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Entscheidungskriterien für den zusammengesetzten
Poisson-Prozess

Fon //. [/. Gerfter, Zurieft
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Einleitung

1.1. Das ModeZZ

Eine Versicherungsgesellschaft startet mit einem Anfangskapital
«•„. Die Einnahmen, welche dieses Kapital vergrössern, sind determi-
nistischer Natur: Bis zum allfälligen Ruin der Gesellschaft werden
nämlich

c Geldeinheiten pro Zeiteinheit an Prämien (1)

eingenommen. Demgegenüber stehen die Ausgaben der Gesellschaft,
welche stochastischer Natur sind. Die Ausgaben ihrerseits zerfallen in
die Sk/uulencaJFcfw/en und in die Dmdendenza/fPem/ew.

Wie in der klassischen kollektiven Risikotheorie üblich, soll der
Totalschaden einem zusammengesetzten Poisson-Prozess unterworfen
sein. Wir bezeichnen mit A(i) den bis und mit zum Zeitpunkt / total zu

begleichenden Schaden. Dann ist

°° tafV'
P[A'(0 A ,r] V er* r), f AO. (2)

Bekanntlich ist dabei F(a:) die Verteilungsfunktion der einzelnen

Schäden, welche unabhängig und gleichverteilt sind. Ferner ist die
Zwischenschadenzeit poissonverteilt mit Parameter a.

Der durch (2) beschriebene Poisson-Prozess kann aufgefasst wer-
den als Wahrscheinlichkeitsraum

(ß,2l, P). (8)

Dabei bedeute .Q die Menge aller rechtsseitig stetigen Treppen-
stichprobenfunktionen A"(f) w. 21 sei die Einschränkung des bezüg-
lieh (2) vervollständigten Produktes (^) 23j (23; =23 er-Algebra der

Borel-Mengen der reellen Achse) auf ß. P ist das Wahrscheinlichkeits-

mass, welches durch (2) auf 21 induziert wird.
Nun kann unsere Versicherungsgesellschaft nach bestimmten Ge-

sichtspunkten Dividenden ausschütten. Eine DmefendensfraFe/îe ,S ist
eine Abbildung, die jeder Stichprobenfunktion A(f) e ß eine reellwer-
tige Funktion ,S'A" (f) —- Y(i) zuordnet und dabei die folgenden Postu-
late erfüllt:
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(i) Y(4) ist nichtabnehmend.

(ii) Y(t) ist linksseitig stetig, Y(0) 0.

(iii) Wenn A\(.s) Whs) für alle s < f, so ist Y^(/) Yg(<).

(iv) Y(f) ist für festes t eine Zufallsvariable bezüglich (3).

(v) Wenn X(T) + Y(T) > «+cT, so ist Y(<) Y(T) für alle f^T.
(vi) Wenn Y(<) im Punkte f unstetig ist, so ist Y(f+0) — Y(<) Y

+ cf —X(f) — Y(<)i).

Y(f) bedeutet anschaulich die Dividende, die bis zum Zeitpunkt <

(wegen (ii): f exklusive) gesamthaft ausgeschüttet wird. Mit (iii) wird
gefordert, dass die ungewisse Zukunft auf die augenblickliche Dividen-
denzahlung keinen Einfluss hat. Wir verlangen (iv), damit etwa der

Erwartungswert der totalen Dividendenzahlungen bis zu einem Zeit-
punkt < gebildet werden kann.

Das Itapifaü u(7,) der Gesellschaft zur Zeit £ berechnet sich als

«(f) «g + c<— X(t) — Y(£), (4)

und zwar ist dies das Kapital cor einer abfälligen Dividendenausschüt-

tung
Y(£+0) — Y(£) <S «(£), vgl. (vi), (5)

zu diesem Zeitpunkt. Die Gesellschaft ist ruiniert, sobald dieses Kapi-
tal negativ wird. Der Zeitpunkt r des möglicherweise eintretenden
Buins ist

t Min {T, m(T) <0}.

Falls m(£) >; 0 ist für alle £, so setzt man r oo. Auf Grund von
(iv) und (vi) überlegt man sich leicht dass das Ereignis |r ^ £} für
jedes £ ein Element von31 ist. In der Sprache von Loève[8] spielt r die
Bolle einer " stopping time".

Mit dem eventuellen Eintritt des Buins ist die Tätigkeit der Ge-

Seilschaft beendet, (v) heisst in diesem Sinne, dass die Gesellschaft
nach ihrem abfälligen Buin keine Dividenden mehr auszahlen kann.
Wir interessieren uns im folgenden nur für Werte £ <1 t.

D Ausserdem postulieren wir, dass aus it(f+0) 0 folgt, dass Y(f+fo) —

Y(J+ 0) Y c/t für alle Ii > 0 ist. Ruin kann also nur an einer Schadenzeit eintreten.
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1.2. Beieerfimg, ÜfrerWicfc über die Resultate

Die Freiheit der Gesellschaft liegt also in der Wahl einer Dividen-
denstrategie S. Wie von Neumann/Morgenstern [10] unter plausiblen
Annahmen gezeigt haben, wird sie mit der Wahl von <S versuchen, den

Erwartungswert einer A'itteen/imfciio» w(co) möglichst gross zu machen.
Setzt man

1 falls T oo

ra(w) (7)
0 falls t < oo,

so will die Gesellschaft einfach die Überlebenswahrscheinlichkeit maxi-
mieren. Die optimale Strategie besteht trivialerweise darin, dass man
fteme Dividenden ausschüttet. Wir befinden uns damit im Modell der
klassischen kollektiven Risikotheorie. Das verbleibende klassische Pro-
blem besteht in der Berechnung beziehungsweise Abschätzung dieser
Überlebenswahrscheinlichkeit.

In Kapitel 2 wird eine Abschätzung hergeleitet, welche gültig ist
für ein Portefeuille, das sowohl positive wie auch negative Schäden in
sich birgt. (Unter einem negativen «Schaden» stelle man sich etwa das

Freiwerden der Prämienreserve einer Rentenversicherung zufolge Tod
des Versicherten vor.) Wir stützen uns dabei auf das Buch von Feller

[5], wo die Diskussion der Ruinwahrscheinlichkeit zurückgeführt wird
auf die Diskussion eines Zufallsweges.

In allen weiteren Kapiteln stellen wir uns auf einen anderen

Standpunkt. Nach einer Idee, die ursprünglich auf Bruno de Finetti
[6] zurückgeht, ziehen wir als Nutzenfunktion die totalen Dividen-
denausschüttungen heran. Es ist dabei recht realistisch (und mathe-
matisch überhaupt erst interessant), die Baricerte der Dividendenzah-
lungen aufzusummieren. Wir rechnen mit einer festen Zwisrnfensitäf /3

und setzen demnach
OO T

n M [ e-"' dY(f) [ dY(t). (8)
0 0

Wir definieren den Wert einer Strategie S bei Anfangskapital Wg als

F(«o, S) D [«(tu)] f f dY(t) dP(w) (9)
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und setzen

F(«o) sup F(m„,S). (10)
S

Eine Strategie >5 heisst optimal, falls für alle «q gilt

FK S) F(«„). (H)

In Kapitel 4 zeigen wir die Existenz einer optimalen Strategie.
Und zwar gibt es stets eine optimale BarabiSirafegie. Im Falle der ex-

ponentiellen Schadenhöhenverteilung zeigen wir sogar die Existenz
einer optimalen Barrieren-Strategie (Kapitel 5). Diese beiden Begriffe
entstammen der Terminologie von Morill [9], werden aber für unser
Modell in Kapitel 4 neu festgelegt. Noch ein paar Worte zur Metho-
dik: Durch eine Diskretisation des Zeitparameters einerseits und der

Schadenhöhenverteilungsfunktion andererseits machen wir uns den

Existenzsatz des diskreten Modelles zugänglich. Dieser wird in Kapitel3
hergeleitet und scheint - nach einer Bemerkung von Morill ([9], Seite

68) - von selbständigem Interesse zu sein.

Ganz herzlich möchte ich meinem Lehrer, Herrn Professor Bühl-

mann, danken, dessen stetes Interesse mir ein wirksamer Stimulus war
und der mir durch seine Antrittsvorlesung [3] und in persönlichen Ge-

sprächen die Idee zur vorliegenden Arbeit gab. Dank gebührt aber
auch Herrn Professor P.PIuber, der mich insbesondere vor einem

schwerwiegenden Irrtum bewahrt hat.

2. Abschätzung der RuinWahrscheinlichkeit mit den Methoden
der Fluktuationstheorie für Zufallswege

Dieses Kapitel knüpft ideenmässig an die Kapitel XI und XII des

Buches von Feller [5] an. Der Leser mag darum verstehen, dass wir
hier die Terminologie dieses Buches - eine in der Versicherungsmathe-
matik weniger übliche - übernehmen.

Die Abschnitte 2.1. und 2.2. gehören in die allgemeine Theorie der

Zufallswege. Abschnitt 2.3. bringt als Anwendung die versprochene Ab-
Schätzung der Ruinwahrscheinlichkeit. Eine Zusammenfassung des

ganzen Kapitels ist in [7] zu finden.

