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Charakteristische Funktionen

Idee und neuere Entwicklungen

Von W. Berghoff. Zürich

Zusammenfassung

Im ersten Teil werden verschiedene Integraltransformationen einschliesslich
der charakteristischen Funktion eingeführt, der Zusammenhang der letztern mit
der lourierreihe skizziert und die Beziehungen zu der Potenz- und Laurentreihe
angedeutet. Es folgen Bemerkungen über die Konvergenz und eine Anzahl
Anwendungsbeispiele. Der zweite Teil erklart kurz die Produktzerlegung der
charakteristischen Funktion, streift das Problem der unzerlegbaren und der unbegrenzt
zerlegbaren Verteilungen und gibt abschliessend ein Beispiel für die ausserordentliche

Leistungsfähigkeit der charakteristischen Funktion bei der Lösimg statistischer
Probleme.

1. Einleitung

Immer häufiger werden in der reinen und angewandten Mathematik
gewisse Integraloperatoren zur rationellen und oft eleganten Lösung
verschiedenster Aufgaben herangezogen. Dies gilt besonders auch für die

Gebiete der mathematischen Statistik und der Versicherungsmathematik,

sofern sich die letztere auf die Kollektivrisikotheorie stützt.
Vom Standpunkt des Praktikers aus gesehen, handelt es sich hier

um mathematische Spezialgebiete, deren Zugang nur mit einigem
Aufwand gewonnen wird. Das bewog den Verfasser, den im Zürcher
Kolloquium der A'ersicherungsmathematiker gehaltenen Vortrag in den

«Mitteilungen» zu publizieren und damit einem weitern Kreis zugänglich zu
machen.

2. Integraloperatoren und charakteristische Funktion

In der Theorie der Verteilungsfunktionen ist es oft von Vorteil, statt
dieser Funktionen selbst, gewisse Integraltransformationen [2]1),
sogenannte Erwartungswerte von der Form

L [ ] siehe Literaturverzeichnis.
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zu betrachten.
Der Kern Kit. x) hat im allgemeinen eine der Formen, wenn t

ganzzahlig und positiv Dt
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Das erste Beispiel mit dem Kern ,r' ergibt die wohlbekannte Darstellung
der Momente, während die Formmit demKern e''' charalteristischeF u nlc-

lion [5] genannt wird (i2 — 1. x und t reell).
Die allgemeinste Kerndarstellung mit der e-Funktion ergibt sich,

wenn der Exponent des Kerns cüx auf beliebige komplexe Werte
erweitert wird. Damit gelangt man zum Kern D' der Laplaee-Transfor-
mation mit s ,r + ?;/. Wird der Realteil von s Xull gesetzt, --o folgt
erneut der Kern

e"jt der Fourier-Transformierten oder charakteristischen Funktion.

Seine Zerlegung in die Winkelfunktionen

eujt cos ij t -x i sin ij t

liefert ferner für verschwindenden Real- bzw. Imaginärteil

sin ij t den Kern der Sinustransformierten und

cos ij t denjenigen der Cosinustransformierten.

Dass auch die beiden letztgenannten Transformationen nicht nur
theoretischen Wert besitzen, folgt schon daraus, dass charakteristische
Funktionen symetrischer Verteilungen immer in eine cos-Transformierte
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ausarten. Je nach Art der zu bearbeitenden Verteilungsfunktionen wird
deshalb mit Vorteil die eine oder andere dieser Transformierten gewählt.

Alle vier Transformationen besitzen dieselbe wichtige Eigenschaft.
Sie ermöglichen eine ein-eindeutige Abbildung in einen Bildraum, in
dem gewisse transzendente Operationen algebraisiert werden. Es sei

deshalb erlaubt, je nach Eignung einmal die eine und einmal die andere

zu verwenden.
Die anschaulichsten Darstellungen liefert die Laplace-Transfor-

mation. da sie eine vollständige analytische Funktion darstellt, auf die
die weittragenden Sätze der Funktionentheorie angewendet werden
können. Auch erlaubt sie sehr anschauliche Darstellungen auf der
Gauss'schen Ebene, weshalb wir uns im ersten Teil dieser Publikation,
wo es um das Sichtbar machen der Grundidee geht, hauptsächlich auf sie

stutzen werden. Sie hat aber auch Mängel. Ihre Konvergenz ist oft erst
gesichert, wenn das Intervall von — oo bis oo auf 0 bis oo oder noch
mehr eingeschränkt wird.

