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Wissenschaftliche Mitteilungen

Statistik und Entscheidungstheorie

(Untersuchungen iiber das 2-Aktionen-Problem)

Von Hans Loeffel, St.Gallen

1. Einfiihrung und Problemstellung

In den vergangenen 10-15 Jahren ist die praktische Bedeutung der
allgemeinen Entscherdungstheorie fir viele Zweige der Wirtschafts- und
Sozialwissenschaften enorm gewachsen.

Jedes Individuum (oder jede soziale Gruppe) steht oft vor dem
Dilemma, zum Teil folgenschwere Entscheidungen treffen zu missen.
Die Entscheidungstheorie lehrt, wie man in gewissen, modellartig be-
schriebenen Situationen unter vielen mdéglichen Entscheidungen die
sogenannte «optimale» Entscheidung finden kann.

Hierbei stiitzt man sich auf sogenannte Entscherdungskriterien,
das sind Richtlinien, nach denen ein «rational» handelndes Indivi-
duum seinen Préferenzen im Raum der moglichen Entscheidungen
Ausdruck verleiht.

Eine ganz konkrete Anwendungsmdglichkeit in der Automobilver-
sicherung hat Hans Biihlmann [1] aufgezeigt. In der Theorie der
sequentiellen Schdtzverfahren wird die Konstruktion von sogenannten
«optvmalen Prdamaenstufensystemen» behandelt, wobei die entschei-
dungstheoretische Interpretation auf der Hand liegt.
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2. Das Grundmodell der allgemeinen Entscheidungstheorie

2.1. Begriffe

Ein Individuum, konfrontiert mit der Umaelt oder der Natur,
steht in der Konfliktsituation, aus mehreren méglichen Aktionen, Stra-
tegien oder Entscheidungen die bestmogliche auszuwihlen.

Die Umwelt kann dabei gewisse Zustinde annehmen, die dem
Entscheidenden entweder vollstindig bekannt, nur hinsichtlich der
Héufigkeiten ihres Auftretens bekannt oder vollstindig unbekannt
sein konnen. Je nachdem spricht man von der Stwcherheitssituation, der
Rrisikosituation oder der Unsicherheitssituation 1m engern Sinne
(i.e.8.).

Die Sicherheitssituation (z.B. bei der linearen Optimierung) soll
uns 1m folgenden nicht interessieren.

2.2. Okonomasche Folgen von Entscheidungen — Nutzentheorte

Sei 4 = {al, Gy; --- a,} 1) der Raum (oder die Menge) der verfiig-
baren Aktionen oder Letztentscheidungen a;.

Mit Q = {wl,coz, . .wm}l) bezeichnen wir den Raum der moglichen
Zustinde w; der Umwelt.

Wihlt nun das Individuum (der Entscheidende) die Aktion a; ¢ 4
und herrscht gleichzeitig in der Umwelt der Zustand w, € 2, so resul-
tiere daraus ein Ergebms

e(ai, CO,I.) = e,i,- §

Die e;; bilden den Ergebnisraum €.

Dieser Sachverhalt kann auch durch nachfolgende Ergebnismatriz
dargestellt werden.

2.2.1. O iy + o Gy
ai | €1 €12 €1m
Qo
a’n e'nl enZ A emn

1) Wir beschréinken uns vorerst auf endliche Réume.
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Die Ergebnisse e;; brauchen nicht zum vornherein quantifizierbar
zu sein. Das folgende ist ein Beispiel eines moglichen Ergebnisses:

«Eine symmetrische Miinze wird geworfen. Je nach Ausgang des
Zufallsexperimentes hat man 14 Tage aufs Rauchen zu verzichten,
oder man erhéilt eine Eintrittskarte ins Theater.»

Die Anwendung von Entscheidungskriterien erfordert eine Quan-
tifrzrerung des Ergebnisraumes €. Dies leistet die moderne Nutzentheo-
rie, die im wesentlichen auf von Neumann und Morgenstern [2] zuriick-
geht.

Sei € ={ey, €, ...¢,}  der Ergebnisraum und

@*:{(Pvpzw--fl’r)}; P; =0, EP«;zl

=1

-

der Raum aller Wahrscheinlichkeitsverteilungen (inkl. der degenerier-
ten) oder Lotterien iiber €.
In €* ist eine lineare und transitive Praferenzrelation << erklért.
Auf Grund gewisser Axiome (bez. €*), die im wesentlichen die
«rationale» Handlungsweise des Entscheidenden charakterisieren, kann
die Existenz einer reellwertigen sogenannten Nutzenfunktion

u(e;) = u;
gefolgert werden [3].

Insbesondere 1st (s der messbare, 6konomische Nutzen, den eine
Aktion @, im Zustand w; abwirft.

Die Priferenzrelation 5 in €* iibertrdgt sich dann auf die ge-
wohnliche <- Relation fiir den erwarteten Nutzen, d.h.

%2.2,  [Pys Pus oo B} S (B3 Papee o By) =3 Zluf Py = Zluipl--

Die Problematik der Konstruktion der Nutzenfunktionen steht
hier nicht zur Diskussion. Fiir das folgende wollen wir die u;; stets als
bekannt voraussetzen.



94

2.3 Grundmodell der Entscheidungstheorie

Wir gehen aus von 3 grundlegenden Elementen

a) A={a,a,,... aq} Raum der Aktionen, Strategien oder
Letztentscheidungen a,.

b) £ = {wl, Woy vv @ Raum der Zustinde w; der Umwelt.

|

m
c) u(a,, wi) = u(eii ..

;i  reellwertige Nutzenfunktion tiberdem

kartesischen Produkt 4 x Q.

Diese Situation kann im Tripel (4, 2, u)jkonzentriert und in der
nachfolgenden sogenannten Entscherdungsmatriz dargestellt werden.

2.3.1. W, Wy ... W,
ay | Ui Uy Uim
Qg
a’n u’ni '”'nz unm

2.4. Entscheidungstheorie und Spieltheorie

Das Tripel (4, 2, w) kann auch spieltheoretisch wie folgt interpre-
tiert werden:

Spieler Nr.1 = Statistiker, mit den verfiigharen Aktionen oder
Strategien q;.

Spieler Nr.2 = Umwelt, mit den verfiigharen Zustéinden oder
Strategien w;.

Uy = Nutzen oder Gewinn des 1. Spielers und gleichzei-
tig der Verlust des 2. Spielers.

Wir haben somit ein 2-Personen-Nullsummenspiel. Ob der Um-
welt oder der Natur die Rolle eines rational handelnden Gegenspielers
iibertragen werden kann, ist fraglich. Hier liegt die fundamentale

Nuancierung zwischen allgemeiner Entscheidungstheorie und Spiel-
theorie.



Ein Beispiel: | o o,
a| -4 +3
a, | -1 0

Wire die Umwelt ein rationaler Gegenspieler, so wirde sie Strate-
gie w; wihlen, und der Entscheidende (z.B. der Statistiker) wiirde mit
a, antworten. Wenn hingegen die Umwelt ohne klare Vorstellung ihre
Strategie wihlt, z. B. w,, musste der Statistiker mit a, reagieren.

Néheres iiber diese interessanten Querverbindungen findet man in
Abschnitt 7; bei H.Biihlmann in [3], S.114 ff., und [4] sowie bel
P.Nolfs [5].

3. Statistik und Entscheidungstheorie

8.1. «Klassischey Statistik

Es mag auffallen, dass im Sachregister klassischer Standardwerke
der mathematischen Statistik Begriffe wie Entscheidung, Entschei-
dungsfunktion oder dhnliches fehlen. Die fundamentalen Arbeiten von
R.A.Fisher, J.Neyman, E.S.Pearson und andern mehr fithrten die
klassische Schétz- und Testtheorie zu einem vorldufigen Hohepunkt.

Begriffe wie Sicherheitswahrscheinlichkeit, Fehler 1. und 2. Art,
Giite und Macht von Tests, Konfidenzintervalle sind dabei von zen-
traler Bedeutung. Ewne Querverbindung zu allgemeinen okonomaschen
Fragestellungen bestand aber kaum.

3.2. Neue Wege

Abraham Wald (1902-1950) hat aus dem Sequentialtest heraus
die Theorie der sogenannten statistischen Entscheidungsfunktionen ent-
wickelt, die eine neue Ara statistischer Betrachtungsweise einleitete.

Seit 1950 (Erscheinungsjahr des fundamentalen Werkes «Statisti-
cal decision functions» [6]) hat sich eine ansehnliche Literatur tiber
diesen Gegenstand entwickelt, die bis heute iber 600 Titel umfasst [7].