1.3. Mnerfcenmmg
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2.1. Zwei ffiZ/ssätee -über die FerZeiZwrw/s/tenfcZion der Lederköken

Durch eine reelle Zufallsvariable X bzw. durch ihre Verteilungs-
funktion F(x) P[V <1 x] wird auf bekannte Art ein Zufallsweg
erzeugt :

Sq 0, S'„ Xi + Xg + + X„ für n 1> 1, (1)

wobei die X; unabhängig und gleichverteilt sind. Die dazugehörige
Verteilungsfunktion der Leiterhöhen im strikten Sinne bezeichnen wir
mit H(x). Die Ungleichung H(oo) <1 ist also gleichbedeutend damit,
dass der Erneuerungsprozess der Rekordpunkte abbrechend ist.

HiZ/ssafc i
Vor: F^x),^^) seien zwei Verteilungsfunktionen mit

a) #i(oo) <1, J?2(oo) <1
b) Fj(x) ^r x <0, F\(x) F2(x) für xS;0.

Beh: Für jede nichtabnehmende Funktion /(x) iL 0 ist

J /(x) dHi(x) / /(x) dÄ2(x)

>
1 —Hj(oo) ~ 1 —H. CO

Wir geben zunächst den Beweis für den Fall, wo P\(x) und ste-

tig sind für negative Werte von x. Auf die Modifikationen, die man im
allgemeinen Fall anbringen muss, kommen wir am Schluss zu spre-
eben.

Wir definieren vorerst eine Abbildung 95 : P—>-P als

Min {y, F\(y) -Fg(p>} für x <0
ç»(x)= (2)

£ für £ 0

Wegen Voraussetzung &) des Hilfssatzes ist

9? (x) 5: x für x < 0, 9? (x) x für x 5: 0. (3)

Bezüglich des Pg'Masses ist 9) eineindeutig: Falls zwei Zahlen x, x
dasselbe Bild haben, d.h. falls 95(x) =9>(x) ist, so folgt daraus nämlich

Fg(x) =F2(^)' Ausserdem erhält die Abbildung 9? die Wahrscheinlich-
keitsmassen:
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— oo < a: < + oo (4)

Auf natürliche Art wird durch 9? eine Abbildung 0 des Stichpro-
benraumes der Zufallswege {Sjf'} in den Stichprobenraum der Zufalls-

wege {Sh'J induziert :

0(04, 0:2, (9?(xJ, 95(0*2), 95(0:3), (5)

Bezüglich des Masses des 2. Stichprobenraumes ist 0 eineindeutig.
Wegen (4) erhält auch0 die Wahrscheinlichkeitsmassen der Stichpro-
benräume.

Wir betrachten jetzt eine feste Stichprobenfunktion {S®} und ihr
Bild {S),*'} {0(,S<?>)}. Aus (3) folgt: Jedem Bekordpunkt von {-S'jf}

entspricht mindestens ein Rekordpunkt von {S'^'} ,und der letzte dieser

(evtl. mehreren) Rekordpunkte hat eine Leiterhöhe, welche grösser oder

gleich der Höhe des Rekordpunktes von {Sjf'} ist. Bezeichnen wir mit r(o)
die erwartete totale Anzahl von Leiterhöhen grösser als £, so ist demnach

L(^) ^(o:), 0 <1 a: < c». (6)

Da r^(a;) -> 0 für 0; ->• 00 (f 1,2), folgt aus (6), dass

00 CO

[ /(x)[—dri(œ)] ^ J /(«)[—dfg(®)] (7)
0 0

ist für jede nichtabnehmende Funktion /(®) W 0.

Zwischen r(®) und H(®) besteht ein einfacher Zusammenhang:

r(0) —r($)
H(z)= _ h (00). (8)

Zum anderen gilt

'(0) 1 — H(oo)' ^
denn so gross ist die erwartete Anzahl Rekordpunkte überhaupt. Also
haben wir

dff(s) —dr(®) if(00) [1—ff(oo)]. (10)

Aus (6) und (9) folgt
#l(°o)^ff„(oo). (11)

Aus (7), (10) und (11) ergibt sich jetzt die Behauptung des Hilfs-
satzes.
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Wenn F\(x) und F^x) nicht stetig sind für negative Werte von x,
so bereitet die Konstruktion einer geeigneten Abbildung 90 hebbare

Schwierigkeiten: Man hilft sich, indem man die reelle Achse i? in einen

grösseren Merkmalraum B einbettet. Man setzt etwa für i 1,2

B< {(x,y) / — co < x < + oo, 0 7/ F(x)—F(x—0)} (12)

und führt auf B^ die folgende Ordnungsrelation ein: Ein Element (x,
?/) heisst kleiner als ein Element (x, i/), falls x <x oder falls x x
und 7/ < 7/. Die Verteilung fL (x) lässt sich nun durch eine stetige Ver-

teilung E,-(a;, î/) auf E; repräsentieren, man setze etwa

F; (r, y) jF; (x—0) + 7/, (x, y) B.. (12')

Die Definition einer Abbildung 99: Bj -> Bj und der Rest des Be-
weises erfolgen nun analog zu vorher.

ffil/ssctte 2

F(x) sei eine Verteilungsfunktion. Wir setzen

fjiF(x) für x <0
F(a:)

1 — 5 + 3-F (x) für x )A 0

Dann ist die zuF(x) gehörige Verteilungsfunktion H(x) der Lei-
terhöhen gleich M(x).

Dieser Hilfssatz ist trivial. Dadurch, dass man F(x) mit der Ver-

teilungsfunktion, welche die ganze Masse 1 in den Nullpunkt wirft,
mischt, ändert man natürlich nichts an der Verteilung der Leiterhöhen
(im strikten Sinne!).

2.2. AfrscMfcwnp des Memmwms eiwe.s Zw/aEsu'epes

Gegeben sei eine Verteilungsfunktion F(x) mit negativem Erwar-
tungswert. Für den Zufallsweg {£)J folgt daraus, dass der Erneue-

rungsprozess der Rekordpunkte abbrechend ist. Mit Wahrscheinlich-
keit 1 wird ein endliches Maximum

M max (0, S^, S3, (13)

angenommen. Nach Feller ([5], Seite 363) gilt die asymptotische Bezie-

hung

0<g^ 1 + F(0—)—F(0)
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P[M i> a;] ~ C e"** für a:—>=o (14)

Dabei bestimmt sich « aus der Gleichung

oo

/>dH(y)=l, (15)
5

welche gemäss [5] (Seite 388) gleichbedeutend ist mit

-foo

y>dF(?/) 1. (i6)
—oo

Von der Verteilungsfunktion F(as) setzen wir also zusätzhch vor-
aus, dass die Gleichungen (15) bzw. (16) eine - und damit genau eine-
positive Lösung ^ besitzen. Schliesslich wird noch angenommen, dass

y* in (17) endlich ist.
Dank (16) lässt sich « mit beliebiger Genauigkeit aus F(x) berech-

neu. Die Konstante G lässt sich dagegen nicht direkt aus F(a;) berech-

nen:
J jyr

C wobei y* /" e*" y did (y). (17)

Unter gewissen Voraussetzungen lässt sich aber G anhand von
P(a;) abschätzen:

Gate

a,l Vor: F(x) £1^4 e"* für a; <0. (18)

CO

aä —a / [l-P(s)] ds

Beh: G<
x/e**' y dP(y) +« a /"e*" y [1—F(y)] dy

0 0

Vor: F(œ)^V* für rc < 0. (18')

oo

^4' — a' y [1 —F(s)] ds

Beh: C>
« î e*" y dF (y) + « a' y e*" y [1 — F(y)] dy



Wir beweisen zunächst den Teil «). Zu diesem Zweck definieren
wir eine Verteilungsfunktion

^ ^
g-F(x) füra:<0 1

^^ ^ 1 - g + g F (®) für ® ^ 0' ^ 1 —[F(0)—4]' ^
Nach dem Hilfssatz 2 von 2.1. ist H(cc) H(a;). Nun definieren wir

q ^4 e®* für ® < 0
j?s(®)

1 ^r a; ^ o ^
Da der Mittelwert von F(x) negativ ist, ist auch derjenige von

H(x) und Hg(x) negativ. Indem wir auf _F(x) und ^(x) den Hilfssatz 1

für /(y) e*" y anwenden, erhalten war aus (17) die Abschätzung

CsJZ—. (21)

x y e^yffia(y)
0

Die rechte Seite lässt sich explizit berechnen, da sich be-

rechnen lässt, siehe [5] Seite 387. Allerdings muss g(—x) durch
— Ho(^) und durch 1 — Eg(x) ersetzt werden:

CO

if,(oo)-H,(a;) 1—Ha(x) 4- a / [1—Eg(s)] ds. (22)
X

Daraus erhält man

^2(y) g dF (y) + g a [1 —F(y)] dy (23)

oo

und 1 — H2(co)=yM — ga /"[1 — F(s)| ds. (21)
0

Indem man (23) und (24) in (21) einsetzt, erhält man die gesuchte
Abschätzung.

Beim Beweis von &) definieren wir zuerst eine Verteilungsfunktion

A' e®'* für x < 0

=f<s) fexao. <**>

Wir diskutieren den Mittelwert vonFi(x). Es ist

^4'
yi / [1 — F(s)] ds —. (26)
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Wenn ^ 5: 0 ist, dann ist die behauptete Ungleichung trivialer-
weise erfüllt. Man wird sich dann mit der in diesem Falle besseren Un-
gleichung 0 0 zufriedengeben müssen. Ist dagegen < 0, so ist
Hj(oo) < 1, und wir können den Hilfssatz 1 anwenden. Man erhält

l-fL(oo)C ; i-- - (21')

x/ e*»z/d#i(y)

Hj(.r) lässt sich analog zu oben explizit berechnen. Einsetzen in
(21') ergibt die behauptete Ungleichung.