In ihr enthalten ist die Fourier-Transformation, deren absolute

Konvergenz fur Verteilungsfunktionen ausnahmslos gesichert ist, denn
es gilt

CO CO CO

feiH dF(x) ^fe"r dF(x) =fdF(x) -= 1

— co — oo — CO

weil etlx den Vektor auf dem Einheitskreis, und das letzte Integral die
immer auf die Einheit normierte Verteilungsfunktion bedeuten.

3. Charakteristische Funktion und Fourier-Reihe

Einen ersten Einblick in das Fourier-Integral gewinnt man, wenn
von der Darstellung einer Funktion als Fourier-Reihe ausgegangen
wird [4]. Der Ansatz der Fourier-Reihe lautet

oo

f(x) a0 + V (at, cos v x — bvsinvx).
>•=1

Obwohl die Glieder dieser Reihe transzendente Funktionen sind, lassen

sich erstaunlich vielgestaltige, auch nicht transzendente Funktionen
durch sie darstellen. x\ls einfache Beispiele seien erwähnt

4
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die Gerade f(x) j: mit dem Bild

und die Darstellung einer Konstanten
/(.?•) c für ein bestimmtes Intervall.

«»
V"\v

•V *

/ \
v - 1

•. \ V-,
" •' ^ ^ V 3

Fig. 2

Entsprechend der Periodizität von sin und cos sind diese Darstellungen
im allgemeinen periodisch mit der Periode 2 .t. Darum ergab sich für
/(.r) ,r das Bild einer periodischen Funktion.

An der Damteilung der Konstanten /(.r) c lässt sich sehr schön

zeigen, wie die schrittweise Annäherung durch eine Überlagerung von
Sinussehwingungen zustande kommt (Fig. 2).

Eine erste Erweiterung der Fourier-Reihe wird durch die Substi-
7

tution x ii erreicht. Das erweitert das Periodizitätsintervall von
2,-t '

2.t auf ein beliebiges Intervall /. Für grosse / reduziert sieh dadurch
unsere Darstellung auf die eine, fest ausgezogene Gerade 'Fig. 1).

Werden für die Koeffizienten av und br ihre Bestimmungsintegrah'
in die Fourier-Reihe eingesetzt

e 1 r 1 rt(,r) a0 -f ^ — I f(t) cos vt • cos vx dt — I f(t) sin vt • sin vx dt~ n J re J
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und der Grenzübergang l oo vollzogen, so resultiert das sogenannte
Fouriersche Integraltlieorem

/(r)
1

71
f(t) cos a(x—t) dt da

oder etwas umgeschrieben

/O) cos ax da I f(t) cos at dt.

Die Integrale ff(t) cos vt cos vx dt + ff(t) sin vt sin vx dt
reduzieren sich nach dem Cosinus-Additionstheorem auf das Integral

Oo

\f{t) cos a(x—t) dt und die Summe V geht in das äussere Integral
f da über. 1

Aus dieser Darstellung der Cosinustransformierten wird eine der

wichtigsten Eigenschaften unserer Transformationen, ihre Umkehrbarkeit

klar erkennbar.

Ausgehend von der

Originalfunktion
ergibt sich vermittels des Cosinusoperators
die Bildfunktion

m
71

cos at f(t) dt <p(a)

/(®)
'2

71

cos ax <p(a) da

wieder die
Originalfunktion.

und daraus, wenn nochmals die Cosinus

transformation angewendet wird

Praktisch werden die Integrationen in den meisten Fällen nicht
durchgeführt. Entweder benützt man Tabellen, in denen Original- und
Bildfunktionen einander gegenübergestellt sind, oder es werden eine

Anzahl Sätze verwendet wie etwa der



— 52 —

Ähnlichkeitssatz,
Yerschiebungssatz.
Dämpfungssatz.
Integrations- oder

Differentiationssatz,
mit deren Hilfe direkt an der Bildfunktion abgelesen werden kann,
welche Veränderungen die Originalfunktion erfährt und umgekehrt.

4. Laplace-Transformation, Potenz- und Laurentreihe

Eine etwas einfachere, dafür weniger tiefgreifende aber um so

anschaulichere Einführung, diesmal der Laplace-Transformierten. gibt
Doetsch in seinem dreihändigen Handbuch [1J.

