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B

Wissenschaftliche Mitteilungen

Statistik und Entscheidungstheorie

(Untersuchungen über das 2-Aktionen-Problem)

Fon JETans Loe$eZ, St. GaZZen

1. Einführung und Problemstellung

In den vergangenen 10-15 Jahren ist die praktische Bedeutung der

aligemeinen Entsclieidnngsflieone für viele Zweige der Wirtschafts- und
Sozialwissenschaften enorm gewachsen.

Jedes Individuum (oder jede soziale Gruppe) steht oft vor dem

Dilemma, zum Teil folgenschwere Entscheidungen treffen zu müssen.
Die Entscheidungstheorie lehrt, wie man in gewissen, modellartig be-

schriebenen Situationen unter vielen möglichen Entscheidungen die

sogenannte «optimale» Entsclieiâînng finden kann.
Hierbei stützt man sich auf sogenannte EntseftewZnngsknferien,

das sind Richtlinien, nach denen ein «rational» handelndes Indivi-
duum seinen Präferenzen im Raum der möglichen Entscheidungen
Ausdruck verleiht.

Eine ganz konkrete Anwendungsmöglichkeit in der Automobilver-
Sicherung hat Hans ßülilmann [1] aufgezeigt. In der Theorie der
sequentiellen ShMteoer/alire?i wird die Konstruktion von sogenannten
«optimalen Prâmienstn/ensî/sfemen» behandelt, wobei die entschei-

dungstheoretische Interpretation auf der Hand liegt.
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2. Das Grundmodell der allgemeinen Entscheidungstheorie

2.1. Begrl//e

Ein Individuum, konfrontiert mit der Umwelt oder der Abator,
steht in der Konfliktsituation, aus mehreren möglichen Aktionen, Stra-

teglen oder Enfscfeeidiingfen die bestmögliche auszuwählen.
Die Umwelt kann dabei gewisse Zustände annehmen, die dem

Entscheidenden entweder vollständig bekannt, nur hinsichtlich der

Häufigkeiten ihres Auftretens bekannt oder vollständig unbekannt
sein können. Je nachdem spricht man von der SiclierÄe'itss'itHation, der
Rlslfcosltnatlon oder der U«sicker/leifssÜMation im engern Sinne

(i.e.S.).
Die Sicherheitssituation (z.B. bei der linearen Optimierung) soll

uns im folgenden nicht interessieren.

2.2. Ökonomische Folgen ron Entscheidungen - Ewßentheorle

Sei H =r [dj, ctg, a„p) der Raum (oder die Menge) der verfüg-
baren Aktionen oder Letztentscheidungen a,-.

Mit ß {cüi Wg » • • wml *) bezeichnen wir den Raum der möglichen
Zustände co^ der Umwelt.

Wählt nun das Individuum (der Entscheidende) die Aktion a. .4

und herrscht gleichzeitig in der Umwelt der Zustand co^ ß, so resul-

tiere daraus ein Ergebnis
e(a»> «,') V

Die e^- bilden den Ergebnlsranm (£.

Dieser Sachverhalt kann auch durch nachfolgende Frgebnlsmatrla;
dargestellt werden.

COj «2 •

«1 Hi ®12 • Hm

ö tO

®nl ®n2 •
Z)

• n?n

1) Wir beschränken uns vorerst auf endliche Räume.
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Die Ergebnisse e^- brauchen nicht zum vornherein quantifizierbar
zu sein. Das folgende ist ein Beispiel eines möglichen Ergebnisses :

«Eine symmetrische Münze wird geworfen. Je nach Ausgang des

Zufallsexperimentes hat man 14 Tage aufs Rauchen zu verzichten,
oder man erhält eine Eintrittskarte ins Theater.»

Die Anwendung von Entscheidungskriterien erfordert eine Qwaw-

L/merwwgf desLr^ebwisrawmesOt. Dies leistet die moderne Nutzentheo-
rie, die im wesentlichen auf ?;ow Newmaww und Morgrewsferw [2] zurück-
geht.

Sei (£ {e^, eg,... e,} der Ergebnisraum und

{(?i> ?2> ••• Pr)} 1 2p; l

der Raum aller IFakrsc.keiwLc/ifeltoertefbtwoew (inkl. der degenerier-
ten) oder Lotterien n&er (£.

Infi* ist eine lineare und transitive Präferenzrelation <; erklärt.
Auf Grund gewisser Axiome (bez. (£*), die im wesentlichen die

«rationale» Handlungsweise des Entscheidenden charakterisieren, kann
die Existenz einer reellwertigen sogenannten IVwteew/wwfcfiow

n(e<) w,-

gefolgert werden [3].

Insbesondere ist der messbare, ökonomische Nutzen, den eine

Aktion % im Zustand cOj- abwirft.
Die Präferenzrelation <: in (£* überträgt sich dann auf die ge-

wohnliche <l-Eettttiow /iir dew enrarfefew Ahttzew, d.h.

2.2.2. (pi,p2,---Pr) ^ (Pnp2>---Pr)
i l t=l

Die Problematik der Konstruktion der Nutzenfunktionen steht
hier nicht zur Diskussion. Für das folgende wollen wir die stets als

bekannt voraussetzen.
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2.3 GrMndraodeZZ der .EnZscTieidMnpsiTieorie

Wir gehen aus von 3 grundlegenden Elementen

a) H {uj, dg, a„} Raum der Aktionen, Strategien oder

Letztentscheidungen

è) ß {a>i, Wg, œ„,} Raum der Zustände o>y der Umwelt.

c) <Wy) w(e^y) «;,• reellwertige Nutzenfunktion über dem
kartesischen Produkt 4 x ö.

Diese Situation kann im Tripel (^4, ß, unkonzentriert und in der

nachfolgenden sogenannten EnZsckeidMwpsTOcrfria: dargestellt werden.

COl tog CO„

«1 «H Mi2

«2 •

«n «M M„2 • * ^nm

2.4. UnZsckeidMupsf/ieone und SpieZZkeorie

Das Tripel (.4, ß, m) kann auch spiel theoretisch wde folgt interpre-
tiert werden:

Spieler Nr. 1 Statistiker, mit den verfügbaren Aktionen oder

Strategien ßy.

Spieler Nr. 2 Umwelt, mit den verfügbaren Zuständen oder

Strategien «y.

Myy Nutzen oder Gewinn des 1. Spielers und gleichzei-
tig der Verlust des 2. Spielers.

Wir haben somit ein 2-Personen-Nullsummenspiel. Ob der Um-
weit oder der Natur die Rolle eines rational handelnden Gegenspielers

übertragen werden kann, ist fraglich. Hier liegt die fundamentale
Nuancierung zwischen allgemeiner Entscheidungstheorie und Spiel-
theorie.
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Ein Beispiel: Cüi «g

«i -4 +3
-1 0

Wäre die Umwelt ein rationaler Gegenspieler, so würde sie Strate-
gie «i wählen, und der Entscheidende (z. B. der Statistiker) würde mit
a2 antworten. Wenn hingegen die Umwelt ohne klare Vorstellung ihre
Strategie wählt, z.B. cog' müsste der Statistiker mit reagieren.

Näheres über diese interessanten Querverbindungen findet man in
Abschnitt 7; bei H..Bwhbrearere in [3], S.114 ff., und [4] sowie bei

P.iVoZ/i [5].

3. Statistik und Entscheidungstheorie

3.1. «.Klassische» Sfafisfifc

Es mag auffallen, dass im Sachregister klassischer Standardwerke
der mathematischen Statistik Begriffe wie Entscheidung, Entschei-
dungsfunktion oder ähnliches fehlen. Die fundamentalen Arbeiten von
B.A.Fisher, J.Neyman, E.S.Pearson und andern mehr führten die
klassische Schätz- und Testtheorie zu einem vorläufigen Höhepunkt.

Begriffe wie Sicherheitswahrscheinlichkeit, Fehler 1. und 2. Art,
Güte und Macht von Tests, Konfidenzintervalle sind dabei von zen-
traler Bedeutung. Efree Qwercertaredrereg m adgemeireere öfcoreorewsehere

Eragesfedreregere bestand aber hanm.

3.2. Vene Wege

xibraham Wald (1902-1950) hat aus dem Sequentialtest heraus
die Theorie der sogenannten statischere Erefccheidrengs/rerehfioreere ent-
wickelt, die eine neue Ära statistischer Betrachtungsweise einleitete.

Seit 1950 (Erscheinungsjahr des fundamentalen Werkes «Statisti-
cal decision functions» [6]) hat sich eine ansehnliche Literatur über
diesen Gegenstand entwickelt, die bis heute über 600 Titel umfasst [7].