2.3. /ièsc/hifeMWf/ der i?«wH'o/(rsc/iei«KcÄfcei<

Wir kehren zurück zu dem im 1. Kapitel beschriebenen Modell,
versehen mit der klassischen Strategie S 0. Die Verteilungsfunktion
des Einzelschadens bezeichnen wir hier mit P(.r),— oo < a; < + oo, um
Begriffskollisionen zu vermeiden. P(aü sei an der Stelle r 0 stetig,
was ja durch Übergang auf einen äquivalenten Risikoprozess immer
erreicht werden kann. Erwartungsgemäss soll die Versicherungsgesell-
schaft mit Gewinn arbeiten, d.h. es soll

+ oo

c> a y ydP(?y) (27)
—OO

sein.

Nach einer Idee von Feller ([5], Seite 198) betrachten wir den Zu-
fallsweg {S,,}, der von der Verteilungsfunktion F(a;) erzeugt wird,
wobei

dF _ a 7 7m
der

0C /- — (z-i/)(*)=-/> dP(2/). (28)

Dank (27) ist der Mittelwert von F(.r) negativ, somit nimmt der

Zufallsweg {<S„} mit Wahrscheinlichkeit 1 ein endliches Maximum M
an. Zwischen diesem und der Ruinwahrscheinlichkeit 1 — P(w),w Mq

Anfangskapital der Gesellschaft, besteht die einfache Beziehung

1 —P(w) P[M^w]. (29)

Aus (14) und (29)" folgt das asymptotische Verhalten der Ruin-
Wahrscheinlichkeit für grosses Anfangskapital:
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1 — 2? (it) ~ C e~*" für « —> oo. (30)

* berechnet sich nach Formel (16). Wenn wir (28) in (16) einsetzen

und die Integrationsreihenfolge umkehren, so erhalten wir für x schliess-

lieh die Gleichung

/e*«dP(y) l+x--, (31)

welche der Formel (25) von [4] entspricht und beispielsweise als For-
mel (33) bei [1] anzutreffen ist. Die numerische Berechnung von *: be-

reitet also keine Schwierigkeiten.
Der Satz von 2.2 erlaubt nun eine Abschätzung der Konstanten

C. Schreibt man (28) als

T 771 a oo a

_ a —z p —y
dz

(z) — e
° / e " dP (y), (32)

so erkennt man, dass die Voraussetzungen (18) und (18') dieses Satzes

erfüllt sind für
+ oo a

a p —y
a —

c
A / e

«
*

dP(y) (33)

a'= —, .4'= / e * dP(y). (33')
« i.

Einsetzen ergibt nach einiger Piechnung das gewünschte Resultat :

Safe
oo 0 a

1 —P(O)--^/ ydP(y) + y e ^dP(y)
Î1 ^ (34)

0C XI/

«—/et/ [1 — P(y)] dy
^

o

OO

l-P(0)-"/ydP(y)

^ s - • (34')
oc p xy

*— / e y[l-P(y)]dy
c n
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BernerZcwTW/ew:

1. Im Falle, wo P(x) auf der positiven Achse konzentriert ist, ergibt
sich für C der exakte Wert, wie er bei [5] als (7.6) und bei [4] als

(57) zu finden ist.
2. Eine exakte Formel für 0 ist zwar bekannt (siehe etwa (55) bei [4]).

Diese eignet sich für eine numerische Adhoc-Auswertung aber

nicht, im Gegensatz zur obigen Abschätzung.
3. Die Lösbarkeit der Gleichung (31) sowie die Endlichkeit des Nen-

ners von (34) und (34') wurden als weitere Bedingungen an P(x)
stillschweigend vorausgesetzt.

Betrachten wir zur Illustration der Abschätzungen (34) und (34')
das Beispiel der zweiseitigen Exponentialverteilung: P'(a:) p(.r) mit

----- e" für a; < 0
v + ^

PO) (35)

e für a: > 0.
v + p

Die Bestimmungsgleichung (31) lautet hier

' + "7) (' + 7 "0
welche unter der Bedingung6

->I_I (37)
a v

eine positive Lösung * besitzt. (Man erkennt dies durch Diskussion

von (36) für nahe bei 0 gelegene ^ und für x —> oo.) Diese Bedingung
(37) entspricht gerade (27), ist also erfüllt.

Nach etwas Bechnen ergibt sich aus (34) und (34') die Abschät-

zung

a a a / a \
J«/* — V

c c C \ C /
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Betrachten wir dazu ein Zahlenbeispiel. Sei c 9, a 11, v 10,

q '2. Aus (86) folgt « 1. (38) ergibt 0.32 <i 0 <1 0.51. Durch minimen
Bechenaufwand hat sich also die triviale Abschätzung 0 <j C SS 1 ver-
bessern lassen.

3. Ein-Personen-Spiel ökonomischen Überlebens mit
diskreter Zeitrechnung

3.1. Das Modell

Wir betrachten hier ein Modell, das im wesentlichen demjenigen
von Morill [9] entspricht. In diesem Modell interessiert man sich von
vornherein nur für eine Eolge von äquidistanten Zeitpunkten, sagen
wir 1=1,2, 8,.... Zum Zeitpunkt 1 wird der Gewinn X,, der aus der

vorhergehenden Periode (1 — 1,1] resultiert, ermittelt. («Gewinn» ist
dabei iin allgemeinen Sinne zu verstehen: Ein negativer «Gewinn» in
diesem Sinne ist ein Verlust im üblichen Sprachgebrauch.) Der Ge-

winn in den einzelnen Perioden sei unabhängig und gleichverteilt :

-fco
?] 5V wobei V 1. 0.^0. (1)

J= —oo

Wir wollen dabei sofort voraussetzen, dass

CO

2 9) ^ (2)
j=i

ist. Diese Bedingimg ist beispielsweise in allen Fällen erfüllt, wo der

grösstmögliche Gewinn nach oben beschränkt ist.
Die Gesellschaft startet zur Zeit 1 0 mit einem ganzzahligen,

nichtnegativen Anfangskapital %. Das Kapital wird zur Zeit 1 ver-
grössert durch den Gewinn V; und anschliessend vermindert um die

Dividende Z,. Das Kapital zur Zeit 1 vor der Dividendenausschüttung
beträgt demnach

Mf Wo—Zqt Aj—Z-iM Mg—Zg+ + Xj. (3)

Wenn zum erstenmal ig < 0 ist, ist die Gesellschaft ruiniert. Bis

zu diesem Zeitpunkt r kann die Gesellschaft ganzzahlige, nichtnega-
tive (aber sonst willkürliche) Dividenden
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Z, 0,1,2,..., T — l) (4)

auszahlen. Und zwar schüttet die Gesellschaft diese Dividenden ge-
mäss einer Dmdewdewsfrategie S aus. Durch S wird in Abhängigkeit
der «Vergangenheit» (mq, %, Zj, w,) eine Verteilung über den
Zahlen 0,1,2,..., w, definiert. Anhand dieser Verteilung wird dann die

Dividendenausschüttung zur Zeit < ausgelost.
Die zukünftigen Zahlungen sollen anhand eines Diskontierungsfak-

tors e < 1 auf die Gegenwart bezogen werden. Die Summe der diskon-
tierten Dividenden beträgt also

(5)
/=o

Ihr Erwartungswert ist

23 (mq> S) E

Wir setzen ferner

/=ü
(6)

23 (tt„) sup 23 S) (7)
s

und nennen eine Strategie S optimal, falls

23 (r«o> S) 23 («o) für alle (8)

ist.

Eine Band-S'lratepie wird in diesem Modell festgelegt durch ein

Tupel «g, Oj, feg' von ganzen Zahlen mit

0 5g «o < < «2 < • • < < «„ • (9)

Bei einer Band-Strategie hangen die Dividenden Z,(i= 0,1,..., r—1)

nur vom jeweiligen Kapital w, ab gemäss der Regel

Zj=/(w,) 0 für (10)

0 für fyj < Wj <j Oj.

% für ^ ^ ft* (fc 1, 2, n)

w,— a„ fürM,^a„.
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Die folgende Graphik soll die Bedeutung dieser Zahlen %,
noch veranschaulichen.

z, /M
n 2 O

O
O

O

O °
O O

O O
o o oo o oOOOO OOOOOOO OOOOOO >- "i

0 do dj &2

3.2. Der Eaüsfewzsate

,Safo 1

In dem in 3.1. beschriebenen Modell existiert stets eine optimale
Strategie.

Im Beweis stützen wir uns wesentlich auf die Arbeit [2] von
Blackwell. Sein Resultat über die Existenz einer optimalen Strategie
im Falle eraDicker Aktionsräume ist jedoch nicht unmittelbar anwend-
bar.

Wir charakterisieren den ZwstcmcZ zur Zeit < durch das Kapital w,

ror der Dividendenausschüttung, die Aktion zur Zeit f durch das Kapi-
tal — Z, naek der Dividendenausschüttung. Der Aktionsraum M

sowie der Zustandsraum sind also afeäMbar. Unser Modell erweist sich
als Spezialfall desjenigen von Blackwell [2]).