Der Anwendungsbereich der neuen Theorie ist sehr weit gesteckt
und reicht von Statistik und Kybernetik iiber die Unternehmensfor-
schung bis in die Psychologie und Soziologie.
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Die Arbeiten von von Neumann und Wald haben versucht, statisti-
sche Schlisse unter dem Blickwinkel der Entscheidung zu analysieren
und Gkonomasch zu bewerten (Nutzentheorie).

Wenn auch urspriinglich die zu erwartenden Erfolge vielleicht zu
optimistisch prognostiziert wurden, ist doch zweifelsohne eine gewal-
tige Lauterung und Bereicherung statistischen Denkens im Zuge der
neuen Betrachtungsweise zu verzeichnen.

Hat man frither von statistischen Urteilen gesprochen, so will man
jetzt die Verfahren statistischer Inferenz (Schlussweisen) im Lichte der
Entscheidungen interpretieren und l6sen.

Wie das geschieht, wollen wir an einem bewusst einfach gehalte-
nen Beispiel nachfolgend darlegen.

3.3. Das Wesen statistischer Entscheidung

Ein grundlegendes Problem der statistischen Qualititskontrolle soll
auf das Grundmodell der allgemeinen Entscheidungstheorie nach 2.8.
transformiert werden.

Standardbeispiel: Ein Warenposten enthélt sehr viele gleichartige
Massenartikel, die entweder gut oder defekt sind. Der Anteil w defek-
ter Stucke im Warenposten sei unbekannt.

Der Produzent behauptet beispielsweise, die Sendung enthalte
259, Ausschuss; soll der Abnehmer dies glauben oder nicht ?

Der Statistiker (als Berater des Abnehmers) verfiige iber zwer
Aktionen, Strategien oder Letztentscheidungen, ndmlich

T { a,: «Akzeptiere den Warenposten».

a,: «Lehne den Warenposten ab».

Der Aktionsraum 4 enthélt also nur 2 Elemente. Man spricht
dann von «Testen von Hypothesenn.

Die moglichen Anteile w;, w,, ... w,, defekter Stiicke im Warenpo-
sten kénnen wir als die Zustidnde oder Strategien der Umwelt mterpre-
tieren. Sie bilden den Zustandsraum (2.

Wihlt der Statistiker die Aktion a; im Zustand w
daraus ein Nutzen u(a;, »;) = u;.

j» SO resultiere
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Das Tripel (4, 2, u) oder die zugehorige Entscheidungsmatrix F,

E,3.3.2 on @y +ss W
Qg | Uy Uq2 Uim
(g | Ugq Usg Usm

kennzeichnet somit die urspriingliche Entscheidungssituation eindeutig.

Vorléufig st tiber die méglichen Zustinde w; nichts bekannt.

Ein echtes statistisches Entscheidungsproblem entsteht durch Ein-
holen von zusdtzlicher Information tiber die w; € 2 vermattels einer Zu-
fallsstichprobe.

Damit kommt ein stochastisches Element hinein, denn je nach
dem zufallsbedingten Ergebnis der Stichprobe wird der Entscheidende
diese oder jene Aktion wihlen.

Prizvsierung der Stichprobe
Aus der als hinreichend gross angenommenen Grundgesamtheit
(Warenposten) werden zufallsartig n Elemente (Massenartikel) gezogen.

Dabei sind folgende Voraussetzungen gemacht:

1. die einzelnen Ziehungen erfolgen unabhéngig voneinander;
2. die Wahrscheinlichkeit, ein defektes Stiick zu ziehen, ist bei
jedem Zug gleich, ndmlich w.

Die Ergebnisse z einer solchen Stichprobe

_ 1, falls beim ¢-ten Zug defektes Stiick
F = (@1, By wes ) D16 :c%-:{ o
0, falls beim -ten Zug gutes Stiick

konnen als Realisationen des n-Tupels X

X = (X, X,,...X,) von unabhéingigen und gleichverteilten Zufalls-
variablen X interpretiert werden, wobei

8.88. p{X; =10} =0"(1-w)'™; ;=10 fallsw der wahre
Anteil in der Grundgesamt-
heit ist.
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Alle Ergebnisse z bilden den sogenannten Stichprobenraum S (be-
stehend aus 2" Punkten), den wir in R, abbilden durch folgende Zu-
ordnungsvorschrift :

1
T = (Ty, Tgyoe. X)) —————> Y = 213%
=

Die zugehérige Zufallsvariable Y = >' X, (Anzahl defekter Stiicke
i=1

in Stichprobe) ist hinsichtlich des unbekannten Zustandes w eine soge-
nannte suffiziente Statistik oder Schitzfunktion, d.h.Y schopft die In-
formation beziiglich @ voll aus. Die exakte Definition der suffizienten
Statistik findet man etwa in [2], S. 113.

Damit reduziert sich der urspriingliche Stichprobenraum von 2"
Elementen auf jenen beziiglich Y (er sei wieder mit S bezeichnet), der
noch genau (n -+ 1)-Elemente

Y= O: l: 23 e enthalt.

8.8.4. p{Y = ylo} = p(y|o) = {Z}wy(l—w)""y; y=0,1,...,n
st dann die Wahrscheinlichkeit, in einer Stichprobe vom Umfang »
genau y defekte Stiicke zu finden.

Die Hauptaufgabe des Statistikers besteht nun darin, eine Ent-
scheidungsregel oder Strategie d festzulegen, die jedem Stichprobener-
gebnis yeS eindeutig eine Aktion oder Letztentscheidung a € A zuordnet.

S = Stichprobenraum

A = Aktionsraum



Fine solche Strategie kann als Abbildung des Stichprobenraumes
S auf den Aktionsraum A aufgefasst werden und heisst seit A. Wald
eine statistische Entscheidungsfunktion oder statistische Entscheidungsregel.

Wie man leicht abzihlen kann, gibt es genau 2"*! Entscheidungs-
funktionen d.(t = 1, 2, ... 2"™1), die den sogenannten Entscheidungs-
raum D bilden.

Der urspriingliche Raum A4 der Aktionen oder Letztentscheidun-
gen a; wird somit durch den Raum D der Entscheidungsfunktionen
oder Strategien d; ersetzt.

Wie sind nun die 6konomischen Folgen einer Strategie d zu be-
werten, falls sie im Zustand w; erfolgt ? Eine Entscheidungsfunktion d;
ordnet jedem zufallsbedingten Stichprobenergebnis y € S eine ebenso
zufallsbedingte Aktion a; € 4 zu.

Jeder Strategie d, kann deshalb lediglich ein mattlerer Nutzen, die
sogenannte Nutzenerwartung oder das Eisiko r(d;, w;) = r,;, zuge-
ordnet werden, das wie folgt definiert ist:

3.3.5. r(d; w;) = > wldi(y), ;] p (y]w,) .

y€S

7(d;, w;) ist also der im Mittel zu erwartende Nutzen bei Anwendung
der Entscheidungsfunktion d; im Zustand ;.

Falls S nicht endlich ist, sondern etwa eine beliebige, Borel-mess-
bare Teilmenge des R,, misste auf der Klasse der Borel-messbaren
Teilmengen von S fiir jedes w € 2 ein Wahrscheinlichkeitsmass P, de-
finiert sein. Die Summe 38.8.5. ginge dann iiber in das Liebesguesche In-
tegral

r(d o) = [u[dy), w]dP, (),
8

und D bestiinde aus jenen Funktionen d, far welche u[d(y), ] fir alle
w € 2 eine Liebesgue-integrierbare Funktion von y ist.

Die Entscheidungsmatrix F, nach 8.3.2. oder mit andern Worten
das Tripel (4, 2, u) wird somit transformiert in die nachfolgende Ent-
scheidungsmatrix E, oder in das Tripel (D, 2, r).



E, 3.3.6. w; Wy w; w,,
dy 1 T12 Ty; Tim
dg
d; Ti1 Tio Tij

.................. n+1
d2n+1 ?‘2‘ i

Es ist uns also gelungen, das in Kapitel 3.3 formulierte statisti-
sche Inferenzproblem (Testen von Hypothesen) auf die Form E,, d.h.
auf das Grundmodell der allgemeinen Entscheidungstheorie, zu transfor-
mieren.

Der Statistiker hat aus der Menge D von moglichen Entschei-
dungsfunktionen eine bestimmte, z. B. d;, zu wihlen, die, erfolgt sie im
Zustand w;, einen mittleren Nutzen 7, abwirft.

Da die Zusténde w; der Umwelt unbekannt sind, herrscht die Un-
sicherheitssituation vm engeren Sinne, auf die sich jedes statistische In-
ferenzproblem zuriickfiithren lésst.

