

später zurückkommen.
Es wird zuweilen angeführt, dass die Pareto-Verteilung ungeeig-

net sein könnte, da nicht alle Momente existieren, während in der

Praxis alle Momente konvergieren müssen.
Aber das Wesentliche ist wohl, eine gute Beschreibung mittels

einer einfachen Formel zu finden. In der zweiten Ordnung werden wir
indessen diejenigen Funktionen anwenden, für welche alle Momente

konvergieren.
Im weiteren erwähnen wir einige Verteilungstypen, welche zur

praktischen Anwendung kamen:
Die Pearson-Kurven: Es sei auf die Arbeit von Delaporte auf die-

sem Gebiet hingewiesen, welche am ASTIN-Kongress 1961 in Rättvik
vorgelegt wurde. Delaporte hatte in dieser Hinsicht einen Vorgänger in
Könau 1937. Er wendet Pearson Typ I und Typ IV für die Verteilung
des totalen Schadenbetrages an. Daneben kam auch eine logarithmische
Transformation des Typs III zur Anwendung /Hcfcerf/.

Ein Verteilungstyp, welcher viele Verfechter hat und der, um
einen modernen Ausdruck zu verwenden, «in» ist, ist die log-normale
Verteilung.

In der praktischen Anwendung innerhalb der Unfall- und Haft-
Pflichtversicherung waren die Italiener die Pioniere. Schon Anfang der
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dreissiger Jahre begannen Amoroso und d'Addario mit Publikationen.
Der frühere ASTIN-Präsident Marcel Henry wandte 1937 die log-nor-
male Verteilung in der Autohaftpflicht an, und in der modernen
ASTIN-Zeit kennen wir den Einsatz von Beard und Benckert auf die-

sem Gebiet.

Einige Versicherungsmathematiker sind jedoch nicht so erpicht
auf die Anwendung dieser Verteilung, da die Berechnungen etwas be-

schwerlich sind. Andererseits wurde aber auch behauptet, dass die log-
normale Verteilung die Frequenz der hohen Werte etwas unterschätze.

Systematische Behandlung

Wie schon vorher erwähnt, ist der Ausgangspunkt verschieden, je
nachdem, oh man sich für die ganze Verteilung interessiert oder sich
darauf begrenzt, die Verteilung der grösseren Schäden zu untersuchen.

Im letzteren Fall möchte ich hier an die Studie erinnern, welche
Professor Segerdahl und ich für den Aktuar-Kongress in Brüssel mach-
ten und welche in gewisser Weise die nachfolgenden Diskussionen be-

einflusste.
Auf Grund einiger recht allgemein formulierter Kriterien konzen-

trierten wir uns auf den mittleren Exzessschaden als Funktion der

Schadengrenze, also in analytischer Form:

J(*-«)dP(*) JH(2) dz

m(a;)

/ dP(s)
SW

wo P(z) die übliche Cramersche Bezeichnung der Verteilung der Scha-

denhöhe ist, und FT (2) die Anzahl Schäden darstellt, welche die Grenze

« übersteigen.

Also: ff(«) =if(o)[l-P(*)].
Das Integral beim oben angeführten rechten Bruch entspricht der

Exzess-Risikoprämie Wenn man sich nicht die Mühe machen

will, die partielle Integration, welche im Prinzip oben angewandt
wurde, auszuführen, kann man eine kleine Figur anwenden.



— 267 —

Wir haben also

ff(®)

oder il(®) id (a;) • to (a:).

