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Entscheidungskriterien fiir den zusammengesetzten

Poisson-Prozess

Von H.U. Gerber, Ziirich
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FEinleitung

1.1. Das Modell

Eine Versicherungsgesellschaft startet mit einem Anfangskapital
uy. Die Einnahmen, welche dieses Kapital vergrossern, sind determi-
nistischer Natur: Bis zum allfdlligen Ruin der Gesellschaft werden
néimlich

¢ Geldeinheiten pro Zeitemheit an Prdmien (1)

eingenommen. Demgegeniiber stehen die Ausgaben der Gesellschaft,
welche stochastischer Natur sind. Die Ausgaben ihrerseits zerfallen in
die Schadenzahlungen und in die Diwvidendenzahlungen.

Wie in der klassischen kollektiven Risikotheorie iiblich, soll der
Totalschaden einem zusammengesetzten Poisson-Prozess unterworfen
sein. Wir bezeichnen mit X(¢) den bis und mit zum Zeitpunkt ¢ total zu
begleichenden Schaden. Dann ist

p o ‘ - O: —af (U'f')k AR LT {
(X)) <z) =S e "1 F¥(), 1=0. (2)

= k! -

Bekanntlich 1st dabei F(z) die Verteillungstunktion der einzelnen
Schiden, welche unabhingig und gleichverteilt sind. Ferner ist die
Zwischenschadenzeit poissonverteilt mit Parameter o.

Der durch (2) beschriebene Poisson-Prozess kann aufgefasst wer-
den als Wahrscheinlichkeitsraum

(2,9, P). (3)

Dabei bedeute £ die Menge aller rechtsseitig stetigen Treppen-
stichprobenfunktionen X(f) = w. U se1 die Einschrinkung des bezig-
lich (2) vervollstindigten Produktes @ B, (B, =B = g-Algebra der

=0
Borel-Mengen der reellen Achse) auf £. P 1st das Wahrscheinlichkeits-
mass, welches durch (2) auf A induziert wird.

Nun kann unsere Versicherungsgesellschaft nach bestimmten Ge-
sichtspunkten Dividenden ausschiitten. Eine Dindendenstrategie S st
eine Abbildung, die jeder Stichprobenfunktion X(f) € 2 eine reellwer-
tige Funktion SX (1) =Y () zuordnet und dabei die folgenden Postu-
late erfillt:
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(1)  Y(¢) 1st nichtabnehmend.

(1)  Y(¢) 1st hinksseitig stetig, Y (0) = 0.

(111) Wenn X,(s) = X,(s) fiir alle s < ¢, soist Y, (t) = Y,(1).

(iv) Y(t) st fur festes ¢ eine Zufallsvariable beziiglich (3).

(v) Wenn X(1)+Y(T)> ug+c¢T, soist Y(t) =Y(T) faralle t=1T.

(vi) Wenn Y (¢) im Punkte ¢ unstetig ist, so ist Y({+0) — Y(t) < u,
+et— X)) — Y()1).

Y (t) bedeutet anschaulich die Dividende, die bis zum Zeitpunkt ¢
(wegen (1): ¢ exklusive) gesamthaft ausgeschiittet wird. Mit (ii1) wird
gefordert, dass die ungewisse Zukunft auf die augenblickliche Dividen-
denzahlung keinen Einfluss hat. Wir verlangen (iv), damit etwa der
Erwartungswert der totalen Dividendenzahlungen bis zu einem Zeit-
punkt ¢ gebildet werden kann.

Das Kapital u(t) der Gesellschaft zur Zeit ¢ berechnet sich als

ult) =uy + ct— X(@) — Y (1), (4)

und zwar ist dies das Kapital vor einer allfilligen Dividendenausschiit-

tung

Y(E+0)— Y() < u(f), vgl (vi), (5)

zu diesem Zeitpunkt. Die Gesellschaft ist ruiniert, sobald dieses Kapi-
tal negativ wird. Der Zeitpunkt 7 des moglicherweise eintretenden
Ruins 1st

7 = Min {T, w(T) < 0}.

Falls u(t) = 0 1st fur alle ¢, so setzt man 7 = co. Auf Grund von
(iv) und (vi) iberlegt man sich leicht, dass das Ereignis {r = t} fir
jedes t ein Element von A ist. In der Sprache von Loéve [8] spielt 7 die
Rolle einer *“ stopping time .

Mit dem eventuellen Eintritt des Ruins ist die Téatigkeit der Ge-
sellschaft beendet. (v) heisst in diesem Sinne, dass die Gesellschaft
nach ihrem allfdlligen Ruin keine Dividenden mehr auszahlen kann.
Wir interessieren uns im folgenden nur fiir Werte t < 7.

1) Ausserdem postulieren wir, dass aus w(t+0)= 0 folgt, dass Y(i+h)—
Y (t+ 0) =< ch fir alle b > 0 ist. Ruin kann also nur an einer Schadenzeit eintreten.
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1.2. Bewertung, Uberblick iiber die Resultate

Die Freiheit der Gesellschaft liegt also in der Wahl einer Dividen-
denstrategie S. Wie von Neumann/Morgenstern[10] unter plausiblen
Annahmen gezeigt haben, wird sie mit der Wahl von S versuchen, den
Erwartungswert einer Nutzenfunktion n (w) moglichst gross zu machen.
Setzt man

1falls 7 = oo
n(w) = (7)
0 falls T << oo,

so will die Gesellschaft einfach die Uberlebenswahrscheinlichkeit maxi-
mieren. Die optimale Strategie besteht trivialerweise darin, dass man
keine Dividenden ausschiittet. Wir befinden uns damit im Modell der
klassischen kollektiven Risikotheorie. Das verbleibende klassische Pro-
blem besteht in der Berechnung beziehungsweise Abschétzung dieser
Uberlebenswahrscheinlichkeit.

In Kapitel 2 wird eine Abschétzung hergeleitet, welche giiltig ist
fiir ein Portefeuille, das sowohl positive wie auch negative Schidden in
sich birgt. (Unter einem negativen « Schaden» stelle man sich etwa das
Freiwerden der Pramienreserve einer Rentenversicherung zufolge Tod
des Versicherten vor.) Wir stiitzen uns dabei auf das Buch von Feller
[5], wo die Diskussion der Ruinwahrscheinlichkeit zurtickgefihrt wird
auf die Diskussion eines Zufallsweges.

In allen weiteren Kapiteln stellen wir uns auf einen anderen
Standpunkt. Nach einer ldee, die urspringlich auf Bruno de Finetti
[6] zuriickgeht, ziehen wir als Nutzenfunktion die totalen Dividen-
denausschiittungen heran. Es ist dabei recht realistisch (und mathe-
matisch iiberhaupt erst interessant), die Barwerte der Dividendenzah-
lungen aufzusummieren. Wir rechnen mit einer festen Zinsintensitit f3
und setzen demnach

n(w) = Te‘f” ay(t) = f ePLAY (1) (8)

Wir definieren den Wert einer Strategie S bei Anfangskapital u, als

V(ug S) =B [n(w)] = [ [ f o Bt dY(t)]dP(w) ()
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und setzen
V(ug) =sup V(ug, S). (10)
s

Eine Strategie S heisst optimal, falls fiir alle u, gilt
V (g, S) = V(o). (11)

In Kapitel 4 zeigen wir die Existenz einer optimalen Strategie.
Und zwar gibt es stets eine optimale Band-Strategie. Im Falle der ex-
ponentiellen Schadenhéhenverteilung zeigen wir sogar die Existenz
einer optimalen Barrieren-Strategie (Kapitel 5). Diese beiden Begriffe
entstammen der Terminologie von Morill [9], werden aber fiir unser
Modell in Kapitel 4 neu festgelegt. Noch ein paar Worte zur Metho-
dik: Durch eine Diskretisation des Zeitparameters einerseits und der
Schadenhéhenverteilungsfunktion andererseits machen wir uns den
Existenzsatz des diskreten Modelles zugéinglich. Dieser wird in Kapitel 3
hergeleitet und scheint — nach einer Bemerkung von Morill ([9], Seite
68) — von selbstindigem Interesse zu sein.

1.3. Anerkennung

Ganz herzlich moéchte ich meinem Lehrer, Herrn Professor Biihl-
mann, danken, dessen stetes Interesse mir ein wirksamer Stimulus war
und der mir durch seine Antrittsvorlesung [3] und in personlichen Ge-
sprichen die Idee zur vorliegenden Arbeit gab. Dank gebiithrt aber
auch Herrn Professor P.Huber, der mich insbesondere vor einem
schwerwiegenden Irrtum bewahrt hat.

2. Abschidtzung der Ruinwahrscheinlichkeit mit den Methoden
der Fluktuationstheorie fiir Zufallswege

Dieses Kapitel kniipft ideenméssig an die Kapitel XTI und XII des
Buches von Feller [5] an. Der Leser mag darum verstehen, dass wir
hier die Terminologie dieses Buches — eine in der Versicherungsmathe-
matik weniger iibliche — iibernehmen.

Die Abschnitte 2.1. und 2.2. gehdren in die allgemeine Theorie der
Zufallswege. Abschnitt 2.3. bringt als Anwendung die versprochene Ab-
schitzung der Ruinwahrscheinlichkeit. Eine Zusammenfassung des

ganzen Kapitels ist in [7] zu finden.
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2.1. Zweir Hilfssdtze iiber dve Verteilungsfunktion der Leiterhohen

Durch eine reelle Zufallsvariable X bzw. durch ihre Verteilungs-

funktion F(z) = P[X < z] wird auf bekannte Art ein Zufallsweg {Sn}
erzeugt:

Se=0,8,=X;+ X, +... + X, firn =1, (1)

wobei die X; unabhingig und gleichverteilt sind. Die dazugehérige
Verteilungsfunktion der Leiterhohen im strikten Sinne bezeichnen wir
mit H(z). Die Ungleichung H(eo) <1 1st also gleichbedeutend damit,
dass der Erneuerungsprozess der Rekordpunkte abbrechend ist.