Er geht aus von der Darstellung einer Funktion als Potenzreihe
CO

f(z)
v̂ 0

und verallgemeinert diese Entwicklung indem er den ganzzahligen
Exponenten v durch eine behebige aufsteigende Beihe nicht negativer
Zahlen /„ ersetzt. Der Faktor z'v wird im allgemeinen vieldeutig sein,
weil die gebrochene Zahlen sind. Um diese Vieldeutigkeit zu
beseitigen, denkt man sich am besten die Beihenglieder auf der unendlich
vielblätterigen Biemannschen Fläche des Logarithmus aufgetragen. Die
Transformation z -- e~s bildet die Glieder dieser Beihe auf eine rechte
Halbebene ab. Das Besultat ist die Beihe von Dirichlet

CO

M V ar <fV.
>• 0

Aon hier aus ist es nur noch ein kleiner Schritt, die diskroten 7. -

Werte durch eine kontinuierliche Variable t. die durch eine kontinuierliche

Funktion f(t) und die Summation durch ein Integral zu ersetzen,
womit man zur Laplace-Transformierten

CO

| e~st f(t) dt gelangt ist.
ö

Eine dritte Möglichkeit der Einführung des Laplace-Integrals geht
aus von der Laurententwicklung einer Funktion

7(Z) - V «, v
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und endet mit der Einführung des zweiseitigen Laplace-Integrals

Sollen alle diese Betrachtungen mathematisch fundiert sein, so ist
es unumgänglich, einige Bemerkungen über die Konvergenzverhältnisse
dieser Darstellungen zu machen.

Potenzreihen konvergieren immer absolut und gleichmässig innerhalb

eines Kreises. Ausserhalb des Kreises sind sie immer divergent. Auf
dem Konvergenzkreis hat es im allgemeinen Punkte von beiden Arten.

Beim Laplace-Integral sind die Konvergenzverhältnisse viel
komplizierter. denn das uneigentliche Integral über

e~s cxeiy

konvergiert offenbar nur für x > 0, d.h., bezogen auf die Gauss'sche

Ebene, in einer rechten Halbebene. Dabei braucht die Grenze für absolute

und bedingte Konvergenz nicht zusammenzufallen. Ja es kommt
sogar vor, dass Funktionen über die Grenze der bedingten Konvergenz
hinaus bis zu einer dritten Grenze analytisch fortgesetzt werden können.

analytisch fortsetz- bedingte absolute
bares Gebiet Konvergenz Konvergenz

CO

[e-'m dt.
— 00

5. Konvergenzverhältnisse

7 ß

Fig. 3



Bei der Potenzreihe kann es auf dem Konvergenzkreis konvergente
und divergente Punkte haben. Konvergiert jedoch heim Laplace-Integral

auch nur ein Punkt auf dem Eande absoluter Konvergenz u, so

konvergiert es absolut auf der abgeschlossenen Halbebene, d. h. also mit
Einschluss des Randes «. Das gleiche gilt jedoch nicht für die bedingte
Konvergenz. Hier verhält sich die Laplace-Transformation wieder wie
die Potenzreihe.
Genauer: Das Gebiet absoluter Konvergenz des Laplace-Integrals ist

eine offene oder abgeschlossene Halbebene, zu der der Rand a

ganz oder gar nicht gehört. Zum Gebiet bedingter Konvergenz
gehört ß ganz, teilweise oder gar nicht.

Das hat vor allem seine Bedeutung für die Auswertung des

Umkehrintegrals. Das Umkehrintegral, mit dem aus der Bildfunktion wieder die

Originalfunktion gewonnen wird, hat die Form

Entsprechend den Konvergenzbetrachtungen erfolgt seine Auswertung
längs einer Senkrechten zur reellen Achse. Konvergiert die Unikehrfunktion

beispielsweise längs der ganzen imaginären Achse mit
Ausnahme des Nullpunktes, so kann die Konvergenz auch im Ursprung
durch eine halbkreisförmige Deformation des Integrationsweges wieder

hergestellt werden, da ja dadurch der Wert des Gauchy-Integrales
nicht ändert (Fig. 4).

ft)-«- CO

Lim l fc,si(s)cU

Fig. 4 Fig. 5

Die Methode der Deformation des Integrationsweges wird ganz
allgemein verwendet zur Verbesserung der Konvergenzverhältnisse. Wird
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nämlich die Vertikale durch irgendeinen Punkt .su beidseitig nach links
abgebogen, so steigert sich die Konvergenz des Umkehrintegrals wegen
des Faktors es' sehr rasch (Fig. 5). Auch können oft mittels der Methode
der Integrationswegdeformation Umkehrintegrale mit abzählbar vielen
Polen beliebiger Ordnung ausgewertet werden (Fig. tj). Es ist einfach
schrittweise ein Pol nach dem andern mittels seiner Laurententwicklung
in die Bechnung einzubeziehen [b].

