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Uber die Produktdarstellung
der totalen Verbleibswahrscheinlichkeit bei mehreren
Ausscheideursachen

von Georg Reichel, Gittingen

Zusammenfassung

Der Verfasser geht von der Voraussetzung aus, das Ausscheiden eines Objektes
aus einem Kollektiv sei einzig durch den Zufall bedingt, und zeigt, dass es immer Aus-
scheidemodelle gibt, die eine Produktzerlegung der totalen Verbleibswahrscheinlich-
keit ermoglichen.

1. Vorbemerkung

Die Frage, ob sich die totale Verbleibswahrscheinlichkeit beim Vor-
liegen mehrerer Ausscheidegriinde als Produkt gewisser partieller Ver-
bleibswahrscheinlichkeiten darstellen ldsst, ist seit Johannes Karup in
der Vergangenheit bis in die heutige Zeit Gegenstand vieler eingehender
Untersuchungen gewesen. In der von £. Masius herausgegebenen « Rund-
schau der Versicherungen» der Jahre 1875 bis 1877 ist nach Bekannt-
werden der von Johannes Karup erstmals eingehend dargestelltenTheorie
der «abhingigen» und «unabhéngigen» Wahrscheinlichkeiten ein von
bemerkenswerter Offenheit getragener Streit tiber die Berechtigung
dieser Theorie, die in der oben genannten Frage gipfelt, entbrannt. Auch
nach Anerkennung der Karupschen Gedankenginge sind gerade in den
Mitterlungen der Vereinigung schweizerischer Versicherungsmathematiker
viele Untersuchungen diesem Thema gewidmet worden (man vergleiche
hierzu z. B. die Literaturverzeichnisse in [1]1) und [2]).

Im wesentlichen drei Griinde haben den Verfasser veranlasst, die
nachfolgenden Betrachtungen anzustellen:

1) Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnisam Ende
der Arbeit. Dabei bedeutet z.B. [6] (4.2) die Definition, Satz oder Formel (4.2)
der Arbeit [6].
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1. Die Theorie der «abhingigen» und der «unabhingigeny Wahr-
scheinlichkeiten oder — wie man sie auch oft nennt — die Theorie
der Intensitéiten ist, wie selten ein Gebiet der Versicherungsmathe-
matik, mit Hypothesen versehen worden, wodurch es dem Leser
schwerféllt, zu entscheiden, was Annahme und was zwingende
Folge ist. Der Verfasser hat sich daher die Aufgabe gestellt, zu
untersuchen, wieweit man allein durch rein deduktive Schliisse
gefithrt wird. Dabei wird nur von einer einzigen Voraussetzung aus-
gegangen. Diese Voraussetzung besagt, dass ein Ausscheiden eines
Objektes aus einem Kollektiv durch den Zufall bedingt ist und dass
jedem Ausscheiden eindeutig genau eine Ausscheideursache zu-
geordnet ist. Diese Finschrinkung ist nicht so schwerwiegend,
wenn man eine Kombination von verschiedenen Ausscheidegriin-
den, die gleichzeitig zu einem Verlassen des Kollektivs fithren, als
einen eigenen Ausscheidegrund ansieht.

Selbstverstdndlich wird man die Betrachtung von Hypo-
thesen nicht ausschliessen konnen, zumal diese Untersuchung mit
emnem vielleicht iiberraschenden Resultat endet. Aber bewusst
haben wir im Augenblick darauf verzichtet, die erhaltenen Ergeb-
nisse anhand von Annahmen auszudeuten.