Der Anwendungsbereich der neuen Theorie ist sehr weit gesteckt
und reicht von Statistik und Kybernetik über die Unternehmensfor-
schung bis in die Psychologie und Soziologie.
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Die Arbeiten von vonNeumann und Wald haben versucht, statisti-
sehe Schlüsse unter dem Blickwinkel der Entscheidung zu analysieren
und ökonomisch zw bewerten (Nutzentheorie).

Wenn auch ursprünglich die zu erwartenden Erfolge vielleicht zu
optimistisch prognostiziert wurden, ist doch zweifelsohne eine gewal-
tige Läuterung und Bereicherung statistischen Denkens im Zuge der

neuen Betrachtungsweise zu verzeichnen.
Hat man früher von statistischen Urteilen gesprochen, so will man

jetzt die Verfahren statistischer Inferenz (Schlussweisen) im Lichte der

Entscheidungen interpretieren und lösen.

Wie das geschieht, wollen wir an einem bewusst einfach gehalte-
nen Beispiel nachfolgend darlegen.

3.3. Das Wesen statistischer Entscheidung

Ein grundlegendes Problem der statistischen QwaKfafskontroite soll
auf das Grundmodell der allgemeinen Entscheidungstheorie nach 2.3.

transformiert werden.

S'fawdardbeispieL Ein Warenposten enthält sehr viele gleichartige
Massenartikel, die entweder gut oder defekt sind. Der Anteil co defek-
ter Stücke im Warenposten sei unbekannt.

Der Produzent behauptet beispielsweise, die Sendung enthalte
25% Ausschuss; soll der Abnehmer dies glauben oder nicht

Der Statistiker (als Berater des Abnehmers) verfüge über zwei

Aktionen, Strategien oder Letztentscheidungen, nämlich

a^: «Akzeptiere den Warenposten».

I ag : «Lehne den Warenposten ab».

Der Aktionsraum A enthält also nur 2 Elemente. Man spricht
dann von «Testen von Hypothesen».

Die möglichen Anteile co^, cog, ••«)„ defekter Stücke im Warenpo-
sten können wir als die Zustände oder Strategien der Umwelt interpre-
tieren. Sie bilden den Zustandsraum £?.

Wählt der Statistiker die Aktion a^ im Zustand a^-, so resultiere
daraus ein Nutzen u(a^, a>Q w^-.
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Das Tripel (.4, fi, w) oder die zugehörige Entscheidungsmatrix

«1 S to • «m

«1 Wh Wig • «im

«2 «21 «22 • • «2m

kennzeichnet somit die ursprünghche Entscheidungssituation eindeutig.

Vorläufig ist über die möglichen Zustände coy nichts bekannt.
Ein ec/iies sZaZisZisclies Entscheidungsproblem entsteht durch Ein-

holen von 2M.säteZic/(er Jn/orraaiion über die a>y s fi üermiiieZs einer Zit-
/aZZssiic/iprofce.

Damit kommt ein stochastisches Element hinein, denn je nach
dem zufallsbedingten Ergebnis der Stichprobe wird der Entscheidende
diese oder jene Aktion wählen.

Prözisienmp der SZic/iprofre

Aus der als hinreichend gross angenommenen Grundgesamtheit
(Warenposten) werden zufallsartig n Elemente (Massenartikel) gezogen.

Dabei sind folgende Voraussetzungen gemacht :

1. die einzelnen Ziehungen erfolgen unabhängig voneinander ;

2. die Wahrscheinlichkeit, ein defektes Stück zu ziehen, ist bei

jedem Zug gleich, nämlich w.

Die Ergebnisse a einer solchen Stichprobe

(1, falls beim i-ten Zug defektes Stück
a (a;,, a„,... aü mit an {

(0, falls beim i-ten Zug gutes Stück

können als Realisationen des w-Tupels Ai

X (Xj, Xg, X„) von unabhängigen und gleichverteilten Zufalls-
variablen X,- interpretiert werden, wobei

3.3.8. p{Xy £y|co} tu®*(1—a>); a^ 1,0 falls co der wahre
Anteil in der Grundgesamt-
heit ist.
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Alle Ergebnisse a: bilden den sogenannten Stiebprobenraum S (be-

stehend aus 2" Punkten), den wir in abbilden durch folgende Zu-
Ordnungsvorschrift :

1

z (zj, ®2> • • * 2/ S
t l

n
Die zugehörige Zufallsvariable Y 2 (Anzahl defekter Stücke

t l
in Stichprobe) ist hinsichtlich des unbekannten Zustandes co eine söge-
nannte sw//menfe Sfafisfik oder ScTiäte/imfefion, d.h. Y schöpft die In-
formation bezüglich co voll aus. Die exakte Definition der suffizienten
Statistik findet man etwa in [2], S. 118.

Damit reduziert sich der ursprüngliche Stichprobenraum von 2"

Elementen auf jenen bezüglich Y (er sei wieder mit S bezeichnet), der
noch genau (n+ 1)-Elemente

2/ 0,1, 2, n enthält.

3.8.4. p{Y y|co} p(y|co) j^JaA(l-co)"-"; y =0,1,...,«

ist dann die Wahrscheinlichkeit, in einer Stichprobe vom Umfang «
genau y defekte Stücke zu finden.

Die Hauptaufgabe des Statistikers besteht nun darin, eine I?«f-
scÄeicfomgfsreyeZ oder SZraZeyie d festzulegen, die jedem Stichprobener-
gebnis yeS eindeutig eine A/cffo« oderLetefewteckeÄny cieA zuordnet.
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Eine solche Strategie kann als des Stichprobenraumes
S auf den Aktionsraum .4 aufgefasst werden und heisst seit A.Wald
eine sZaZzsZisc/ie PziZsckezdztngrs/wi/cZicm oder sZaZlsZtscZje Pnfsc/iewZzmgfsregeZ.

Wie man leicht abzählen kann, gibt es genau 2"+* Entscheidungs-
funktionen <Z;(f 1, 2, 2"**), die den sogenannten PnZscZie'ùZimgfs-

rawm D bilden.
Der ursprüngliche Eaum ^4 der Aktionen oder Letztentseheidun-

gen wird somit durch den Eaum D der Entscheidungsfunktionen
oder Strategien cZ; ersetzt.

Wie sind nun die ökonomischen Folgen einer Strategie cZ zu be-

werten, falls sie im Zustand coy erfolgt Eine Entscheidungsfunktion cZ^

ordnet jedem zufallsbedingten Stichprobenergebnis j/ s S eine ebenso

zufallsbedingte Aktion .4 zu.
Jeder Strategie cZ^ kann deshalb lediglich ein wnfZZerer Nutzen, die

sogenannte AhtZzenenaarZwip oder das Äfa r(<^, co -) =r^-, zuge-
ordnet werden, das wie folgt definiert ist :

3.3.5. r(cZ;, cuy) «,]-p(Z/K) •

»es

r(dy, coy) ist also der im Mittel zu erwartende Nutzen bei Anwendung
der Entscheidungsfunktion tZ^ im Zustand toy.

Falls S nicht endlich ist, sondern etwa eine beliebige, Borel-mess-
bare Teilmenge des Pp müsste auf der Klasse der Borel-messbaren

Teilmengen von S für jedes co 13 ein Wahrscheinlichkeitsmass de-

finiert sein. Die Summe 3.3.5. ginge dann über in das Lebesguesche In-
tegral

r(cZ, c«) J w[cZ(î/), ca]<ZPJz/),
S

und D bestünde aus jenen Funktionen <1, für welche w[d(y), co] für alle

co e i3 eine Lebesgue-integrierbare Funktion von z/ ist.
Die Entscheidungsmatrix P^ nach 3.3.2. oder mit andern Worten

das Tripel (^4, 13, zz) wird somit transformiert in die nachfolgende Ent-
scheidungsmatrix Pg oder in das Tripel (D, 13, r).
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#2 3.3.6. coi «2 to, co„

dl
<*2

Di ^12 * • D* • •• Dm

Di U-2 • *

r 1 + 1

2, m

Es ist uns also gelungen, das in Kapitel 3.3 formulierte statisti-
sehe Inferenzproblem (Testen von Hypothesen) auf die Form Eg, d.h.
auf das Grundmodell der allgemeinen BrrfscTieidwngsllieorie, zu transfor-
mieren.

Der Statistiker hat aus der Menge D von möglichen Entschei-
dungsfunktionen eine bestimmte, z.B. d,-, zu wählen, die, erfolgt sie im
Zustand cop einen mittleren Nutzen r^. abwirft.