Halfssatz 1
Vor: F,(x), Fy(x) seien zwei Verteilungsfunktionen mit
@) Hy(s0) <1, Hy(oo) <1
by Py(a) < Fgla) Tur @ <0, Fy(2) =F.(a) iz £=0.
Beh: Fir jede nichtabnehmende Funktion f(z) = 0 ist

[ fa) dHy (@) [ () dHy()
1—H,y(o0) = 1—Hy(o)

Wir geben zunéchst den Beweis fiir den Fall, wo Fy(z) und Fy(z) ste-
tig sind fir negative Werte von z. Auf die Modifikationen, die man im
allgemeinen Fall anbringen muss, kommen wir am Schluss zu spre-
chen.

Wir definieren vorerst eine Abbildung ¢: R — R als

Min {y, Fi(y) :Fz(:n)} tar 2 <0
¢ (2) = ) (2)
x fuir x =0.

Wegen Voraussetzung b) des Hilfssatzes 1st
plr) =z fir 2 <0, @(z) =z fur x=0. (3)

Beziiglich des F,-Masses ist ¢ eineindeutig: Falls zwei Zahlen z, x
dasselbe Bild haben, d.h. falls ¢ (z) = ¢ () ist, so folgt daraus némlich

F,(z) = Fy (). Ausserdem erhilt die Abbildung ¢ die Wahrscheinlich-
keitsmassen:
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Fi(p(a) =Fy(a), —o0 < <+ oo. (4)

Auf nattrliche Art wird durch ¢ eine Abbildung @ des Stichpro-
benraumes der Zufallswege {S?} in den Stichprobenraum der Zufalls-
wege {SV} induziert :

D (2, @, T3, o) = (@(21), @(T2), P(Tg), -.)- (5)

Beziiglich des Masses des 2. Stichprobenraumes ist @ eineindeutig.
Wegen (4) erhélt auch @ die Wahrscheinlichkeitsmassen der Stichpro-
benrdume.

Wir betrachten jetzt eine feste Stichprobenfunktion {S®} und ihr
Bild {S{'} = {®@(SP)}. Aus (3) folgt: Jedem Rekordpunkt von {S}
entspricht mindestens ein Rekordpunkt von {Sﬁf)} ;und der letzte dieser
(evtl. mehreren) Rekordpunkte hat eine Leiterhohe, welche grosser oder
gleich der Hohe des Rekordpunktes von {S7)} ist. Bezeichnen wir mit ()
die erwartete totale Anzahl von Leiterhohen grosser als z, so ist demnach -

r(z) = 1ry(z), 0 = & < co. (6)

Da r;(z) = 0 fur z - oo (v = 1,2), folgt aus (6), dass
[ H@[—dr (@)] = [ f(@)[—dry(a) (7)

ist fiir jede nichtabnehmende Funktion f(x) = 0.
Ziwischen r(z) und H(z) besteht ein einfacher Zusammenhang:

0) —
H(z) = —T—(—)@;ﬂ H(e0). (8)
Zum anderen gilt
1
r{l) = m, (9)

denn so gross ist die erwartete Anzahl Rekordpunkte tiberhaupt. Also

haben wir
dH (z) =—dr(x) H (o) [1—H (0)]. (10)

Aus (6) und (9) folgt
Hj(oo) = Hy (o). (11)

Aus (7), (10) und (11) ergibt sich jetzt die Behauptung des Hilfs-
satzes.
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Wenn F,(z) und F,(x) nicht stetig sind fiir negative Werte von =z,
so bereitet die Konstruktion einer geeigneten Abbildung ¢ hebbare
Schwierigkeiten: Man hilft sich, indem man die reelle Achse R in einen
grésseren Merkmalraum B einbettet. Man setzt etwa fiir 1 — 1,2

R, ={(x,y) | — o0 <z <+ 00,0 <y < F(a)—F(z—0)} (12)

und fithrt auf E; die folgende Ordnungsrelation ein: Ein Element (z,
y) heisst kleiner als ein Element (z, 7), falls z <z oder falls z = 2
und y < y. Die Verteilung F;(z) lisst sich nun durch eine stetige Ver-
teilung F;(z,y) auf R, reprisentieren, man setze etwa

Fi(e,y) =Fi(e—0)+y, (2.9)¢FR;. (12)

Die Definition einer Abbildung ¢: R, » R, und der Rest des Be-
weises erfolgen nun analog zu vorher.

Hilfssatz 2
F(x) sei eine Vertellungsfunktion. Wir setzen

qF(z) fir 2 <0

d
iz} = 0<g< :
1—q+qF(z) firz=0 ( 1+F(O*)_F(O))

Dann ist die zu F'(x) gehorige Verteilungsfunktion H(z) der Lei-
terhohen gleich H(zx).

Dieser Hilfssatz 1st trivial. Dadurch, dass man F(x) mit der Ver-
teillungsfunktion, welche die ganze Masse 1 in den Nullpunkt wirft,
mischt, &ndert man natiirlich nichts an der Verteilung der Leiterhéhen
(im strikten Sinne!).

2.2. Abschitzung des Mazimums eines Zufallsweges

Gegeben sel eine Vertellungsfunktion F(z) mit negativem Erwar-
tungswert. Fir den Zufallsweg {Sn} folgt daraus, dass der Erneue-
rungsprozess der Rekordpunkte abbrechend ist. Mit Wahrscheinlich-
keit 1 wird ein endliches Maximum

M = max (0, 5 S Pgy w) (13)

angenommen. Nach Feller ([5], Seite 363) gilt die asymptotische Bezie-
hung
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PIM=z]~Ce™ fir z—>co. (14)

Dabei bestimmt sich » aus der Gleichung
[ e dH (y) =1, (15)
0

welche gemiss [5] (Seite 388) gleichbedeutend ist mit

+fmew dF (y) = 1. (16)

Von der Verteilungsfunktion F(z) setzen wir also zusdtzlich vor-
aus, dass die Gleichungen (15) bzw. (16) eine — und damit genau eine —
positive Losung x besitzen. Schliesslich wird noch angenommen, dass
u* in (17) endlich 1st.

Dank (16) ldsst sich » mit beliebiger Genauigkeit aus F'(z) berech-
nen. Die Konstante C ldsst sich dagegen nicht direkt aus F'(z) berech-
nen:

1—H -
0:——£°ﬁ, wobei it = [ ¢y dH (). (17)
U g

Unter gewissen Voraussetzungen ldsst sich aber C anhand von
F(z) abschitzen:

Satz
a) Vor: F(z) < Ae* fir z <O0. (18)
Ad—a [ [1—F(s)|ds
Beh: C < ? .
xfe""de(y) +xa;fe"yy [1—F(y)] dy
0 0
b) Vor: F(z) = A" ¢ tiir z < 0. (18")
A’—a'f[l —F(s)] ds
Beh: C = L

co

% [V ydF(y) +xa’ [eVy[1—F(y)]dy

0 )
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Wir beweisen zunichst den Teil «). Zu diesem Zweck definieren
wir eine Vertellungsfunktion
N qF (x) fir z <0 1
—q+qF(z) fur =0 1—[F(0)—A]

Nach dem Hilfssatz 2 von 2.1. ist H(z) = H(z). Nun definieren wir

Fy(z)

(19)

qde” fir <0

 1—q+qF(z) fir 2=0. (20)

Da der Mittelwert von F(x) negativ ist, 1st auch derjenige von
F(x) und Fy(x) negativ. Indem wir auf F(z) und Fy(x) den Hilfssatz 1
fur f(y) = ¢ y anwenden, erhalten wir aus (17) die Abschétzung

% | ¢V yaH,(y)
0

Die rechte Seite ldsst sich explizit berechnen, da sich Hy(z) be-
rechnen ldsst, siehe [5] Seite 387. Allerdings muss p(—z) durch Hy(co)
— H,(z) und F(—z) durch 1 — Fy(z) ersetzt werden:

Hy(o0) — Hy(a) = 1 —Fy(a) + a7 [1—Fyfs)] ds. (22)
Daraus erhélt man ’
dHy(y) = qdF (y)+ qa [1—F(y)] dy (23)
und 1—H,(c0)=q 4 —qaofo [1—F(s)] ds. (24)
0

Indem man (23) und (24) in (21) einsetzt, erhélt man die gesuchte
Abschétzung.

Beim Beweis von b) definieren wir zuerst eine Verteillungsfunktion

A'e*® fiir £ <0

F 2
1@ =py fir 2> 0. (25)
Wir diskutieren den Mittelwert u, von FFj(z). Es ist
= A
=] [1—=F(s)] ds——-. (26)

b a
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Wenn g, = 0 ist, dann ist die behauptete Ungleichung trivialer-
weise erfilllt. Man wird sich dann mit der in diesem Falle besseren Un-
gleichung C =0 zufriedengeben miissen. Ist dagegen u, <0, so ist
H,(o0) <1, und wir kénnen den Hilfssatz 1 anwenden. Man erhilt

oz M=) o)
% [ ¢y dH,(y)

0

H,(z) ldsst sich analog zu oben explizit berechnen. Einsetzen in
(217) ergibt die behauptete Ungleichung.