Diese wenigen Bemerkungen mögen genügen, um einen gewissen
Einblick in die meistens als lästig empfundenen, für die Lösung
bestimmter Probleme jedoch hochwichtigen und oft entscheidenden

Betrachtungen über die Konvergenz zu gewinnen, und es soll nun anhand

einiger Beispiele der praktische Wert der Transformationen demonstriert

werden.

An erster Stelle ist das wohlbekannte Faltungsintegral zu nennen.
In der Wahrscheinlichkeitsrechnung und in der mathematischen
Statistik treten sehr oft Integrale von der Form

auf. Je nach der Beschaffenheit der Funktionen / und <j »ind solche
Ausdrücke oft nur sehr schwer oder überhaupt nicht int egrierbar. In vielen

6. Anwendungsbeispiele

j f(i) g(t—x) dx
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dieser Fälle leisten dann die behandelten Transformationen scheinbar
fast mühelos Erstaunliches, verwandelt sich doch die transzendente
Operation der Faltung in ihrem Bildraum in eine ganz gewöhnliche
Multiplikation. Am besten ist das einzusehen, wenn man mit der

Betrachtung von hinten, das heisst mit der ^Multiplikation im Bildraum
anfängt. Die L-Transformierte der Funktion /(/) mal der /..-Transfor¬
mierten von g(t')

| e~s' f(t) dt • | e~sl'g(t") dt'

ist (absolute und gleichmässige Konvergenz vorausgesetzt) gleich dem

Doppelintegral

JJYS1'-''>/(£)!?(«') dt dt'.

Wird t — t' — t gesetzt, so folgt

| e~ST f{t) 9(T~0 dt dr

was wegen der Konvergenzvoraussetzungen auch

Je~ST | f/(<) y(*~t)dt\ dr

gesehrieben werden kann.
Die Verwandlung der Faltung im Bildraum in eine gewöhnliche

Multiplikation ist also keine Wunderalgebra, die durch die Verwendung
des Komplexen oder durch die Verwendung uneigentlicher Integrale mit
den Grenzen oo zustande kommt, sondern ein rein zufälliges
Sonderergebnis der elementaren Bechengesetze. Durch die Substitution
t — t' t, welche die Faltung erzeugt, wird auch der Exponent des

Kerns e~sr unverändert erhalten, und bei der Funktion g(t') entsteht
gerade die fur die Faltung notwendige Substitution g(r — t). Theoretisch
wäre es möglich, statt der Basis e eine beliebige Basis zu verwenden.
Praktisch zeigt sich aber rasch, dass nur e rationell zum Ziel führt.

Andere Kerne kommen nicht in Frage, da nur die vier eingangs
erwähnten bei der Faltung die Eigenschaft der Unverändertheit
aufweisen. Wird der Kern überhaupt weggelassen, so resultiert ein
Doppelintegral. statt des einfachen Integrals. Die Verwendung des Komplexen
verbessert die Konvergenzverhältnisse und erlaubt die Verwendung der
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sehr weittragenden Gesetze der Funktionentheorie im Bildraum. Die

Verwendung uneigentlicher Integrale mit der Grenze co hat neben anderem

den Vorteil, dass die Bildfunktionen einfach werden. So hat zum

Beispiel
die Bildfunktion

der Einheitssprung im Nullpunkt, d.h. die 1

Konstante

die e-Funktion eat

und

die Potenz ta

was einmal mehr auf die Frage führt, oh aus dieser Abbildung, in der die

Konstante, die e-Funktion und die Potenz durch so ähnliche Ausdrücke

dargestellt sind, nicht noch mehr herauszuholen wäre.
Weitere sehr interessante Verwendungsmöglichkeiten fur die L-

Transformierte sollen an ein paar einfachen Beispielen illustriert werden.
Die vier nicht sehr leicht zu überblickenden elliptischen ^-Funktionen

haben als L-Transformierte elementare hyperbolische
Funktionen. Daraus lassen sich Faltungsrelationen herleiten, die auf andere
Weise nur schwer zu finden sind. So ist zum Beispiel, um nur die
einfachsten zu nennen

&2(°> t)* $3(0» 0=1 °der

h(o, o*2-#oMr2 i-

Statt die Faltungsintegrale anzuschreiben, ist es üblich, sie durch einen
Stern anzudeuten. Der Exponent *2 bedeutet, dass die Funktion mit
sich selbst zu falten ist.