4. Testen einer einfachen Hypothese gegen eine

einfache Alternative

Wir gehen aus von 3.8., dem Standardbeispiel der Qualitidtskon-
trolle, und treffen folgende Annahmen:

a) Beziiglich des Zustandsraumes

Beschrinkung auf zweil mogliche Zustdnde der Umwelt, d.h. auf
zwel mogliche Anteile defekter Stiicke im Warenposten.

W= w, Warenposten ist «gut»,

0 = w, Warenposten ist «schlecht».

Wir haben den klassischen Fall des Testens einer einfachen Null-
hypothese H, gegen eine einfache Alternativhypothese H,, wobei
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4.1. Hy: o =w,
Hi: o =uw,
Der Zustandsraum £ = (w,, ®,) ist somit auch der Hypothesen-

raum, und der Aktionsraum 4 = (a,, a,) enthilt lediglich die beiden
Aktionen oder Letztentscheidungen

a,: Annehmen der Nullhypothese,
a,: Verwerfen der Nullhypothese oder Annehmen der
Alternativhypothese.

b) Beziiglich des Entscheidungsraumes D

In der Menge D der 2""! theoretisch mdglichen Entscheidungs-
funktionen betrachten wir eine ausgezeichnete Teilmenge D*, deren
Elemente wie folgt definiert sind:

y € S Anzahl defekter Stiicke in der Stichprobe vom Umfang n

a,, falls y <k
4.2. d.(y) = ;
a,, falls y>k

k heisst auch Annahmekennzahl.

Die Auswahl der Teilmenge D* nach 4.2. ist zumindest von der
praktischen Seite her intuitiv klar. Sie ldsst sich aber auch nach dem
sogenannten Fundamentallemma von Neyman-Pearson begrinden.

¢) Beziiglich der Nutzenfunktion u, ;
Mit
K = Kosten des Abnehmers,
4.3. fK = Gewinn des Abnehmers, falls o = w;; 0<f<1,

s = s(n) = Stichprobenkosten

setzen wir fest
Uy, =fK—s; Upy=-K—s
4.4,

Das Tripel (4, 2, u) ist somit eindeutig festgelegt.
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Geméss 3.3.5. berechnen wir nun die Nutzenerwartung oder das
(negative) Risiko r (d;, w;).

n kzOyly"'Dn_l
15 rGee) = Sulde) ol ple);
y=0 ] == 1’2’

n
wobei  p(ylw;) = (y) (1 -0,

Unter Beriicksichtigung von 4.2. geht 4.5. {iber in
r(dy 01) = 1y >, pYloy) +uy X p(yloy)
y<k y=>k
4.6.

7 (dys wy) = gy y;kp(ylwz) T Ugy 2 p(ylwy) 5

Y=k

wobei in natiirlicher Weise die Wahrscheinlichkeiten o, bzw. B, fir
ewnen Fehler 1. Art baw. 2. Art auftreten.

oy, = %p(ylwl)
B = Z.kp(ylwz)-

o, 1st dabel die Wahrscheinlichkeit, die Nullhypothese abzulehnen, ob-
schon sie richtig ist.

B, 1st die Wahrscheinlichkeit, die Nullhypothese anzunehmen, obschon
sie falsch ist.

Aus 4.6. wird nun

7(dp ©y) = K (1—oy) —s
4.6a. k=0,1,..., (n—-1)
r(d, wy) = —K - f,—s

r(dy, wy) <0 firalle k.



Numerische Durchfiihrung an einem Beispeil [3]

w, = 0,25 K = 1000 Fr.
4.6b. g == 0,75 f=0,1
n =10 s = 10 Fr.

Offenbar gilt: p(y|wy) = p(10—y|w,)

y |0 |1 |2 |8 | 4|5 ]| 6] 7|8 |9 |10

p(ylw) |.056 |.188 |.283 |.250 |.146 |.058 |.016 |.003 |0 |0 |0

P (y|ws) 0 0 0 .003 |.016 |.058 |.146 |.250 [.283 |.188 |.056

Die nachfolgende Tabelle gibt die Werte «, und £, in Funktion
der Annahmekennzahl k.

k 0 1 2 3 4 5 6 7 8 9
oy .944 | 756 | .473 | .223 | .077 | .019 | .003 0 0 0
B 0 0 0 .003 | .019 | .077 | .223 | .473 | .756 | .944

Nach 4.6a. lassen sich nun die Nutzenerwartungen r(d,, w;) be-
rechnen, und man erhélt

4.7.

W, —44 | 144 | 42,7 | 67,7 | 823 | 88,1 | 89,7 90 90 90

W, -10 | =10 | =10 | 13 | -29 | 87 | —233 | 483 | -766 | 954

Damit ist es uns gelungen, das Testen emer einfachen Nullhypo-
these H,: w =w, gegen eine einfache Alternativhypothese H;: w =w,
in die Entscheidungsmatrix 4.7. oder in die Form (D, 2, r) tiberzu-
fihren, d.h. in das Grundmodell der allgemeinen Entscherdungstheorie.
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Der Statistiker hataus der Menge D ={d,,d,, ...,d} eine Strategie
d, zu wihlen, die, erfolgt sie im Zustand w,; (j =1, 2), eine Nutzen-
erwartung r(d,, ;) = r;; besitzt.

Wahlt er etwa d,, so steht eilnem Gewinn von 42,7 ein Verlust von
10 gegeniiber. Féllt die Wahl auf d,, so kann der mogliche Gewinn auf
90 erhoht werden, wenn gleichzeitig ein massiv erhohter Verlust von
483 riskiert wird.

Nach welchen Rachtlinien oder Kriterien soll die Auswahl der «be-
steny oder «optimalen» Strategie d* erfolgen?

5. Konstruktion optimaler Entscheidungsfunktionen

5.1. Allgemeines

Soeben haben wir gezeigt, wie sich ein statistisches Inferenzpro-
blem in die allgemeine Entscheidungstheorie einbauen ldsst.

Der urspriingliche Raum A4 der (konstanten) Aktionen a; ist er-
setzt worden durch den Raum D der Entscheidungsfunktionen d,, und
tber dem kartesischen Produkt D x 2 ist nach 3.3.5. der mittlere Nut-
zen r definiert.

Da die Zustdande w; € £ zum vornherewm unbekannt sind, befinden

wir uns in der sogenannten Unsicherheitssituation im engern Sinne
(siehe Abschnitt 2.1.).

5.2. Die Unsicherheitssituation vm engern Sinne

In der modernen Literatur [8] findet man eine Reithe von Ent-
scheidungskriterien, wobei das sogenannte Mwmimaz-Kriterium von
von Neumann eine besondere Stellung einnimmt.

Nach dem Mwmimaz-Kriteritum suchen wir jene Strategie d,, fir
die die minimale Nutzenerwartung maximal ist (es i1st in diesem Sinne
eigentlich ein Maximin-Kriterium).

Gestitzt auf den allgemeinen Fall 8.3.6. definieren wir d, als opti-
mal, falls



min 7;; = max (mm T

]

1
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]

5.2.1. oder
min 7 (dy, ;) = max min r(d;, »,) .
w; €2 di€D w;jeR
Tabelle 5
Minimax Bayessche Risiken
7_'(7’1)
1) (2) ®3) 4) (5) (6)
d;. r(dg, @) | r(dy, @) min r(dy, ;) |7, =01 |7 =05|7n =09
j
d, 44 -10 -10 -9,44 -7,2 —4.96
d, 14,4 10 -10 7,56 2,2 11,96
ds 42,7 -10 -10 [4.73] 16,3 37,43
iy 67,7 -13 -13 —4,93 ]_27_3| 59,63
d, 82,3 -29 -29 -17,87 26,6 l 71,17 I
ds 88,1 -87 -87 -69,49 0,5 70,59
dg 89,7 -238 ~-233 -200,7 -71,6 57,43
d, 90 -483 —483 —425,7 -196 32,7
dyg 90 —766 ~766 —680,4 -338 4,4
dy 90 -954 -954 -849,6 —432 -0,5

Aus Kolonne (8) obiger Tabelle entnehmen wir:

max min r(d;, ;) = —10.
i

Das Minimaxkriterium fithrt somit auf eine der 3 Strategien d,,
dq, dy; die Liosung ist nicht eindeutig. Aus praktischen Griinden ent-
schliessen wir uns fiir d,, um das Risiko 1. Art moglichst tiefzuhalten.

Uber mehrdeutige Minimax-Lésungen siehe u.a. [9].