2.3. Abschiitzung der Ruinwahrschevnlichkent

Wir kehren zuriick zu dem im 1. Kapitel beschriebenen Modell,
versehen mit der klassischen Strategie S = 0. Die Verteilungsfunktion
des Hinzelschadens bezeichnen wir hier mit P(x),— co << << + oo, um
Begriffskollisionen zu vermeiden. P(z) sei an der Stelle x = 0 stetig,
was ja durch Ubergang auf einen dquivalenten Risikoprozess immer
erreicht werden kann. Erwartungsgemiéss soll die Versicherungsgesell-
schaft mit Gewinn arbeiten, d.h. es soll

-+ co

c> o ] ydP(y) (27)

sein.

Nach einer Idee von Feller ([5], Seite 198) betrachten wir den Zu-
fallsweg {Sﬂ}, der von der Verteilungsfunktion F(x) erzeugt wird,
wobel

dF « 7 )
— (@) =— j e* " dP(y). (26)

Dank (27) 1st der Mittelwert von F(z) negativ, somit nimmt der
Zufallsweg {S,} mit Wahrscheinlichkeit 1 ein endliches Maximum M
an. Zwischen diesem und der Ruinwahrscheinlichkeit 1— R(u), u = u,
= Anfangskapital der Gesellschaft, besteht die einfache Beziehung

1— R(u)= P[M =u]. (29)

Aus (14) und (29) folgt das asymptotische Verhalten der Ruin-
wahrscheinlichkeit fir grosses Anfangskapital:
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1— R(u) ~ Ce™ fir u—> oo. (30)

% berechnet sich nach Formel (16). Wenn wir (28) in (16) einsetzen
und die Integrationsreihenfolge umkehren, so erhalten wir fiir » schliess-
lich die Gleichung

+co ¢

[ e dP(y)=1+ % (31)
welche der Formel (25) von [4] entspricht und beispielsweise als For-
mel (33) bei [1] anzutreffen ist. Die numerische Berechnung von x be-
reitet also keine Schwierigkeiten.

Der Satz von 2.2 erlaubt nun eine Abschitzung der Konstanten

C. Schreibt man (28) als

33

dF Ea BB el
=2 e ' AP(y), (32)
dz ¢

z

so erkennt man, dass die Voraussetzungen (18) und (18") dieses Satzes
erfallt sind fiir

a==, 4= [¢ " apy) (33)
¢ —00

' a r +Do _iy [

o =—, A= [ e ¢ dP(y). (33")
¢ 0

Einsetzen ergibt nach einiger Rechnung das gewiinschte Resultat:

Satz
o2 J -2y
1—-P(0)H%j ydP(y)+ [ e © dP(y)
C < go —o0 (34)
oL =Yy
x;gfe y[1—"P(y)] dy
1_P(0)—%fydP(y)
¢ = = 0 . (34")

% [ y[1—P(y)] dy

€
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Bemerkungen:

1. Im Falle, wo P(z) auf der positiven Achse konzentriert ist, ergibt
sich fir C der exakte Wert, wie er bei [5] als (7.6) und be1 [4] als
(57) zu finden 1st.

2. Eine exakte Formel fiir C ist zwar bekannt (siehe etwa (55) bei [4]).
Diese eignet sich fiir eine numerische Adhoc-Auswertung aber
nicht, im Gegensatz zur obigen Abschitzung.

3. Die Losbarkeit der Gleichung (31) sowie die Endlichkeit des Nen-
ners von (34) und (34') wurden als weitere Bedingungen an P(z)
stillschweigend vorausgesetat.

Betrachten wir zur Illustration der Abschidtzungen (34) und (34")
das Beispiel der zweiseitigen Exponentialverteilung: P'(z) = p(z) mit

VR e

e fir z <0
Y+ u
p(z) = (35)
.. e* fiar £ =0.
VU

Die Bestimmungsgleichung (31) lautet hier

) (3) ()

welche unter der Bedingung

C 1 1
—_>> ——— (37)
o u v

—~
o
[=2)

~—r

eine positive Losung x besitzt. (Man erkennt dies durch Diskussion
von (36) fiir nahe bei 0 gelegene » und fir x — o0.) Diese Bedingung
(37) entspricht gerade (27), ist also erfiillt.

Nach etwas Rechnen ergibt sich aus (34) und (34") die Abschét-

zung

(u—n)? (# —E> (u—=x)® (M —ﬁ) 5
¢ <0< ¢ N u(o—x) . 39)

o o x o
2 — 2y — x—|v——
c c ¢ ¢
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Betrachten wir dazu ein Zahlenbeigpiel. Sei ¢==9, a =11, » =10,

=2. Aus (36) folgt » = 1. (38) ergibt 0.32 < C < 0.51. Durch minimen

Rechenaufwand hat sich also die triviale Abschitzung 0 << C <1 ver-
bessern lassen.

3. Ein-Personen-Spiel 6konomischen Uberlebens mit

diskreter Zeitrechnung

3.1. Das Modell

Wir betrachten hier ein Modell, das im wesentlichen demjenigen
von Morill [9] entspricht. In diesem Modell interessiert man sich von
vornherein nur fir eine Folge von dquidistanten Zeitpunkten, sagen
wir t=1,2,3,.... Zum Zeitpunkt ¢t wird der Gewinn X,, der aus der
vorhergehenden Periode (f—1, t] resultiert, ermittelt. (« Gewinn» ist
dabel im allgemeinen Sinne zu verstehen: Fin negativer « Gewinny» in
diesem Sinne 18t ein Verlust im ublichen Sprachgebrauch.) Der Ge-
winn in den einzelnen Perioden sei unabhingig und gleichverteilt:

+co

PX,=j]=g;, wobei > ¢ =1, g¢=0. (1)

j= =00

Wir wollen dabe1 sofort voraussetzen, dass
D1 =M <o )
i=1 y

ist. Diese Bedingung ist beispielsweise in allen Fillen erfillt, wo der
grosstmogliche Gewinn nach oben beschrénkt 1st.

Die Gesellschaft startet zur Zeit £ = 0 mit einem ganzzahligen,
nichtnegativen Anfangskapital u, Das Kapital wird zur Zeit ¢ ver-
grossert durch den Gewinn X, und anschliessend vermindert um die
Dividende Z,. Das Kapital zur Zeit t vor der Dividendenausschiittung
betrdgt demnach

U =Ug—2Zyg+ X —Z,+Xo—Z,+ ... + X,. (3)

Wenn zum erstenmal u, < 0 ist, ist die Gesellschaft ruiniert. Bis
zu diesem Zeitpunkt v kann die Gesellschaft ganzzahlige, nichtnega-
tive (aber sonst willkiirliche) Dividenden
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Ly =y (1=0,1,2 suy —1) (4)

auszahlen. Und zwar schiittet die Gesellschaft diese Dividenden ge-
miéss einer Dwidendenstrateqie © aus. Durch G wird in Abhingigkeit
der «Vergangenheit» (uy, Zy, %y, Zy, ..., u,) eine Verteilung iiber den
Zahlen 0,1, 2, ..., u, definiert. Anhand dieser Verteillung wird dann die
Dividendenausschiittung zur Zeit ¢ ausgelost.

Die zukiinftigen Zahlungen sollen anhand eines Diskontierungsfak-
tors <1 auf die Gegenwart bezogen werden. Die Summe der diskon-
tierten Dividenden betrigt also

g v'Z,. (5)
i=o
Ihr Erwartungswert ist
30 ) - 8S02,] .
Wir setzen ferner
B (uo) = sup B (uy, S) (1)

und nennen eine Strategie G optimal, falls
B (ug, S) = B(u,) fir alle u, (8)
ist.

Eine Band-Strategie wird in diesem Modell festgelegt durch ein
Tupel ay, by, aq, by, s, ..., b,, @, von ganzen Zahlen mit

I apy<h <oy <by<<ag<<... <b,<a,. 9)

Bei einer Band-Strategie hangen die Dividenden Z,(t=0, 1, ..., 7—1)
nur vom jeweiligen Kapital u, ab geméss der Regel

Zy=1f(u) =0 fir w,=a, (10)
0 tir b<u,<aq,
u—a, fire,_ <u,<b, (k=1,2,..., n)

w,—a, firw,=>a,.
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Die folgende Graphik soll die Bedeutung dieser Zahlen ag, b,, a4,
.+, b,, a, noch veranschaulichen.

Zy = f(uy)
n =2 o ©
o}
o o
o o (¢] °
(e} (o] (0] -
0 0
0O00O0C O0O0O0O0O0O0 O000CO0OO0 _—
0 o by a4 b ay
3.2. Der Existenzsatz

Satz 1

In dem in 3.1. beschriebenen Modell existiert stets eine optimale

Strategie.

Im Beweis stitzen wir uns wesentlich auf die Arbeit [2] von
Blackwell. Sein Resultat iber die Existenz einer optimalen Strategie
im Falle endlicher Aktionsrdume ist jedoch nicht unmittelbar anwend-
bar.

Wir charakterisieren den Zustand zur Zeit ¢ durch das Kapital u,
vor der Dividendenausschuttung, die Aktion zur Zeit ¢ durch das Kapi-
tal w,—Z, nach der Dividendenausschiittung. Der Aktionsraum A
sowie der Zustandsraum sind also abzdhlbar. Unser Modell erweist sich
als Spezialfall desjenigen von Blackwell [2]).

Wir wollen nun zeigen, dass man im wesentlichen mit endlichen
Aktions- und Zustandsrdumen auskommt. Es gilt die Abschédtzung

Bug) < gt M| (1)
1—v
Denn fiir die zu {g;}, definiert als
g; fir 1=1,9,8, ...
0 .
g =142 g far j=0 (12)

—00

0 fiar § = —1, —2, —3, ...
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gehorige Funktion U (u,) gelten die Beziehungen

v

B () < B(ug) = upg+ Mo+ M2+ M3+ ... = ug+ M (13)

1—o»

(Denn 1m zu {g,} gehorigen Spiel besteht die optimale Strategie
trivialerweise darin, dass man vorhandenes Kapital stets sofort als
Dividende auszahlt.)