Da die Zustände a>y der Umwelt unbekannt sind, herrscht die Un-
siclierlieifssitoafion im engeren Sinne, auf die sich jedes statistische In-
ferenzproblem zurückführen lässt.

4. Testen einer einfachen Hypothese gegen eine

einfache Alternative

Wir gehen aus von 3.3., dem Standardbeispiel der Qualitätskon-
trolle, und treffen folgende Annahmen:

a) Bezüglich des Zuslondsraumes

Beschränkung auf zwei mögliche Zustände der Umwelt, d.h. auf
zwei mögliche Anteile defekter Stücke im Warenposten.

co coj Warenposten ist «gut»,

cd cüg Warenposten ist «schlecht».

Wir haben den klassischen Fall des Testens einer einfachen Aull-
Itgpolliese jHq gegen eine einfache Alternafir/igpofliese Hj, wobei



4.1. .Hq : to «J
: co — ct>2

Der Zustandsraum ß (co^, cog) ist somit auch der Hypothesen-
räum, und der Aktionsraum ^4 (%> «2) enthält lediglich die beiden
Aktionen oder Letztentscheidungen

d^: Annehmen der Nullhypothese,

cig: Verwerfen der Nullhypothese oder Annehmen der

Alternativhypothese.

b) Bezwgdick des EVifcckeidwigsrawmes D

In der Menge D der 2"+* theoretisch möglichen Entscheidungs-
funktionen betrachten wir eine ausgezeichnete Teilmenge D*, deren
Elemente wie folgt definiert sind :

7/ S' Anzahl defekter Stücke in der Stichprobe vom Umfang n

fc heisst auch

Die Auswahl der Teilmenge D* nach 4.2. ist zumindest von der

praktischen Seite her intuitiv klar. Sie lässt sich aber auch nach dem

sogenannten Fundamentallemma von Neyman-Pearson begründen.

c) der Ähcteew/im/cficm w-•

4.2.
dj, falls 7/ 5g fc

$2, falls 7/ > fe
; fc 0, 1, 2, n — 1
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Gemäss 3.3.5. berechnen wir nun die Nutzenerwartung oder das

(negative) Risiko r(dj, co -).

k 0,1,..., n —1

£=i " =1,2,
4.5. r(^, coy) 2 «y] -p(2/|a>,.) ;

wobei p(y|a>y) M •o)f(l-cüy)"^.

Unter Berücksichtigung von 4.2. geht 4.5. über in

r(dj,cBj) «u2 P(»l®i) +«2iS P(»l®i)
V<A !/>fc

4.6.

r(dj, cog) «ja 2 P(PK) + «22 2 P(?/K) »

»Sft • »>A

wobei in natürlicher Weise die WaTirsckemlic/ikeiien bzw. /3^ /«r
einen UekZer AArZ 62«;. 2.NrZ auftreten.

«*=2 P(PK)
»>A

A= 2 p(p|«»a)-
!/<S

a^ ist dabei die Wahrscheinlichkeit, die Nullhypothese abzulehnen, ob-
schon sie richtig ist.

/Sfc ist die Wahrscheinlichkeit, die Nullhypothese anzunehmen, obschon
sie falsch ist.

Aus 4.6. wird nun

r (iL, cm) /2£ (1 -ad —s
4.6a. fc 0,1, (n-1)

r^.cog) -EA&-S

r(d^, cü2)<0 für alle fc.



NromenscZte Dtwc/t/w/trorag an einem BeispeiZ [3]

4.6 b.

oji 0,25

a>2 0,75

TO 10

FC 1000 Fr.

/ 0,1

s 10 Fr.

Offenbar gilt : p (2/1cog) p(10 — î/|a> j_)

2/ 0 1 2 3 4 5 6 7 8 9 10

P(2/|«>i) .056 .188 .283 .250 .146 .058 .016 .003 0 0 0

P (2/10>a) 0 0 0 .003 .016 ,058 .146 .250 .283 .188 .056

Die nachfolgende Tabelle gibt die Werte und in Funktion
der Annahmekennzahl fc.

fc 0 1 2 3 4 5 6 7 8 9

«fc .944 .756 .473 .223 .077 .019 .003 0 0 0

A 0 0 0 .003 .019 .077 .223 .473 .756 .944

Nach 4.6a. lassen sich nun die Nutzenerwartungen r(d^, a»,-) be-

rechnen, und man erhält

4.7.

^2 ^3 <*4 4 ^6 d, dg d/9

COi -4,4 14,4 42,7 67,7 82,3 88,1 89,7 90 90 90

&>2 -10 -10 -10 -13 -29 -87 -233 ^83 -766 -954

Damit ist es uns gelungen, das Testen einer einfachen Nullhvpo-
these iJ„: a> « ^ gegen eine einfache Alternativhypothese FZ\: ca =a>2
in die Entscheidungsmatrix 4.7. oder in die Form (Z), 12, r) überzu-
führen, d.h. in das GrancZmodeZZ der aZZpememeTO Snfcc/ieidnTOgrsZZieone.
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Der Statistiker hat aus der Menge D {d„, d j,..., dg} eine Strategie
d^ zu wählen, die, erfolgt sie im Zustand ce- (j 1, 2), eine Nutzen-
erwartung r(d^, to besitzt.

Wählt er etwa (Z2, so steht einem Gewinn von 42,7 ein Verlust von
10 gegenüber. Fällt die Wahl auf d„ so kann der mögliche Gewinn auf
90 erhöht werden, wenn gleichzeitig ein massiv erhöhter Verlust von
483 riskiert wird.

Nack weZcken EicMimen oder Kriterien soZZ die MrtsroakZ der «Z>e-

s/en» oder «opZiraaZen» Strategie d* er/oZgen?

5. Konstruktion optimaler Entscheidungsfunktionen

5.1. MZZgemeines

Soeben haben wir gezeigt, wie sich ein statistisches Inferenzpro-
blem in die allgemeine Entscheidungstheorie einbauen lässt.

Der ursprüngliche Raum M der (konstanten) Aktionen a^ ist er-
setzt worden durch den Raum D der Entscheidungsfunktionen d^, und
über dem kartesischen Produkt Dxß ist nach 3.3.5. der mittlere Nut-
zen r definiert.

Da die Zustände co^ « 13 zwm rornkerem itwke/tanwZ sind, befinden
wir uns in der sogenannten Unsicherheitssituation im engern Sinne

(siehe Abschnitt 2.1.).

5.2. Die UnsickerkeiZssiZwaZion im enger« Sinne

In der modernen Literatur [8] findet man eine Reihe von Ent-
Scheidungskriterien, wobei das sogenannte Minimax-KriZerinm von
von Neumann eine besondere Stellung einnimmt.

Nach dem Minimaa;-KriZemtm suchen wir jene Strategie d^, für
die die minimale Nutzenerwartung maximal ist (es ist in diesem Sinne

eigentlich ein Maximin-Kriterium).
Gestützt auf den allgemeinen Fall 3.3.6. definieren wir dj. als opti-

mal, falls
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5.2.1.

min Tjy max (min r,- •)

7 » ;

oder

min r(dj, ajy) max min r(d,-, coy),
o>2*&

TafceZZe 5

Minimax Bayessche Risiken

d,

(1)

r(di, o»i)

(2)

»"(dt, to») min
7

(3)

r(dft, CO,-) 71

(4)

i 0,1 Jii

(5)

0,5 TT

(6)

i 0,9

do

di

-4,4
14,4

-10
-10

-10

-10
-9,44

-7,56

-7,2
2,2

-4,96

11,96

d^ 42,7 -10 -10 -4,73 16,3 37,43

(^3 67,7 -13 -13 -4,93 27,3 59,63

di 82,3 -29 -29 -17,87 26,6 71,17

da

dg

d>7

dg

dg

88,1

89,7

90

90

90

-87
-233

-483

-766

-954

-87

-233

-483

-766

-954

-69,49

-200,7

-425,7

-680,4

-849,6

0,5

-71,6

-196

-338
—432

70,59

57,43

32,7

4,4

-0,5

Aus Kolonne (8) obiger Tabelle entnehmen wir:

max min r(d^, «y) —10
$ ;

Das Minimaxkriterium führt somit auf eine der 3 Strategien dp,

dp <5
g die Lösung ist nicht eindeutig. Aus praktischen Gründen ent-

schliessen wir uns für dg, um das Risiko 1. Art möglichst tiefzuhalten.
Über mehrdeutige Minimax-Lösungen siehe u.a. [9].
Dass wir bereits ab 3 defekten Stücken in der Stichprobe den

Warenposten abweisen, zeigt, wie pessimistisch unsere optimale Stra-
tegie ausfiel. In der Tat ist das Minimax-Kriterium naturgemäss von
einer «ängstlichen Vorsicht» gekennzeichnet, die in einer realen Situa-
tion nicht immer angebracht erscheint.
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5.3. Das Xntemwn non Saoage-jVie/tans

Wenn wir anstelle der Nutzen oder Gewinne «... die sogenannten
entgangenen Vnteen oder entgangenen Gewinne 1 (a^, co-) einsetzen, so

führt das Minimaxkriterium (es heisst in diesem Fall auch Kriterium
von Sarage-Vieltans) auf eine ewicfeuhif/e Lösung.