Dass wir bereits ab 3 defekten Stiicken in der Stichprobe den
Warenposten abweisen, zeigt, wie pessimistisch unsere optimale Stra-
tegie ausfiel. In der Tat ist das Minimax-Kriterilum naturgeméss von
einer «éingstlichen Vorsicht» gekennzeichnet, die in einer realen Situa-
tion nicht immer angebracht erscheint.
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5.3. Das Kriterium von Savage-Niehans

Wenn wir anstelle der Nutzen oder Gewinne u,; die sogenannten
entgangenen Nutzen oder entgangenen Gewinne [ (a;, ;) einsetzen, so
fithrt das Minimaxkriterium (es heisst in diesem Fall auch Kriterium
von Savage-Niehans) auf eine eindeutige Liosung.

Unter dem entgangenen Gewinn oder entgangenen Nutzen I(a;, w,)
verstehen wir die Differenz zwischen dem effektiv erzielten Gewinn
u(a;, ;) und jenem, der bei optimaler Entscheidung (im Zustand w,)
hétte realisiert werden kénnen.

Def. 5.8.1. La;, ;) = me;x u(ay, ;) —u(a;, w)); By 9y K= 1,9,
Die urspriingliche Nutzenmatrix

l wq Wy

a;| fK—s —K—s

geht dann tiber in die Matrix der entgangenen Gewinne

l W, Wy
aq 0 K mit K = 1000
Qo fK 0 f = 0,1

1(d, w,) =K. o = 100. o
und i(dk, wy) = K. g, =1000. g,

sind dann die maittleren entgangenen Gewinne bei Verwendung der Stra-
tegie d, im Zustand ;.

Kriterium von Savage-Niehans:

5.3.2. d, heisst optimal, wenn

max [(d;, @;) = min max [(d;, »;) .
i i i
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Aus der nachstehenden Tabelle konnen wir die emndeutige Liosung,
namlich Strategie d,, ablesen.

Tabelle 5.3.
dy, dy | dy | dy | dy d, d, | dg | dy | dg | dy
[ (dg, ©,) 94.4| 75,6| 47,3| 22,3 Ta 1,9 03/ 0 |0 | O
1(dy, w,) 0 0 0 3 19 77 |223 473 | 756 | 944
max [(dj,w;)| 94,4 | 75,6 47,3| 22,3 [19] 77 228 473 | 756 | 944
] min max

5.4. Die Ristkosituation [10]

Kann iiber dem Raum £ der Zustéinde w; eine Wahrscheinlich-
keitsverteilung W als bekannt vorausgesetzt werden, so befinden wir
uns in der sogenannten Risikosituation.

Sel p(w;) =m; (1=1,2,..., m) die Wahrscheinlichkeit dafiir, dass
die Umwelt sich im Zustand ; befindet.

Die z; heissen A-priori-Wahrscheinlichkeiten und W= {r,, m,, ... ,,}
die A-priori-Verteilung tiber Q.

Definition: Unter dem Bayesschen Risiko ¥(d,) einer Strategie d, ver-
stehen wir den Erwartungswert von r,; beziiglich der Ver-
teilung W iber Q.

m
5.4.1. Z (d,, cu

Nach dem sogenannten Bayesschen Kriterium ist eine Strategie
oder Entscheidungsfunktion d, genau dann optimal, wenn

5.4.2. F(d) =7(d,)  firalle i+Fk.

Das Bayessche Kriterium fordert also die Maximierung der
Bayesschen Risiken, welche im Sinne unserer Betrachtung negative
Risiken, ndmlich Nutzenerwartungen sind.
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Da oft die A-priori-Verteilung W = {=,, 7y, ... 7,,} iber £ nicht be-
kannt ist oder aus subjektiven Schitzungen hervorgeht, kann man
etwa annehmen (Prinzip des unzureichenden Grundes), alle z; seien
gleich. Man spricht dann vom sogenannten Laplaceschen Entschei-
dungskriterium, das auf der Gleichverteilung itber £2 beruht.

Die Strategie d, € D ist nach Laplace genau dann optimal. wenn

5.4.8. > r{dy, o) = D) r(d;, o)) fir alle vk .
i=1

i=1

6. Anwendung des Bayesschen Kriteriums
auf die Entscheidungssituation 4.7.

Uber dem Zustandsraum Q = {w,, w,} sei die Wahrscheinlichkeits-
verteilung

W = (n;, my) mit =x;+ 7w, =1 gegeben.

7, =1p(w,) 1st dabel als Idealmass aufzufassen fir die Glaub-
wiirdigkeit, dass der Lieferant einen «guten» Warenposten anbietet
(d.h. dass sich die Umwelt im Zustand w = w, befindet).

Wir werden nun zwei verschiedene Wege zur Bestimmung der
optimalen Strategie beschreiten, ndmlich die «integrale» und die «kon-
struktiwe» Methode.

6.1. Die «integraley Methode

Wir gehen aus von der Entscheidungsmatrix 8.8.6. oder vom Tri-
pel (D, 2, r).
Nach 5.4.1. berechnen sich die Bayesschen Risiken 7 (d,) wie folgt:

6.1.1. Tdy) = D) r(dy, o) “p(w))

wj €

=3 (2 u[dk(y),wf]'P(ylwf))'P(“’f')

wjeﬂ YES

,-21 (Z uld,(y), o;] 'p(ylw,)> ;.

y=0
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Der erste Ausdruck von 6.1.1. geht auf Grund von 4.6a und 4.6b
iiber in

6.1.2. F(dy) = {{K (1 —a) —s] 70y + [-K Br—s] -7y

— 100 (1 —oy,) ~ 7w, —1000 - B, - 75— 10..

Tabelle 5 enthilt in den Kolonnen (4), (5) und (6) die Bayesschen
Risiken fiir verschiedene Werte von x,, d.h. fiir verschiedene A-priori-
Verteilungen iber 0.

So findet man etwa in Kolonne (6) fir m; = 0,9 ein maximales
Bayessches Risiko von 71,17, und die zugehdrige optimale Strategie ist
iy

Praktische Interpretation

Sobald der Abnehmer mit guten Griitnden annehmen darf, es
werdeihmhéchstwahrscheinlich (7,=0,9) ein guter Warenposten (w =w,)
angeboten, so wird er die Entscheidungsregel d, zugrunde legen.
Diese fillt geméss unserem A-priori-Wissen viel optimistischer aus als
jene nach der Minimaxregel, was auch rein intuitiv zu erkléren ist.

Fir jedes feste k ist das Bayessche Risiko eine lineare Funktion
von m,

6.1.3. Te(my) = r(dy, 0p) 7ty + r(dy, @g) - (1—7y) .

In der nachstehenden Figur 6 sind die Geraden far k =0,1,...6
eingezeichnet.

Der oberste einhiillende Streckenzug A BCDEF vermittelt uns zu
jedem Wert 7, €[0, 1] die optimale Bayessche Strategie. Fiir #; = 0,8
liest man z.B. die optimale Strategie d, ab.

6.2. Die «konstruktivey Methode

Im Gegensatz zur integralen Methode beziehen wir uns jetzt auf
die urspriingliche Entscheidungsmatrix E in 8.3.2. oder auf das Tripel
(4, £, u), und tiber (2 sei wieder eine A-priori-Verteilung W = {n 13 Tgs
... 7, } gegeben.
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6.2.1 7Ty By ov: T,
W, Wy w,,

aq 2T Uis Ui

Qg Ugy Uss Uz

Sei i € S die Realisation der Stichprobe, d.h. die Anzahl defekter
Stiicke. Diese Beobachtung y (Trdger neuer Information) gibt nun An-
lass zu einer Anderung der urspriinglichen A-priori-Wahrscheinlich-

keiten p(w;) = =;.

Nach der Bayesschen Regel berechnen sich die sogenannten A-
posteriori-Wahrschewnlichkeiten

Wahrscheinlichkeit, dass o= wj, gegeben die Beobachtung
p(w;|y) =

yesS
wie folgt:
P (ylw;) - plw)) p(ylw;) -
6.2.2.  ploly) = LA
_Zegp(ylwa *ple;) le(ylwi) -7;)

Ein Zahlenbeispiel mége die Anderung illustrieren:

m = 2 (nach Abschnitt 4); w, = 0,25, w, = 10,75

n = 10 (Stichprobenumfang)

y = 6 Dbeobachtete Anzahl defekter Stiicke

7w, = 0,9 A-priori- Wahrscheinlichkeit fiir guten Warenposten

p(6|ew,) - 0,9 0,016-0,9
P (w,]6) = = ~
p(6lw)-0,9 + p(6|lwy)-0,1  0,016-.0,9 4 0,146 -0,1

F) .