Sei ferner G diejenige Strategie, fiir welche Zy =y, Z, = u,, ...
Zy=wuy, ... (t<7) 1st. Eine kleine Rechnung ergibt

B (ug, ) = ug+ M

’ p= Z g5 - (14)

7:

1—po

o

Schliesslich definieren wir ¢ als die kleinste natiirliche Zahl, derart
dass

v

w+ M = @(@H,—M +MlL>fﬁr w=C41, 042, .... (15)
—7

1—po

Anhand von (11), (14), (15) kann man zeigen, dass es nicht sinnvoll
ist, nach einer Dividendenausschiittung je ein Kapital grosser als { zu
haben: Jede Strategie © kann ersetzt werden durch eine Strategie &%,

so dass
1) Buy, S) = By, ©* fiir alle u,,
(i) &* nur den endlichen Aktionsraum

A* = (0,1, 2, ..., {) benotigt.

Es 1st daher

sup B (u,y, ©) = sup B (u,, ©*) fir alle w,. (16)
S e

Die Zahl rechts in (16) wird aber realisiert durch eine optimale
Strategie G*, gemiss dem oben zitierten Resultat von Blackwell.

Nach Blackwell [2] gibt es demnach auch eine stationére optimale
Strategie, also eine, fiir welche Z, = f(u,) ist. Diesen Sachverhalt kann
" man hier sofort prizisieren:
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Satz 2

In dem in 3.1. beschriebenen Modell existiert stets eine optimale
Band-Strategie.

Man kann namlich immer
f(u) = Max{Z/% {4 = %(u——Z)JrZ} (17)

wihlen, was einer Band-Strategie gleichkommt. (Auf Details gehen wir
nicht ein, da dieser Schritt bekannt ist, siehe etwa [9].) Aus den ange-
stellten Uberlegungen folgt iibrigens, dass die charakteristischen Zah-
len einer optimalen Band-Strategie nicht grosser als £ sein konnen.

Bemerkung:
Die Bedingung (2) darf ohne Einschrinkung an Allgemeinheit

vorausgesetzt werden. Ist ndmlich M = co, so st B(u,, S) = fur
sehr viele Strategien &, beispielsweise fiir alle Band-Strategien.

3.3. Abschitzung von optimalen Band-Strategien

Sei (ay, by, @q, ..., b,, @,) eine optimale Band-Strategie. Bei An-
fangskapital u, =a, ist Z,=0, also ist

Ba) =v- > g Bla,+9). (18)

j=-an

Wir verwenden, dass B(a, +) < B(a,) + 9 ist (furg =0 gilt
ja das Gleichheitszeichen), und erhalten

Ba,) =v-Ba,) X g+v 279 (19)

—n —an

Auflésen nach B(a,) ergibt

Diese Abschidtzung entspricht dem Satz 7 bei [9]. Ihr kontinuier-
liches Analogon wird Formel (39) in 4.6.1. sein.
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Aus (20) folgt insbesondere die (zwar grébere, dafir handlichere)
Abschédtzung

oM
Ba,) < —— . (21)
1—o
Da a, < B (a,) ist, ergibt sich daraus insbesondere
oM
0, < . (22)
1—v

Diese Abschitzung ist natiirlich auch ziemlich grob, wird uns aber
immerhin Formel (24) in 4.4 liefern.

3.4. Der Fall von Ewnheitsgewinn

Als Vorbereitung auf das 4. Kapitel verweilen wir kurz bei diesem
Spezialfall, wo also gy,=¢3=¢,= ... =0 sein sollen. Die Funktion
der Band-Strategien ist hier viel leichter zu iiberblicken als im allge-
meinen Fall.

Wir fithren die Notation

0

p=¢, 9=1—-p= > g (28)

j=—o0
ein. Die Wahrscheinlichkeit, dass zum erstenmal zur Zeit ¢ ein nicht
positiver Gewinn auftritt, betriigt p*?q(t = 1, 2,8,...). Sei nun
(ag, by, @y, -.., by g, ..., b,, a,) eine (der Einfachheit halber) optimale
Band-Strategie. Wenn man annimmt, dass man mit einem Anfangs-

kapital u, =a, startet, erhdlt man so die Formel

i=-ar 4

oo 0 ’
Ba) = St q| ottt oo 3 T Bat ﬁ} .
i=1
Kurze Rechnung ergibt daraus
0

_ PP S g 2
B@) = 1 T, 2 g D@t (25)

Wir werden diese Darstellung beim Beweis des Existenzsatzes in
4.5. verwenden.
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Ubrigens folgt im Fall von Einheitsgewinn aus u,<a, immer
u, = a (fiir alle ' =1). Diese Tatsache gestattet einem die rekursive Be-
stimmung des Wertes einer beliebigen Band-Strategie. Insbesondere
lasst sich eine optimale Band-Strategie (ag, by, a4, ... b,, @,) berechnen,
indem man sukzessive
L

b, und @,
b, und a,

b, und a,
bestimmt.

4. Ein-Personen-Spiel 6konomischen Uberlebens

mit kontinuierlicher Zeitrechnung

Wir kehren zuriick zu dem in 1.1. beschriebenen Modell mit kontinu-
ierlicher Zeitrechnung. Wie angekiindigt, geht es jetzt darum, das Total
V(ugy, S) der diskontierten Dividenden zu maximieren. Wir betrachten
im Folgenden nur den Fall eigentlicher Schéiden, d.h. F(z) 1st eine
Verteilungsfunktion auf der positiven reellen Achse. Ziel dieses Kapi-
tels ist das Aufstellen des Existenzsatzes.

4.1. Monotonie und Stetigkeit von V(u)
Satz

a) Furallew, d>0 1st V(u+d) —V(u)=d.
b) V(u) ist stetig im Anfangskapital w.

Die Monotonie ist trivial. Die Stetigkeit folgt dann aus den Un-
gleichungen

Viu—ct) = @At (), t>0 (1)

Vi) = e Viutct), t>0. (2)
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Dabei erklart sich etwa die Ungleichung (2) folgendermassen:
Wenn man zur Zeit ¢ = 0 mit Anfangskapital u startet und wihrend
den ersten ¢ Zeiteinheiten keine Dividende ausschiittet, so ist mit
Wahrscheinlichkeit e das Kapital zur Zeit ¢ gleich u + ct.

4.2. Band-Strategien

4.2.1. Definition

Eine Band-Strategie S =S, wird durch eine abgeschlossene und
beschrinkte Menge 4 ¢ [0, o) und durch eine offene Menge B ¢ (0, oo)
festgelegt, wobei gelten soll:

— A und B haben einen leeren Durchschnitt. (3)
— Der linke Randpunkt jeder Komponente von B gehort zu A. (4)
— Das Intervall (Max a, co) gehort zu B. (5)

a€A

Die Dividendenausschiittung einer solchen Band-Strategie S, 5 zur
Zeit t (t<<7) hidngt nun lediglich vom augenblicklichen Wert u, des
Kapitals ab, geméss den folgenden Regeln: Y (f) 1st linksseitig stetig,
und falls

u, €A: Y{it+0)—Y(@) =0, Y'(t)=c. (6)
Die eingehenden Primien werden also unmittelbar als Divi-
denden ausgeschiittet.

u, € B Y (t+0) —Y () = w,—max{a/a < u,, aeA}. (7)
Es wird augenblicklich so viel Dividende ausbezahlt, dass
das Kapital den néchsttiefer gelegenen Punkt von A er-
reicht. Anschliessend kommt es zu einer kontinuierlichen
Dividendenausschiittung geméss (6).

w@E(AuB): Yt +0)—Y({#) =0, Y'(t)=0. (8)
Es findet keine Dividendenzahlung statt, das Kapital
wéchst.
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Fir einen festen Schadenverlauf hat Y (#) also etwa folgendes Aus-
sehen:

Y (1) =
.-—@/ ® Durch Sparen wird ein
Kapital u, € 4 erreicht.

o Durch Dividendenzah-

2, lung hat das Kapital
—e—t  den nichsttiefer gelege-

0 T

i
|
|
|
/._._._l : e Schadeneintritt.
|
|
I
|

nen Wert von A ange-
nomimen.

Man iiberlegt sich, dass eine solche Band-Strategie S, ; eine Stra-
tegie im Sinne der Axiome von 1.1. ist. Zur Illustration und fir spé-
tere Zwecke fithren wir noch zwei Klassen von sehr speziellen Band-
Strategien ein.