Aus Obenstehendem geht hervor, dass, falls die Funktion to(:c)
bekannt ist, man iï(a:) bis auf einen Niveaufaktor berechnen kann
und dadurch auch

Exponentialverteilung :

Wenn ff(a:) id(o)e"^,

J* e

3;
1

dann to (a;) — konstant.
it

Wenn man will, kann man den mittleren Exzessschaden über a:

mit der verbleibenden mittleren Dauer eines Telephongesprächs, wel-
ches schon während des Zeitraumes a: läuft, vergleichen. Wir wissen,
dass Erlangs Annahme der konstanten mittleren Wartezeit in der Pra-
xis nicht stimmt. In gleicher Weise ist es in der Schadenversicherung,
to (x) wächst mit a;. Wir können also symbolisch schreiben

to' (a;) > 0
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Pareto-Verteilung :

fl(x) H(x„)
-a

X > X,C *

Wir erhalten so m (x)
X

a > 1

,-a a— 1

Hier steigt folglich der Mittelexzess-Schaden linear mit der Scha-

dengrenze x. Ein kleines oo bedeutet eine gefährliche Verteilung und
führt auch zu einem grösseren mittleren Exzessschaden.

Gleichzeitig mit dem theoretischen Studium untersuchten wir das

statistische Material aus verschiedenen Ländern und Branchen und be-

rechneten m(x). In sämtlichen Fällen wuchs m(x) mit x, aber mit stei-

gendem x nahm die Zuwachsschnelligkeit ab. Für jedes praktische sta-
tistische Material, welches ja einen höchsten Wert für x besitzt, muss

von einem gewissen Punkt an das beobachtete m(x) abnehmen, um
gegen 0 zu sinken, wenn x sich seinem Maximum nähert. Für ein ana-

lytisches Modell, welches für ein im Prinzip unendliches Intervall zur
Anwendung kommt, ein fallendes m(x) anzunehmen, dürfte jedoch un-
realistisch sein.

Ein analytisches Modell sollte also die drei Bedingungen

In der Praxis verwendbare Modelle scheinen also im Gefährlich-
keitsgrad zwischen der Exponential- und der Pareto-Verteilung zu lie-

gen, und zwar näher bei der letzteren.
In der Arbeit von Segerdahl und mir findet sich eine kleine

Tabelle mit solchen Verteilungen.

1) m(x) > 0

2) m'(x) V; 0

8) m"(x) 0

erfüllen.
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Die Verteilungen, welche in der Nicht-Leben-Versicherung von
Interesse sind, haben eine Eigenschaft gemeinsam: sie sind schief. In
der klassischen Definition wurde die Schiefheit als eine Abweichung
von der Symmetrie aufgefasst, und sie wurde mit dem normierten drit-

ten Moment — gemessen. Für unseren Zweck ist eine solche Messung
er®

von begrenztem Wert, besonders weil sich unser Interesse auf die
höheren Werte der Variablen konzentriert. Vor einigen Jahren führte
ich in Analogie zur Lebensversicherung die Schadensterblichkeit ein.

,n(x)dx soll die Wahrscheinlichkeit bezeichnen, dass ein Schaden,
welcher mindestens gleich x ist, x + dx nicht übersteigen wird.

^ (x)dx stellt also die Wahrscheinlichkeit dar, dass die stochastische Va-
riable, welche dem Schaden entspricht, in x «lebt», aber im Intervall
x + dx «stirbt».

Je niedriger also die Schadensterblichkeit, desto schiefer und ge-
fährlicher ist die Verteilung.

Auf Grund der oben gemachten Voraussetzungen haben wir

dff(x)„(3)Js=-_
oder ,u(x)dx =—dlnff(x)

In natürlicher Logarithmus,

was zu -/„(o*
ff(x) const e

führt.

Es ist leicht, zu beweisen,

1 +m'(x)
dass /n#) —

m (x)

denn Lf (x) m (x) j ff (2) dz
£

differenziert

ff (x) m' (x) + ff (x) to (x) -ff (x)

l-m'(x) ff'(x)
ergibt m (x).* TO(x) ff(x) ^ '
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Wenn die stochastische Variable a; unbegrenzt hohe Werte anneh-

men kann, so ist H (a:) > 0 für alle endlichen er.

Aus if(oo) 0 folgt, dass das Integral
oo

J ,u(f)df divergiert.
X

Ist speziell ,u(:r) /c • a^, dann sind diese Bedingungen erfüllt für
alle p —1.