2. Nicht in allen Untersuchungen ist sorgféltig auf die Eigenschaften
der vorkommenden Funktionen Riicksicht genommen worden. Wir
werden deshalb vom einwandfrei definierten Begriff der Klasse der
Versicherungsfunktionen ausgehen. Dabei wird sich die ausschlag-
gebende Rolle eventuell vorhandener Sprungstellen herausstellen.
Hierzu méchten wir bemerken, dass zwar von einigen Autoren mit-
unter behauptet wird, dass die Verteilungsfunktion des Ausschei-
dens stetig, wenn nicht sogar differenzierbar angenommen werden
kann. Diese Meinung fithrt dann leicht dazu, zu sagen, dass ein
Unterschied zwischen kontinuierlicher und diskontinuierlicher Me-
thode lediglich im «methodischen Vorgehen» liegt (vgl. hierzu [3],
S.182). Es gibt nach Ansicht des Verfassers durchaus Ausscheide-
griinde, deren Verteilungsfunktionen unstetig sind. So sind z.B.
Stornierungen von Versicherungsvertrigen nur zu ganz bestimmten
Zeitpunkten moglich. Dabei ist es unerheblich, zu welcher Zeit die
Mitteilung einer Stornierung gemacht wird. Folglich muss man hier
einen unstetigen Verlauf unterstellen. Dies trifft um so mehr zu,
wenn wir etwa an Auslosungen denken, die selbstverstéindlich zu
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mit Sprungstellen behafteten Verteilungsfunktionen fithren. Man
kann solche Ausscheideursachen ausschliessen: eme allgemeine
Theorie darf unseres Erachtens aber an solchen Méglichkeiten nicht
voriibergehen.

. Die Theorie der «abhingigen» und «unabhingigeny Wahrschein-
lichkeiten ist dann, wenn man in die Betrachtung der Haupt-
gesamtheit auch die der Nebengesamtheiten einschliesst und wenn
man eine Wahrscheinlichkeitsansteckung ausschliesst, eine ein-
fache Folge der Gesetze der Wahrscheinlichkeitstheorie (man ver-
gleiche hierzu etwa die zusammenfassende Darstellung von H. Wyss
in [1]). Die Problematik besteht bei dieser Betrachtung im wesent-
lichen in der Ermittlung der «unabhéngigen» Wahrscheinlich-
keiten aus den «abhéingigen» Wahrscheinlichkeiten und umge-
kehrt.

Nun fithrt aber ein Wechsel eines Objektes aus dem betrachte-
ten Kollektiv (der Hauptgesamtheit) in eine Nebengesamtheit
oftmals zu einer Anderung der restlichen Ausscheidewahrscheinlich-
keiten. Man denke etwa an die unterschiedliche Sterblichkeit von
Aktiven und Invaliden. Ferner ist mitunter eine Beobachtung der
Nebengesamtheiten aus mancherler Griinden nicht mdglich. So
wird z. B. bereits eine Kapitalleistung nach eingetretener Invalidi-
sierung die weitere Beobachtung der Invaliden erschweren, wenn
nicht gar unmdéglich machen.

Es gibt daher in der Praxis viele Félle, bei denen man lediglich
uber die Beobachtung des gegebenen Kollektivs, d.h. der Haupt-
gesamtheit, verfiigt.

Wir vertreten dabher die Meinung, dass sich die Frage nach
einer Produktdarstellung der totalen Verbleibenswahrscheinlich-
keit in diesen Féllen neu stellt. Ferner glauben wir, dass die eine
oder andere Streitfrage zu unserem Thema dadurch entstanden
sein kann, dass die soeben geschilderte unterschiedliche Aufgaben-
stellung nicht immer streng voneinander getrennt wurde.

Die folgende Untersuchung hat den Zweck, festzustellen, ob
man auch hier zu Produktdarstellungen gelangen kann und wo die
Grenzen dieser Moglichkeiten liegen. Dabei wollen wir — im Sinne
der unter Punkt 1 gemachten Ausfithrungen — fiir den Augenblick
vermeiden auszudeuten, von welcher Art die zu Produktdarstel-
lungen fithrenden Wahrscheinlichkeiten sind. Inshesondere gehort
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hierzu z.B. auch die Frage, ob man diese Wahrscheinlichkeiten
«unabhéingig» nennen kann.

Die nachfolgenden Untersuchungen beginnen nach einer Betrach-
tung der Grundwahrscheinlichkeiten mit der Ableitung zweier Un-
gleichungen. Die in diesen Ungleichungen auftretenden Grossen inter-
pretieren wir durch zwei extreme Ausscheidemodelle. Diese Ausfiih-
rungen stellen eine Erweiterung der Gedankenginge von J. Karup [4)
und 4. Loewy [5] dar. Sie fithren zum Beweis des Satzes von Karup-
Loewy, dem wir eine bemerkenswerte Erweiterung beifiigen konnen.
Nach der Definition einer wesentlichen Sprungstelle der Verteilungs-
funktion des Ausscheidens tiberhaupt widmen wir uns der Betrachtung

der Verhéltnisse an einer solchen Sprungstelle. Eine Zusammenfassung
beschliesst die Untersuchung.