Unter dem entgangenen Gewinn oder entgangenen Nutzen Z(ay, co-)

verstehen wir die Differenz zwischen dem effektiv erzielten Gewinn
n(a^, eoy) und jenem, der bei optimaler Entscheidung (im Zustand coy)

hätte realisiert werden können.

Def. 5.3.1. Z(a;,a>y) max m(oj., coy)—n(a^coy); i, j, fc 1, 2.
7c

Die ursprüngliche Nutzenmatrix

COi ex 2

«X /X—s -X— s

«2 —5 s

geht dann über in die Matrix der entgangenen Gewinne

CO 1

®1 0 If mit If 1000

«2 /X 0 / 0,1

Z(dfc, cüj) /X • <Xj 100.

und Z (dj, cog) K. /S^. 1000. /?,.

sind dann die mittleren entgangenen Gewinne bei Verwendung der Stra-

tegie d^ im Zustand coy.

Krifemtm non Sanage-JVieZians:

5.3.2. d,. heisst optimal, wenn

max Z(dfc, co,-) min max Z (d^, coy).
7 » 7
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Aus der nachstehenden Tabelle können wir die eindeutige Lösung,
nämlich Strategie d,j, ablesen.

Ta&elZe 5.3.

4 4 di 4 4 4 4 4 4 4 4

1 (4. o>i) 94,4 75,6 47,3 22,3 7,7 1,9 0,3 0 0 0

z (4, <^2) 0 0 0 3 19 77 223 473 756 944

max 1(4,«/)
7

94,4 75,6 47,3 22,3 19

min max

77 223 473 756 944

5.4. Die Eisikosifwafion [10]

Kann über dem Baum ß der Zustände eine Wahrscheinhch-

keitsverteilung PF als bekannt vorausgesetzt werden, so befinden wir
uns in der sogenannten Bisikosituation.

Sei p (<Uj-) 7Tj- (7 1, 2,..., m) die Wahrscheinlichkeit dafür, dass

die Umwelt sich im Zustand cuy befindet.
Die Tîy heissen A-priori-TUakrsckemhc/ikeifen und PF=^x> ^2> ^m}

die A-priori-Yerteilung über ß.

m

2^ i
7 1

Definition : Unter dem Eagesseken Eisiko r (d^) einer Strategie d,, ver-
stehen wir den Erwartungswert von r^- bezüghch der Yer-
teilung PF über ß.

m

5.4.1. f(dj) 2r(^,a>,)
)=i

Nach dem sogenannten Eapesscken Kriterium ist eine Strategie
oder Entscheidungsfunktion dj. genau dann optimal, wenn

5.4.2. ^(dfc) ^P(d,-) für alle i 4= k •

Das Bavessche Kriterium fordert also die Maximierung der
Bayesschen Bisiken, welche im Sinne unserer Betrachtung negative
Bisiken, nämlich Nutzenerwartungen sind.
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Da oft die A-priori-Verteilung TV {jr^ über ß nicht be-

kannt ist oder aus sufcjefcZwew Schätzungen hervorgeht, kann man
etwa annehmen (Prinzip des unzureichenden Grundes), alle 77- seien

gleich. Man spricht dann vom sogenannten LapZacescken Dnteckei-

dungskrifermm, das auf der Gleichverteilung üher ß beruht.
Die Strategie dj. D ist nach Laplace genau dann optimal, wenn

m m

5.4.3. 2 r(d*., «>,) 2 j) für alle i + k •

7=1 7=1

6. Anwendung des Bayesschen Kriteriums
auf die Entscheidungssituation 4.7.

Über dem Zustandsraum ß [oj j, ojj} sei die Wahrscheinlichkeits-
Verteilung

TV (ttj, tt2) mit Tiy + 7^ 1 gegeben.

?ty p(a)j) ist dabei als Idealmass aufzufassen für die Glaub-

Würdigkeit, dass der Lieferant einen «guten» Warenposten anbietet
(d.h. dass sich die Umwelt im Zustand cu =co^ befindet).

Wir werden nun zwei verschiedene Wege zur Bestimmung der

optimalen Strategie beschreiten, nämlich die «infejprafe» und die «kow-

sfru/cfttje» Methode.

6.1. Die «iwZegraZe» Mef/iode

Wir gehen aus von der Entscheidimgsmatrix 3.3.6. oder vom Tri-
pel (D, ß, r).

Nach 5.4.1. berechnen sich die Bayesschen Risiken r (d^) wie folgt:

6.1.1. r(dfc) 2 r(<4, co,) -p(o>,)

\i/6s /

7=1 \W=0 /
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Der erste Ausdruck von 6.1.1. geht auf Grund von 4.6a und 4.6b
über in

6.1.2. r (<y {/K (1 -«,) -«] • TT, + [-K &-,] •

100 (1 — a^) • TTJ —1000 • /?,, • tï2 ~ 10 •

Tabelle 5 enthält in den Kolonnen (4), (5) und (6) die Bayesschen
Risiken für verschiedene Werte von tïj, d.h. für verschiedene A-priori-
Verteilungen über ß.

So findet man etwa in Kolonne (6) für ttj 0,9 ein maximales
Bayessches Risiko von 71,17, und die zugehörige optimale Strategie ist
d*.

PrakfiscAe Piferprefafwwi

Sobald der Abnehmer mit guten Gründen annehmen darf, es

werdeihmhöchstwahrscheinlich (tt^=0,9) einguterWarenposten (cu =a> J
angeboten, so wird er die Entscheidimgsregel ^ zugrunde legen.
Diese fällt gemäss unserem A-priori-Wissen viel optimistischer aus als

jene nach der Minimaxregel, was auch rein intuitiv zu erklären ist.
Für jedes feste fc ist das Bayessche Risiko eine lineare Funktion

von :

6.1.3. r^i) r(d,,, wj + r(^, co^) • (1-%).

In der nachstehenden Figur 6 sind die Geraden für k 0,1,... 6

eingezeichnet.
Der oberste einhüllende Streckenzug ARCDDP vermittelt uns zu

jedem Wert jij e[0,1] die optimale Bayessche Strategie. Für ttj 0,8
liest man z.B. die optimale Strategie ab.

•

6.2. Die «famsfrwkfwe» MefAode

Im Gegensatz zur integralen Methode beziehen wir uns jetzt auf
die ursprüngliche Entscheidungsmatrix in 3.3.2. oder auf das Tripel
(A, ß, w), und über ß sei wieder eine A-priori-Verteilung IF {tt jig,
• • • gegeben.
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Fi'flf. 6
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6.2.1 TT j 7^2 •

«g • •• «m

«i «ii «12 «im

«2 «21 ^22 «2m

Sei y e S die Realisation der Stichprobe, d.h. die Anzahl defekter
Stücke. Diese Beobachtung y (Träger neuer Information) gibt nun An-
lass zu einer Änderung der ursprünglichen A-priori-Wahrscheinlich-
keiten p (ay) ^

Nach der Bayessc/ien Reyel berechnen sich die sogenannten A-
posfenon-Wa/irsc/iemHc/i/ceifejj

Wahrscheinlichkeit, dass <y o^-, gegeben die Beobachtung!

y eS j?Kly)

wie folgt:

p(y|co.)-p(ft),) p(y|co.)-7T,
6.2.2. p(«>,|y) —

S Hi/K) -2>K) 2 2%K) '^»)
t l

Ein Zahlenbeispiel möge die Änderung illustrieren :

m 2 (nach Abschnitt 4) ; c<+= 0,25, ß>2 0,75

n 10 (Stichprobenumfang)

y 6 beobachtete Anzahl defekter Stücke

Toi 0,9 A-priori-Wahrscheinlichkeit für guten Warenposten

p(6|c+)-0,9 0,016-0,9
7? (cd J 6) ^U,5^ ' p(6|o>i)-0,9 + p(6|fl>ii)-0,l 0,016-0,9 + 0,146-0,1

Das ursprüngliche Vertrauen auf Lieferung eines guten Warenpo-
stens, das sich in der nahe bei Eins gelegenen Wahrscheinlichkeit
manifestierte, ist auf Grund der relativ hohen Anzahl von defekten
Stücken (y 6) auf rund 0,5 gesunken.
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IvowsirMfeiion der optimalen Strategie

Zu jedem y S (y 0,1, n) wählen wir jene Letztentscheidimg
M (fc 1, 2) für die

der ^-posteriori-dilrnwtimgsioert des Nutzens möglichst gross wird, d.h.