Konstante Sterblichkeit [p=0] ergibt die Exponentialfunktion,
und p —1 führt zur Pareto-Verteilung, denn

-/>
H (a;) c • e c • a; ^.

Innerhalb der gegebenen Klasse von Verteilungen stellt die, wel-
che 2^=—1 entspricht, eine Grenzklasse dar, gekennzeichnet mit der

denkbar niedrigsten Schadensterblichkeit.
Innerhalb des gegebenen Rahmens stellt also die Pareto-Klasse

eine maximale Schiefe dar, in Übereinstimmung mit der von uns gege-
benen Definition.

Suchen wir Verteilungen, welche schiefer sind als die Pareto-Ver-

teilung, müssen wir ausserhalb der Klasse gehen, welche durch

^ (a;) II • a?

definiert ist.

Wir untersuchen den Ansatz

// (a;) a;^ + If 2
a;*' + If 3 a:^ +

wobei pi > pa > P3

und alle If ; > 0

Für grosse a: wird das Verhalten dieser Frequenzfunktion vom
Term mit p^ bestimmt.

Beispiel : ^ (a;) If^ af* + If 2
af®

H(a:) c • a; ** e
*

Diese Funktion konvergiert schnell gegen die Pareto-Verteilung.
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Wir können also die Pareto-Klasse im weiten Sinne definieren als

die Verteilungen, welche der Formel

lim If >0

genügen.

Fl
Wenn m m - — gilt,

a; In a:

oo

so divergiert J /z (f) dt.
X

Für alle a: > a^ besteht eine niedrigere Sterblichkeit als im

Pareto-Fall ^(a:) —
a;

Wir haben H (a:) c e
" '

c • — jr.(In a:)

Diese Verteilung hat keinen endlichen Mittelwert und ist für die

praktische Anwendung nicht interessant.
Das gleiche gilt für alle Verteilungen, welche mit

definiert sind.

Wenn wir einen endlichen Mittelwert verlangen, wird schon ein
Teil der Pareto-Klasse mit FC > 1 definiert. Eine Verteilung mit nied-
rigerer Sterblichkeit als die der Pareto-Klasse kann folglich intuitiv
nicht einen endlichen Mittelwert haben.

Segerdahl hat dies bewiesen, als er zeigte, dass

£ (z)
/z (a:) mit lim e (a:) =0

x -> oo

zu einer Verteilung mit unendlichem Mittelwert führt. Schliessen wir
pathologische Fälle aus, so können wir für Verteilungen, deren /z(a:)

für a: > a;„ monoton sind oder durch monotone Funktionen majori-
siert werden, folgende Aussage machen:
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Die Pareto-Klasse im weiten Sinne ist eine Grenzklasse, welche
die Verteilungen, für welche alle Momente existieren, von denjenigen,
für welche alle Momente divergieren, scheidet.

Herr Green, London, hat vor einigen Jahren versucht, ein Gegen-

beispiel zu konstruieren durch Studium der Verteilung

H
/(*)

3.2 /p,
'

Für xl>c>l zeigt sich indessen,dass diese Verteilung der Pareto-
Klasse im weiten Sinne angehört.

Wir haben also bewiesen, dass für die Exponentialverteilung

,u(x) konstant

und für die Pareto-Verteilung

,w(x) — ist.
£

Bevor wir weitergehen, beweisen wir noch einige allgemeine For-
mein. Wenn H(x) die erwartete Anzahl Schäden über & bezeichnet
und J'Y (x) bzw. YJ (®> der Exzess-Risikoprämie für das Intervall
(x, 00) bzw. (x, Kx) entspricht, dann haben wir :

JT» H (x) • m(x),

und da YZ»

gilt 77'(*) =-#(*)
Weiter haben wir

dln Jlw _ //'YJ _ _
H(X) _ _

1

dx
~

77» 27 (x) m(x)

und gemäss der Definition von ^(x) ist

fZ In H (x)
-u(x).

ax
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Wir haben auch bewiesen, dass

l+m'(x)
/«(*) 7~T ist.

m(x)

Wir versuchen nun, die Berechnungsgrundlage der zweiten Ord-

nung zu finden, indem wir von der Pareto-Verteilung ausgehen:

x x
m(x) — —

a — 1 a

Wir verlangen, dass die Bedingungen

ra'(x) >0 und ra"(x)<0

erfüllt sein sollen.