Mit Hilfe der L-Transformierten können auch Lösungen von
Differentialgleichungen gefunden werden.

Ein ganz einfaches Beispiel sei folgendes:
Die lineare Differentialgleichung erster Ordnung

Y'(t) + cY(t) — F(t)

hat im Bildraum die Form

1

s — a

r(a-1)

s • y(s) — F0 - cy{s) f(s)
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Funktionen im Originalraum -and mit gros-t-n. im Bildraum mit kleinen
Buchstaben bezeichnet.

Die Ableitung ist verschwunden, da Y'(0 nach dem Differential

ionssatz im Bildraum übergeht in den Ausdruck

•s ,//(s) — Y
o»

wobei Y0 eine Konstante, den Anfangswert von Y(f) bedeutet.
Elementare Algebra ergibt nun im Bildrauni die Lösung

y(s) f(s)
1

- Y0
sfc s — c

Die Bücktransformation in den Originalraum, die anhand einer
Tabelle gefunden werden kann, lautet

Y(t) — F(t)* e~1' - Y„ e "

Das erstaunlichste am Ganzen ist, wie sich das Anfangnwertproblem
durch den Differentiationssatz sozusagen von selber erledigt.

Zum Schluss soll noch eine Integralgleichung Erwähnung finden,
die mit Hilfe der B-Transformation eine elegante Lösung findet.

Die in der Erneuerungstheorie auftretende Volt errasche
Integralgleichung zweiter Art

F(t) _= G(t) -n | K(t--r) F(t) (It

hat im Bildraum die einfache Form

f<s)=<j(s) + Ms).1(s)

Daraus errechnet sich die Lösungsgleichung

,w- "(s)
' 1-lHs)

Nun ist zuerst zu tiberlegen, ob die rechte Seite der Gleichung
überhaupt eine L-Traiisformierte darstellt. In der Form

1

f(s)=g(s)-
l—k(s)



bedeutet nach unserer Faltungsalgebra die Multiplikation eine Faltung.
Ihr würde demnach eine Operation im Originalraum entsprechen.

Auch diese findet eine Darstellung im Originalraum, da die Addition
in beiden Räumen unverändert erhalten bleibt und die Potenzen wiederholte

Faltungen darstellen. Einzig das erste Glied 1 ist aus verschiedenen

Gründen keine L-Transformierte. Diesem Mangel wird miteinem
Kunstgriff abgeholfen. Wird nämlich die Bildgleichung erweitert auf

so lautet die geometrische Reihe

k(s) - k2 (s) +

und ist damit im Originalraum darstellbar. Nach unserer Faltungsalgebra

mu-'s demnach die Lösung im Originalraum lauten

Die Sache sieht sehr einfach aus. Denkt man sich aber dazu die

Konvergenzuntersuchungen, von denen bereits eine Andeutung
gemacht wurde und dann vor allem die tatsächliche Rücktransformation
der Bildgleichung, die rasch sehr umfangreich wird, dann ist die Wunder-
algebra wieder auf das richtige Mass zurückgeführt.

Dem Titel dieser Arbeit folgend soll nun von einigen neueren
Entwicklungen auf dem Gebiet der charakteristischen Funktionen die Rede
sein.

Als erstes ist das Problem der Faktorenzerlegung zu nennen [2].
Der Faltungssatz hat gezeigt, dass das Produkt zweier charakteristischer

Funktionen immer wieder eine charakteristische Funktion er-

Veit er kann der Faktoi
werden

k(s)
t(s)=<j(s)+,1 - k(s)

7. Faktorenzerlegung
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gibt. Es (/ibt also charakteristische Funktionen, die in Faktoren zerlegt
werden können.