4.2.2. Endliche Band-Strategien

Eine Band-Strategie S, ; heisst endlich, falls die Menge 4 aus end-
lich vielen Punkten ay, <a; <ay<< ... <a, besteht. Die Menge B

lasst sich dann durch endlich viele Punkte by, b,, ..., b, charakterisie-
ren, mit
a0£b1£a1§b2<a2§ _g_bnga’n' (9)
Man setze ndmlich
B =G (t,,b) U (a, ). (10)
i=1

\

Die Funktion der Zahlen a,, b;, a4, ... sel noch mit folgender Gra-
phik verdeutlicht:
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n=2
/. / —_—
a, by Qg

Der Wert v(u) =V (u, ay, by, ay, ..., b

Y(t+0)— Y (#)

s @) lésst sich rekursiv be-
rechnen. Falls v (u) fiir w < @;_, bekannt ist, soist v (u) =v (@) + u—a,_,
fur ¢, <u<<b,. Fir b, <u <a, gilt dann die Integralgleichung

(ag—w)/c Iu+ ct—=bp+0 l
v(u) = o> f e“”ﬁ”l f v(u-+ct—y) dF(y)J dt
0 0
a ak—f:k~!-0
J e g FTR) 1 v, —y) dF (u) +w ) , 11
== | va—p @ 1
wobel
(ag—u)/e l u+tect+0
wu) = o- g—a+h)t v(u+ct—y) dF (y); di
Y Y
0 u+ct-bp+0
o ak+0
+ el [ (g, —y) dF (y)
o+ ﬁ aj—br+0
53 g—(a+h) (ap—u)/c (12)
a+f

bekannt ist. Diese Integralgleichung erhélt man, wenn man annimmt,
dass der néchste Schaden zur Zeit ¢ eintritt und die Héhe y besitzt.
Die Fille, wo t < (q,—wu)/c ist, ergeben den ersten Summanden von
(11) bzw. (12), je nach der Hohe des Schadens. In den Fillen, wo
t> (a,—u)/cist, kommt es zu einer kontinuierlichen Dividendenzahlung,
sobald das Kapital den Wert a, erreicht. Ihr Erwartungswert ist der
dritte Summand von (12). Der anschliessende Schadenfall fithrt dann
zum zwelten Summanden von (11) oder (12), je nach der Schadenhdhe.
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Durch Differentiation von (11) gewinnt man die Integro-Differen-
tialgleichung
u+0

Sy =% [ vu—y) aF(y). (13)

c C ¥

v’ (u) =

welche tibrigens giiltig ist fiir eine beliebige Band-Strategie S, 5, falls
ue (Au B).

4.2.3. Barrieren-Strategien

Eine (endliche) Band-Strategie S, ; heisst Barrieren-Strategie, falls
die Menge 4 aus einem einzigen Punkt a = a, besteht. Die Menge B
besteht dann einfach aus dem Intervall (@, co). Die Dividendenaus-
schuttung wird bei einer solchen Barrieren-Strategie offenbar so vorge-
nommen, dass das Kapital den Wert ¢ moglichst rasch erreicht bzw.
beibehélt.

4.2.4. Optimalitatskriterium fiir Band-Strategien

Sei S, 5 eine Band-Strategie. Wir definieren dazu einen Operator
T,p, der jeder stetigen Funktion h(z), =0, eine Funktion T, h(x),
x =0, auf die folgende Weise zuordnet:

Wir nehmen an, dass die Gesellschaft mit Anfangskapital u star-
tet und bis zum Eintritt des ersten Schadens (Zeitpunkt #,) Dividen-
den geméss der Band-Strategie S, ; ausschiittet. Anschliessend wird zu
diesen Dividenden noch ein (fiktiver) Betrag h(u, ) — diskontiert also
Pl h (u,,) — dazugelegt. Unter Ty ph(u) verstehen wir nun den Erwar-
tungswert der beschriebenen Zahlungen. Falls also beispielsweise u € A
18t, so 1st

u+0

thw—mdey (14)

c o

+
at+pf o+

Taph(u) =

Wir definieren jetzt rekursiv T ph(u) als T, o[ Tz 1] (u) .
(Dies ist natiirlich nur moglich, wenn 1% h(u) stetig ist.)

Offenbar lasst sich 1" gh (u) interpretieren als die erwartete Summe
der diskontierten Dividendenzahlungen bis zum n-ten Schaden (Zeit-
punkt ), welche gemiéss Band-Strategie S, ausgeschiittet werden,
vermehrt noch um den (fiktiven) Betrag ¢ - h(u,) .
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Anhand dieses Operators T, 5 (der ibrigens im wesentlichen dem
Operator T, von Blackwell [2] entspricht) ldsst sich nun die Optimali-
tdt von S, 5 leicht ermitteln:

Satz

Falls T,zV(u) = V(u) firalle u=0,
so 1st S,z optimal.

Beweis: Sei ¢ > 0 beliebig vorgegeben. Die diskontierten Dividen-
denausschiittungen nach einem Zeitpunkt 7' sind in jedem Fall nicht
grosser als

e‘ﬁT(u—i—cT—i—%), (15)

\

also kleiner als e (bei festem ) fiir 7' = T'(e). Mit Wahrscheinlichkeit
orosser als 1—e finden im Intervall [0,7'] héchstens N Schadenfille
statt, N = N(T', ¢).

Aus der Voraussetzung des Satzes folgt TY,V(u) = V(u).

So erhiilt man wegen der erwihnten Interpretation von TV, V (u)
und der eben beschriebenen Wahl von T und N die Abschétzung

Viu, Sup) = TV V(u)—e—e - (u + —;)

c

=Vu)—e—e- (u—kg) 5

¢ ist beliebig, also ist die Band-Strategie S,z optimal.

4.3. Diskretisation der Schadenverteilungsfunktion

Wir approximieren die Schadenverteilungsfunktion F(z) durch
eine arithmetische Verteilungsfunktion F (z) mit Span 2" fiirm =1, 2, ...
auf die folgende Weise:

K : 1
F(:c):F(w) fir & < gettl 17)

m 2m 2m = 2m
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Aus F (z) = F(z) folgt Vi (u) <Vp(u). Im Limes gilt die Gleich-
heit:

Satz

lim Vi, (w) = Vp(u). (18)

m > oo

Wir miissen noch zeigen, dass lim inf ¥y (u) = Vi(u) ist. Sei >0
beliebig vorgegeben. Man wihle 7' und N wie in 4.2.4. Dann gilt die
Abschatzung

VFm(u)+e-(1+u+%)gVF(uw—%>. (19)

Fiir m—co ergibt sich wegen der Stetigkeit von Vj (u)

lim inf 7, (u) + & <1 tu +%) > V(). (20)

m—>co

Damit ist der Satz bewiesen, denn ¢ ist beliebig.

4.4. Diskretisation der Zeat

Wir betrachten nun den zur Schadensfunktion F, (z) gehorigen
Schadenprozess nur zu Zeiten

b =——(k=0,1,2,...). (21)

Fiir die einzelnen Perioden der Liénge — 2™ resultiert daraus die
¢

Gewinnverteillungsfunktion G, (z) mit Span 27", welche sich be-
rechnet als

P(Xm<— 2"’“) = 2" —1x) fir z<27"

G, (z) = (22)
1 fir z=2™.
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Dabei berechnet sich die rechte Seite von (22) geméss der Formel
(2) im 1. Kapitel fiir den zusammengesetzten Poisson-Prozess.

Es ist nun naheliegend, das (im 3. Kapitel beschriebene) diskrete
Modell mit Gewinnverteilungsfunktion G, (z) und Diskontfaktor

¢
Vielfache des Spanes 2™ zugelassen sind. Hier haben wir die Existenz
einer optimalen Band-Strategie

(af™, Bm, a{™, ..., Blm) glm)y (23)

» Y1 o Mg T

v, = 6Xp (—E 2‘”‘) zu betrachten, wobei als Dividendenzahlungen nur

bewiesen. Aus (22) in 3.3. ergibt sich die Abschatzung

c

@ff,’;) = 7’; (24)
Daraus folgt insbesondere, dass B, (u) = B (u, af”, ..., a{™) fir

u>> hd linear 1st.
Jede Strategie S im kontinuierlichen F,-Modell induziert nun
eine Strategie G im diskreten G, -Modell auf die folgende Weise:
B2y, = 2/ugs 25 Ups 21+ U] = (25)
PO Y(#+0) —(gg+2,+ ... +2) <2™uy, 0Y(0+) —2, <277,
ug+ctp — X, (8) =u;+2, 0 Y (4 +0) — (20 +2) <277,

ot e,—X () =+ g+ 4+ 2]

Die intuitive Bedeutung ist dabei die folgende:

— 2yt 24+...4+2
J 0 1 k

_ /7

_ I/

g 5~

| | / are {I
//— 1l

S i . R S
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Mangels Information iiber das Geschehen ausserhalb der Zeitpunkte ¢,
entstehen dabei im allgemeinen aus den (reinen) Strategien S im konti-
nuierlichen Modell «gemischte» Strategien S im diskreten Modell. Man
sieht jetzt leicht ein, dass fiir jede Strategie S und fur jedes Anfangs-
kapital von der Form w = k-2™ gilt:

C-2™+ By, (u,8) = Vp, (4, S) (26)

mit einer von S und m unabhéngigen Konstanten C. Indem wir das
Supremum iiber alle S bilden und anschliessend m—>oco gehen lassen,
erhalten wir

liminf B; (v) = lim sup Vp_(u). (27)

m —> oo m = co

Andererseits ordnen wir jeder Band-Strategie @ =(ay, by, ¢4, ... b,, @,,)
im diskreten G,,-Modell (d. h. a;, b; sind Vielfache von 2™) eine end-
liche Band-Strategie S, ; = (q,+2™, 0, +2™,0,+27™,...,b,+27",a,+27")
im kontinuierlichen F, -Modell zu. Se1 ¢> 0 beliebig vorgegeben. Wir
wahlen T und N wie in4.2.4. Ein Vergleich der Dividendenausschiit-
tungen bei entsprechendem Schadenverlauf ergibt fiur Anfangskapitalien

von der Form u=Fk - 2™ die Ungleichung
Vplu+27™, SAB)+e-<1+u+2""+%>+D-N-2"" (28)

= Bg,, (1, ©)

mit einer von %, m, S unabhingigen Konstanten D. Wenn wir jetzt fiir
S die optimale Band-Strategie (23) einsetzen und m—>co streben las-
sen, so ergibt sich

lim inf Vg, (u+27™, af™ + 2™, b™ +2™, ..., al™) + 2™
Frm 0 1 nm

m—> oo

(29)
¢
+e-(1 +u+5> = lim sup B ().
Aus (27) und (29) folgt wegen (18) schliesslich
Vp(u) = lim By (u, af™, b{™, o™, ..., i), al™) (30)

m— oo

fiilr u von der Form k- 2™. Anhand von (24) iiberzeugt man sich, dass
die Konvergenz gleichmissig fiir alle solche u stattfindet.
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4.5. Existenzsatz
Satz
Es existiert immer eine optimale Band-Strategie.