Zwei Modifikationen bieten sich sogleich an, nämlich

m(x)
a + 26 In x

x^
und II m (x) 0 < 6 ^ 1

Daraus folgt, dass

#1 (x) (a+261nx)

#„(x) car"'' *'e

und jT/\ (x) cP"x""°^

iJn(®) c«
*
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Daher gilt :

In ^2"j (a;) In c—alna;—hln^

In 27„0z) lue- —:

a + 1 + 2h Ina; 2h
und ~

a; .r (a + 2 h In a:)

a 1 —h
/'ii (•'•')

6 + —
a; a;

Es ist leicht zu sehen, dass für I und II

lim a;^(a;) °o gilt,
Z -> CO

was die Konvergenz sämtlicher Momente sichert.

Die Inflationseffekte sind von besonderer Bedeutung innerhalb
der Schadenexzedenten-Rückversieherung. Wenn alle Schäden mit
dem Faktor I > 1 anwachsen, erhält man

^ a —2hln7+ 2h Ina;

II : m, (a;) ^ m (a;) f.
a

Beide Resultate werden leicht aus der Relation

(a;) H abgeleitet.

Aus Obenstehendem ersehen wir, dass in I und II der Durch-
schnittsschaden mit der Inflation amcäc7i.sf, was mit unseren Beobach-

tungen tatsächlich übereinstimmt.
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Für das Pareto-Modell bleibt der Durchschnittsschaden konstant.
Bei einem französischen Versicherungsmaterial für Autohaft-

pflicht habe ich herausgefunden, dass, wenn jeder Schaden um 10%
anwächst, der durchschnittliche Exzessschaden um 6% ansteigt.

Wir haben folglich für den Fall II die Gleichung zu lösen

1.1" 1.06

und erhalten 6 0.6

Die Herren Depoid-Duchez haben auf Grund der Abwicklungssta-
tistik für frühere Jahrgänge eine Schadenverteilung in Frankreich für
Autohaftpflicht für den Jahrgang 1966 gemäss nachstehender Tabelle
(Kolonne 2) abgeleitet.

Die Zahlen beziehen sich auf 100000 Schäden:

Schadengrenze Anzahl Exzess- Hl(z) Hii(x)
in 100 000 schaden gemäss

Depoid-Duchez

0,6 202 196,6
0,8 144 141,0
1,0 106 106,0 106,0
1,5 58 63,6 58,6

2,0 36 38,5 35,8
3,0 17 16,0 15,8
4,0 8 7,7 8,0

5,0 4 4,0 4,4

Man erwartet folglich, dass von 100000 Schäden 106 100000

übersteigen werden.

Hier ist mMa;) log dekadischer Logarithmus.
0.9 + 2 log 2;

Hi(a:) 117.8 ar^af*** (0.9+ 2 log œ).
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Zur einfacheren Berechnung wurden die 1 Oer-Logarithmen ver-
wendet. Das h ist also hier log e 0,434 (2 log e • In a; 2 log x)

Wie es scheint, geben beide Formeln I und II eine ausgezeichnete
Beschreibung, besonders die Formel II, welche ein Extrapolation bis
zu 60000 hinunter zulässt.

Das obige Modell bezieht sich auf 1966. Vorausgesetzt, dass die
Inflation das Muster nicht ändert, sondern für alle Schäden die gleiche
Tendenz des Zuwachses beibehält, d.h. dass

können wir ohne weiteres die Berechnungen für 1967, 1968, 1969 und
1970 ausführen, wenn der Inflationsfaktor bekannt ist.