Wir wollen nun zeigen, dass man im wesentlichen mit endlichen
Aktions- und Zustandsräumen auskommt. Es gilt die Abschätzung

33 (wq) «o F Af
1 —»

(11)

Denn für die zu {p^}, definiert als

'p,- für j 1,2,3,

2 & für j o
—CO

0 für j —1, —2, —3,

(12)
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gehörige Funktion 23(i(o) gelten die Beziehungen

23 m o) D) 33 («o) "o + -M» + Mü® + Mr® + Wq + M (13)
1 — r

(Denn im zu {_g-} gehörigen Spiel besteht die optimale Strategie
trivialerweise darin, dass man vorhandenes Kapital stets sofort als

Dividende auszahlt.)
Sei ferner S diejenige Strategie, für welche Z„ «q, Zj —

Z, Mj, (<<t) ist. Eine kleine Rechnung ergibt

-y CO

23 (w„. S «o + -M i F S S» (1^)
1—P» Po

Schliesslich definieren wir £ als die kleinste natürliche Zahl, derart
dass

rt+M >e(w+M+M (für m £ + 1, £ + 2, (15)
1 —pr \ 1 — r /

Anhand von (11), (14), (15) kann man zeigen, dass es nicht sinnvoll
ist, nach einer Dividendenausschüttung je ein Kapital grösser als f zu
haben: Jede Strategies kann ersetzt werden durch eine Strategies*,
so dass

(i) 23 (mq, S) -A 23 (w„, S*) für alle w„,

(ii) S* nur den endlichen Aktionsraum

^4* (0, 1, 2, £) benötigt.

Es ist daher

sup 23 (mq, S) sup 25 (mq, S *) für alle (16)
S s*

Die Zahl rechts in (16) wird aber realisiert durch eine optimale
Strategie S *, gemäss dem oben zitierten Resultat von Blackwell.

Nach Blackv^ell [2] gibt es demnach auch eine stationäre optimale
Strategie, also eine, für welche Z, /(«,) ist. Diesen Sachverhalt kann
man hier sofort präzisieren:
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Sate 2

In dem in 8.1. beschriebenen Modell existiert stets eine optimale
Band-Strategie.

Man kann nämlich immer

/(u) Max{Z/23 (») 23 (u-Z) + Z} (17)

wählen, was einer Band-Strategie gleichkommt. (Auf Details gehen wir
nicht ein, da dieser Schritt bekannt ist, siehe etwa [9].) Aus den ange-
stellten Überlegungen folgt übrigens, dass die charakteristischen Zah-
len einer optimalen Band-Strategie nicht grösser als £ sein können.

Bemerkimgi :

Die Bedingung (2) darf ohne Einschränkung an Allgemeinheit
vorausgesetzt werden. Ist nämlich M=oo, so ist 33(w„,S) °o für
sehr viele Strategien S, beispielsweise für alle Band-Strategien.

3.3. AbseMteimgi rem optimalen Band-Strategnen

Sei («o, bj, Op b„, a„) eine optimale Band-Strategie. Bei An-
fangskapital w,, =a„ ist Z„=0, also ist

CO

23 (aj t> • 2 % " ® (®n+ • (18)
J -«n

Wir verwenden, dass 23 (a„ +)) W 23 (a„) + j ist (für j 0 gilt
ja das Gleichheitszeichen), und erhalten

CO oo

23 (a„) < e • 23 (a„) 2 ® ' 2 3; • (19)
-an -a-n

Auflösen nach 23 (a„) ergibt

oo

® • 2 3)

23 K)^ • (20)

i-®2»,-
-an

Diese Abschätzung entspricht dem Satz 7 bei [9], Ihr kontinuier-
liches Analogon wird Formel (39) in 4.6.1. sein.
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Aus (20) folgt insbesondere die (zwar gröbere, dafür handlichere)
Abschätzung

dM
33 («0 ^ • (21)

1 —r

Da a„ 35 (aj ist, ergibt sich daraus insbesondere

»M
<*„ ^ • (22)

1—r

Diese Abschätzung ist natürlich auch ziemlich grob, wird uns aber
immerhin Formel (24) in 4.4 liefern.

3.4. Der FaZZ row SmAeifogiewnrm

Als Vorbereitung auf das 4. Kapitel verweilen wir kurz bei diesem

Spezialfall, wo also <72= <73 34= 0 sein sollen. Die Funktion
der Band-Strategien ist hier viel leichter zu überblicken als im allge-
meinen Fall.

Wir führen die Notation

P 3i> i-29 yz_i
— —oo

3t (23)

ein. Die Wahrscheinlichkeit, dass zum erstenmal zur Zeit 7 ein nicht
positiver Gewinn auftritt, beträgt p'~*g(7= 1,2,3,...). Sei nun
(a„, Z>j, ßj, ij, Oj, a„) eine (der Einfachheit halber) optimale
Band-Strategie. Wenn man annimmt, dass man mit einem Anfangs-
kapital «g % startet, erhält man so die Formel

® K) S P" 3
<=1

_L » Fr' 2 W 33K+7) (24)

Kurze Rechnung ergibt daraus

33 K) çr

I-Pv 1-?»,^ g
2 -«(«*+?')• (25)

Wir werden diese Darstellung beim Beweis des Existenzsatzes in
4.5. verwenden.
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Übrigens folgt im Fall von Einheitsgewinn aus immer

Mj, :£ % (für alle f ^f). Diese Tatsache gestattet einem die rekursive Be-

Stimmung des Wertes einer beliebigen Band-Strategie. Insbesondere
lässt sich eine optimale Band-Strategie (a„, 6p «j,... 6„, a„) berechnen,
indem man sukzessive

«o

und «i

(26)
U und

6„ und a„
bestimmt.

4. Ein-Personen-Spiel ökonomischen Uberlebens

mit kontinuierlicher Zeitrechnung

Wir kehren zurück zu dem in 1.1. beschriebenen Modell mit kontinu-
ierlicher Zeitrechnung. Wie angekündigt, geht es jetzt darum, das Total
F(mq,)S) der diskontierten Dividenden zu maximieren. Wir betrachten
im Folgenden nur den Fall eigentlicher Schäden, d.h. F(.r) ist eine

Verteilungsfunktion auf der positiven reellen Achse. Ziel dieses Kapi-
tels ist das Aufstellen des Existenzsatzes.

4.1. Monotonie nnd Stetigkeit ton F(w)

Safe

aJ Für alle n, d > 0 ist F(n + d) — F (m) > d

6J F(it) ist stetig im Anfangskapital it.

Die Monotonie ist trivial. Die Stetigkeit folgt dann aus den Un-
gleichungen

F(«- et) ^ ei"*« ' F(m) t > 0 (1)

F(n) ^ ' F(n + et), t > 0. (2)
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Dabei erklärt sich etwa die Ungleichung (2) folgendermassen :

Wenn man zur Zeit f 0 mit Anfangskapital m startet und während
den ersten f Zeiteinheiten keine Dividende ausschüttet, so ist mit
Wahrscheinlichkeit e~"' das Kapital zur Zeit t gleich w + cf.

Bcmd-Sförafet/ien

4.2.1. Definition

Eine Band- Strategie S wird durch eine abgeschlossene und
beschränkte Menge M c [0, oo) und durch eine offene Menge B c (0, oo)

festgelegt, wobei gelten soll:

- M und B haben einen leeren Durchschnitt. (3)

- Der linke Randpunkt jeder Komponente von B gehört zu ^4. (4)

- Das Intervall (Max a, oo) gehört zu B. (5)
A

Die Dividendenausschüttung einer solchen Band-Strategie zur
Zeit f (< < t) hängt nun lediglich vom augenblicklichen Wert w, des

Kapitals ab, gemäss den folgenden Regeln: Y(f) ist linksseitig stetig,
und falls

ii, (4: Y(f+0) — Y(f) 0, Y'(f) — c. (6)

Die eingehenden Prämien werden also unmittelbar als Divi-
denden ausgeschüttet.

ii,«B: Y(< + 0)—Y(f) w, — max{a/ß<M„ aeM}. (7)

Es wird augenblicklich so viel Dividende ausbezahlt, dass

das Kapital den nächsttiefer gelegenen Punkt von M er-
reicht. Anschliessend kommt es zu einer kontinuierlichen
Dividendenausschüttung gemäss (6).

uB) : Y(f + 0) - Y(t) 0, Y' (f) 0. (8)

Es findet keine Dividendenzahlung statt, das Kapital
wächst.
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Für einen festen Schadenverlauf hat Y(f) also etwa folgendes Aus-

sehen:

® Durch Sparen wird ein

Kapital w, e .4 erreicht.

• Schadeneintritt.

° Durch Dividendenzah-
lung hat das Kapital
den nächsttiefer gelege-

nen Wert von yl ange-
nommen.

Man überlegt sich, dass eine solche Band-Strategie eine Stra-

tegie ina Sinne der Axiome von 1.1. ist. Zur Illustration und für spä-
tere Zwecke führen wir noch zwei Klassen von sehr speziellen Band-

Strategien ein.