6.2.3. 2 %,-pKIZ/) ^2XrPHl0);
J

6.2.3. induziert somit eine Entscheidungsfunktion d*eD, und

zwar eine optimale im Sinne der jeweiligen Maximierung der Nutzen-

erwartungen.
Im Falle nj 0,5 (Laplace-Kriterium) ergibt die Konstruk-

tion:

Wenn y 3 dann wähle

Wenn y > 3 dann wähle Ug.

Diese Strategie ist aber identisch mit dg, d.h. mit der nach der in-
tegralen Methode im Falle ttj =0,5 gefundenen optimalen Strategie.
Dies ist kein Zufall, wie wir im nächsten Abschnitt zeigen werden.

6.3. JgniraZenz der beiden Methoden

Vorerst zeigen wir, dass eine im Sinne der konstruktiven Methode

optimale Strategie d* auch optimal ist nach der integralen Methode.

Zu zeigen: Das nach 6.1.1. definierte (negative) Bayessche Risiko
ist für d* eD am grössten, d.h.

6.3.1. max f(d) =f(d*) 2 2 (2/)» «>,] " Î» * P(<",) -

Nach der Bayesschen Regel folgt :

6.3.2. p(yK') - PH) PH'IP) -P(P) •
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Die rechte Seite von 6.3.1. geht nun nach 6.3.2. und der Änderung
der Reihenfolge der Summation über in

6.3.3. f(d*) 2 S 4^*(y)>^,']-?Kl2/)Y P(y) •

!/S /

Nach Voraussetzung ordnet aber die optimale Strategie d* jedem
2/ S jene Aktion e A zu, für welche der A-posteriori-Erwartungs-
wert Ey möglichst gross ist. Damit wird aber auch die äussere Summe

in 6.3.3. maximal, q.e. d.

Sei nun A die optimale Strategie nach der integralen Methode, d.h.

6.3.4. • f(d) ig: f (d) für alle dcD.

Andererseits haben wir für d* soeben bewiesen

6.3.5. f (d*) f (d) für alle deD.

Da 6.3.4. insbesondere für d d* und 6.3.5. für d d gilt, folgt
schliesslich

f (d) V f(d*) -: f (d)

und f (d) f (d*).

Damit ist die Äquivalenz bewiesen.

6.4. ZMsammen/assMnp wnd sî/rafcofecTie Übersic/d

Nach der mteprcdew Methode wird, ausgehend vom Tripel (A, 12,

m), über dem Stichprobenraum S der Raum D der Entscheidungsfunk-
tionen aufgebaut, was zum Tripel (D, 12, r) führt.

Die Maximierung der A-priori-Erwartungswerte führt zur optima-
len Strategie d.

Nach der bowAra/cfeen Methode wird die A-priori-Wahrscheinlich-
keit TTj auf Grund der Stichprobeninformation y ,S' nach der Bayes-
sehen Formel modifiziert. Die Maximierung der A-posteriori-Erwar-
tunswerte definiert dann die optimale Strategie d*.
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Das nachfolgende Diagramm symbolisiert die beiden Varianten,
die zum selben Ziel führen ; dabei bedeuten :

ß: Zustandsraum, versehen mit A-priori-Verteilung.

ß* : Zustandsraum, verseben mit A-posteriori-Verteilung.

g über dem Stichprobenraum S erfolgt die Konstruktion
von

Kß bzw. Z?ß. : Erwartungswert bezüglich ß bzw. ß*

(M,ß,n) « (M, ß,«) > (D, ß,r)

S

M,.
Max

Ko

Max

KV
(D, ß, r)

7. Spieltheoretische Interpretation

Wir bezieben uns auf die Bemerkungen von Abschnitt 2.4. und in-
terpretieren das Tripel (M, ß, n) als Spielmatrix 2. Ordnung eines söge-
nannten 2-Personen-NnZfcîmmenspiek des Entscheidenden (Statistiker)
als 1. Spieler gegen die Umwelt oder Natur als 2. Spieler.

y
ist dann der Nutzen oder Gewinn des 1. Spielers und gleicbzei-

tig der Verlust des 2. Spielers bei Anwendung der Strategien <g- bzw.

0)y.
Eine Wahrscheinlichkeitsverteilung (ttj, Ttg) über ß kön-

nen wir dann als sogenannte gewmckte Sfrafepie der Umwelt bezeichnen
und entsprechend eine Verteilung TV

2 -= (Pi> P2) über dem Aktions-
räum M als gemischte Strategie des Entscheidenden.

Die erstere bezeichnen wir fortan mit (ncoj, atg <^2) und die letz-
tere mit (p^ g^, P2 ^2)-

Eine Strategie mit 1 (bzw. p^ 1) beisst eine reine Strategie.
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7.1.

7.2.

7*1 TT i)

«1 to 2

Pl «i «11 «12

P2 «2 «21 ^22

übei in

a>i ft>2

«i /Z-s -Z-«
6^2 —5 —S

Grundsätzlich ist festzuhalten, dass die Lösung des Spiels 7.1.

entweder im Bereich der reinen oder der gemischten Strategien liegt.
Im l.Fall besitzt die Spielmatrix einen sogenannten SafteZpwnki, im
2. Fall nicht.

Die folgenden Sätze beziehen sich auf 2-Personen-Nulisummenspiele.

Sate 7.1.

Sate 7.2.

oder

Sate 7.3.

1. Spieler:

2. Spieler:

Wenn % zugleich Zeilenminimum und Kolonnenmaximum
ist, ist (i, ?') ein Sattelpunkt und umgekehrt.

Kriterium von wn Newman« [11]. Eine Spielmatrix 2. Ord-

nung besitzt genau dann keinen Sattelpunkt, wenn die
Elemente in den Diagonalen «separierbar» sind, d.h. wenn

11 W12

%H <C 1^i2

und «22 > «2i

und «22 < «2i •

Wenn die Voraussetzungen von Satz 7.2. erfüllt sind, hat
das Spiel eine eindeutige Lösung im Bereich der gemischten
Strategien, und zwar

* * \ -i *
(Pi Oi, Pa «2) mit pi

21

11 " 22 ~

P2 1

(TT[ co 1,712^2) mit —

Pi

12

*11 " *22 " 12 " 21

«2 1



- 46 —

Das spezielle Spiel 7.2. hat nach Satz 7.1. einen Sattelpunkt in
(2,2) mit einer eindeutigen Lösung im Bereich der reinen Strategien:

«Der Entscheidende wählt Aktion cig und die Umwelt den Zu-
stand cu 2 - »

Damit resultiert der Nutzen ^2 —s, der sogenannte Wert des

Spiels. Wählt man anstelle der ursprünglichen Nutzen oder Gewinne

m,-j die nach 5.3.1. definierten entgangenen Gewinne Z(o;, co^), so geht
7.2. über in

7.3. <«2

«i 0 K

^2 0

Diese Matrix wird als Nullsummenspiel aufgefasst, wobei die ent-

gangenen Gewinne als «Schaden» des 1.Spielers (Statistiker) und
gleichzeitig als Nutzen des 2. Spielers (Umwelt) zu interpretieren sind.
Nach den Sätzen 7.2. und 7.3. besitzt dieses Spiel eine eindeutige
Lösung im Bereich der gemischten Strategien, nämlich :

1. Spieler:

2. Spieler :

1 + /"" 1+/'

i+r*' i+/'

G'eowetnscke Interpretation

Sei der erwartete Schaden des Statistikers, wenn er a,- wählt
und die Umwelt (n^coj, n^coa) mit Ttg 1 — •

Man findet :

Z(l-n,)
G« /A • ni

O^TTi^l.
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Pty. 7J.

S min MM

i l, 2

* '
» max min S'/' ——-

"i [0,1] «=1,2 1 + /

(tïjCOi, ^2^2) 7ij -—y
ist die optimale Strategie der Umwelt

(auch ungünstigste A-priori-Verteilung genannt), zwecks Maximierung
der minimalen Schäden ihres Gegenspielers.

Im nächsten Abschnitt wird gezeigt, wie jïj - — bei der Be-

Stimmung der optimalen Strategie (nach der sogenannten konstruk-
tiven Mehtode und unter Benützung der entgangenen Gewinne - siehe

6.2.3) eine Rolle spielt.