Wir stellten fest, dass es nicht ausreicht, einen Lohnindex anzu-
wenden, sondern dass es notwendig ist, den Lohnindex mit einem Fak-
tor zu erhöhen, für welchen ich die Bezeichnung «superimposed infla-
tion» eingeführt habe. [Siehe G. Benfcfcmder, «The effect of inflation on
excess layers».] Der Hauptteil der Schadeninflation kann mit der

Lohnsteigerung erklärt werden, aber darüber hinaus existiert eine «In-
flation» in der Gerichtspraxis, der Schadenregulierungspraxis und den

Spitalkosten. Ferner wirkt sich der medizinische Fortschritt aus, wel-
eher darauf hintendiert, in jedem Fall die grösseren Schäden, an wel-
chen wir beteiligt sind, zu erhöhen.

Eine mathematische Beschreibung der Schadenverteilung erleich-
tert den Vergleich des Resultats für verschiedene Zeitspannen.

Aus früherem Material, welches 20% des französischen Marktes
umfasst, konnte ich ableiten, dass

0.94

flu(s) 507.8 af°*e-0.4 .-1.57 i"'®
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Wenn bis 1966 eine Schadeninflation von 50% angenommen wird,
was angemessen scheint, ergibt sich

1.2 — 21ogl.5 + 21oga: 0.85 + 2 log a;

Dies liegt nahe bei der Formel für in welcher wir 0,90 an-
statt 0.85 hatten.

Was ist nun der Sinn dieser Untersuchungen, vom Standpunkt
des Exzess-Eückversicherers aus gesehen

Die Tarifierung kann daraus Nutzen ziehen, dass man in der Lage
ist, präzisere Schätzungen zu machen. Für sogenannte Working
Covers können die Fehler in der Festsetzung der Risikoprämie stark
vermindert werden. Eine weitere Reduktion der Fehler ist möglich,
wenn die Information über das Intervall unterhalb der aktuellen Scha-

dengrenze zugänglich ist.
Die Bedeutung dieser höheren Präzision wird klar, wenn man den

Effekt der Konkurrenz zwischen den Exzess-Rückversicherern be-

trachtet. Eine fehlende Exaktheit in der Schätzung der Risikoprämie
wirkt sich zum Nachteil des ganzen Marktes aus. Besonders die Rück-
Versicherer, welche mit niedriger Präzision arbeiten, werden im Kon-
kurrenzkampf bei reiner Preiskonkurrenz geschädigt, da die Porte-
feuilles, die sie erhalten, die Tendenz aufweisen, stark untertarifiert zu
sein. Weiter ist die Kenntnis der Struktur der Schadenverteilung von
unschätzbarem Nutzen bei der Tarifierung von hohen Layers mit
wenig oder keinen Schäden.

Yarianzberechnung

Von besonderem Interesse ist die Varianz des totalen Schadenex-

zess-Betrages, denn die Sicherheitsbelastung auf den Prämien sollte
aus der Varianz oder deren Quadratwurzel berechnet werden.

Für einen begrenzten Layer haben wir die Varianz

ifs

F(®,X®) =2 j77fo)dy-2a(Z-l)/7(Za;)
X
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und für einen unendlichen Layer

F(s) 2 /7J(y)dy,

vorausgesetzt, dass die Anzahl Exzessschäden Poisson-verteilt sind.

(j [FVon besonderem Interesse ist die relative Varianz

Es gilt:

F(œ) 1 F(x)

7p(®) # (•'•) rn (.') • 7 / (:r)
'

Wir untersuchen den unendlichen Layer (ar, oo).

Für den Ansatz I : 77 (*) c# £a In x

erhalten wir F(a') 2 J 77(y) dy 2c J y " y ' "dy

ja- 1)2

Die Umformung ergibt F(a;) 2c e " T (1-0W)

12
-i ^ -

mit
72ji

1 * --
0 (2) — - I* e

®
d<

a — 1

und 2 j/21» I hl ,r + —-
' \ 2 ü?