Wir definieren eine Band-Strategie S,, und wollen dann zeigen,
dass S, optimal ist. Die fiir S, charakteristischen Mengen 4 und B
seien wie folgt definiert:

k=0,1,..,n,,

4 =Menge aller Hiufungspunkte der Folge {a}c’“)} 193 (31)
m=1,9,3,..

wobei die Zahlen a{™ — wie nachher in (32) auch die b{™ — den optimalen
Band-Strategien (23) der diskreten G,-Modelle entnommen sind. Zur

Menge B gehéren das Intervall (Max a, o) und alle b¢ 4, fir welche
a€A
Folgen {m]} und {k]} existieren, so dass

Max {a/ae4, a<<b} = lim a7
j>oco (32)
und b < lim b7} .
j—>00
Man iberzeugt sich leicht, dass S, eine Band-Strategie im Sinne
der Definition von 4.2.1. ist. Wir wollen nun die Optimalitdt von S,
anhand des Satzes von 4.2.4. beweisen. Wenn wir wiederum mit T,
den zu S, gehorigen Operator bezeichnen, so muss also gezeigt wer-
den, dass

T4 Vep(w) = Vp(u) (33)

fir alle w = 0 1st. Zu diesem Zweck unterscheiden wir, ob u in 4, B,
oder im Komplement dieser beiden Mengen liegt.
Falls u € 4 ist, so 13t geméss (14) von 4.2.4.

u+0

g | ey dF@. 69

o . =
a+pf o«

Tap Vi (’“) =

Seien nun {m;} und {k} Folgen, so dass u = lim a{". Da
(al™), b{™), almi), ..., bims) aﬁl”gj’) eine optimale Band-Strategie fiir das

Ny
7

diskrete ij-Modell darstellt, gilt gemaéss (25) von 3.4. die Gleichung



(35)
-2 P

(ms)y __ (mj) 1 P
Q.;Gm?- (ak?‘ 4 ) - l_pv + l_pv f %ij (akj 7 :E) d(lmj (.1-) 5

o
wobel v = exp (—-E 2'"‘f> » P == BXP (—— 2"”‘3'). Man verifiziert jetat
¢ ¢

anhand von (30) und der Definition (22) von G, (z), dass die rechte
Seite von (35) fiir j—>co gegen die rechte Seite von (34) strebt. Die
linke Seite von (35) strebt aber gegen V. (u), also ist (33) fiir u ¢ 4 be-
wiesen.

Sei nun u € B. Sei a die grosste Zahl aus A4, welche kleiner als u
1st. Wegen dem eben Bewiesenen und wegen (30) ist

T Vi) =u—a+T ,5Vp(a) (36)
=u—a+ Vgi(a) = Vi(u),
was wir zeigen wollten.

Sei schliesslich u¢ (4uUB). Sei a die kleinste Zahl aus 4, welche
grosser als u ist. Dann ist offenbar

T 45 V() = @A le-wliey (qg)

(a-u)/c [u-!-cH—() 1 (37)
fa [ e—(a+ﬁ)t1f Ve (u+ ct—y) dF(y)Idt.
0 0 !

Aus Stetigkeitsgriinden diirfen wir annehmen, das Anfangskapital
sei von der Form u = k-2, Seien {m;} und {k;} Folgen, so dass
@ =lm alﬂz_"?'). Dann findet man fiir Q}Gm,- (u) einen Ausdruck, der eine
ﬁhnfiche Gestalt wie die rechte Seite von (87) hat und im Limes fiir
j—>oo gegen sie konvergiert. Damit ist also auch in diesem Fall die

Giltigkeit von (33) erwiesen, womit wir die Optimalitdt von S, ; gezeigt
haben.
4.6. Diskussion der optimalen Band-Strategien
4.6.1. Abschitzung der Menge 4 nach oben

Formel (24) liefert uns eine solche Abschétzung fiir die dort kon-
struterte optimale Band-Strategie. Wir leiten hier eine allgemeinere,
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von F(z) abhidngige Abschitzung her, welche zudem fur jede optimale
Band-Strategie S 5 gilt. Fir a €4 1st

at+0
c
Via) = y) dF (1 38
b= oc+,8-] ) (38)
a-+0
= - Via)—y] dF (3
“—a+5 Otﬂf}f[ —y] dF ()
¢ o o a+0
= - V(a) F(a) — ———- dF (y) .
axp Tar g @@ a+ﬁof HaF L)
Daraus folgt
a0
c—a | ydF(y)
V(a) < : : (39)
a+pf—aF(a)
Da a+ +13 <V(a) ist, ergibt sich daraus eine entsprechende
o

Abschétzung fir a. Ungleichung (39) ist offenbar dann besonders niitz-
lich, wenn V(a—z) an den Wachstumsstellen von F'(x) «ungefihr linear»
ist. Dies ist fiir sehr grosse Zinsintensitédten g der Fall, asymptotisch
aber auch fir f—0, wie wir sehen werden.

4.6.2. Eine notwendige Bedingung fiir Punkte der Menge A

Wir definieren eine Funktion W(u) als

u+0

W () = aiﬁ 2 “:ﬁof V(u—y) dF (3). (40)

Offenbar ist W(u) der Erwartungswert der Dividenden bei An-
fangskapital w, wenn man bis zum Eintritt des ersten Schadens die
eingehenden Primien unmittelbar als Dividenden auszahlt und nach-
her eine optimale Strategie spielt.

Satz

Falls aed, a>0 und W(u) in einer Umgebung von a stetig diffe-
renzierbar ist, so 1st W'(a) =1.



— 216 —
Da W(a) =V(a) und W(u) <V(u) ist, gilt fir alle u(0Zu<La)
Wa)— W) = V(ia)—V(u) =a—u. (41)

Insbesondere folgt daraus W'(a) =1. Es muss aber auch W'(a) <1
sein: Fir 7= 0 definieren wir fiir das Anfangskapital a die folgende
Alternativ-Strategie S,: Nach Eintritt des ersten Schadens wird eine
optimale Strategie gespielt. Vorgingig wird keine Dividende ausbezahlt,
bis das Kapital (eventuell) den Wert a + T erreicht, wo dann die ein-
gehenden Priamien fortlaufend als Dividenden ausbezahlt werden. Es
1st also V(a, S,) =W (a), und eine kleine Rechnung ergibt

d

=7 V(@ 87) = W (a)—1. (42)

Diese Ableitung darf nicht positiv sein, also ist W' (a) = 1.

Korollar

Falls > 0 ein isolierter Punkt der Menge 4 ist und W (u) in einer
Umgebung von a stetig differenzierbar ist, so 1st V'(a¢) =1 und

V" (a) = 0.

Auf Bist V(u) linear. Auf dem Komplement von 4 und B bedient
man sich der Integro-Differentialgleichung (13) und beniitzt, dass
W(a) = V(a) und W'(a) =1 ist.

4.6.3. Anwendung auf die Exponentialverteilung
Wir nehmen an, die Schadenhdéhe sei exponentiell verteilt, d. h.
F(z) = ¢, {(z) =ye™(y>0). (48)
Fir a> 0, ae4 erhilt man wegen f' (z) = —y * f(z) die Gleichungen

C

W) =g+ arg ) YW@=y =70

(44)

Wi(a) =—"V(a)— 7 [ V() fla—y)dy =1.

a+ B ax+f
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Indem wir dieses System unter Elimination des Integrales nach
V(a) auflésen, erhalten wir
c—o—
V(g =2 b | (45)
By
Wegen der Monotonie von V(u) hat diese Gleichung hochstens
eine positive Losung a. Im 5. Kapitel werden wir sehen, dass es in die-
sem Falle eine einzige optimale Band-Strategie gibt, ndmlich die zu a
(evtl. @ =0) gehorige Barrieren-Strategie.

4.6.4. Eine Abschitzung der Menge 4 nach unten

Satz
Falls F'(z) = f(z) im Intervall [0, M] monoton zunimmt, so ist
O,MnA=0.

Tn diesem Fall ist ndmlich W’ (u) im Intervall [0, M1 monoton zu-
nehmend. Wére aed (0 <<a<< M), also W(a)= V(a) und W’ (a)=1, so
gibe es ein d>0mit V(a)=W(a) <W(a—d)+d. Da W(a—d)<V(a—d)
ergibt sich dann V(a) < V(a—d) 4+ d, was nicht moglich ist.

4.7. Varation der Zinsintensitiit

Unser Modell wird durch das Quadrupel (g, «, ¢, ) beschrieben.

oL " . .
Das Paar (—,F) legt die Struktur des Portefeuilles fest, der gemeinsame
c

Faktor von o und ¢ seine Grisse. Wie man durch eine einfache Ande-
rung der Zeitskala erkennt, ist fiir unsere Bewertung eine Variation
des Zinsfusses gleichbedeutend mit einer Variation der Grésse (immer
bei gleichbleibender Struktur). Insbesondere entspricht also der Fall
mit geringer Zinsintensitdt den grossen Portefeuilles, der Fall mit gros-
ser Zinsintensitdt den Portefeuilles mit einem kleinen Bestand. In die-
sem Sinne kann man im folgenden also etwa «f—0» auch immer lesen

o
als «a, c—>o00 (-— = konstant) M.
¢

Bei festem u 1st V(%) monoton abnehmend und stetig in f, letzte-
res weil V(u,S) fir jede Strategie S stetig differenzierbar in f ist.