Ferner kann jede charakteristische Funktion ,!i) als Produkt von
zwei charakteristischen Funktionen

tS) eimt und /2(f) - f{t) e~irat

geschrieben werden.
Diese Zerlegung von f(t), bei der einer der Faktoren e""' ist, wird eine

triviale Zerlegung genannt. Um triviale Produktzerlegungen auszu-
schliessen, ist folgende Festsetzung getroffen worden:

Eine charakteristische Funktion wird zerlegbar genannt, wenn sie

in der Form

m -fi(t)-fs)
geschrieben werden kann, bei der keiner der Faktoren /L(t) und f2(t) nur
aus dem ausgearteten Glied e""' besteht.

/j(/) und f.z(t) sind dann Faktoren von f(t). Eine charakteristische
Funktion dagegen, die nur triviale Zerlegungen zulässt, heisst unzerlegbar.

Der Vollständigkeit halber ist noch zu zeigen, dass es auch unzerlegbare

Funktionen gibt.
Das einfachste Beispiel ist eine diskrete Verteilung mit zwei U11-

stetigkeiten.
Bei diskreten Verteilungen besteht für die Anzahl der Sprünge die

einfache Abschätzung

m -f- n — 1 V V V n m

X ist die Anzahl der Unstetigkeiten der Gesamtverteilung F(x)
m diejenige von F\(x)
n diejenige von Fo{x)

Soll die Zerlegung nicht trivial sein, so müssen m und n mindestens

je 2 sein. Dazu ist nach Voraussetzung A~ - 2. Werden diese Werte in
obige Ungleichung eingesetzt so folgt

2 -22—1 3 W 2

was unmöglich ist. Einer der Faktoren m und n muss also 1 sein, was
heisst, dass unsere Verteilung mit 2 Sprüngen nur eine triviale
Zerlegung zulässt, also unzerlegbar ist.
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Die Produktzerlegung der charakteristischen Funktionen hat
gewisse Parallelen mit der Zerlegung von Zahlen in Priinfaktoren. Diese

Verwandtschaft geht aber nicht sehr weit, ist doch schon die eindeutige
Zerlegbarkeit, eine fundamentale Eigenschaft der ganzen Zahlen, bei

unserer Zerlegung nicht gewährleistet. So kann

f(t)
1

(1 -r eu -r e2" 4 e3i< h- eiil (- e5")
6

in die beiden Faktoren

/i(0 l - e2" ~~ e4'') und

fS) \ (1 -P eil)

zerlegt werden. Gleichzeitig gilt aber auch

fji® (1 V eü -f e2'1) und
d

92® l V e3i')

was durch ausmultiplizieren leicht verifiziert werden kann.

8. Unzerlegbare und unbegrenzt zerlegbare Funktionen

Im Hinblick auf die Teilbarkeit ist wohl die wichtigste Klasse der
charakteristischen Funktionen diejenige der unbegrenzt teilbaren
Funktionen. Sie haben offenbar die Form

m [/„(«)]";

/'„(<) ist einzig durch die Funktion /(<) bestimmt und hat die Form

wobei der Hauptzweig der Wurzel zu nehmen ist.
Beispiele für solche Funktionen sind die Normalverteilung

1 u2 1

f(t) exp yxt |
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bei der

ist,

die Poissonverteilung mit

f(t) exp { | und

f,M) exP

und die Gammaverteilung mit

fit) [1 — (it d)\~?- und

/»(0 l1 — (it/0)!""

De Finetti ist es gelungen, ein notwendiges und liinreieliendes
Theorem aufzustellen [2J. von welcher Form eine unbegrenzt teilbare
charakteristische Funktion sein muss. Es lautet

Die ]>m sind natürliche Zahlen und die gmif) -ind charakteristische
Funktionen.

Zum Schluss sei noch an einem Beispiel kurz skizziert, wa- die

Betrachtung der Eigenschaften der charakteristischen Funktionen im
Bildraum für das Auffinden der Eigenschaften der Verteilungsfunktionen

im Originalraum zu leisten vermag.
Vor einigen Jahren hat Yu.Y.Linnik [Nj. ein Russe, folgendes sehr

allgemeine und tiefliegende Theorem bewiesen:

Gegeben sind

1. 2 Linearformen

L1 Uj — -r ci rXr und

fit) lim exp {)),„ [gjt) — 1]}

9. Theorem von Linnik

Z/2 — -K-y -4 br A
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mit den unabhängigen und identisch verteilten stochastischen
Variablen Xr und der gemeinsamen Verteilungsfunktion
F(,)

2. eine Bestimmungsfunktion

(i(z) axz ~ -T ar
z — — br :

(r(z) ist eine ganze Funktion der komplexen Variablen z.