Das ursprungliche Vertrauen auf Lieferung eines guten Warenpo-
stens, das sich in der nahe bei Eins gelegenen Wahrscheinlichkeit =,
manifestierte, ist auf Grund der relativ hohen Anzahl von defekten

Stiicken (y =6) auf rund 0,5 gesunken.
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Konstruktion der optimalen Strateqie

Zu jedem y ¢S (y =0,1, ..., n) wihlen wir jene Letztentscheidung
aped (k=1,2) fur die

der A-posteriori- Erwartungswert des Nutzens maoglichst gross wird, d.h.

6.2.3. Zuk?--p(w”y);Eu”-p(wily); 14 k.
i 7

6.2.3. induziert somit eine Entscheidungsfunktion d*eD, und

zwar eine optimale im Sinne der jeweiligen Maximierung der Nutzen-
erwartungen.

Im Falle 7, =7, =0,5 (Laplace-Kriterium) ergibt die Konstruk-
tion:

Wenn y <3 dann wihle a,
Wenn y >3 dann wihle a, .
Diese Strategie ist aber identisch mit d4, d.h. mit der nach der in-

tegralen Methode im Falle 7, =0,5 gefundenen optimalen Strategie.
Dies ist kein Zufall, wie wir im néchsten Abschnitt zeigen werden.

6.8. Aquivalenz der beiden Methoden

Vorerst zeigen wir, dass eine im Sinne der konstruktiven Methode
optimale Strategie d* auch optimal ist nach der integralen Methode.

Zu zeigen: Das nach 6.1.1. definierte (negative) Bayessche Risiko
st fiir d* e D am grossten, d.h.

’
/

6.3.1. max#(d) =F(@d*) = > (2 u[d*(y),m,.]-p(y|w,.))-p(w,).

d€D w; €2 \y€S

Nach der Bayesschen Regel folgt:

6.3.2. p(ylw;)-plo;) = plw;]y) -p ().
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Die rechte Seite von 6.3.1. geht nun nach 6.3.2. und der Anderung
der Reihenfolge der Summation iiber in

635, @) = 3 (3 @) 0] plosly) ) pw).

y€S \w; €92

~

E

y

Nach Voraussetzung ordnet aber die optimale Strategie d* jedem
y € S jene Aktion a; € A zu, fir welche der A-posteriori-Erwartungs-
wert E, moglichst gross ist. Damit wird aber auch die dussere Summe

in 6.3.8. maximal. q.e.d.
Sei nun d die optimale Strategie nach der integralen Methode, d.h.

6.3.4. . #(d) =7(d) firalle deD.
Andererseits haben wir fiir d* soeben bewiesen
6.3.5. F(d*) = 7(d) furalle deD.

Da 6.8.4. insbesondere fiir d = d* und 6.8.5. fir d =d gilt, folgt

schliesslich
(d) = 7(d*) = 7(d)

7(d%) .

=

)
und 7 (d)

Damit ist die Aquivalenz bewiesen.

6.4. Zusammenfassung und symbolische Ubersicht

Nach der integralen Methode wird, ausgehend vom Tripel (4, Q,
u), iber dem Stichprobenraum S der Raum D der Entscheidungsfunk-
tionen aufgebaut, was zum Tripel (D, £, r) fiihrt.

Die Maximierung der A-priori-Erwartungswerte fithrt zur optima-
len Strategie d.

Nach der konstruktiven Methode wird die A-priori-Wahrscheinlich-
keit #; auf Grund der Stichprobeninformation y € S nach der Bayes-
schen Formel modifiziert. Die Maximierung der A-posteriori-Erwar-
tunswerte definiert dann die optimale Strategie d*.
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Das nachfolgende Diagramm symbolisiert die beiden Varianten,
die zum selben Ziel fithren; dabei bedeuten:

Q: Zustandsraum, versehen mit A-priori-Verteilung.
2% Zustandsraum, versehen mit A-posteriori-Verteilung.
IS iiber dem Stichprobenraum S erfolgt die Konstruktion
—~:  von ...

Es bzw. E,.: Erwartungswert beziiglich Q bzw. Q*

4, 3, 4, ) 5 D, 2,7
S
y V
Max Max _
A4, O* fie s D, 0.7 .

7. Spieltheoretische Interpretation

Wir beziehen uns auf die Bemerkungen von Abschnitt 2.4. und in-
terpretieren das Tripel (4, 2, ) als Spielmatrix 2. Ordnung eines soge-
nannten 2- Personen- Nullsummenspiels des Entscheidenden (Statistiker)
als 1. Spieler gegen die Umwelt oder Natur als 2. Spieler.

u,;; 18t dann der Nutzen oder Gewinn des 1. Spielers und gleichzei-
tig der Verlust des 2.Spielers bei Anwendung der Strategien a, bzw.
w;.

T Eine Wahrscheinlichkeitsverteilung W, = (7, 7,) iiber 2 kén-
nen wir dann als sogenannte gemaschie Strategre der Umwelt bezeichnen
und entsprechend eine Verteilung W, = (p,, p,) uber dem Aktions-
raum A4 als gemischte Strategie des Entscheidenden.

Die erstere bezeichnen wir fortan mit (7, ®,, 7, ®,) und die letz-
tere mit (p, aq, Py @y).

Eine Strategie mit 7; = 1 (bzw. p; = 1) heisst eine reine Strategie.



7.1. Ty Ty

P1 i G | Uy Uy

P2 Gz | Upy  Upp

Nach 4.4. geht 7.1. tiber in

7.2 | o, o,

a, |[K—s —K—s

ay | —S$ —s

Grundsétzlich ist festzuhalten, dass die Losung des Spiels 7.1.
entweder im Bereich der reinen oder der gemischten Strategien liegt.
Im 1.Fall besitzt die Spielmatrix einen sogenannten Sattelpunkt, im
2. Fall nicht.

Die folgenden Sétze beziehensich auf 2-Personen-Nulisummenspiele.

Satz 7.1. Wenn u,; zugleich Zeilenminimum und Kolonnenmaximum
1st, ist (4, 7) ein Sattelpunkt und umgekehrt.

Satz 7.2. Kriterium von von Neumann [11]. Eine Spielmatrix 2. Ord-
nung besitzt genau dann keinen Sattelpunkt, wenn die
Elemente in den Diagonalen «separierbary sind, d.h. wenn

Uy > Uyg  Und  ugy > Uy,
oder
Ugqg < Ugg. 90 Ugp < Ugy -

Satz 7.3. Wenn die Voraussetzungen von Satz 7.2. erfilllt sind, hat
das Spiel eine eindeutige Losung im Bereich der gemischten
Strategien, und zwar

1.8pieler:  (p]ay pya, mit pj =

Uge — Uy

. * * . *
2.8pleler: (7w, wy, Wywy) mit m =
Uyy T Ugg —Uy1g —Ugy

* *
7ty = 1—ay.



Das spezielle Spiel 7.2. hat nach Satz 7.1. einen Sattelpunkt in
(2,2) mit einer eindeutigen Losung im Bereich der reinen Strategien:

«Der Entscheidende wihlt Aktion a, und die Umwelt den Zu-
stand w,.»

Damit resultiert der Nutzen u,, = —s, der sogenannte Wert des
Spiels. Wihlt man anstelle der urspriinglichen Nutzen oder Gewinne
u,;; die nach 5.8.1. definierten entgangenen Gewinne l(a;, w;), so geht
7.2. itber in

7.8. | W, Wy
a; | 0 K
a, | fK 0

Diese Matrix wird als Nullsummenspiel aufgefasst, wobei die ent-
cangenen Gewinne als «Schaden» des 1.Spielers (Statistiker) und
gleichzeitig als Nutzen des 2. Spielers (Umwelt) zu interpretieren sind.
Nach den Sétzen 7.2. und 7.3. besitzt dieses Spiel eine eindeutige
Losung im Bereich der gemischten Strategien, nimlich:

. / 1
1. Spieler: (mal, -l—ﬁaz ;

: 1 f
2. Spieler: (1+fw1, 1+fw2> .

Geometrische Interpretation

Sei S der erwartete Schaden des Statistikers, wenn er a; wihlt
und die Umwelt (7,0, mow,) mit my =1—m,.

SP = E(1-=,)
Man findet: <z, =1.
SY) = fK -7,



S = min S
i=1,2
» T . - K
v = max min S = --—f—-—-—
n€0,1] i=1,2 1+f

* " - * ]' - - . -
(78, w1, 7Ty y) MIb 7Ty = T 15t die optimale Strategie der Umwelt

+1
(auch ungiinstigste A-priori-Verteilung genannt), zwecks Maximierung
der minimalen Schiden ihres Gegenspielers.