Für a 0,9 und 6 log e«^0,434 tabellieren wir
/ F(«)

m(z) / / (./ i
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Schadengrenze

pro Tausend
/_ F(s)
to(x)77(.Ï)

100 1

200 2

300 3

400 4

500 5

1000 10

1,62

1,66

1,64
1,64
1,64
1,60

Für die Pareto-Verteilung mit a 3 wird der entsprechende Fak-
tor 2, und für andere Werte von a liegt er in der Nähe von 2.

Wir werden darauf im Anschluss an eine einfache und praktische
Belastungsformel zurückkommen.

"• 1.
— £0

Im Ansatz II war JTjT(a;) c • e

Ô

Dann ist F(a:) 2 c J" e ' dy.

a
Setzen wir — ?/ — t, so erhalten wir

l
1 / fo \ TT A-i

F(a) 2c • y (—J J f* e"'df,
\ / « K

T"*

also eine F-Funktion.

6 war oben 0,6; Wir untersuchen den näherliegenden einfacheren
Fall mit 6 0,5,

d.h. m(x) - -
a

und iT(®) C • ß
-2ay2

und F(x) c • — e (1 + 2a 1/®).
er
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Damit wird

-2a y; ^ + 2a
F(x) 1 F(x) ' 1/3+*

77*(«) #(*) w(®) • 7/(a) _«l^/a

Vor einigen Jahren leitete ich eine einfache Belastungsformel ab,
die unter folgenden Voraussetzungen gültig ist:

1. Anzahl Exzessschäden ist Poisson-verteilt,
2. die Schadengrösse ist Pareto-verteilt mit a 3.

Für den Layer (x, ifx) erhalten wir

er 2

wobei n =iî die erwartete Anzahl Schäden und if das Verhältnis zwi-
sehen oberer und unterer Grenze des Layers ist. Für einen unendlichen

er 2
Layer erhalten wir also ___ ——

77 i/«

Wenn alle Exzessschäden gleich gross wären, hätten wir -^= —=.
77 [/«

Hier besteht nur eine Variation in der Anzahl, nicht in der Grösse.

Nachdem der Ansatz II eine bessere Beschreibung als nach Pareto

gibt, kann es von Interesse sein, das der beiden Fälle zu vergleichen.

Der Fall II, der schneller konvergiert als nach Pareto, pflegt ein nied-

(7

rigeres zu haben.

o"

Wir erhalten folgende Belationszahlen für
17/" / VIT Pareto
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Schaden- Obere Grenze des Layers
grenze
pro Tausend 350 400 450 500 750 1000 1250 (X)

150 0,90 0,90 0,90 0,90 0,90 0,91 0,91 0,85
175 0,91 0,91 0,91 0,91 0,91 0,91 0,91 0,84
200 0,93 0,92 0,92 0,92 0,91 0,91 0,91 0,83
250 0,96 0,95 0,94 0,93 0,93 0,92 0,92 0,82
300 0,98 0,97 0,96 0,95 0,94 0,93 0,93 0,81

Aus der Tabelle ist ersichtlich, dass für beschränkte Layer gilt :

(n).. -KnL«.
Noch einige abschliessende Bemerkungen:

Wir haben

normal « > log-normal

exponential < * log-exponential Pareto.

Nicht von Interesse ist die Normalverteilung, von Interesse ist
das Dreieck, welches von der exponentialen, der log-exponentialen und
der log-normalen Verteilung gebildet wird.

Die beiden Ansätze I und II, wie oben beschrieben, liegen tatsäch-
lieh sehr nahe bei der log-normalen Verteilung, insbesondere der Pall I.
Der Vorteil der Ansätze I und II ist, dass die Handhabung angeneh-
mer ist, weil m(a:),^(a;), ff (2;), j^/"(a:) eine einfachere Form erhalten.

Um zu illustrieren, dass die Ansätze nahe bei der log-normalen
Verteilung liegen, gehen wir von I bzw. II aus und anti-logarithmieren
sie.