2. Die Grundwahrscheinlichkeiten

Wir betrachten ein Objekt, welches durch ein ithm aufgeprigtes
Merkmal erkennen lidsst, ob es einem ihm tibergeordneten Kollektiv an-
gehort. Zur Zeit t = 0 se1 das Merkmal vorhanden.

Wir nehmen an, dass es m verschiedene Griinde gibt, weshalb das
Objekt sein Merkmal verlieren kann, wodurch es aus dem Kollektiv aus-
scheidet. Jedoch kann der Verlust des Merkmals immer nur durch genau
eine der m Ausscheideursachen bewirkt werden. Diese Voraussetzung
bedeutet, dass, wenn ein Ausscheiden in der Praxis durch zwei Ursachen
gleichzeitig bewirkt werden kann, dann diese beiden Ausscheidegriinde
— als Kombination gesehen — zur Bildung einer eigenen Ausscheide-
ursache fithren. Ist das Merkmal einmal verloren, kann es nicht wieder
gewonnen werden.

Definieren wir die Ausscheidezeit # als unteren Grenzwert aller
Zeitpunkte ¢, fur welche das Objekt das genannte Merkmal nicht mehr
besitzt, und unterstellen wir, dass die Ausscheidezeit  eine stochastische
Variable ist, so kann ihr eine v-Verteilungsfunktion (vgl. [6] (4.2))

F()=P(n=t) (2.1)
mit

F(0) =% (2.2)
zugeordnet werden.
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Der Aufteillung des Ausscheidens iiberhaupt auf m verschiedene,
sich gegenseitig ausschliessende Ausscheideursachen entspricht die Zer-
legung der p-Verteilungsfunktion F(f) in m Komponenten F; (1), fir die
gemiss [7] (3.5)

m

F) = 3 F() 2.3)

und

F,(0) = 0 2.4)

gilt. Die Komponenten sind ebenfalls nicht negative, rechtsstetige und
nicht abnehmende Versicherungsfunktionen (vgl. Definition [6] (1.1)).

Fir die totale Ausscheidewahrscheinlichkeit g (¢, ¢ + 7) — d.h. fir
die bedingte Wahrscheinlichkeit, mit der das Objekt das Merkmal zur
Zeit t + 7 nicht mehr aufweist, obwohl es dieses Merkmal zur Zeit £ noch
besessen hat — gilt nach [7] (3.1)

Ft+v)—F()

t, 1 = 2.5
far die totale Verbleibswahrscheinlichkeit nach [7] (3.2)
1—F({t+ 1)
t 2 AL 2.

Bezeichnen wir mit ¢;(¢, ¢t + 7) die i-te Ausscheidewahrscheinlich-
keit, so gilt fir sie mit [7] (3.6), (3.7)
B+ —L ()

1—F(t)

gt t+7) = 2.7)

und

SE.

qit,t+ 1) = q; @t t+ 7). (2.8)

[

1=

3. Beweis einer Ungleichung
Es seien {, und ¢ mit ¢, <<t und F'(f) <1 vorgegeben. Das Intervall
[t t] werde durch eine feine Zerlegungsfolge
alt, 8] 1ty <t ... <t =t
(vgl. Definition [6] (2.1)) eingeteilt.
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Es lassen sich dann in einfacher Weise die folgenden vorbereitenden
Ungleichungen verifizieren:

F(ty) —F(t)

< ———= =gt 1. 3.1
=" 1_F@) gty < (3.1)
I () — 5 ()
0< — = q; (t;, 4. 1. 3.2
< M S Gl < .2)
F(t, . )—F(
)< Fl)—F@) B
1—F(t,4)
0 < Bl) —F ) .4
I_F(txﬂ)
Ferner gilt furallez = 0
1
l—zLe" S —— : (3.5)
1t im

Verbinden wir nun (3.1) mit (3.5), so folgt

Frt; -F(1
F(t,, ) —Ft) el Y )

1— —pltpt.)<e T
1——F(t1) p(il 1+1).—.e

Aus (3.8) und (3.5) erhalten wir mit (2.6)