4.2.2. Endliche Band-Strategien

Eine Band-Strategieheisst mZZicb, falls die Menget aus end-

lieh vielen Punkten cig < % < dg < < a„ besteht. Die Menge B
lässt sich dann durch endlich viele Punkte bj, bg,..., b„ charakterisie-

ren, mit

«0 ^ ^ «1 ^ ^2 ^ «2 Sä • • ^ ^ «n • (9)

Man setze nämlich

B u bj) u (a„, oo). (10)
4 1

i

Die Funktion der Zahlen Og, b^, dj,... sei noch mit folgender Gra-

phik verdeutlicht :
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Y((+o)-r(t)

Der Wert y(m) F(m, Oq, bj, %, b„, a„) lässt sich rekursiv be-
rechnen. Falls y (m) für m rg %_j bekannt ist, so ist y (w) y (%_j) + w—

für a,._, < m < b^. Für b;,. <Di<jcij. gilt dann die Integralgleichung

y (-i()

(aj-uJ/c fu+cf-fcfc+O 1

a • J J y(u+ cf— j/) dF(j/)l df
o

l o j

aj^&fc+O

— e-(«+Ä («Jr«)/« f „ (a^_ y) dF(«) + W (m) (11)
4- /? F<x + /3

wobei

(a&--u)/c f w+cf+0 1

«)(«) a- j g-(*+W I

I" y (w + cf — ?/) dF(z/)| df
lw+ci-ö&+0

a "4+0
g-(avfflMc f c(a,-^/)dF(î/)

a -f P „ h „oft-it + O

I

^
j-(°t+ffl i"4-")/c M2)

a+ /?

bekannt ist. Diese Integralgleichung erhält man, wenn man annimmt,
dass der nächste Schaden zur Zeit f eintritt und die Höhe !/ besitzt.
Die Fälle, wo t< (% — ît)/c ist, ergeben den ersten Summanden von
(11) bzw. (12), je nach der Höhe des Schadens. In den Fällen, wo
f > (<%. — m)/c ist, kommt es zu einer kontinuierlichen Dividendenzahlung,
sobald das Kapital den Wert % erreicht. Ihr Erwartungswert ist der
dritte Summand von (12). Der anschliessende Schadenfall führt dann

zum zweiten Summanden von (11) oder (12), je nach der Schadenhöhe.
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Durch Differentiation von (11) gewinnt man die Integro-Differen-
tialgleichung

GC "4~ oc

v'(m) -— r(u) — — f ®(u-?/) £ÏF(j/) (13)
c c ^

welche übrigens gültig ist für eine beliebige Band-Strategie S^ß, falls

(4uB).

4.2.3. Barrieren-Strategien

Eine (endliche) Band-Strategie S^heisst Bameren-)Strafeg''ie, falls
die Menge ^4 aus einem einzigen Punkt a a„ besteht. Die Menge B
besteht dann einfach aus dem Intervall (a, oo). Die Dividendenaus-

schüttung wird bei einer solchen Barrieren-Strategie offenbar so vorge-
nommen, dass das Kapital den Wert a möglichst rasch erreicht bzw.

beibehält.

4.2.4. Optimalitätskriterium für Band-Strategien

Sei eine Band-Strategie. Wir definieren dazu einen Operator
der jeder stetigen Funktion 7i(a:), #3:0, eine Funktion T^ßli(x),

a; i> 0, auf die folgende Weise zuordnet :

Wir nehmen an, dass die Gesellschaft mit Anfangskapital w star-
tet und bis zum Eintritt des ersten Schadens (Zeitpunkt fj) Dividen-
den gemäss der Band-Strategie G_4ß ausschüttet. Anschliessend wird zu
diesen Dividenden noch ein (fiktiver) Betrag 7i(«, - diskontiert also

fc(u, - dazugelegt. Unter T^ß7i(w) verstehen wir nun den Erwar-
tungswert der beschriebenen Zahlungen. Falls also beispielsweise m e ^4

ist, so ist
w+0

r^ß A (M) - ^ f A («- y) dB (j/). (14)
a+/S a + /?4

Wir definieren jetzt rekursiv T^ß7i(w) als A] (w).
(Dies ist natürlich nur möglich, wenn T^gk(it) stetig ist.)

Offenbar lässt sich T^ßA (w) interpretieren als die erwartete Summe

der diskontierten Dividendenzahlungen bis zum n-ten Schaden (Zeit-
punkt f„), welche gemäss Band-Strategie S'^ß ausgeschüttet werden,
vermehrt noch um den (fiktiven) Betrag e~^'" • A (u,^).
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Anhand dieses Operators (der übrigens im wesentlichen dem

Operator von Blackwell [2] entspricht) lässt sich nun die Optimali-
tat von S^g leicht ermitteln:

»Säte

Falls T_4gF(w) F(m) für alle -u2:0,
so ist .S^g optimal.

Beweis: Sei e>0 beliebig vorgegeben. Die diskontierten Dividen-
denausschüttungen nach einem Zeitpunkt T sind in jedem Fall nicht
grösser alsÖ

e~"^u + cT +-^ (15)

also kleiner als £ (bei festem m) für T T(e). Mit Wahrscheinlichkeit
grösser als 1 — £ finden im Tntervall [0,T] höchstens IV Schadenfälle

statt, M V(T, e).
Aus der Voraussetzung des Satzes folgt D4gF(w) F(w).
So erhält man wegen der erwähnten Interpretation von Tfg F(w)

und der eben beschriebenen Wahl von T und V die Abschätzung

<?4g) ^ ^abF(M) — £—£•( « + ~
(16)

c

£ ist beliebig, also ist die Band-Strategie S^g optimal.

4.3. ZMskretesateow der Sckadewrwrteitemps/wnkteon

Wir approximieren die Schadenverteilungsfunktion F(a;) durch
eine arithmetische Verteilungsfunktion.?^#) mit Span 2~ für m 1,2,...
auf die folgende Weise :

T-,/k\ fc-fl
F(#) =F( — für — < # < 17)w» \ / \ 2 / 2"* — 2
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Aus F^(x) <;F(a:) folgt Fp.^(w) <i F^,(m). Im Limes gilt die Gleich-

heit:

Safe

limF,» =7,(u). (18)
m ->oo

Wir müssen noch zeigen, dass lim inf F^,^ (w) 2g F^(m) ist. Sei e> 0
m -> co

beliebig vorgegeben. Man wähle 2' und W wie in 4.2.4. Dann gilt die

Abschätzung

+ Ê • ^1 + M 4" ^ Fjr — j (19)

Für m—>oo ergibt sich wegen der Stetigkeit von Fp(w)

lim inf Fy^ (u) + e • 1 + w + ~ j ^ F^(w). (20)
m ->• co \ P /

Damit ist der Satz bewiesen, denn e ist beliebig.

4.4. Disfcretisaticm der Zeit

Wir betrachten nun den zur Schadensfunktion (a:) gehörigen
Scbadenprozess nur zu Zeiten

**=^(fc 0,l,2,...). (21)
C ^5

Für die einzelnen Perioden der Länge — 2~ resultiert daraus die
c

Gewinnverteilungsfunktion G„, (a;) mit Span 2T"*, welche sich be-

rechnet als

P(Xji 2"" > 2~*" — s) für s < 2~"

G»(®)=
'

(22)
1 für x > 2



Dabei berechnet sich die rechte Seite von (22) gemäss der Formel
(2) im 1. Kapitel für den zusammengesetzten Poisson-Prozess.

Es ist nun naheliegend, das (im 3. Kapitel beschriebene) diskrete
Modell mit Gewinnverteilungsfunktion G„(x) und Diskontfaktor

« exp(—— 2~ zu betrachten, wobei als Dividendenzahlungen nur
V « /

Vielfache des Spanes 2~ zugelassen sind. Hier haben wir die Existenz
einer optimalen Band-Strategie

(o'"", &<•»>, ai»), a&>) (23)

bewiesen. Aus (22) in 3.3. ergibt sich die Abschätzung

a£"> < - (24)"m — ^ ^ '

Daraus folgt insbesondere, dass (m) 93<; (w, aj,', o),') für
c

it> — linear ist.
0

Jede Strategie S im kontinuierlichen Modell induziert nun
eine Strategie S im diskreten G^-Modell auf die folgende Weise :

^ [£<* »o. «i> • • • > %] (25)

P[0 <; Y(^+ 0) — («o + «i + + s*) < 2"'"/«q, 0 Y(0+) —2„ < 2""*",

Mq + Cfj (< j) «.j + 2Q, 0<i Y (fj +0) (2Q + 2j) <2
Mq + ctfc — X„ (fj) % + ZQ + 2j + -T- 2J._J ]

Die intuitive Bedeutung ist dabei die folgende :
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Mangels Information über das Geschehen ausserhalb der Zeitpunkte ^
entstehen dabei im allgemeinen aus den (reinen) Strategien S im konti-
nuierlichen Modell «gemischte» Strategien© im diskreten Modell. Man
sieht jetzt leicht ein, dass für jede Strategie S und für jedes Anfangs-
kapital von der Form m fc • 2"'" gilt :

C.r+\(«,S)^F^(«,S) (26)

mit einer von S und m unabhängigen Konstanten C. Indem wir das

Supremum über alle S bilden und anschliessend m—yoo gehen lassen,
erhalten wir

lim inf («) 5: hm sup Fp^ (w). (27)
?n co m ->• oo

Andererseits ordnen wir jeder Band-Strategie© (a„, 4, %,... 6„, aj
im diskreten Modell (d. h. <^,4 sind Vielfache von 2") eine end-
liehe Band-Strategie (oq+2~, ^+2", Oj+2""*,..., b„+2",a„+2""')
im kontinuierlichen F^-Modell zu. Sei e> 0 beliebig vorgegeben. Wir
wählen T und V wie in 4.2.4. Ein Vergleich der Dividendenausschüt-

tungen bei entsprechendem Schadenverlauf ergibt für Anfangskapitalien
von der Form -u fc • 2r'" die Ungleichung

Fp(« + 2", 5^,) + e • ^1 + w+ 2~ + +D-IV- 2-'" (28)

^ \(«,S)
mit einer von m, m, S unabhängigen Konstanten D. Wenn wir jetzt für
S die optimale Band-Strategie (23) einsetzen und m—»-oo streben las-

sen, so ergibt sich

lim inf Fp^ (« + 2V, 4' + 2T, &<"•> + 2-, 4- 2T)"
(29)

4- e • 1 + m + — j ^ lim sup 23<^ (m)
m -> oo

Aus (27) und (29) folgt wegen (18) schliesslich

Fp(«) hm 23^ («, 4"'. 4"'> <'»•••> 4"'. <>) (30)
m -> cx>

für m von der Form fe-2~. Anhand von (24) überzeugt man sich, dass

die Konvergenz gleichmässig für alle solche m stattfindet.
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4.5. Bahstew2safe

»Safe

Es existiert immer eine optimale Band-Strategie.