— 218 -
4.7.1. Der Fall grosser Zinsintensititen

Man gewinnt einen gewissen Einblick in das Zustandekommen
optimaler Band-Strategien, indem man f variieren lidsst. Der Einfach-
heit halber wollen wir in diesem Abschnitt voraussetzen, F(z) erfiille
die Voraussetzungen des Satzes 4.6.4. Dann erkennt man anhand von
(39): Far sehr grosse Zinsintensititen besteht die optimale Strategie
darin, dass man das Anfangskapital auszahlt und die eingehenden Pré-
mien unmittelbar als Dividenden ausschiittet. Der Ruin tritt dann mit
dem ersten Schadenfall ein, und es ist

Viw) = ut Zj,é’ (46)

Mit Stetigkeitsbetrachtungen iiberlegt man sich: Der kleinste
Wert von g, fur den die Darstellung (46) richtig ist, ist zugleich der
grosste Wert von 8, zu dem es eine optimale Band-Strategie S, gibt,
so dass die Menge 4 einen Punkt a> 0 enthélt. Diese Zahl §’ bezeich-
nen wir als die kritische Zinsintensitit. Fiir dieses ' und fur ein solches
a e 4 st dann

a+0

[ 7(a—y) ar() (47)

0

4 o

+ ;
a+p at+p

V(e) =

wobet fiir V(a), V(a—1y) die Darstellung (46) mit g = §’ einzusetzen 1st.
Wenn wir jetzt (47) nach " auflosen, so erhalten wir

P ¢(a)
ﬁ—cx-[ 5 —1} (48)
WO
) [ aare |
zdF (x) z dF (x)
p(a) = Fla)—"—— Fla -t éi}%

Die kritische Zinsintensitdt f° kann jetzt auch beschrieben werden
als das Maximum der Funktion (48). Genau jene Argumente a, fir
welche dieses Maximum angenommen wird, kénnen (zusammen mit
der Zahl0) fiir die Menge 4 einer optimalen Band-Strategie S, ver-
wendet werden. Damit gewinnt man wenigstens fiir die kritische Zins-
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intensitit B’ einen Uberblick iiber alle méglichen optimalen Band-
Strategien. Insbesondere findet man so durch geschickte Wahl der
Verteilungsfunktion F(z) Beispiele, wo die Menge 4 aus endlich vielen,
abzdhlbar unendlich vielen Punkten oder gar aus einem ganzen Inter-
vall bestehen kann. In manchen Fillen kann man aus der Situation
bei f” Schliisse ziehen fiir Zinsintensitidten 8, die nur wenig kleiner als
f" sind.

Wir betrachten als Beispiel den Fall mit einheitlichen Schiden
der Hohe M. Als kritische Zinsintensitdt erhédlt man

ﬁ'=a[ ;%[—1} (49)

wobel das Maximum in (48) durch ¢ = M erreicht wird. Fir 8, die nur
wenig kleiner als 8’ sind, ergibt sich als einzige optimale Band-Strate-
gie die endliche Band-Strategie (q, =0, b;=>b, a; =M), wobei sich
b wegen der Stetigkeit ven ¥ (u) an der Stelle u -=b bestimmit aus

c v 4

B B e o (@ tB) (M=b)fc , e 5
ow+ f

a+ B a-+ B

(50)

Die Funktion ¥(u) hat daher etwa folgendes Aussehen:
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4.7.2. Der Fall kleiner Zinsintensitat

Wie bemerkt, 1st dieser Fall gleichbedeutend mit dem Fall grosser
Bestinde und daher fiir die Praxis von Interesse. Wir fithren vorerst
eine Strategie S, ein, die darin besteht, dass bis zum eventuellen Ruin
eine kontinuierliche Dividende der Dichte d (0 <d < c—au, u= [xdF(z))
ausgeschiittet wird. Wenn 1— R (u, d) die Ruinwahrscheinlichkeit bei
Anwendung der Strategie S, bezeichnet, so ist offenbar

V(u,S,) = R(u,d)- g (51)

Fur jedes p>0 wihlen wir ferner eine optimale Band-Strategie
S5 und definieren ay,= a,(f) :Min{a/aeA}. Es gilt:

ay—>co0 fir p—0. (52)

Denn wire a, beschrénkt, so wire auch V(0) = V(0, a,) beschrinkt
(da dann die erwartete Lebensdauer bei Anfangskapital 0 und Anwen-
dung der Strategie S, 5 beschrinkt wire). Dies ist aber unmoglich, weil
wegen (51) V(0,S,;)—>c0 fir p—-0.

Wir sind — wenigstens in qualitativer Hinsicht — sehr befriedigt
von der Formel (52). Wie immer eine optimale Band-Strategie S, ; be-
schaffen sei, fiir Anfangskapital kleiner als a, ist ja nur diese Zahl
relevant. Wenn also bev festem Anfangskapital dve Zinsintensitit genii-
gend klein (oder das Portefewille geniigend gross ) ist, dann wird die Gesell-
schaft thre Dividende so ausschiitten, dass das Kapital einen gewissen
(zeitlich konstanten! ) Wert a, beibehilt, beziehungsweise moglichst bald
wieder erreicht.

Wir fragen uns schliesslich nach dem asymptotischen Verhalten
von V(a,) tir f—0. Wegen (51) und der Formel (30) des 2. Kapitels ist

d
Viag) = V(ay, S5 = (1 — %) - 7}9 ftir p—0, (53)

wobei % nur von d abhéngig ist. Da (53) fiir beliebiges d<<c¢—oau gilt,
folgt wegen (39) sofort

lim B+ V (ag) = ¢ —ap. (54)
B->0
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In der anderen Lesart heisst dies

V (a
im ) 5 * _ yomst, (55)
o, cr>c0 C—AU c

Aus (39) erkennt man, dass die rechten Seiten von (54) und (55)
nicht vergréssert werden koénnen, indem man das Argument a, in den
linken Seiten ersetzt durch andere a € 4.

4.8. Zusammenhang mit dem Blackwell’schen Modell

Bekanntlich ldsst sich die Diskussion der Ruinwahrscheinlichkeit
(siehe 2.3) zurtickfithren auf die Diskussion eines Zufallsweges. Diese
Reduktion von kontinuierlichem Zeitparameter auf diskreten Zeitparame-
ter gelingt nun auch hier in verbliiffender Analogie. Dank dem Exi-
stenzsatz 4.5. diirfen wir uns ja auf Band-Strategien beschrinken und
kénnen so den folgenden einfachen Zusammenhang mit dem Black-
well’schen Modell [2] herstellen:

Als Zustandsraum verwende man nidmlich das Intervall [0, oo),

versehen noch mit dem Ruinzustand f. Der Diskontfaktor sei i
o

Eine Aktion bestehe nun in einem Paar (4,B) von Mengen, das die Po-
stulate von 4.2.1. befriedigt. Wenn uns P(z) = P(z, 4, B, w) die Wahr-
scheinlichkeit dafiir angibt, be1 Wahl der Aktion (4, B) von einem Zu-
stand % in einen Zustand <z oder w'=1 zu gelangen, so setze man

P(z) =1—F(u—2) fur wed, (56)

P(z) =1—F(a—xz) fir ue B, (57)

P(z) = 1 —¢ @A leulic Blg_g) (58)
(a—u)fe

— (a+p) f eI Pyt ct—z)dt  fiir ug (AUB).

Dabei bedeutet a in (57) — wie nachher in (60) — die grosste Zahl
aus 4, welche kleiner als w ist. In (58) — und nachher in (61) — soll a
dagegen die kleinste Zahl aus 4 sein, welche grésser als « ist. Der Ge-
winn 7(u) =r(u, 4, B) der bei einer solchen Aktion herausspringt, sei
schliesslich



¢
i) = fiur wed, 59
W=, (59)
(w) ‘ fir we B (60)
rfu) =u—at+ ——— fir we B, ;
o c
r(u) = ¢ Al fiir u¢(AuB). (61)
o+
Intuitiv bedeuten diese Zeiten 0, 1, 2, 3, ... 1im Blackwell’schen

Modell die Zeitpunkte 0, t,, t,, {5, ... (t; = Zeitpunkt des i-ten Schaden-
falles) im kontinuierlichen Modell. Man uberzeugt sich nun, dass auf
naturliche Weise den Band-Strategien im kontinuierlichen Modell sta-
tiondre Strategien im beschriebenen Blackwell’'schen Modell entspre-
chen (und umgekehrt), wobei der Wert — insbesondere also auch die
Optimalitédt - erhalten bleibt.

4.9. Erwartete Lebensdauer

Bei Anwendung einer Band-Strategie S,, betrigt die Ruinwahr-
scheinlichkeit offenbar 1. Die Frage stellt sich jetzt nicht mehr nach
der Uberlebenswahrscheinlichkeit, sondern nach der erwarteten Lebens-
dawer. Gemiss dem Motto «Zeit = Geld» versehen wir die Lebenszeit
mit einer zeitlichen Zinsintensitét 6 (6 > 0) und setzen

D, (u) = E[fe“‘” dt} (62)

Natiirlich 1st D (u) = Dy (a) fiir we B, wobei a wie in (57) definiert
ist. Far wé (4 uB) gilt die Integralgleichung

(a=u)/e u-tct
Dy(u) = « f ¢l ol lf Djs(u + ct—1y) dF (y) } dt
b 6

a0
e 4 .
o grlatd) (a-ulje D.(a—1) dF (1
s J Daa=y) aF (v
1 )
T ais (63)

wobel a wie in (58) erklédrt 1st.
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Bezeichnen wir mit L(¢;u) die Verteilungsfunktion des Ruinzeit-
punktes 7, dann st offenbar

H1-L(; ff =——— | &Lt 64
6[(3 (t; u)]a 5 3 6{3 (t; u) (64)

1m wesentlichen die Laplace-Transformierte von L(t; u).