_ F(tap)-F(la)

e UF(iy) < 1 _1—F(4,) )
- F(t}—i-l)_F(tA) 1'_-_F(tl) p A YAt/ -
1—F(ty4)
Also gilt
_ Fltayn)-F(ta) _F(tar)-F(ta)
e ) < p(t, )= e -F(z) 3.6)

Genau so folgen aus (3.2) und (3.4) in Verbindung mit (3.5) die
beiden Ungleichungen

Fd Be —Fy(t
Bl —Bl) _ -~
1—F(t) =

1




und

_Tiltar) Rty 1
e I-F(!A+1) g .
L BB
1—F(t;,,)

Betrachtet man die Differenz zwischen der Jinken Seite der ersten
Ungleichung und der rechten Seite der zweiten Ungleichung, so stellt
man leicht fest, dass sich diese Ungleichungen zu der Ungleichung

Fi(tay1)-Fi(ta)
= 1 1 Bl —E)
N E(t ) —FE; (%) 1—F(t)
- 1—F(ty)
_Filh+-Fi(ts)
<e 1-F(ty) (3.7)

verbinden lassen.

Nunmehr bilden wir die Produkte der Ungleichungen (3.6) und
(3.7) itber alle 4. Machen wir Gebrauch von der Definition [6] (2.5) der
links- bzw. rechtsseitigen Stieltjes-Schérfschen Summen, so erhalten
wir mit [7] (3.3) die neuen Ungleichungen

yo 1 = 1
6—»53n (ﬁ’F) é P(toa t) g e—S&n (Ff‘F) (38)

und

bn(pm) o 1 _ 7ty Blt)—Fg
‘ = Fe—re =4\ i—rw

_.é-an(—l—i?, Fy) . (3.9)

IA

Mit



und

- 1 m - 1
S F) =Y ,F.
Sa,.<1FF, ) izl%n(l 7 )

und mit Hilfe der Abschétzung

m 1 1 )
g1+ai: - fira; = 0
1+ > a

m m
Hl“‘“ =1—2> ||

ergibt sich auf leichte Weise aus den Ungleichungen (3.9) durch Pro-
duktbildung tber alle 2

e‘S“(ﬁF'F)gﬁﬁ——l = ple )
i=1 A=0 14 (t,1+1) ( )
1—F(t;,4)

Wir lassen jetzt in den Ungleichungen (3.9) und 3.10) n gegen Un-
endlich streben. Da mit I'(f) nach [6] (1.3) auch I:“lﬁ(tj eine rechts-
stetige Versicherungsfunktion ist, sind die Funktionen F (t), (5
und F;(t) gleichsinnig stetig (vgl. Definition [6] (1.2)). Nach [6] (‘2 18)
existieren dann die Stieltjes-Schérfschen Integrale, und es gilt

- 1 (~)¢ 1
S , F dF
3]1 ( 1 '——'F ) e E{‘ 1 '——F(T) (T)

~ 1 (~)t 1
S , F. dE. (7).
3}1 ( 1 _F ’b) . Z[ 1 ——F(T) (] (T)

und
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Betrachten wir die unendlichen Produkte

uar 1 1 F(t,.)—F(t
lim [] und limﬂ(l— i) — B )
A+oo 1=0 1 Fi(tﬂ.+1)_E(tﬂ.) n>00 i=0 I_F(tl)
_+_.
1—F(t,)

so haben diese positive Glieder. Nach [9], 8.285 konvergieren solche
Produkte genau dann, wenn die Summen

. S Bl . 2 1
lim > ' =lmS3 (——, F.
n—fo A=0 1_F(t1+1) n—glc 5n 1—“F *

und

t B —Fi - /1
-llm ;.+1) 1( ) — h'.m San ('_‘_—F, E)
1_.

nseoizo  1—F() n-vco

konvergieren. Wegen der gleichsinnigen Stetigkeit der Versicherungs-

funktionen und F; ist dies aber der Fall.