Wir definieren eine Band-Strategie S^g und wollen dann zeigen,
dass »S'^g optimal ist. Die für »S^g charakteristischen Mengen ^4 und B
seien wie folgt definiert :

fc 0,1, ...,n„,
.4 Menge aller Häufungspunkte der Folge {a|("'}

_

(31)
1,2, 3,...

wobei die Zahlen a["*' - wie nachher in (32) auch die bjf' - den optimalen
Band-Strategien (23) der diskreten G,„-Modelle entnommen sind. Zur
Menge B gehören das Intervall (Max a, oo) und alle für welche

a ^4
Folgen jwiyj und {fe^J existieren, so dass

Max {a/a«M, a<b} lim ajW'
'

(32)

und & < lim
/ -> OO

Man überzeugt sich leicht, dass S'^g eine Band-Strategie im Sinne
der Definition von 4.2.1. ist. Wir wollen nun die Optimalität von »S^g

anhand des Satzes von 4.2.4. beweisen. Wenn wir wiederum mit
den zu »S^g gehörigen Operator bezeichnen, so muss also gezeigt wer-
den, dass

T/4.8 FF M ~ FF M (38)

für alle m ^ 0 ist. Zu diesem Zweck unterscheiden wir, ob rt in ^4, B,
oder im Komplement dieser beiden Mengen liegt.

Falls m eM ist, so ist gemäss (14) von 4.2.4.

C
w+0

y« FrW - 7W + f • (34)
a + /S

Seien nun {ra^} und {fy} Folgen, so dass m lim Da

(a^', a("ü',..., eine optimale Band-Strategie für das

diskrete G„, -Modell darstellt, gilt gemäss (25) von 3.4. die Gleichung
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(35)

'Pf ' 2""*^ f ^
«C («!'"'') + f 93.; (alrf+ ®)dG_.(a:),Gm.V *, ; j G„. V *, I ^

-a^'-0

/ i? \ / ot \
wobei « exp 2 I, p exp 2 "*•>' Man verifiziert jetzt

anhand von (30) und der Definition (22) von G„, (x), dass die rechte
Seite von (35) für j—>-oo gegen die rechte Seite von (34) strebt. Die
linke Seite von (35) strebt aber gegen Fp.(u), also ist (33) für it e M be-

wiesen.
Sei nun m « B. Sei a die grösste Zahl aus M, welche kleiner als m

ist. Wegen dem eben Bewiesenen und wegen (30) ist

-^Zß ^F(^) ~ ^ ® + -^45 FF(®)
(36)

w — a + Fj. (a) F,,, («)

was wir zeigen wollten.

Sei schliesslich n^(AuB). Sei a die kleinste Zahl aus A, welche

grösser als m ist. Dann ist offenbar

T^Fp.(w) «-(«+« («-«)/« Fp.(a)

(a-t*)/c (w-f-cf+O 1

+ a • | g (a+fflz I

J F^(n + ct—p) d-F(p) | dt.
0 l 0 J

Aus Stetigkeitsgründen dürfen wir annehmen, das Anfangskapital
sei von der Form n fc-2~. Seien {m^} und {fc^j Folgen, so dass

a lim a|d. Dann findet man für 93g (w) einen Ausdruck, der eine
7 co

ähnliche Gestalt wie die rechte Seite von (37) hat und im Limes für
j—voo gegen sie konvergiert. Damit ist also auch in diesem Fall die

Gültigkeit von (33) erwiesen, womit wir die Optimalität von gezeigt
haben.

4.6. Disfcnssion der optimalen Band-Strategrien

4.6.1. Abschätzung der Menge A nach oben

Formel (24) liefert uns eine solche Abschätzung für die dort kon-
struierte optimale Band-Strategie. Wir leiten hier eine allgemeinere,
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von F(a;) abhängige Abschätzung her, welche zudem für )ede optimale
Band-Strategie gilt. Für a « A fsf

c oc

^ + ~~T~F f ^(«-2/) ^(2/) (38)
a+ ö a+H J

af-0

oc+ /3 f af ß
i

c
1

a

a + /9 af/3

c f a Of u

F(a)F(o)--4~ f ydFfo).
a f p ^

Daraus folgt
a+0

c—aj î/dF(î/)
F (a) <1 F (89)

a + j8 — a F (a)

C

Da a H SSF(a) ist, ergibt sich daraus eine entsprechende
a + jS

Abschätzung für o. Ungleichung (89) ist offenbar dann besonders nütz-
lieh, wenn F(n— x) an den Wachstumsstellen vonF(r) «ungefähr linear»
ist. Dies ist für sehr grosse Zinsintensitäten der Fall, asymptotisch
aber auch für (3—>0, wie wir sehen werden.

4.6.2. Eine notwendige Bedingung für Punkte der Menge M

Wir definieren eine Funktion 1F(m) als

w+0

JF(«) -i- f f F(«-y) dF(j/) (40)
oc+£ afßJ

Offenbar ist IP(w) der Erwartungswert der Dividenden bei An-
fangskapital it, wenn man bis zum Eintritt des ersten Schadens die

eingehenden Prämien unmittelbar als Dividenden auszahlt und nach-
her eine optimale Strategie spielt.

-Sate

Falls aef, a>0 und TF(m) in einer Umgebung von a stetig diffe-
renzierbar ist, so ist W(a) 1.
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Da PF(a) F(a) und PF(w)<iF(w) ist, gilt für alle it(0:Aîi<)«)

IF(a) - PF(m) ^ F(a) - F(«) ^ a- u (41)

Insbesondere folgt daraus PP"(ct) )>1, Es muss aber auch PF'(a) <i 1

sein: Für 2')>0 definieren wir für das Anfangskapital a die folgende
Alternativ-Strategie Sy Nach Eintritt des ersten Schadens wird eine

optimale Strategie gespielt. Vorgängig wird keine Dividende ausbezahlt,
bis das Kapital (eventuell) den Wert a + T erreicht, wo dann die ein-

gehenden Prämien fortlaufend als Dividenden ausbezahlt werden. Es

ist also F(o, S'o) =lF(a), und eine kleine Rechnung ergibt

IF' (a) — 1. (42)

r=o

Diese Ableitung darf nicht positiv sein, also ist PF' (a) 1.

IforoZZar

Falls a> 0 ein isolierter Punkt der Menge M ist und PF(w) in einer

Umgebung von a stetig differenzierbar ist, so ist F'(a) 1 und
F» (o) 0.

Auf 23 ist F (m) linear. Auf dem Komplement von M und 23 bedient

man sich der Integro-Differentialgleichung (13) und benützt, dass

PF(a) F(a) und PF'(a) 1 ist.

4.6.3. Anwendung auf die Exponentialverteilung

Wir nehmen an, die Schadenhöhe sei exponentiell verteilt, d.h.

F(a:) e~'h /(®) ye~^(y>0). (43)

Für a>0, aeM erhält man wegen /'(&) —y/(œ) die Gleichungen

a

PF(a) —— + f F(y) /(a-y) F(o)
a+/3 ot+FJ

(44)

PF' (a) —~v" F(a) f Ffe) /(a-y) iy 1

a + /S a + /S 2
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Indem wir dieses System unter Elimination des Integrales nach

F(a) auflösen, erhalten wir

yc— a — ß
F(a) - — (45)

Wegen der Monotonie von F(w) hat diese Gleichung höchstens
eine positive Lösung a. Im 5. Kapitel werden wir sehen, dass es in die-

sem Falle eine einzige optimale Band-Strategie gibt, nämlich die zu a

(evtl. a =0) gehörige Barrierew-Sfrafegtie.

4.6.4. Eine Abschätzung der Menge M nach unten

S'ate

Falls F'(:r) =/(.r) im Intervall [0, M] monoton zunimmt, so ist
(0, M)ni=0.
In diesem. Fall ist nämlich IF'(«) im Intervall [0, M] monoton zu-

nehmend. Wäre a«M(0<a<M), also lF(a)=F(a) und TF'(a) l, so

gäbe es ein d>0mit F(a) TF(a)<"FF(a—<ü) + d. Da IF(a—d)fSF(a—d)
ergibt sich dann F(a) < F(a—d) + d, was nicht möglich ist.

4.7. Fanafiow der Zmsmtewsifäf

Unser Modell wird durch das Quadrupel ((9, a, c, E) beschrieben.

Das Paar) — ,F legt die Giratar des Portefeuilles fest, der gemeinsame
\ « /

Faktor von a und c seine Grösse. Wie man durch eine einfache Ande-

rung der Zeitskala erkennt, ist für unsere Bewertung eine Variation
des Zinsfusses gleichbedeutend mit einer Variation der Grösse (immer
bei gleichbleibender Struktur). Insbesondere entspricht also der Fall
mit geringer Zinsintensität den grossen Portefeuilles, der Fall mit gros-
ser Zinsintensität den Portefeuilles mit einem kleinen Bestand. In die-

sem Sinne kann man im folgenden also etwa « /G —>0 » auch immer lesen

/ a \
als «sc, c—>-oo — konstant ».