5. Exponentielle Schadenhéhenverteilung

Als Beispiel zur Theorie des vorhergehenden Kapitels diskutieren
wir hier den Spezialfall, wo die Schadenhoéhe exponentiell verteilt ist :

Flzy =1—¢7, f(x) =y (2=0). (1)
Wir werden hier — im Gegensatz zum allgemeinen Fall — die Exi-

stenz einer (und genau einer) optimalen Barrieren-Strategie einsehen.

5.1. Die Dafferentialgleichung der Band-Strategien

Sei S,y irgend eine Band-Strategie. Wegen f'(z) = —y - f(x)
gewinnt man aus der Integro-Differentialgleichung (13) von 4.2.2. die
Differentialgleichung

¢ o (W) — (st B—ep) v (u) — By v(u) — 0. @)
Die Liosung ist von der Form
v(u) = Cye™ + Cyhe™, (3)
wobei 7, ry der charakteristischen Gleichung
— (@4 f—cy)r—py =0 (4)

geniigen. Die Konstanten C;, C, bestimmt man, indem man den An-
satz (3) in die Integralrechnung (11) von 4.2.2. einsetzt.
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5.2. Existenz und Berechnung der optimalen Barrieren-Strateqie

Wir wollen zuerst V(u,a) fir 0 <u <a berechnen. Zu diesem
Zweck bestimmen wir die C;, U5 wie oben beschrieben und erhalten
aus (3)

(n+y) et —(rpt+y)e™
e"[ry (a+p) + y]— e [ry(a+ B) + By]

Fiir welche o =a, wird nun ¥V(0, ¢) maximal ? Partielle Differen-
tiation nach a und Nullsetzen ergibt als einzige Liosung

Fiu,a) =

1 s To[ra(x+ B) + By]
T1—Tg rafri(e+ B+ Byl

aO:

(6)

welche positiv — und daher Losung des Problems — ist, falls

B<Ya()ye—}x), (7

d.h. falls die Zinsintensitét nicht allzu gross ist. (Die rechte Seite von
(T) ist positiv, da ja die Pramiendichte ¢ grosser sein soll als der erwar-
tete Schaden a/y pro Zeiteinheit.) Insbesondere ist dann also a, = 0,
so dass man anhand der Uberlegungen von 4.6.3. schliesst: Falls (7)
erfullt 1st, so gibt es genau eine optimale Band-Strategie, ndamlich die
durch (6) gegebene Barrieren-Strategie. Thr Wert fiir das optimale An-
fangskapital a, betrigt dann geméss (45) von 4.6.3.

PE—

V(ay) = V(ag,a9) = By

(8)

Im Falle wo

B=Va(Yre—Ja) (9)

ist offenbar @y =0 und V(0)=V (0, 0) :Aﬁc—ﬁ. Gébe es nun eine opti-
0.4

male Band-Strategie S,z mit einem positiven Punkt aed, so wire
wegen (45) aus 4.6.3. und wegen (9)

_ ye—o—pf < ¢

V
@ By  atp

= P10} 5 (10)
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was nicht moglich ist. Wir schliessen daraus: Falls (9) erfillt ist, so
qibt es genaw eine optimale Band-Strategie, ndmlich die zu ay = 0 geho-
rige Barrieren-Strategie.

Als Illustration zu 4.7.2. sel noch das asymptotische Verhalten
von a, fir f—0 angegegen:

(11)

aON

y.—____

Dabei streben die vernachléissigten Terme gegen 0 fir f—>0.

5.8. Die erwartete Lebensdauer

Die Integralgleichung (63) von 4.9. lasst sich im Falle der expo-
nentiellen Schadenhdhenverteilung @berfithren in die Differentialglei-
chung

e Dy(w) — (a+8—cp) Dyuw) — Sy Dy(w) +y — 0. (12)

Bei deren Losung geht man analog vor wie bei der Lésung von
(2). Fiir eine allgemeine Barrieren-Strategie (a) findet man so

L (st ) [k 8) + 810 (5, )y (- 0) 4 Sy
Dy (u) =—+ = :
0 Sy {[s1 (4 8) + dy]e ™" —[sy (o« + 8) + dy]e ™}

(13)

wobel u=<a und s,,s, die Wurzeln der zu (12) gehorigen charakteristi-
schen Gleichung sind. Im Grenziibergang d—0 erhilt man die ge-
wohnliche erwartete Lebensdauer D (u) = D, (u) :

Dy — ) ey (=P
o (ey—o)* (o7 —a)?
1 ¥
T o (14)

Dabel interessieren wir uns natirlich besonders fir u = a = a,,.
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Anhand von (11) erhalten wir die asymptotische Formel

=) ,
Do) A (15)

¢
Lebensdauer vst daher asymptotisch proportional zur Grosse (siehe 4.7.)
eines Portefeuilles.

Auf Grund der erwarteten Lebensdauer kann tibrigens auf einfa-
che Weise die Ruinwahrscheinlichkeit in einem bestimmten Zeitinter-
vall abgeschéitzt werden. Wenn P, die Wahrscheinlichkeit dafiir ist,
dass der Ruin ins Intervall [0,t] fdllt (bei optimalem Anfangskapital
@), 80 1st offenbar

; s . * .
fiir f—0 beziehungsweise fir o, c—>oo<—- = konstant) . Dre erwartete

D(ay) < t+ (1—P)- D(ap), (16)

also

P < : (17)

Damit ergibt sich eine praktische Abschatzung der Sicherheit.

5.4. Numerisches Beispuel

Zuar Hlustration wurden das optimale Kapital a, und die erwartete
Lebensdauer D(a,) fiir verschiedene Portefeuilles berechnet. Als Zins-
intensitdt wurde = 0.05 verwendet. Wenn man als Zeiteinheit ein
Jahr betrachtet, so entspricht dies einem jéhrlichen Zinsfuss von unge-
fahr 59,. In diesem Sinne wire dann « die erwartete Anzahl Schaden-
falle pro Jahr, ¢ das jahrliche Total der Pramieneinnahmen.



Marge 109 Marge 209,

pmy | @ ¢ @ | D) | a | Da)

1000 | 1000 | 1,1 Mio. 117000 | 4900 | 1,2 Mio. 79 600 | 20 700
5 000 200 | 1.1 Mio. 419000 | 1220 | 1,2 Mio. | 304000 4 540
10 000 100 | 1,1 Mio. 706 000 731 | 1,2 Mio. | 530000 2470

1000 | 5000 | 5,5 Mio. 151 000 | 22800 | 6,0 Mio. 98 700 |101 000
5000 {1000 | 5,5 Mio. 583 000 | 4900 | 6,0 Mio. | 398000 | 20 700
10 000 500 | 5,5 Mio. | 1020000 | 2620 | 6,0 Mio. | 714000 | 10 600

Dabei sind a, und D(a,) auf drei Ziffern genau berechnet.
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Zusammenfassung

Die Arbeit gehort in das Gebiet der kollektiven Risikotheorie. Den kontinuier-
lichen Priamieneinnahmen stehen Schadenzahlungen gegeniiber, welche einen zusam-
mengesetzten Poisson-Prozess bilden.

In einem ersten Teil wird eine praktische Abschiatzung fiir die asymptotische
Ruinwahrscheinlichkeit hergeleitet. Diese Abschiitzung bezieht sich auf den allgemei-
nen Fall, wo gleichzeitig positive und negative « Schiiden » zugelassen sind.

Im zweiten Teil wird das Modell im Sinne einer Idee von B. de Finetti erweitert:
Die Versicherungsgesellschaft zahlt ihren Aktiondren gewisse Dividenden aus. Es
wird die Frage behandelt, wie die Gesellschaft ihre Dividendenpolitik gestalten soll,
um den Aktiondren moglichst viel Dividende zukommen zu lassen. Im Falle exponen-
tieller Schadenhshenverteilung wird eine zahlenmissige Antwort gegeben.

Summary

The paper is a contribution to the collective theory of risk. The risk process
results from continuous premiums on the one hand and from the claims on the other
hand ; the latter are governed by a compound Poisson process.

The first part provides a practical estimate for the asymptotic probability of
ruin. This estimate is valid in the general case where simultaneously positive and
negative ,,claims”’ may occur.

In the second part the model is extended following an idea of B. de Finetti: The
insurance company pays dividends to its shareholders. It is asked under what divi-
dend policy the shareholders obtain as great a discounted total dividend as possible. A

numerical answer is given in the case where the single claims are exponentially distri-
buted.

Résumé

Cet article traite de la théorie collective du risque. Le risque est d’'une part, aux
primes continuelles et, d’autre part, aux indemnités; ces derniéres sont gouvernées
par un processus de Polsson composé.

La premiére partie de l’article présente une évaluation pratique de 'asymptoti-
que probabilité de ruine. Cette évaluation s’applique au cas général ou des «indemni-
tés» en méme temps négatives et positives se présentent.

Dans la deuxiéme partie le modéle est développé selon une idée de B. de Finetti:
La compagnie d'assurances paie des dividendes & ses actionnaires. Le probléme se pose
de déterminer quel systéme de dividendes accorde aux actionnaires le plus grand divi-
dend total possible. Une réponse numérique est donnée dans le cas ou la distribution
des indemnités individuelles est exponentielle.
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