P[X >lna;] const • af°~' • ar"° * (et + 2 6 Ina;)

In a; 2, a; e*

ffj(2) P[X >2] const • e~'"+ü (a + 2&2)

In ff (2) const — (a + 1)2—te* + In (a+ 2&2),

woraus /i(ä) e-"+"'-*''[(a + 2&2)»+ (a+2&2) — 26] folgt.
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Wenn die Parameter so gewählt werden, dass I und log-normal in
einem niedrigeren Intervall relativ gleich sind, dann ist I> log-normal
in einem höheren Intervall.

Auf gleiche Weise erhalten wir:

-T»*
P[X > In m] const • a; e

In a; 2, a; e*

P[X >2] const •
'

]nH„(*) -(l-&)2—— e»*

-( 1 -Ô) 3—~

/jj(2) const • e [(1 — 6) + ae^].

Diese Verteilung konvergiert für grosse 2 schneller als eine log-
normale Verteilung, mit welcher sie in einem niedrigeren Intervall eini-

germassen übereinstimmt. Also ist Ansatz II im Limes weniger gefähr-
lieh als die log-normale Verteilung.

Aus früheren Formeln ist leicht zu ersehen, dass

x^ (r) =4 a -f 1 + 2fr In a; schwächere Sterblichkeit

und a;^n(a:) =4 aa:® stärkereSterblichkeit

Die log-normale Verteilung liegt zwischen diesen beiden mit Ten-
denz zu I.

Aus der Tabelle sehen wir, dass für die beiden Verteilungen expo-
nential und log-exponential Pareto)

m(a:) • /^(a:) const

1 exponential

c — 1
Pareto

gilt.
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Wenn m (a:) ^(a:) c

dann l+m'(a;)=c, ?re'(a:)=c—1

und m (a:) (c-1) a; +

c 1 exponential

c > 1 Pareto-Klasse.

Für die in der Praxis interessanten Verteilungstypen gelten:

m (a;) ^(a;) >1
lim m (a;) ^ (a;) 1
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Zusammenfassung

Der Verfasser behandelt einige analytische Verteilungsfunktionen, die zur Be-

Schreibung der Schadenverteilung gebraucht werden, z.B. die Exponential-,
Pareto- und Log-Normal-Verteilung. Er schlägt zwei weitere Punktionen vor, mit
denen er gearbeitet hat. Um die Verteilungstypen zu klassifizieren, benützt er ver-
schiedene Mittel, wie den durchschnittlichen Exzessschaden und die «Sterblich-
keitsintensität» der Schäden.

Die Varianz der totalen Exzess-Schadenlast wird berechnet und eine einfache

Approximation angegeben.

Résumé

L'auteur part de quelques fonctions de distribution utilisées pour décrire la
distribution des sinistres, par exemple la distribution exponentielle, celle de Pareto
et la distribution logarithmique normale. Il propose deux autres fonctions avec les-

quelles il a opéré. Pour classer les types de distribution, il utilise différents moyens
tels que le sinistre moyen en excédent, l'intensité de «mortalité» des sinistres, etc.

H calcule la variance de la charge totale des sinistres en excédent et donne une
simple formule d'approximation.

Riassunto

L'autore spiega le distribuzioni analitiche che sono state usate per descrivere
la distribuzione dei sinistri, come per esempio quella esponenziale, quella di Pareto,
la log-normale, ecc., e contribuisce con due proprie proposte. Egli si occupa poi di
certi mezzi analitici da usare nella classificazione delle distribuzioni, corne il valore
medio degli eccessi di sinistri, l'intensità di «mortalità» di un sinistro, ecc.

L'autore calcola la varianza dell'importo totale degli eccessi di sinistri, e ne
formula una semplice approssimazione.

Summary

The author mentions the analytical distributions which have been used to
describe the claims distribution, e. g. exponential, Pareto, log-normal, etc. and con-
tributes two suggestions of his own. He further discusses some analytical tools to
be used when classifying distributions, such as the average excess claim, the force
of «mortality » of a claim, etc.

The variance of the total excess claims amount is calculated and a short-cut
approximation formula is given.
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