Wir kénnen daher den folgenden Satz aussprechen:

Satz: (3.11)
Dre totale Verblewbswahrschewnlichket p (ty, t), die v-Verteilungsfunk-
tion F(t) und thre Komponenten F;(t) (v = 1, ..., m) erfillen die Un-
gleichungen '
(+)¢ dF; (1)
 1-F() n-1 1

to -
n>oo A=0 1 F( 1+1) E(tl)

RN Ty

1—F(t,)

n->oco A=0

n—1 F i ____F t Lo 1-F(7)
g hmH(lm— z(/l-l—l) t(}.)) é e t (8.12)



und

(+)¢ dF (z)
i I:_F—(T) m 7-1 1

e < lim = Pty t
T gn—voo}.]l E(tj,_rl)—E(ti) o p( ’ )

1+
1~F(t1+1)

e
m n-1 F(t N _E t g 1-F(7)
< [[m fT (120280 <o T
t=1 nsco A=0 1 F(tl)

IA

Bevor wir die Ungleichungen (3.12) und (3.13) auswerten, wollen
wir zundchst die in diesen Ungleichungen auftretenden unendlichen
Produkte interpretieren.

4. Betrachtung zweier Ausscheidemodelle

In der Theorie der zusammengesetzten Ausscheideordnungen hat
man des ofteren (vgl. [4], S.440; [5], S.215) einfache Ausscheideord-
nungen, die nur einen Grund des Ausscheidens kennen, dadurch ent-
wickelt, dass man Abginge, die wegen der restlichen m — 1 Ausscheide-
ursachen erfolgen, dem Kollektiv wieder hinzugefiigthat. Wir betrachten
hierzu zwei extreme Modelle:

Modell I: (4.1)

Die in etnem Teilintervall(t,, t, . || ausscherdenden Objekte werden, so-
fern das Ausscheiden durch den Grund k (k=1, ..., m;1%k) erfolgt, dem
Kollektiv am Anfang des Telintervalls wieder hinzugefiigt und erneut dem
Ausscherdeprozess unterworfen. Dieser Prozess wird iteriert. Der Grenzwert
der so entstehenden Ausscheideordnung wird mit 1} (t) bezeichnet.

Modell IT: (4.9)

Die wn evnem Teilintervall [t,, t; . | | ausscherdenden Objekte werden, sc-
fern das Ausscheiden durch den Grund k(k=1, ..., m;i%k) erfolgt, dem
Kollektww am Ende des Terlintervalls wieder hinzugefiigt. Der Grenzwert der
so entstehenden Ausscheideordnung wird mit 17'(t) bezeichnet.
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Wir leiten nun die Ausscheideordnungen 1X(#) und 1!(¢) ab, indem
wir die Verbleibswahrscheinlichkeiten

L (1)

I 11 lil(t)
pi (tO’ t) = “l]‘: (to) de P, (to, t) =

L)
bestimmen. Wir betrachten das Teilintervall [#,, ¢, . ,], an dessen Beginn

I}(t,) bzw. I'(t;) Objekte dem Kollektiv angehdren mégen. Im Intervall
werden wegen aller m Ausscheideursachen

Ft;41) —F(ty)

(4.8)

A
bzw.
RL)—F) -
RS GO TR
1-—F(t)

Objekte ausscheiden. Diese verteilen sich anzahlméssig wie folgt:
Ausscheidegrund 7:

Fi(tasr])‘_Fz‘(tz) Fé(ta+1)_‘Fi(ta)

(G bzw. It
)=y b B S
Ausscheidegriinde k:
(=1, « « sxtityt Fkc)
1oy e Faltis ) —Er(t) " B () — ()
0 Ak £ M “ bzw. N £ .
W= 1T W 2 g
ki ki

Im Modell IT wird die letztgenannte Gruppe derjenigen Objekte, die
nicht wegen des 1-ten Grundes ausgeschieden sind, dem Kollekive wieder

hinzugefiigt. Es gilt demnach
Fi(t 1) — Fi(t)

Bt) _ | Bt —Fit)

iy, t
:p'l (A ;H'l) l[I( ) ].—F(tx)

Hieraus folgt

U ﬁ Filty) — Filty)
to; t :p1 tl, tl“‘i‘l (1 e ii F(t ) 1
\ 2
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in Anhéngigkeit von der Einteilung 3,[t, t]. Nach den Resultaten des
vorangegangenen Abschnitts existiert der Grenzwert

pi' (o, 1) = lim (¢, 1) ,

n->co

und es gilt

_HY _ = Fih)—F)

Im Modell T wird die Gruppe derjenigen Objekte, bei denen das
Ausscheiden nicht durch den Grund 1 veranlasst ist, zur Zeit {, dem

Kollektiv wieder hinzugefiigt und wiederum dem Ausscheideprozess
unterworfen.