\«_ /
Bei festem it ist F (it) monoton abnehmend und stetig in /9, letzte-

res weil F(«,S) für jede Strategie S stetig differenzierbar in (9 ist.
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4.7.1. Der Fall grosser Zinsintensitäten

Man gewinnt einen gewissen Einblick in das Zustandekommen
optimaler Band-Strategien, indem man variieren lässt. Der Einfach-
heit halber wollen wir in diesem Abschnitt voraussetzen, F(:r) erfülle
die Voraussetzungen des Satzes 4.6.4. Dann erkennt man anhand von
(39): Für sehr grosse Zinsintensitäten besteht die optimale Strategie
darin, dass man das Anfangskapital auszahlt und die eingehenden Prä-
mien unmittelbar als Dividenden ausschüttet. Der Ruin tritt dann mit
dem ersten Schadenfall ein, und es ist

F(w) «+ ——
a-T P

(46)

Mit Stetigkeitsbetrachtungen überlegt man sich: Der kleinste
Wert von ß, für den die Darstellung (46) richtig ist, ist zugleich der

grösste Wert von (3, zu dem es eine optimale Band-Strategie gibt,
so dass die Menge M einen Punkt a> 0 enthält. Diese Zahl bezeich-

nen wir als die ferifisclte Zinsinfensifäi. Für dieses /5' und für ein solches

a M ist dann
o+0

F(«)
* f 7(a-y)dF(y) (47)

7 ot -4— p -a + /?'

wobei für F(a), F(a—y) die Darstellung (46) mit /8 ß' einzusetzen ist.
Wenn wir jetzt (47) nach /?' auflösen, so erhalten wir

j8' a
ç>(a)

(48)

WO

y(a)=7(a)-»-
J cro!F(a;)

a+0

7(a)-»-
J 2:<7F(:e)

+
4 C.F (a)

aa

Die kritische Zinsintensität /3' kann jetzt auch beschrieben werden
als das Maximum der Funktion (48). Genau jene Argumente «, für
welche dieses Maximum angenommen wird, können (zusammen mit
der ZahlO) für die Menge M einer optimalen Band-Strategie »S'^g ver-
wendet werden. Damit gewinnt man wenigstens für die kritische Zins-
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intensität einen Überblick über alle möglichen optimalen Band-
Strategien. Insbesondere findet, man so durch geschickte Wahl der

Verteilungsfunktion F(x) Beispiele, wo die Menge M aus endlich vielen,
abzählbar unendlich vielen Punkten oder gar aus einem ganzen Inter-
vall bestehen kann. In manchen Fällen kann man aus der Situation
bei /3' Schlüsse ziehen für Zinsintensitäten /?, die nur wenig kleiner als

/3' sind.
Wir betrachten als Beispiel den Fall mit einheitlichen Schäden

der Höhe M. Als kritische Zinsintensität erhält man

wobei das Maximum in (4S) durch a M erreicht wird. Für die nur
wenig kleiner als /S' sind, ergibt sich als einzige optimale Band-Strate-
gie die endliche Band-Strategie (oq—0, % M), wobei sich
6 wegen der Stetigkeit von F(w) an der Stelle it — 5 bestimmt aus

1 (49)

c
+ & (M-W« •

a

a + /? a+ jß
1 +

a+ j8
(50)

Die Funktion F (m) hat daher etwa folgendes Aussehen :

o 6 M
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4.7.2. Der Fall kleiner Zinsintensität

Wie bemerkt, ist dieser Fall gleichbedeutend mit dem Fall grosser
Bestände und daher für die Praxis von Interesse. Wir führen vorerst
eine Strategie ein, die darin besteht, dass bis zum eventuellen Ruin
eine kontinuierliche Dividende der Dichte d(0 < d < c—a^, (a;dF(;zj)
ausgeschüttet wird. Wenn 1 — B(«, d) die Ruinwahrscheinlichkeit bei

Anwendung der Strategie bezeichnet, so ist offenbar

^ B(n,d) • — (51)
P

Für jedes ß>0 wählen wir ferner eine optimale Band-Strategie
und definieren a.Q=ao(/3) =Min{a/ag^}. Es gilt:

>oo für //—>-0. (52)

Denn wäre beschränkt, so wäre auch F(0) F(0, öq) beschränkt
(da dann die erwartete Lebensdauer bei Anfangskapital 0 und Anwen-

dung der Strategie beschränkt wäre). Dies ist aber unmöglich, weil

wegen (51) F(0,S^)—>co für ß—>0.

Wir sind - wenigstens in qualitativer Hinsicht - sehr befriedigt
von der Formel (52). Wie immer eine optimale Band-Strategie he-

schaffen sei, für Anfangskapital kleiner als a„ ist ja nur diese Zahl cïq

relevant. Wenn aZso hei /esZem Hn/angs/capiZaZ die ZinsinZensiZäZ genii-
gend /dein foder das Porie/eni/Ze genügend gross^ isZ, dann nnrd die GeseZZ-

sc/m/Z ihre Dividende so anssc7iüZZen, dass das IlapiZaZ einen gewissen

fzeiZZic/i fconsZanZen/ j WerZ a„ heihe/täZZ, he^ie/inngsreeise mögZic/tsZ baZd

wieder erreic/iZ.

Wir fragen uns schliesslich nach dem asymptotischen Verhalten
von F(Uq) für /S—>43. Wegen (51) und der Formel (30) des 2. Kapitels ist

FK) è *>o> ^d) ^ (1 - ^°°) ' 4 für /?—>0 (53)
P

wobei ^ nur von d abhängig ist. Da (53) für beliebiges d<c —ap gilt,
folgt wegen (39) sofort

lim /3 • F (a„) c — ap (54)
/3-> 0
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In der anderen Lesart heisst dies

F(a„) a
lim /S, — konst. (55)

a, c->oo C £

Aus (39) erkennt man, dass die rechten Seiten von (54) und (55)

nicht vergrössert werden können, indem man das Argument a„ in den

linken Seiten ersetzt durch andere a A.

4.8. ZMsammen7ian(/ mit dem PlackteeZl'scken Modell

Bekanntlich lässt sich die Diskussion der Ruinwahrscheinlichkeit
(siehe 2.3) zurückführen auf die Diskussion eines Zufallsweges. Diese
Reditfciio?! »on konlmmerZ-tekem Zeltyarameter aw/ diskreten Zeilparame-
1er gelingt nun auch hier in verblüffender Analogie. Dank dem Exi-
stenzsatz 4.5. dürfen wir uns ja auf Band-Strategien beschränken und
können so den folgenden einfachen Zusammenhang mit dem Black-
well'schen Modell [2] herstellen:

Als Zustandsraum verwende man nämlich das Intervall [0, oo),

a
versehen noch mit dem Ruinzustand t. Der Diskontfaktor sei

a+jö
Eine Aktion bestehe nun in einem Paar (A,P) von Mengen, das die Po-

stulate von 4.2.1. befriedigt. Wenn uns P(.r) P(a, A, P, w) die Wahr-
scheinlichkeit dafür angibt, bei Wahl der Aktion (A,P) von einem Zu-
stand m in einen Zustand w'rgia: oder it'=f zu gelangen, so setze man

P(x) 1 —P(m—s) für ms4, (56)

P(a) 1 — F(a— a) für rieP, (57)

P(.r) 1 - F(a- s) (58)
(a-u)/c

— (a+/8) J P(w+ cl— a)df für w^(AuP).
0

Dabei bedeutet a in (57) - wie nachher in (60) - die grösste Zahl
aus A, welche kleiner als u ist. In (58) - und nachher in (61) - soll a

dagegen die kleinste Zahl aus A sein, welche grösser als m ist. Der Ge-

winn r(w) =r(tt, A, P) der bei einer solchen Aktion herausspringt, sei

schliesslich
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für « J (59)

r(u) n — a H für it fi
a+ /S

(60)

für « si (J u B) (Gl)

Intuitiv bedeuten diese Zeiten 0, 1, 2, 3, im Blackwell'schen
Modell die Zeitpunkte 0, fj, <g, #3, • (^ Zeitpunkt des i-ten Schaden-

falles) im kontinuierlichen Modell. Man überzeugt sich nun, dass auf
natürliche Weise den Band-Strategien im kontinuierlichen Modell sta-
tionäre Strategien im beschriebenen Blackwell'schen Modell entspre-
chen (und umgekehrt), wobei der Wert - insbesondere also auch die

Optimalität - erhalten bleibt.

Bei Anwendung einer Band-Strategie beträgt die Ruinwahr-
scheinlicbkeit offenbar 1. Die Frage stellt sich jetzt nicht mehr nach
der £/berZebenswja7trscbeinZtebfcei<, sondern nach der erwartete« Lebens-
daw er. Gemäss dem Motto «Zeit Geld» versehen wir die Lebenszeit
mit einer zeitlichen Zinsintensität <5 (<5>0) und setzen

Natürlich ist B>,,(«) D^(a) für «ß, wobei a wie in (57) definiert
ist. Für «^(iuB) gilt die Integralgleichung

4.9. -Erwartete Lebensdauer

0

T

(62)

E»=aJ e"'"-'" [ I),(«+ cf-y) dF(i/) df

+ g-(a+») (a-«)/o T X) (o-j^) dE(y)
a+ <5

1

(63)

wobei a wie in (58) erklärt ist.
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Bezeichnen wir mit L(f; w) clie Verteilungsfunktion des Ruinzeit-
punktes r, dann ist offenbar

CO
1 -J^

CO

(«) f [1 - i (< ; «)] ^ T —T f ^ (* i «) (64)
ö « <5 /

im wesentlichen die Laplace-Transformierte von L(i; «).