8. Brückenschlag zur «klassischen Statistik»

Wir gehen aus vom Tripel (A, 12, Z), das wir soeben spieltheore-
tisch interpretiert haben.

Aus Figur 7.1 liest man für den 1. Spieler folgende Entscheidungsre-
sei ab :Ö

1

1+/
8.1. Jij < > Aktion «g

y—-
ä- Aktion flj oder Aktion «2

jt > >. Aktion a,.
1 + /
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Nach der sogenannten fconsfrutawen. Methode (siehe 6.2.3.) ordnen
wir jedem Stichprobenergebnis 1/ e S jene Aktion o^ zu, für die der

.4-po,s£morvUrwar£ungswer£ der en£gtaw(/ewen Gewinne mögKc£ts£ W«m is£.

Ersetzt man daher in 8.1. die A-priori-Wahrscheinlichkeit en

TTi £>(cdj) durch die A-posteriori-Wahrscheinlichkeiten p(o>i|p), so

modifiziert sich die s£a£fs£isc/ie Entscheidungsregel nach der konstruk-
tiven Methode wie folgt :

8.2. pK|j/) <

î> («"il 2/)
1

^

y * Oj oder «2

PKIl/) > ~y <»i-

Nach 6.2.2. folgt für p (cd i|j/) nach einer kleinen Umformung:

8.3. PKI*/)
P(î/K) l — 7ii

1 +

p(PK)
pQ/K)

Q

P(PK)

8.2. geht dann über in die äquivalente Form

3.4.

p(p|<

PÙ/K)

P(pka)
P(p|ß>i)

P(PK)

>g

> c

_

p(p|o>i)

wobei C Lösung der Gleichung

1

<G

8.5.

1+ Q
1 — TTj 1+/

JT -t

-> o^ oder cig

o.,

in der Unbekannten Q ist.
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Aus 8.5. folgt:

8.6. <7 /
1 — JTj

Mit 8.4., dem sogenannten Likeli/iood-Qnotiententest, haben wir die
Nahtstelle mit der «klassischen» Statistik gefunden.

.Es ist rms pelnnpen, die Grenzzolit (7 dnrclt eine ökonomische Eetoer-

fnnp ei?rerseifs (/ Gewinnsatz) nnd sogenannte A-priori-FornrteiZe an-
dererseits (nj Idealmass für die Glaubwürdigkeit in «guten» Waren-
posten) zn motivieren nnd mittels 5.6. /nn/ctioned darzustellen.

Interessant ist die Feststellung, dass sich die nnpünstipste M-priori-

Ferteilnnp nj
y—y

(vom Entscheidenden aus gesehen) auch von

den ursprünglichen Nutzen oder Gewinnen her (7.2.) ableiten lässt.

Eerecknnnp der optimalen Annaltme/cennzakl k*

Ersetzt man in 8.4. die p(p|ft\) durch

P(d |«h) ^<(1 -a\)"~"

so geht etwa die linke Seite der 1. Zeile von 8.4. über in

1 -COgV"»
8.4a. ^—j — > (• ; o>2> w,

weiter folgt durch Logarithmieren

A log |

Ap—E(n — p) >logC mit

R —log( )> 0

log G + nE
oder p >* M +E

Da p e S nur ganzzahlige Werte (oder Null) annehmen kann, folgt
für die optimale Annahmekennzahl fc* im Sinne des Bayesschen Krite-
riuins

CO 2 )>o
«i /

A7^2V

V -®l/'
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8.7. fc*
log C + nB

4 + B

Ersetzt man C nach 8.6., so folgt endlich:

wobei [x] grösste ganze
Zahl kleiner als x.

log + « log ')
1 —TTl W/

log
1 — CO,

CO, -CO«

Obige Formel gestattet uns im Falle des Testens einer einfachen
Hypothese co =co^ gegen eine einfache Alternative co cog (co2>coj)
bei gegebener ökonomischer Bewertung nach 7.2. bzw. 7.4. (/ Ge-

winnsatz) und bekannter A-priori-Verteilung IE (ttj, 1— ttj) über ß
die nach dem Bayessc/ien Kriterium optimale Annahmekennzahl fc*

bzw. die optimale Entscheidungsfunktion djj zu berechnen.

/ 0,1; ttj 0,7; n 10
Em Zaliten&eispieZ:

co^ 0,25; a>2 0,75.

Nach Figur 6 müsste fc* offenbar 4 sein.

Nach 8.8:

log + 10 • log 3

log 9
[4,03] 4.

9. Planung bei Unsicherheit

9.1. Emteifwnjr

Die bisherigen Betrachtungen erstreckten sich auf die entschei-

dungstheoretische Interpretation und Lösung eines innerstatistischen
Problems, nämlich auf das Testen row Hc/pofliesen. Dabei beschränkten
wir uns (besonders bei den Konstruktion optimaler Strategien) auf den

Zustandsraum ß mit 2 möglichen Zuständen a>j und cog-
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Wir wollen im folgenden den Anwendungsbereich etwas weiter
fassen und die Plawwng frei DwsicÄerAeif entscheidungstheoretisch
motivieren und in gewissen Fällen die optimale Strategie /constraieren.

Dabei kommen neue Aspekte hinzu, nämlich :

aj anstelle der Gewinne (Nutzen) werden jetzt grundsätzlich die ent-

gawgenew Gewinne oder «opportunity losses» der ökonomischen Be-

wertung zugrunde gelegt;
è,) die oben definierten Gewinne werden als lineare Pnnlction der Zu-

standsvariablen co angenommen;
cj der Zustandsraum ß wird auch auf das ganze Intervall ß [0,1]

erstreckt (unendlicher Zustandsraum) ;

d,) über ß [0, 1] wird eine besonders umfassende Klasse von
A-prioriWerteilungen näher studiert.

9.2. Pormnliernng des ProWems

Ein Unternehmen plant die Fabrikation eines neuen Artikels, der

nur während einer kurzen Zeit auf dem Markt abgesetzt werden kann.
Dabei sei unbekannt, welcher Anteil co (0 <i a> ^ 1) der potentiellen
Käuferschaft (V Personen) den Artikel beschaffen wird.

Vereinfachende Annahmen (unter Ceteris-paribus-Voraussetzung) :

P fixe Herstellungskosten, die bei der Fabrikation neu
erwachsen.

g Nettogewinn pro Stück (dieser Gewinn versteht sich
9.2.1. als Bestgrösse aus Verkaufspreis abzüglich variable

Kosten pro Stück),
cö Anteil der potentiellen Käuferschaft, für den die fixen

Kosten durch den Verkauf gerade gedeckt werden, d.h.
-V • cö • g P.

Die Unternehmensleitung verfüge über Alrffowew oder Letzt-
entscheidungen :

flj : nicht fabrizieren

ag : fabrizieren.

Die Zustände co e[0,1] (oder coy, wenn es nur endlich viele Zustände

gibt) sind die theoretisch möglichen Absatz- oder Verkaufsziffern.
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Erfolgt die Aktion (i 1,2) im Zustand co, so resultiere daraus

ein Gewinn n(cij, co) bzw. «(a^co,), für den wir folgenden Ansatz
machen.

9.2.2.

wobei noch gilt :

oder

| w(«i, co) 0

| («2,«) c(co — cö) ; c>0. 0 < cö < 1,

c cô F ]V cöp

c xVp.

Praktisch wohl von grösserer Bedeutung sind die sogenannten eni-

f/cropenen Gerwine oder «opportunity losses» Z(a^, co), die nach 5.3.1. wie

folgt definiert sind :

9.2.8. 1 (a^, co) max n (a^, co) — n (o^, co)
1, 2

Nach 9.2.2. folgt dann

9.2.4.

1 (fflj, co)

i(aj, co)

'0;

0;

co Ai co

co > cö} c (co - co) ;

| c (cö — co) ; co 5g 09

CO ^ CO

[12]

i(a,, a»)

0 CD

Z(ö2, to)

IN
-> û>

Shcliprofeener/ie&nnc/. Snfscfeerdnn^s/nn/cfionen

Mittels einer Stichprobe werden wir auch hier versuchen, Infor-
mation über die unbekannten Zustände co c ß einzuholen.
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Konkret werden z.B. n Personen aus dem potentiellen Käufer-
kreis ZTi/äZZhj befragt, ob sie den besagten Artikel kaufen werden oder

nicht.
Unter gewissen, in 3.3. formulierten Voraussetzungen ist wie-

derum die Anwendung der Binomialverteilung erlaubt.