8. Ferner sei

max ax ar =£ max bx br und

4. y die grosste i'eelle Xullstelle von G(z).

5. Hat dann F(x) Momente bis zur Ordnung 2 m

mit m ^-1
o

6. so ist F(x) eine Xormaherteilung.

Die Grundidee des Beweises ist, etwas summarisch, die folgende:

Die A'oraussetzung. die stochastischen Variablen V, Xr seien

unabhängig und identisch verteilt, erlaubt für die charakteristischen
Funktionen den Ansatz

f(a i u) f(a2 ii) f(ar u) f(br u) j(b, u) j(br u)

Zu diesen Funktionen werden Majoranten gebildet und nachgewiesen.

dass innerhalb eines horizontalen und eines vertikalen Streifens
die Anzahl der Pole endlich bleibt und die Ordnung der Pole eine feste
obere Grenze nicht übersteigt. Die Umgebung des Ursprungs verlangt
noch eine besondere Betrachtung.

In einem nächsten Schritt wird das Bücktransformations-Integral
der Bildfunktion herangezogen, aus dessen funktionentheoretischen
Eigenschaften die Abschätzungen mittels Piesiduenrechnung schrittweise

verschärft werden. Auch gelingt es, das aus dem Schnitt des

horizontalen und vertikalen Streifens gebildete Rechteck mit Hilfe der

Eigenschaften des Cauchy-Integrals weiter einzuschränken. Gleichzeitig

werden die Anzahl und die Ordnung der Pole herabgesetzt.
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Das Heranziehen der Voraussetzung über die Momente erlaubt

schliesslich den Nachweis, dass f(u) von der Form

f(u) - exp { Bl - - B, ic'"< } sein muss.

Ein Theorem von J.Mart'inkiewicz [3], nachdem in einer
charakteristischen Funktion von der Form exp P(t) das Polynom P(t) höchstens

vom 2ten Grade sein kann, beschliesst den Beweis, denn damit bleibt
für F(x) als mögliche Funktion nur noch die Normalverteilung übrig.

Lukacs und Laha haben in ihren «Applications of characteristic
functions» [3] eine Anzahl Sätze zum Beweis zusammengestellt und
diesen damit zu skizzieren versucht. Die 91 Seiten umfassende englische
Übersetzung der russischen Originalarbeit ist im Literaturverzeichnis
unter [8j zu finden.
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Resume

Dans la premiere partie l'auteur introduit diverses transformations integrales
au sein des fonctions caracteristiques, il donne un aper^u du lien qui unit celles-ci

avec les series de Fourier ainsi que de leurs rapports avec les series de puissances
et de Laurent. Des remarques sur la convergence ainsi que quelques exemples
d'application sont ensuite donnes, La seconde partie traite sommairement de la
decomposition en facteurs des fonctions caractöristiques, fait allusion au probleme
des fonctions non divisibles et de Celles indefiniment divisibles. Pour terminer,
l'auteur donne un exemple qui illustre l'aide puissante que peut fournir la fonction
caracteristique ä la solution de problemes de statistique.

Summary

Tu the first part of his paper the author introduces various integral transformations

within (he characteristic functions, outlines the links between the latter
and the Fourier series and points out their relations to the power and Laurent series.

Then follow some notes on convergence and some examples of application. The
second part deals briefly with the factorization problem of characteristic functions
and refers to the problem of undivisible and infinitely divisible functions. Finally
the author gives an example on the great efficiency of the characteristic functions
while resolving statistical problems.

Riassunto

Nella prima parte del suo lavoro, l'autore introduce diverse trasformazioni

integrali fra le funzioni caratteristiche, fa cenno ai legami fra queste e le serie di
Fourier e indica i rapporti con le serie di potenze e di Laurent. Seguono poi osser-
vazioni sulla convergenza e qualche esempio di applicazione. La seconda parte tratta
brevemente lo scomponimento in fattori delle funzioni caratteristiche ed il problema
delle funzioni non divisihili o divisibili illimitatamente. Per coneludere l'autore da

un esempio che illustra l'efficace aiuto che possono dare le funzioni caratteristiche
nel risolvere problemi di statistica.
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