Im niichsten Abschnitt wird gezeigt, wie 7, = — ¥ bel der Be-
+
stimmung der optimalen Strategie (nach der sogenannten konstruk-
tiven Mehtode und unter Beniitzung der entgangenen Gewinne — siehe
6.2.3) eine Rolle spielt.

8. Briickenschlag zur «klassischen Statistik»

Wir gehen aus vom Tripel (4, £, I), das wir soeben spieltheore-
tisch interpretiert haben.

Aus Figur 7.1 liest man fiir den 1. Spieler folgende Entscheidungsre-
gel ab:

1
8.1. 7 > Akti
7Ty < 1 _*_f 101 G
1 . .
Iy = Aktion a, oder Aktion a,
1+f
1 .
1> > Aktion a,,

1+f
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Nach der sogenannten konstruktiven Methode (siehe 6.2.3.) ordnen
wir jedem Stichprobenergebnis y € S jene Aktion a, zu, fir die der
A-posteriori- Erwartungswert der entgangenen Gewinne moglichst klein vst.

Ersetzt man daher in 8.1. die A-priori-Wahrscheinlichkeiten
7, = p(w,) durch die A-posteriori-Wahrscheinlichkeiten p(w,|7), so
modifiziert sich die statistische Entscheidungsregel nach der konstruk-
tiven Methode wie folgt:

1
8.2. 5

plo,|y) < 147 Ay

! 1
o —> 0

P (4| y) 157 a, oder @,
1

P(wlly)>1+f > Oy .

Nach 6.2.2. folgt fiir p(w,|y) nach einer kleinen Umformung:
p(ylws)

plylo) 1—m = plle)
P (y]w,) 431

0.

8.3. plo|y) =

1+

8.2. geht dann tber in die dquivalente Form

P(y|w2)
P (ylwy)

3o ] e g,

P (Y|w,)

8.4. =" >(C ——— a,; oder a,
P (y|w,)

P (y|w,)
| P (Y|wq)

<C —— ay,

wobel C Losung der Gleichung

8.5 1 P 1

.5. —_— =g = ——
1—x= 1+7
140 1

51

in der Unbekannten ) ist.




Aus 8.5. folgt:

431

8.6. C=f
1—m,

Mit 8.4., dem sogenannten Inkelithood-Quotiententest, haben wir die
Nahtstelle mit der «klassischen» Statistik gefunden.

Es 1st uns gelungen, die Grenzzahl C durch eine ékonomische Bewer-
tung evnerseits (f = Gewinnsatz) und sogenannte A-priori-Vorurteile an-
dererseits (m; = Idealmass fir die Glaubwiirdigkeit in «guten» Waren-
posten) zu motivieren und mattels 8.6. funktionell darzustellen.

Interessant ist die Feststellung, dass sich die ungiinstigste 4-priori-

N 1 :
Verterlung 7, =17 (vom Entscheidenden aus gesehen) auch von

e
den urspriinglichen Nutzen oder Gewinnen her (7.2.) ableiten lisst.

Berechnung der optimalen Annahmekennzahl k*

Ersetzt man in 8.4. die p(y|w;) durch

& y n—y
p(y|w;) = (y>wi(1 —w)" Y,

so geht etwa die linke Seite der 1.Zeile von 8.4. iiber in

Wy \Y 1 —wy \" ¥
8.4a. sl I I Ghive > C; Wg > Wy
w4 1 —w,

weiter folgt durch Logarithmieren
A = log (Eoﬁ> o3}
g

Ay—B(n—y) > logC mit )
R = —10g<-1—-?32>> 0
logC + nB

1 >
oder Y 118

Da y € S nur ganzzahlige Werte (oder Null) annehmen kann, folgt
tir die optimale Annahmekennzahl £* im Sinne des Bayesschen Krite-
riums
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8. L _ logC + nB wobei [z] = grosste ganze
o o A+ B > Zahl kleiner als z.
Ersetzt man € nach 8.6., so folgt endlich:
log [f - } + nlog(&>
1—m, w,
8.8. B = :

(w2 ]. —601>

log|{ — -

wl 1 _‘a)2
Obige Formel gestattet uns im Falle des Testens einer einfachen

Hypothese w = w, gegen eine einfache Alternative w = w, (wy>w,)

bei gegebener 6konomischer Bewertung nach 7.2. bzw. 7.4. (f = Ge-

winnsatz) und bekannter A-priori-Verteilung W = (7, 1 —m;) tiber Q

die nach dem Bayesschen Kriterirum optimale Annahmekennzahl k*
bzw. die optimale Entscheidungsfunktion d, zu berechnen.

f=0’1; ﬂ1:0,7, n = 10

Ein Zahlenbeispiel :
w, = 0,25; = 0,75,

Nach Figur 6 miusste k* offenbar 4 sein.
Nach 8.8:

7
log (-86) + 10 - log 3

log 9

|

I

= [4,08] = 4.

9. Planung bei Unsicherheit

9.1. Ewleritung

Die bisherigen Betrachtungen erstreckten sich auf die entschei-
dungstheoretische Interpretation und Losung eines innerstatistischen
Problems, nimlich auf das Testen von Hypothesen. Dabei beschrankten
wir uns (besonders bei den Konstruktion optimaler Strategien) auf den
Zustandsraum £ mit 2 moglichen Zustéinden w, und w,.
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Wir wollen im folgenden den Anwendungsbereich etwas weiter
fassen und die Planung beir Unsicherheit entscheidungstheoretisch
motivieren und in gewissen Fillen die optimale Strategie konstruieren.

Dabei kommen neue Aspekte hinzu, ndmlich:

a) anstelle der Gewinne (Nutzen) werden jetzt grundsitzlich die ent-
gangenen Gewinne oder «opportunity losses» der 6konomischen Be-

wertung zugrunde gelegt;
b) die oben definierten Gewinne werden als lineare Funktion der Zu-

standsvariablen w angenommen;

¢) der Zustandsraum £ wird auch auf das ganze Intervall £2 =[0, 1]
erstreckt (unendlicher Zustandsraum);

d) iber £ =[0,1] wird eine besonders umfassende Klasse von

A-priori-Verteilungen niher studiert.

9.2. Formulierung des Problems

Ein Unternehmen plant die Fabrikation eines neuen Artikels, der
nur wihrend einer kurzen Zeit auf dem Markt abgesetzt werden kann.
Dabei sei unbekannt, welcher Anteil w (0 < w < 1) der potentiellen
Kiéuferschaft (N Personen) den Artikel beschaffen wird.

Vereinfachende Annahmen (unter Ceteris-paribus-Voraussetzung):

F = fixe Herstellungskosten, die bei der Fabrikation neu
erwachsen.

g = Nettogewinn pro Stiick (dieser Gewinn versteht sich

9.2.1. als Restgrosse aus Verkaufspreis abziglich variable

Kosten pro Stiick).

@ = Anteil der potentiellen Kéduferschaft, fiir den die fixen
Kosten durch den Verkauf gerade gedeckt werden, d.h.
N-w-g=F.

Die Unternehmensleitung verfiige iiber zwei Aktionen oder Letzt-

entscheidungen:
a,: nicht fabrizieren

ay: fabrizieren.

Die Zustinde w €[0,1] (oder w;, wenn es nur endlich viele Zustinde
gibt) sind die theoretisch moglichen Absatz- oder Verkaufsziffern.
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Erfolgt die Aktion a; (v = 1, 2) im Zustand w, so resultiere daraus
ein Gewinn u(a;, w) bzw. u(a;, ;), fir den wir folgenden Ansatz
machen.

[u(al, w) =0
9.2.2.
|_u(a2,w):c(w—(5); ¢c>0, l<wo<l,
wobei noch gilt: cw=F = Nag
oder e = Ng.

Praktisch wohl von grosserer Bedeutung sind die sogenannten ent-
gangenen Gewinne oder «opportunity losses» I(g;, w), die nach 5.8.1. wie
folgt definiert sind:

9.9.3. la;, w) = max u(a,, o) —u(a;,w) [12]
h=1,2

Nach 9.2.2. folgt dann

; ) [0; < ®
Gy, W) ==
(@ |e(w—a); > o
9.2.4.
[c((ﬁ—w), w=ao
How o) = |, vza
l(a, w) las, )
o> F
0 bl 1 e 0 o 1 b

Stichprobenerhebung. Entscherdungsfunktionen

Mittels einer Stichprobe werden wir auch hier versuchen, Infor-
mation iiber die unbekannten Zustinde w € {2 einzuholen.
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Konkret werden z.B. n Personen aus dem potentiellen Kéaufer-
kreis zufillig befragt, ob sie den besagten Artikel kaufen werden oder

nicht.
Unter gewissen, in 3.3. formulierten Voraussetzungen ist wie-

derum die Anwendung der Binomialverteilung erlaubt.