Y Anzahl Personen unter den n befragten, die mit ja antworten.

p{Y 2/1 p(2/1 a») • o>*(l -co)"""
9.2.5.

Def.

p{Y ^/c|co} 2 P(*/M ^(fe|w) •

0(/c | co) ist die sogenannte FerteiÜMMf/s/Mwfcfwra.

Dabei haben wir wiederum eine Entscheidungsfunktion oder Stra-
tegie d,. festzulegen, die jedem genau eine Aktion a,-(i l, 2) zu-
ordnet.

Analog 4.2. definieren wir die folgende Teilmenge von Entschei-
dungsfunktionen

f a,, falls 7/ < 7c

9.2.6. d,(7/)= fc 0,1,..., n-l.
agi mils 7/ > fe

Zu jedem Zustand co « ß berechnet sich jetzt das sogenannte
PmTco oder der miZZZere ewh/a?w/ewe Getarnm r (d^, co)

n

r(d*,co) 2 2[d*(0),ß>] • p(?y | co)

y=o

oder gemäss 9.2.5. und 9.2.6.

9.2.7. r(d^,co) 0(/c | co) • Z(aj,co) + [1 — <Z>(k | co)] • Z(«2, co).

Jt ojistra/ctfow ophimaZer PZraZejrZew

10. Unsicherheitssituation i. e. S. Endlicher Zustandsraum.

Minimax-Kriterium

Über die Häufigkeit des Auftretens der coy c ß (j 1,2, ra) sei

nichts bekannt. In einer solchen Situation kann man etwa mit dem
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Mmimaa-ilmfenwTO die optimale Strategie d^ bestimmen, d^ heisst
dann optimal, wenn

10.1. maxr(dj,cOj) minmaxr(d.,cüj-)
toy £ ß dy £ Z) toy £ ß

Howfcrefe Dttrch/tthnmgf an einem praktischen Beispiel

In der Praxis mag es vorkommen, dass lediglich einige wenige Zu-
stände oder Anteile co^ als möglich erscheinen.

Wir treffen deshalb folgende Annahmen :

10.2.

CO,-

100

4

100

100

1 0,1,2,

Anzahl der befragten Personen)

und in Anlehnung an 9.2.4., indem man a> durch co^ ersetzt,

' 0 ; 0 ^ j ^ 4

c(?-4) ;

(c(4 —j);
10.3.

£ (dj COy)

Z(C&2, COy)

i 0;

4 < i ^ S

0 <11 <1 4

4 < j ^ 8

Die mittleren entgangenen Gewinne (Risiken) berechnen sich nun
nach 9.2.7. unter Berücksichtigung von 10.2. und 10.8. wie folgt:

10.4.
[c- [1 — <P(fc| <»,)]• (4 — y) ; 0^7 ^4

r (dt, co,-) 1

' |c0(fc|co,.).(i-4); 4<j^8
Bei der Optimierung kann man offenbar c>0 vernachlässigen,

und <Z>(fc|co -) berechnet sich nach der Poisson-Verteilung mit hinrei-
chender Genauigkeit:

fc

10.5. <P(fc|o>,-) fc
100 2

s=0

e ' • 7
fc 0,1,..., 99
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Die numerischen Werte von 10.5. wurden dem Tabellenwerk [13]
entnommen.

Bis auf den konstanten Paktor c > 0 sind die mittleren entgange-

nen Gewinne r(d^, cu-) nachfolgend tabelliert.

Hierbei ist zu beachten : #>(fc|«Q) Ö>(fc|0) 1 für k 0,1,...,
r(d^, cug) > 1 für fc > 6.

Tabelle 10.1. r(d^,co,

4\ COo Cüi CÜ2 CO3 0J4 <«5 füg CD
17 CUg Max

^0 0 1.899 1.730 0.951 0 0.007 0.005 0.003 0.001 1.899

di 0 0.795 1.188 0.801 0 0.040 0.034 0.021 0.009 1.188

^2 0 0.243 0.648 0.577 0 0.125 0.124 0.058 0.028 0.648

£^3 0 0.057 0.286 0.353 0 0.265 0.302 0.243 0.168 10.353

0 0.012 0.106 0.185 0 0.440 0.570 0.519 0.400 0.570

0 0.003 0.034 0.084 0 0.616 0.890 0.900 0.573 0.900

£^6 0 0 0.010 0.034 0 0.762 1.212 1.350 1.252 1.350

Min Max

Da maxr(dg, a>^) < max r(d,-, co^-) für alle i 4= 3, folgt:
7 7

dg ist die optimale Strategie.

11. Risikosituation. Endlicher Zustandsraum

Über dem Zustandsraum 12 (co^, «g, ••• cu„,) sei eine A-priori-
Wahrscheinbchkeitsverteilung TP — bekannt.

Unter dem Bayesschen Risiko f (dj.) verstehen wir gemäss 5.4.1.

m m

11.1. f (dj) 2 *"&><»,) • PK) 2 •

j=-l ]=1

Nach der integralen Methode ist d^ im Sinne des Bayesschen Kri-
teriums optimal (angewandt auf die entgangenen Gewinne), wenn

f(dfc) <if(d,.); i*k.
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Nitmemclie Dwck/w/mmgr /ür fZas Beispiel in Nfrsckniff 1(7

Neben 10.2. und 10.3. gelte:

jîg konst. > Laplacesches Kriterium

Nach 10.4. berechnet sich dann das Bayessche Risiko (bis auf
einen konstanten Faktor) wie folgt :

11.2.
,'=o

2 [i—#(&K)] • (4-?)+ 2 ^K) (7-4)
7=0 7=5

2 • (7-4) + 2 4 — 7

)'=0 )=0

2 <P(Ä|o>#) • (7-4) + 6 =Z(fc) + 6.
)=i

üj.
zw

Min
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11.8. Z(k) 2 <P(fc|®) • (?'-4) •

)'=i

Für welchen Wert von fc 0,1,2, ..99 ist die Zielgrösse Z (k)
minimal

Aus Figur 11.1 lesen wir ab:

min Z (k) Z (3), d. f. :

&

dj isl die optimale Strategie nack Laplace.

Man beachte ausserdem:

ojj ß ; (P (k | cüj-) äs: 1 für 7c > 15 und somit

8

Z(k) :=» 2 (?~4) 4 für 7c > 15
)'=i

G?'apliisclie Interpretation der integralen nnd konstruktiven Met7iode

mit Banmdiapramraen

11.4. Integrale Metbode

Wir versuchen das Bayessche Risiko f(d^) graphisch zu illustrie-
ren. In seiner ursprünglichen Form heisst es

m /
r(4) 2

7=1 \

<Wj, cog co„, Zustände der Umwelt

7/ 0,1,... n Ergebnisse der Stichprobe

(ajj) TT; A-priori-Wahrseheinlichkeiten über ß

— Entscheidungsfunktion nach 9.2.6.

Jeder Entscheidungsfunktion dj.(fc 0, l,...,n — 1) können wir das

folgende Banmdiagramm in Form einer sogenannten ^Msammenpesetelen

Lotterie L^ zuordnen:

2 *K(
t/=0

)»«,] • P (2/1 «>,) TT,-



Nahaufnahme für irgendeinen Zustand :

-Fffif. 22.2 a.
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Das Bayessche Risiko f(d,.) kann somit als Erwartungswert der

zusammengesetzten Lotterie L^. interpretiert werden, und d^ heisst

optimal (nach der integralen Methode), wenn die zugehörige LoWerie

den fcZernstew -Eraariirngswerf /tab

11.5. Ilonsfrwfclire Methode

Jedem Stichprobenergebnis y e»S (y 0, 1,... w) wird jene Aktion
ci; zugeordnet (i 1,2), für die der A-posteriori-Erwartungswert 2?

m

2?„ 2 ^ (®i > o'y) ' P 12/) möglichst klein ist.
y=i

Jedem y « 5' können wir somit das folgende Paar (Bp Bj) von
Lotterien zuordnen.

Ftgr. 12.3.

Dabei wählen wir (zu j/ eS) jene Aktion a,-, für die der Erwar-
tungswert der Lotterie B^ minimal ist.