Fithrt man diese Iterationsschritte durch, so ergibt sich offenbar

—F(t,) p=0 |k+1 1—F(t,)

k41

Bty = L) —1(t) Fi(?ﬂ)_Fi(t*) i {i Bty y1) — Fi(t) 'u'

Wegen (3.1) konvergiert die unendliche Reihe, und es ergibt sich,
wie man leicht sieht,

Bt | Rl R 1
pi(}.’ K+1)_ Z() -+ 1—F(tl) :

Nl

- ma By(t)
; )

1

Bl —F)
1=F(t )

Hieraus folgt

L 1
to:t Hpa by tayy) = H

=0 4 Fz‘(t).+1) —F,(t,)
1 _F(tz—i—l)

in Abhingigkeit von der Einteilung 3,[%,, t]. Nach den Resultaten des
vorangegangenen Abschnitts existiert der Grenzwert
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P«% (tp t) = lim ?3: (T, 1),

n—>oco

und es gilt

(o, 1) Y li ﬁ ! 4.5

7 s = 7, = 11In . 3

pt 0 lf(t()) n>co A=0 1 | E(tl-%l)__’Fi(tA) ( )
T 1—F(ty,,)

Mit den Gleichungen (4.4) und (4.5) haben wir damit eine Modell-
interpretation der in den Ungleichungen (3.12) und (3.13) vorkommen-
den unendlichen Produkte gefunden.

Die Ungleichungen des Satzes (3.11) kénnen wir daher auch in der
Gestalt

__(ir)‘ aF; (%) ~ Gt ap;m)
J o 1TF@) J1-F (@)
e 't < Pl 1) < Pi'(tot) < e (4.6)
(=1, , m)
und
P are O ap
“F(r m m =
‘°1F”< T 0 < plty, 1) < T 1) < 1O 4.7
€ :Hpi(ﬂ’)zz)(o’):le(o’):e (')
1=1 =1
schreiben.

5. Der Satz von Karup-Loewy und seine Grenzen

Wir werten nun die Ungleichungen (4.6) und (4.7) aus. Der Theorie
der Stieltjes-Schirfschen Integrale kénnen wir entnehmen, dass sich die

Integrale

(+)¢ )t
| @) dgx) wnd [ f(x) dg(a)

to ip

nur dann voneinander unterscheiden, wenn f(z) und g(z) im Intervall
[t t] gemeinsame Sprungstellen aufweisen (vgl. [6] (2.23)).



Insbesondere gilt daher

jﬂ*dﬁuﬂ zzj“dfua _ ( dF@)
1-Fx) | 1-F@x) | 1-F{)’

to

wenn F;(t) und F(r) keine gemeinsame Sprungstelle haben. Da eine
Sprungstelle von F;(7) offensichtlich auch eine Sprungstelle von F(r)
sein muss — dies braucht umgekehrt nicht der Fall zu sein —, folgt dar-

aus, dass F;(7) in {, < 7 < t stetig sein muss, wenn die beiden Integrale
gleich sein sollen.

Ferner 1st

D qp@ Q' aFE) [ dF(@)
1-Fr) |} 1-F@) ] 1-F()

nur dann erfallt, wenn F'(7) im Intervall [1,, t] stetig ist.
Wir kénnen daher formulieren:

Satz von Karwp-Loewy: (5.1)
Ist F;(t) vm Intervall [1,, t] stetig, so qlt

(5.2)

Pl 1) = IHAJ H@% e . (5.3

Dieses Resultat, welches zuerst von J. Karup [4] und dann exakter
von A.Loewy [5] nachgewiesen wurde, besagt, dass bei vorliegender
Stetigkeit einer Komponente die dieser zugeordneten Verbleibswahr-
scheinlichkeiten der Modelle T und II iibereinstimmen. Ferner lisst sich,
wenn auch die p-Verteilungsfunktion selber stetig ist, die totale Ver-
bleibswahrscheinlichkeit darstellen als Produkt der Verbleibswahr-
scheinlichkeiten des Modells I bzw. des Modells II.