Y = Anzahl Personen unter den n befragten, die mit ja antworten.

n n—y
P{Y =y|o} =ply|o) = (y> ro¥ (1 —w)*?
Def.
p{Y <k|ow} = Z py|o) = Ok|o).
@ (k | w) ist die sogenannte Vertezlungsfunktzon.

Dabei haben wir wiederum eine Entscheidungsfunktion oder Stra-
tegie d, festzulegen, die jedem y ¢S genau eine Aktion a;(r=1, 2) zu-
ordnet.

Analog 4.2. definieren wir die folgende Teillmenge von Entschei-
dungsfunktionen

[al, falls y <k

9.2.6. &, (y) =
MU= s gk

Zu jedem Zustand o € {2 berechnet sich jetzt das sogenannte
Risiko oder der mattlere entgangene Gewwnn r(dy, )

r(dy ) = Z [y (y)s0] - p(y | w)
oder gemiiss 9.2.5. und 9.2.6.
9.2.7. r(d,0)=0Fk|w) - l(a,w) +[1-DF|w)] - l(ay, o).

Konstruktion optvmaler Strategien

10. Unsicherheitssituation i. e. S. Endlicher Zustandsraum.

Minimax-Kriterium

Uber die Haufigkeit des Auftretens der w, ¢ 2 (j =1, 2, ... m) sei
nichts bekannt. In einer solchen Situation kann man etwa mit dem



Munvmaz-Kriterium die optimale Strategie d, bestimmen. d, heisst
dann optimal, wenn

10,1 max 1 (d, ;) = minmaxr(d;, o;) .
w; €92 di€D wjeR
Konkrete Durchfithrung an einem praktischen Beispiel

In der Praxis mag es vorkommen, dass lediglich einige wenige Zu-
sténde oder Anteile w; als méglich erscheinen.
Wir treffen deshalb folgende Annahmen:

YYNE SENS X I
. 100
10.2. 1 4
“ 100
1 = 100 (= Anzahl der befragten Personen)

und in Anlehnung an 9.2.4., indem man  durch ; ersetzt,

15 0=7=4
Z(CLI, w,) _ . -
c(j—4); 4<j=8
10.3.
[c(4—1); 0=j=4
l(az, CU]) — i .
1& 4<<) <8

Die mittleren entgangenen Gewinne (Risiken) berechnen sich nun
nach 9.2.7. unter Beriicksichtigung von 10.2. und 10.3. wie folgt:

(c-[1—Dk|w)]-(4—)); 0=j=4

10.4. Td,w =
e 22) lc-é(kle)-(j—@; 4 <9<8.

Bei der Optimierung kann man offenbar ¢>> 0 vernachléssigen,
und @ (k|w;) berechnet sich nach der Poisson-Verteilung mit hinrei-
chender Genauigkeit:

5 ] £ @
10.5. @(ij) =D k| — | =~ Z
=0

I B=ll, oY,
100 s!




Die numerischen Werte von 10.5. wurden dem Tabellenwerk [13]

entnommen.

Bis auf den konstanten Faktor ¢> 0 sind die mittleren entgange-

nen Gewinne 7 (d,, w;) nachfolgend tabelliert.

Hierbei ist zu beachten: @ (k|w,) = @(k|0) =1 fir £ =0,1,.
r(d,, wg) >1 fir £k >6.
Tabelle 10.1.  |r(d;, o))
i, Y5l wy | o 0, wy | 0y | s wg @, ws Max
dy 0 | 1.899| 1.730| 0.951| O | 0.007| 0.005| 0.003| 0.001| 1.899
d 0 | 0.795| 1.188| 0.801| O | 0.040| 0.034| 0.021| 0.009| 1.188
dy 0 | 0.243| 0.648| 0.577| 0 | 0.125| 0.124| 0.058 | 0.028| 0.648
dy 0 | 0.057| 0.286| 0.353| 0 | 0.265| 0.302| 0.243| 0.168| [0.353
dy 0 | 0.012| 0.106| 0.185| 0 | 0.440| 0.570| 0.519 | 0.400| 0.570
ds 0 | 0.003| 0.034| 0.084| 0 | 0.616| 0.890| 0.900| 0.573| 0.900
dy 0 0 |0.010] 0.034f 0 | 0.762| 1.212| 1.350| 1.252| 1.350

Da maxr(d;, w;) < maxr(d;, o))

i

d tst die optimale Strategie.

i

fur alle 7 &+ 3,

11. Risikosituation. Endlicher Zustandsraum

Uber dem Zustandsraum Q —

Wahrscheinlichkeitsverteillung W
Unter dem Bayesschen Risiko 7(d,) verstehen wir geméss 5.4.1.

11.1. 7(d) = i

7 (s w

(wy, Wgy ...

={7zl, Tgy oeu TT

zm: 7 (dys ;)

Nach der integralen Methode ist d;, im Sinne des Bayesschen Kri-

folgt:

w,,) sel eine A-priori-
) bekannt.

teriums optimal (angewandt auf die entgangenen Gewinne), wenn

7(dy) =7(d;);

1+ k.

Min Max
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Numerische Durchfiihrung fiir das Beispiel in Abschnatt 10
Neben 10.2. und 10.3. gelte:
7, = konst. ——— Laplacesches Kriterium !

Nach 10.4. berechnet sich dann das Bayessche Risiko (bis auf
einen konstanten Faktor) wie folgt:

8
11.2. Fdy) = D) r(dy, )
j=0
4 . 8 .
= Z [1—@(15!(07-)]  {esg) o 2 Q(Mw;') (1—4)
7=0 =5
8 ) 4 ]
= > D(k|w,) - (J—4)+ D 4—9
j=0 7=0
8 .
= N D(k|w,) - (—4)+6 =Z(k) +6.
i=1
Fig. 11.1.
£
4 B i
3 .’,/"/
24 /.’/
1 /,’//
.(/ s
N N S S T S S S S S S e S R
_1-‘\ ,‘//
24\ I,’
\ J
= \\\ ///
4 \\ ,u'/
—__{
e Min




e BT e

8

11.3. Zk) = D dk|w) - G—4).

1=1

Fur welchen Wert von k=0,1,2, ..., 99 ist die Zielgrosse Z (k)
minimal ?

Aus Figur 11.1 lesen wir ab:

minZ(k) =Z%(3),  d.f.:
k

dy st die optimale Strategie nach Laplace.
Man beachte ausserdem:

w; € Q; D (k| w;)~1 fir k> 15 und somit

8
Zk)~ > (1—4) =4 fur k>15.

j=1

Graphische Interpretation der integralen und konstruktien Methode
mit Baumdiagrammen

11.4. Integrale Methode

Wir versuchen das Bayessche Risiko 7(d,) graphisch zu illustrie-
ren. In seiner urspriinglichen Form heisst es

@) =3, ( y;; 1, (), o05] p(ylw,-)) el

¥y 5 Wy x> 5 B Zustédnde der Umwelt

y=0,1,...n FErgebnisse der Stichprobe
p(w,) = 7, A-priori-Wahrscheinlichkeiten iiber Q2
d.(y) = Entscheidungsfunktion nach 9.2.6.

Jeder Entscheidungsfunktion d, (k = 0,1, ...,n—1) kdnnen wir das
folgende Baumdiagramm in Form einer sogenannten zusammengesetzien
Lotterie L, zuordnen:



l(a,, w,)

l{ay, w))

i(a,, tu’-)

la,, w,‘)

l(al’ (Um)

l(az’ wm)

l(a,, w,-)

Ya, 0) Y=k

l(ay, ») J

Hay, ;)
I(ay, ) ry>k

Uay, w;)
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Das Bayessche Risiko 7(d,) kann somit als Erwartungswert der
zusammengesetzten Lotterie L, interpretiert werden, und d, heisst
optimal (nach der integralen Methode), wenn die zugehorige Lotterie L,
den kleinsten Erwartungswert hat.

11.5. Konstruktive Methode

Jedem Stichprobenergebnis y €S (y = 0, 1, ... n) wird jene Aktion
a; zugeordnet (v=1,2), fiir die der A-posteriori-Erwartungswert &,

E, = Zi La;, ;) - p(w;|y) moglichst klein ist.
2

Jedem y ¢ S kénnen wir somit das folgende Paar (B,, B,) von
Lotterien zuordnen.

Fig. 11.3.

I(ay, ) l(ay, w,)

yeS w;
Plw;|y)

®l(a;, ) By

\9@

la, w,) lay o,)

Dabei wihlen wir (zu y € S) jene Aktion a,, fir die der Erwar-
tungswert der Lotterie B; minimal 1st.