5. Exponentielle Schadenhöhenverteilung

Als Beispiel zur Theorie des vorhergehenden Kapitels diskutieren
wir hier den Spezialfall, wo die Schadenhöhe exponentiell verteilt ist :

F(x) 1— e""^, /(x) (a;^0). (1)

Wir werden hier - im Gegensatz zum allgemeinen Fall - die Exi-
stenz einer (und genau einer) optimalen Barrieren-Strategie einsehen.

5.1. Die I)i//erenhalg?<hclmngf der 23and-S'<rafegien

Sei irgend eine Band-Strategie. Wegen /'(x) —y • /(x)
gewinnt man aus der Integro-Differentialgleichung (13) von 4.2.2. die

Differentialgleichung

c »" (m) — (a+ /? — cy) r' (m) — /?y x (u) 0 (2)

Die Lösung ist von der Form

«(«) Ci6''" + (3)

wobei fj, rg der charakteristischen Gleichung

er- — (oc + /S— cy)r — /dy 0 (4)

genügen. Die Konstanten Cj, Cg bestimmt man, indem man den An-
satz (3) in die Integralrechnung (11) von 4.2.2. einsetzt.
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5.2. Existenz nnd BerecJmuwjf der optemo/en Barrieren-Strategie

Wir wollen zuerst F (it, a) für 0 ^ m <( a berechnen. Zu diesem

Zweck bestimmen wir die C\, Cg wie oben beschrieben und erhalten
aus (3)

(r,+y) e''" — (r,+ y) e''"
^ ®

e'^ («+/?) + M-e'-[r,(«+i8)+j8y] ®

Für welche a a„ wird nun F(0, a) maximal? Partielle Differen-
tiation nach a und Nullsetzen ergibt als einzige Lösung

1 ^[^(aF ß) + /5y]
o log — (6)

»i—»2 ri[>i(a+|S) + /?y]

welche positiv - und daher Lösung des Problems - ist, falls

|3<l/«(^-J/«), (7)

d.h. falls die Zinsintensität nicht allzu gross ist. (Die rechte Seite von
(7) ist positiv, da ja die Prämiendichte c grösser sein soll als der erwar-
tete Schaden a/y pro Zeiteinheit.) Insbesondere ist dann also a„ =£ 0,

so dass man anhand der Überlegungen von 4.6.3. schliesst: Fads
er/üdt Ist, so gibt es genan eine optimale Band-Strategie, nändic/t die

dwell gegebene Barrieren-Strategie. Ihr Wert für das optimale An-
fangskapital a,, beträgt dann gemäss (45) von 4.6.3.

F(a,) F(ao,a,)=^^. (8)
£y

Im Falle wo

/5^|/œ(j/yc — |/a) (9)

c
ist offenbar a„ 0 und F(0) F (0, 0) Gäbe es nun eine opti-

0C + /S

male Band-Strategie S^_g mit einem positiven Punkt a .4, so wäre

wegen (45) aus 4.6.3. und wegen (9)

yc — a — /? c
F(a) i— P ^ F(0), (10)

py a+p
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was nicht möglich ist. Wir schliessen daraus: FoZZs er/itß< ist, so

ghdf es t/enait eine optemaZe Band-Strategie, nämZicfe die zw ag 0 ge/iö-

n'ge jBarriereîi-S'Baief/'ie.
Als Illustration zu 4.7.2. sei noch das asymptotische Verhalten

von Ug für /?—>-0 angegegen :

V
4

a
y— -a-c

c/

7-
c

- log - (11)
oc y® • /P

Dabei streben die vernachlässigten Terme gegen 0 für /5—>0.

5.3. Die erwartete Lefee?isdatier

Die Integralgleichung (63) von 4.9. lässt sich im Falle der expo-
nentiellen Schadenhöhenverteilung überführen in die Differentialglci-
chung

c D([ (w) — (a + <5 — cy) («) — dy D,, («) + y 0 (12)

Bei deren Lösung geht man analog vor wie bei der Lösung von
(2). Für eine allgemeine Barrieren-Strategie (a) findet man so

D M 1 (%+y) [^2 (« + ^) + ^7] e-" '*"*> ~ (gg+y) [Si (q + 3) + dy]
' d dy{[Si(«+d)+dy]e"*'"-[s2(a +d) + dy]e"'*°}

(13)

wobei nfSa und s,, Sg die Wurzeln der zu (12) gehörigen charakteristi-
sehen Gleichung sind. Im Grenzübergang d—>0 erhält man die ge-
wohnliche erwartete Lebensdauer D (w) D„ («) :

C(«)- JSf. /'"!)* .e('-l)"-)
a(cy —a)^ (cy —<x)^

1 y
— ^ _ (14)

cy—a cy—a

Dabei interessieren wir uns natürlich besonders für m a ctg.
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Anhand von (11) erhalten wir die asymptotische Formel

('-t)"
— « (15)

y ^
/ a \für /?—>0 beziehungsweise für a, c—>co — konstant Die erwartete

/
Lebensdauer ist dalier asymptottecli proportionaZ zur Grösse (siehe 4.7.)
eines Portefeuilles.

Auf Grund der erwarteten Lebensdauer kann übrigens auf einfa-
che Weise die Ruinwahrscheinlichkeit in einem bestimmten Zeitinter-
vall abgeschätzt werden. Wenn P, die Wahrscheinlichkeit dafür ist,
dass der Ruin ins Intervall [0,Z] fällt (bei optimalem Anfangskapital
a„), so ist offenbar

D(a„) ^ f+ (1 — P,)-D(a„), (16)

also

D (oq)

Damit ergibt sich eine praktische Abschätzung der Sicherheit.

5.4. ALiraerisclies RerspieZ

Zur Illustration wurden das optimale Kapital a„ und die erwartete
Lebensdauer D(öq) für verschiedene Portefeuilles berechnet. Als Zins-
intensität wurde /S 0.05 verwendet. Wenn man als Zeiteinheit ein
Jahr betrachtet, so entspricht dies einem jährlichen Zinsfuss von unge-
fähr 5%. In diesem Sinne wäre dann a die erwartete Anzahl Schaden-
fälle pro .Jahr, c das jährliche Total der Prämieneinnahmen.
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Marge 10% Marge 20%

1

^ —
y

a C Oo D(a») c «0 B(u„)

1 000
5 000

10 000

1 000
200
100

1,1 Mio.
1,1 Mio.
1,1 Mio.

117 000
419 000
706 000

4 900
1 220

731

1.2 Mio.
1,2 Mio.
1,2 Mio.

79 600
304 000
530 000

20 700
4 540
2 470

1 000
5 000

10 000

5 000
1 000

500

5,5 Mio.
5,5 Mio.
5,5 Mio.

151 000

583 000

1020 000

22 800

4 900

2 620

6,0 Mio.
6,0 Mio.
6,0 Mio.

98 700

398 000
714 000

101 000
20 700
10 600

Dabei sind «q und D(a„) auf drei Ziffern genau berechnet.
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Zusammenfassung

Die Arbeit gehört in das Gebiet der kollektiven Risikotheorie. Den kontinuier-
liehen Prämieneinnahmen stehen Schadenzahlungen gegenüber, welche einen zusam-
mengesetzten Poisson-Prozess bilden.

In einem ersten Teil wird eine praktische Abschätzung für die asymptotische
Ruinwahrscheinlichkeit hergeleitet. Diese Abschätzimg bezieht sich auf den allgemei-
nen Fall, wo gleichzeitig positive und negative « Schäden» zugelassen sind.

Im zweiten Teil wird das Modell im Sinne einer Idee von B. de Finetti erweitert :

Die Versicherungsgesellschaft zahlt ihren Aktionären gewisse Dividenden aus. Es
wird die Frage behandelt, wie die Gesellschaft ihre Dividendenpolitik gestalten soll,
um den Aktionären möglichst viel Dividende zukommen zu lassen. Im Falle exponen-
tieller Schadenhöhenverteilung wird eine zahlenmässige Antwort gegeben.

Summary

The paper is a contribution to the collective theory of risk. The risk process
results from continuous premiums on the one hand and from the claims on the other
hand ; the latter are governed by a compound Poisson process.

The first part provides a practical estimate for the asymptotic probability of
ruin. This estimate is valid in the general case where simultaneously positive and
negative ,,claims" may occur.

In the second part the model is extended following an idea of B. de Finetti : The
insurance company pays dividends to its shareholders. It is asked under what divi-
dend policy the shareholders obtain as great a discounted total dividend as possible. A
numerical answer is given in the case where the single claims are exponentially distri-
buted.

Résumé

Cet article traite de la théorie collective du risque. Le risque est d'une part, aux
primes continuelles et, d'autre part, aux indemnités; ces dernières sont gouvernées

par un processus de Poisson composé.
La première partie de l'article présente ime évaluation pratique de l'asymptoti-

que probabilité de ruine. Cette évaluation s'applique au cas général où des «indemni-
tés» en même temps négatives et positives se présentent.

Dans la deuxième partie le modèle est développé selon une idée de B. de Finetti :

La compagnie d'assurances paie des dividendes à ses actionnaires. Le problème se pose
de déterminer quel système de dividendes accorde aux actionnaires le plus grand divi-
dend total possible. Une réponse numérique est donnée dans le cas où la distribution
des indemnités individuelles est exponentielle.
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