Der Beweis des Satzes (5.1) wurde dadurch gefithrt, dass die Uber-
einstimmung der dusseren Glieder der Ungleichungen (4.6) und (4.7)
untersucht wurde. Es kann durchaus sein, dass zwar die dusseren Un-



gleichungsglieder voneinander verschieden sind, dass aber die inneren

Ungleichungsglieder von (4.6) und (4.7) identisch sind. Trifft dies zu,

so haben wir eine Ausdehnung des Satzes von Karup-Loewy erhalten.
Wie beweisen hierzu den

Satz:

Ist vm Intervall [¢,, t] genaw eine Komponente — und zwar F;(t) — un-
stetrg, so qult

Pty t) = ]Ilpi (o, 1) = qpiI(to, ) . (5.5)
y= y=

Beweis:
Da in [t,, t] nach Voraussetzung die Komponenten F,(f) fir y =1,
..., m,y = 1 stetig sind, gilt fiir sie nach (5.2)

P;I» (s 1) = P;Izl(to’ i) .

Wir betrachten nun p! (t,,t) und pl'(4,t). Offensichtlich kommt es
nur auf die Betrachtung einer Sprungstelle an. Sei ¢, eine Sprungstelle
von F;(t), so gilt fiir sie nach (4.5)

; 1
pi (£, —0,8,+0) =
14 F;(t,+0)—F,(t,—0)
1—F(t,+0)

und nach (4.4)
F(t,+ 0) — Fi(t,—0)

Mt —0,8,+0) =1—

Da t, Sprungstelle nur einer Komponente ist, gilt
F(t,+0)—F@,—0) = F;(t,+ 0)—F,;(t,—0) .

Also 1st

1—F(t,+0)

Lt,—0, t,+ 0) — pi'(£,—0, 8,4+ 0) =
Pz(ﬂ A ) p*()‘ 1+ 0) l—F(i;_‘}‘O)+F(t,1+0)_"F(tﬂ._O)

Fty+0)—F(t,—0)  1-F(t;+0)~1+F(t,~0)+F(t,+0)—F(t,—0)
1—F(—0) 1— P(t,—0)

:0’

L
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womit der Satz bewiesen ist. Wir konnen offenbar dem Satz (5.4) auch
die folgende Formulierung geben:

Satz: (5.6)
Haben wvm Intervall [t,,t] die Komponenten F;(7) paarweise keine
gemeinsamen Sprungstellen, so qilt
Pi(to ) = Pity 1) (t=1,...,m

und
p(tO’ t) = 1 1 pE (to’ t) = 1 } p-gl(to’ t) .
1=1 =1

Wir nehmen nun an, dass mindestens zwel Komponenten — etwa

F.(7) und F,(r) — an der Stelle ¢, im Intervall [{;, t] eine gemeinsame

Sprungstelle haben. Es gelte daher

F(t;+0)—F,(t,—0) > 0 (5.7)
und
F,(t,+0)—F,(t,—0) > 0. (5.8)
Betrachten wir nur diese Sprungstelle, so gilt nach (2.6)
1—F(t,+0) F(t,+ 0)—F(t,—0)
t,—0,4,+0)=—F""=1——" s
P=0 5400 = 154 ) 1—F(5,—0)
_ 1
1+ F(t,+0)—F(t,—0)
1—F(t,+0)
und nach (4.5)
1¢,—0,1,+0) = !
T R 0—F(,-0)
1—F(t,+0)

sowle nach (4.4)

Fi(t,+0) — F(t,—0)

T —0. 44 0) = 1—
2)1. (}. A ) 1_F(t}’_0)




Es ist nun

m

A= p(t,—0,t,+0)— ﬂp, -0,t,+0)> 0,

wie man mit Hilfe von (5.7) und (5.8) erkennen kann. Entsprechend
ldsst sich auch

A%= HPP(tA"O; t,+0)—p(t,—0,¢+0) >0
=1

nachweisen. Schliesslich kann man durch einfaches Nachrechnen be-
statigen, dass

Py (t,—0, 1,4+ 0) — py(t,—0,4,4-0) > 0
ist. Wir haben damit das folgende Resultat erhalten:

Definition: (5.9)

Eine Sprungstelle t, der v-Verteilungsfunktion F(t) heisst wesentlich,
wenn mindestens zwer Komponenten von F(t) an der Stelle t, unstetig sind.