Der Baum in Figur 11.3. (konstruktive Methode) ist gerade die
« Umkehrung» des Baumes von Fig.11.2a. (integrale Methode). Die
Bayessche Formel 6.2.2. gestattet uns, die transformierten Wahr-
scheinlichkeiten, die mit einer solchen Umkehrung verbunden sind,

berechnen.
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12. Risikosituation. Zustandsraum 2 =[0,1].
A-priori-Betaverteilung iiber 2

Sei @(w) die Wahrscheinlichkeitsdichte einer beliebigen Vertei-
lungsfunktion @ber 2 = [0,1]

12.1. p(w) =0; f(p(w)dwzl; 0<w<1.

Das Bayessche Risiko fur das 2-Aktionen- Problem nach 9.2. ist
dann bekanntlich

1

22 7(@) ~ [ (310l 0] - ply]0)) - glo)do

0

= [{B(F]0) - Hay, @) + [1-B(k]0)] - Ua, 0)}p () do
:f@(k|w) [l(ay, ®) —1(ay, )] p(@)dw + S .
0

Nach der wmntegralen Methode ist die Strategie d, optimal, falls
F(d;) < 7(dy) fir alle & &+ 1

oder, da S von k unabhéngig ist, falls fiir die Zielfunktion Z(k) mit
1
12.3. Z(k) = f@(k]w) [(ay, ©) —L(ay, ©)]@(w) do
0

gilt: Z (i) < Z (k) firalle & + 4.

Wir wollen nun fiir ¢ (w) eine ziemlich umfassende, zwel-paramet-
rige Gesamtheit von A-priori-Verteilungen zulassen, ndmlich die soge-
nannten Beta-Verteilungen [14].

Ihre Dichtefunktion f, 4 (w) ist wie folgt definiert:

o* ' (1—-w)P?, =0=
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mit der sogenannten vollstindigen Betafunktion B(a, ), die bereits
von Leonhard Euler in einer speziellen Form untersucht wurde.

1
12.4 a. B(a, f) = f 011 —w)f ' do
0

Ersetzt man nun in 12.3. die I(a;, w) durch die speziellen linearen
Funktionen 9.2.4. und @ (k|w) nach 9.2.5., so folgt:

12.5.

c : - " i -1 1
Z(k):é(a’ﬁof [g(y% (1—w) ]-(w—w)o) (1—w)* ' dw

n

c (" l
— s Bla+y+1, B+n—y)—w- Blaty, B+n—y)|;.
B(a,ﬁ)]g.(y)[ (a+y+1,ptn—y (ety, B y)]l
Die Zielfunktion Z (k) ist also im wesentlichen abhidngig von der
vollstdndigen Betafunktion.
Der folgende Hilfssatz gestattet uns, die erste Zeile von 12.5. um-
zuformen:

Hilfssatz: [16]:

Sei Y eine binomial verteilte Zufallsvariable und w die zugehdrige
Grundwahrscheinlichkeit ; dann gilt:

12.6.
@k (1 _t‘)n—k-—i Bk (w)
Y>klo)=1—&(k|w) = R Y ,
wobei
12.6. B, s() = [ 11—t dt

0
die sogenannte unvollstindige Betafunktion darstellt [15].

Der erste Term in 12.5. geht dann iiber in

% I C - | - Bk+1,n—k(w)_ . - | PRY: =1
Z(k) = ll mh)J (w—@) - 0* " (1 - do .
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Die Minimierung von Z (k) ist somit dquivalent mit der Maximie-
rung von

12.8.

1 1
27 k) = B(k+1;n—k) Of [Biys,nr ()] + (0—&) 0" (1—0)* dw.

Fir den Spezialfall der sogenannten Rechtecksverteilung, d.h. fir
o= =1, lasst sich Z* (k) explizite durch vollstindige Betafunktionen
beschreiben.

12.8. geht unter den genannten Voraussetzungen iiber in:

1 7
Z*0) = Fo T 6[(0] (1 -yt dt) (0—) doo .

Nach partieller Integration und einigen kleinen Umformungen
findet man (von einem konstanten Summanden abgesehen):

12.9.

1 1
Z* (k) = 5-B(k+2, n—k)— - B(k+8;n—F) | .
®) B(k+1;n—k)[“’ N T )]

Abschliessend wollen wir fir den allgemeinen Fall («, > 0 beliebig)
die optimale Strategie nach der konstruktiven Methode ermitteln.
Sie wird sich als flexibler und praktischen Problemen zugénglicher er-
weilsen.

Nach der konstruktiven Methode ordnen wir jedem Stichproben-
ergebnis yeS (y=0,1,...n) jene Aktion a;, ¢4 (1 =1,2) zu, fur die
der A-posteriori-Erwartungswert der entgangenen Gewinne

G4

1

12.10. E.:fl(ai,w)-p(wly)dcu; i=1,2
0

minimal ist.

p (w|y) ist die sogenannte A-posteriori-Dichte iber £ und ldsst sich
nach der Bayesschen Formel wie folgt berechnen:
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1211, plo)|y) = — LU P@ ) — A priori Dichte.
[ p)]o)- () do

0

Unter Beriicksichtigung der speziellen Annahmen fiir [ (a;, ) nach
9.2.4. und fiir ¢ (w) nach 12.4. folgt aus 12.10.:

1 o1 (1 _w)ﬁ+n—y—1
E, = [ (w—a)— dw
f e+l (1 gf+mrt gy
@ 0
1

und nach 12.4. = f (@0 =) fupy, prny (@) do
analog: E, = f (& —©) oy, prny (@) doo .

0

Wir bilden nun die Differenz A der beiden Erwartungswerte

1

12.12. A=E, —E, = f (0= @) fory, gy (@) do

0
1
= [ @ fary by (@) do— 5.
0

1
f wfdw ist aber der Erwartungswert einer betaverteilten Zufalls-
0

variablen @ mit den Parametern « +y und g +n—y.

Nach [14], S.60, ist der Erwartungswert der Betaverteilung

somit folgt

12.13. d=———a.
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Die konstruktive Methode besagt nun:

oty _
— o0 ) e
a+pf+n

A

12.14. = B ety BlE ,

a+pf+mn

o+ y _
A B ) e
x+f+mn

12.14. gestattet uns, analog 8.7., die im Sinne der integralen Methode
optimale Annahmekennzahl k* zu berechnen:

K =[(B+n) - @ —a(l-@)].

wobel [x] = grosste ganze Zahl < z.
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Zusammenfassung

In einem ersten Teil wird am Beispiel des Testens statistischer Hypothesen
gezeigt, wie ein Problem der «klassischen» Statistik im 6konomischen Modell der
Entscheidungstheorie (nach A.Wald, 1950) interpretiert und gelost werden kann.
Insbesondere werden nach dem sogenannten Bayesschen Kriterium optimale Stra-
tegien auf zwei verschiedenen, aber dquivalenten Wegen hergeleitet. Eine explizite
Darstellung der sogenannten Annahmekennzahl in Funktion der relevanten 6kono-
mischen und umweltsbedingten Parameter beschliesst dieses Kapitel.

Der zweite Teil ist der Planung bei Unsicherheit, beschrankt auf das 2-Aktio-
nen-Problem, gewidmet. Unter der Annahme eines linearen Verlaufs der sogenann-
ten entgangenen Gewinne und einer A-priori-Betaverteilung iiber dem Zustands-
raum wird eine optimale Strategie konstruiert.

Summary

A central problem in the field of «classical» statistics (testing hypotheses) is
presented and solved in the economic model of the mathematical decision theory in
the sense of A.Wald. Particularly, optimal strategies are developed by two diffe-
rent but equivalent methods, based on the criterion of Bayes. It follows an explicit
presentation of the acceptance number depending on the relevant economic and ex-
ternal parameters.

Secondly, the problem of design under uncertainty, limited to the case of two
actions, is treated. Under the assumptions of a linear opportunity loss and an a
priori Beta-distribution over the state space, an optimal strategy is constructed.

Résumé

Dans une premiére partie, un probléme de la statistique «classique» (illustré &
Iexemple du test) est présenté a I’aide du modeéle de la théorie mathématique des
décisions. Particuliérement on développe par deux méthodes différentes, mais équi-
valentes des stratégies optimales d’apres le critére dit de Bayes. Suit une présenta-
tion du nombre d’acceptation (acceptance number) en fonction des parametres éco-
nomiques et ambientales.

La deuxiéme partie s’occupe du probléme de la planification en cas d’incerti-
tude, se limitant au cas de deux actions. Supposant une fonction linéaire des profits
en perte (opportunity losses) et une distribution a priori de béta sur I'espace des
états, une stratégie optimale est construite.
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