Der Baum in Figur 11.3. (konstruktive Methode) ist gerade die

«Dmfcelinmy» des Baumes von Fig. 11.2a. (integrale Methode). Die

Bayessche Formel 6.2.2. gestattet uns, die transformierten Wahr-
scheinlichkeiten, die mit einer solchen Umkehrung verbunden sind,
berechnen.
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L2. Risikosituation. Zustandsraum ß =[0,1].
A-priori-Betaverteilung über ß

Sei 9?(w) die Wahrscheinlichkeitsdichte einer beliebigen Vertei-
lungsfunktion über ß [0,1]

1

12.1. 9?(<w) s^O; J" 99 (a>) do> 1 ; 0<ia><il.
0

Das Bat/esscfee Sisio für das 2-/1 febonere- ProbZem nach 9.2. ist
dann bekanntlich

12.2. f (<y f 2 *IA(2/)> «>] • 2^ (2/1 <*>)) dß)

o \»=o /
1

J>(fe| a>) • Z (flj, co) + [1 — 0 (fe | a»)] • Z («2, co)J ç? (co) da)

0

1

J* 0 (fe | co) [Z (Oj, a>) — Z (a^ &•')] 9> (ftj) da> -f >S*

0

Nach der mfegraZen Methode ist die Strategie d^ optimal, falls

r(d,-) ^ f (d^) für alle fe 4= i
oder, da S von fc unabhängig ist, falls für die Zielfunktion Z(fc) mit

1

12.3. Z(fc) — J"^(Zc|ß>) [Z(Oj,w) — Z(aj, a>)]9?(a>) da>

0

gilt : Z (i) Z (fe) für alle fc =j= i

Wir wollen nun für ç?(a)) eine ziemlich umfassende, zwei-paramet-
rige Gesamtheit von A-priori-Verteilungen zulassen, nämlich die söge-
nannten ReZa-FerteiZwwgen [14].

Ihre Dichtefunktion ^ (a>) ist wie folgt definiert :

1
» O^co^l

12.4. ç,(«,) / (a,) ——-a," (l-eo)""
B(a.p) a, /S > 0
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mit der sogenannten «olTsfändipen Befa/Mnkfwm B(a, /?), die bereits

von Leonhard Euler in einer speziellen Form untersucht wurde.

12.4 a. B(a,0) J

Ersetzt man nun in 12.3. die l(a;, co) durch die speziellen linearen
Funktionen 9.2.4. und tZ>(k|«) nach 9.2.5., so folgt:

12.5.

Z(fc) —-- T
£(«>/?)</

» /W'

SU'-"'-'" (tu—co)a>" *(1—tu)^~*dtu

C f " /w\
p, ^ EL [-B(a+y + l,^+n-y)-c»-B(a+y,/?+n-y)]
B(<*, p) [»=o W I

Die Zielfunktion Y (fe) ist also im wesentlichen abhängig von der

vollständigen Betafunktion.
Der folgende Hilfssatz gestattet uns, die erste Zeile von 12.5. um-

zuformen :

iZiî/ssate: [16]:

Sei Y eine binomial verteilte Zufallsvariable und co die zugehörige
Grundwahrscheinlichkeit ; dann gilt :

12.6.

u{Y>k|cü} l-0(fc|o>) f — — <B- „' J B(fc + 1, n—fc) B(fc+1, n—fc)

wobei
CÜ

12.6a.
0

die sogenannte «nuoZlsfändü/e Be/a/wnkfiow darstellt [15].

Der erste Term in 12.5. geht dann über in

12.7.
1

Z(fc) —— f fic+1, n-fc (">)

B(fe+1, w —fc)
• (to — eü) • tu" ' (1 — tu)"~* dco
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Die Minimierung von Z (fc) ist somit äquivalent mit der Maximie-
rung von

12.8.

1 1

£(fc + l-w^fcj"/ 1-®*+»."-*^] •(a>-£ü)cu"^(l-co)^Mio.

Für den Spezialfall der sogenannten Bec/ifecfcsuerfeEwrk/, d.h. für
a /9 1, lässt sich Z* (fc) explizite dwrcfe xoftsfcmdic/e Beta/unfcticraen
fcesc/ireiben.

12.8. geht unter den genannten Voraussetzungen über in :

1 V \
**<*> ^ / (/ *) <-« *

Nach partieller Integration und einigen kleinen Umformungen
findet man (von einem konstanten Summanden abgesehen) :

12.9.

Z* (fc)
1

J5(fc + 1 ; w—fc)
cü • B(k + 2, n—fc) B(fc + 3; w — fc)

2

Abschliessend wollen wir für den allgemeinen Fall (a, /? > 0 feeZaebigr)

die optimale Strategie nach der fcowsfrwfcträera Met/iode ermitteln.
Sie wird sich als flexibler und praktischen Problemen zugänglicher er-
weisen.

Nach der konstruktiven Methode ordnen wir jedem Stichproben-
ergebnis i/eS (j/ 0,1, m) jene Aktion 0;^4 (1 1,2) zu, für die

der M-postenori-FViearfMngsteerf der entgangenen Gewinne

1

12.10. 2?^ J Z(<ij, w) • p(<w | j/) dco ; 1 1,2
0

minimal ist.

p(co|y) ist die sogenannte M-posteno?ü-2>ic/ite über ß und lässt sich

nach der Bayesschen Formel wie folgt berechnen :
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p(«|co) œ(a>)
12.11. p(cu) I y) —J ; p(cu) A-priori-Dichte

/ P(2/)M- Ç>M ^CU

0

Unter Berücksichtigung der speziellen Annahmen für Z(a^, tu) nach
9.2.4. und für p(to) nach 12.4. folgt aus 12.10.:

1

^
^oc+y-l (J _^+»-ri

| (ft) — to) — dco

J f f+^(l-f)^+^df
ö> 0

1

und nach 12.4. J (tu - ö>) (tu) dco

ö3

cö

analog : #„ / («ü - «) /«+„, /s+n-y H da»

0

Wir bilden nun die Differenz /I der beiden Erwartungswerte

1

12.12. Zl — E„, J (co - cö) (tu) dcu

0

1

/ « • /«+„, /3+^n/ H — cö

0

1

J co/dco ist aber der Erwartungswert einer betaverteilten Zufalls-
0

variablen cö mit den Parametern a + c/ und /d + w— ?/.

Nach [14], S.60, ist der Erwartungswert der Betaverteilung

1

f ^E cö) tu • /„ » (tu) dcu ; somit folgt
cf
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Die konstruktive Methode besagt nun :

a + 2/

a + /3 + n
> CO

12.14. ———— co a, oder a,
a + /? + 7i

* *

a + J/

„
~~ < CO > öl

a + /S + n

12.14. gestattet uns, analog 8.7., die im Sinne der integralen Methode

optimale Annahmekennzahl fc* zu berechnen:

fe* [(/? + ra) - co — a (1 — cö)],

wobei [i] grösste ganze Zahl < a:.
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Zusammenfassung

In einem ersten Teil wird am Beispiel des Testens statistischer Hypothesen
gezeigt, wie ein Problem der «klassischen» Statistik im ökonomischen Modell der

Entscheidungstheorie (nach A.Wald, 1950) interpretiert und gelöst werden kann.
Insbesondere werden nach dem sogenannten Bayesschen Kriterium optimale Stra-
tegien auf zwei verschiedenen, aber äquivalenten Wegen hergeleitet. Eine explizite
Darstellung der sogenannten Annahmekennzahl in Funktion der relevanten ökono-
mischen und umweltsbedingten Parameter beschliesst dieses Kapitel.

Der zweite Teil ist der Planung bei Unsicherheit, beschränkt auf das 2-Aktio-
nen-Problem, gewidmet. Unter der Annahme eines linearen Verlaufs der sogenann-
ten entgangenen Gewinne und einer A-priori-Betaverteilung über dem Zustande-

räum wird eine optimale Strategie konstruiert.

Summary

A central problem in the field of «classical» statistics (testing hypotheses) is

presented and solved in the economic model of the mathematical decision theory in
the sense of A.Wald. Particularly, optimal strategies are developed by two diffe-
rent but equivalent methods, based on the criterion of Bayes. It follows an explicit
presentation of the acceptance number depending on the relevant economic and ex-
ternal parameters.

Secondly, the problem of design under uncertainty, limited to the case of two
actions, is treated. Under the assumptions of a linear opportunity loss and an a

priori Beta-distribution over the state space, an optimal strategy is constructed.

Résumé

Dans une première partie, un problème de la statistique «classique» (illustré à

l'exemple du test) est présenté à l'aide du modèle de la théorie mathématique des

décisions. Particulièrement on développe par deux méthodes différentes, mais équi-
valentes des stratégies optimales d'après le critère dit de Bayes. Suit une présenta-
tion du nombre d'acceptation (acceptance number) en fonction des paramètres éco-

nomiques et ambientales.
La deuxième partie s'occupe du problème de la planification en cas d'incerti-

tude, se limitant au cas de deux actions. Supposant une fonction linéaire des profits
en perte (opportunity losses) et une distribution a priori de bêta sur l'espace des

états, une stratégie optimale est construite.
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