Satz: (5.10)

Laegt vm Intervall [t,, t] ewne wesentliche Sprungstelle der v-Ver-
teilungsfunktion F(z), so qilt fiir die an dieser Sprungstelle unstetigen
Komponenten F,(z)

und insgesamt
Hp, t) <p(to 1) <Hp“to,t)- (5.12)

Danach verliert bei vorhandenen wesentlichen Sprungstellen der
Satz von Karup-Loewy, der Aussagen iiber eine Produktdarstellung der
totalen Verbleibswahrscheinlichkeit mittels eines der Modelle I oder II
macht, seine Giiltigkeit.



6. Schlussbemerkungen

Der Satz (5.10) zeigte, dass an einer wesentlichen Sprungstelle
weder das Modell I noch das Modell II zu einer Produktdarstellung der
totalen Verbleibswahrscheinlichkeit fithren. Dabei liefert das Modell I
eine zu kleine, das Modell IT eine zu grosse Verbleibswahrscheinlichkeit.
Man kann sich daher die Frage stellen, ob an wesentlichen Sprung-
stellen eine Verkniipfung beider Modelle zu einer Produktdarstellung
fiuhren kann. Wéhlen wir eine multiplikative Verbindung beider Mo-
delle, so ldsst sich fir den Fall, dass an der Sprungstelle genau zwel

Komponenten unstetig sind, das folgende Resultat erzielen, welches
hier ohne Beweis mitgeteilt werde:

Satz: (6.1)

An einer wesentlichen Sprungstelle t;, an der genau zwei Kompo-
nenten F; (t) und F; (t) unstetrg sind, existiert eine Produktdarstellung

2
p(t,—0,t,+0) = Hﬁ‘iy(tk_‘o’ t,+0) - H Pf;(tz_o’tﬁ“ 0)
e

Pu:i:il! ’iﬂ

mat
Diylti—0, ty+0) = (Pifti=0, ty+0)) ¥ (ply (=0, ,+0)) "7 (y = 1, 2)
(6.2)

dann und nur dann, wenn
T,;I-I-Tiz == 1 (6.8)
mit 0=r, <1 (y=1,2) gqil.

Far mehr als zwel unstetige Komponenten kann man zeigen, dass
es immer Darstellungen gibt, welche (6.2) erfiillen.

Die gewonnenen Resultate haben gezeigt, dass es immer Aus-
scheidemodelle gibt, die eine Produktzerlegung der totalen Verbleibs-
wahrscheinlichkeit ermdéglichen. Ist die Verteilungsfunktion F'(t) stetig,
so fallen die Ausscheidemodelle I und II zusammen. J. Karup und
A.Loewy haben die sich hieraus ergebenden Verbleibswahrscheinlich-
keiten pl(t,, ) = pi(t,, t) unabhingig genannt.



Das fiir wesentliche Sprungstellen nicht erwartete Resultat fordert
zu weiteren Untersuchungen in der folgenden Richtung heraus:

Gibt man sich zwel zusammengesetzte Ausscheideordnungen vor,
in denen jeweils ein Ausscheidegrund in beiden Ordnungen iiberein-
stimmt, so sollte danach gefragt werden, ob oder unter welchen Be-
dingungen es Produktdarstellungen der betrachteten Art gibt, bei
denen die diesem Ausscheidegrund zugeordneten Verbleibswahrschein-
lichkeiten iibereinstimmen.

Diese Untersuchung diirfte meines Erachtens der Priifstein dafiir
sein, ob es berechtigt ist, von unabhéngigen (= partiellen, invarianten)
Verbleibswahrscheinlichkeiten zu sprechen.
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Résumé

En partant de I'hypothese que la sortie d'un objet d'un collectif soit provoquée
uniquement par le hasard, 'auteur démontre qu’'il existe toujours des modeles qui per-

mettent une décomposition de la probabilité totale en un produit de facteurs consti-
tuants.

Summary

The author starts on the hypothesis that the withdrawal of an object from a tota-
lity is solely due to hazard, and demonstrates that models always exist which allow a
decomposition of the total probability into factors of the particular causes.

Riassunto

IL’autore parte dall'ipotesi che 1'eliminazione di un oggetto da un collettivo sia
dovuta unicamente al caso e dimostra che esistono sempre modelli di eliminazione che
permettono una scomposizione in fattori della probabilita totale di permanenza.
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