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Charakteristische Funktionen

Idee und neuere Entwicklungen

Von W. Berghoff, Ziirich

Zusammenfassung

Im ersten Teil werden verschiedene Integraltransformationen einschliesslich
der charakteristischen Iunktion eingefiihrt, der Zusammenhang der letztern mit
der Iourierreihe skizziert und die Beziehungen zu der Potenz- und Laurentreihe
angedeutet. Es folgen Bemerkungen iiber die Konvergenz und eine Anzahl Anwen-
dungsbeispiele. Der zweite Teil erklirt kurz die Produktzerlegung der charakte-
ristischen Funktion, streift das Problem der unzerlegbaren und der unbegrenzt zer-
legbaren Verteilungen und gibt abschliessend ein Beispiel fiir die ausserordentliche
Leistungsfiahigkeit der charakteristischen Funktion bei der Lésung statistischer
Probleme.

1. Einleitung

Immer hdufiger werden in der reinen und angewandten Mathematik
cewisse Integraloperatoren zur rationellen und oft eleganten Losung
verschiedenster Aufgaben herangezogen. Dies gilt besonders auch fir die
Gebiete der mathematischen Statistik und der Versicherungsmathe-
matik, sofern sich die letztere auf die Kollektivrisikotheorie stitzt.

Vom Standpunkt des Praktikers aus gesehen, handelt es sich hier
um mathematische Spezialgebiete, deren Zugang nur mit einigem Auf-
wand gewonnen wird. Das bewog den Verfasser, den 1m Ziircher Kollo-
quium der Versicherungsmathematiker gehaltenen Vortrag in den «Mit-
teillungen» zu publizieren und damit einem weitern Kreis zugdnglich zu
machen.

2. Integraloperatoren und charakteristische Funktion

In der Theorie der Vertellungsfunktionen ist es oft von Vorteil, statt
dieser Funktionen selbst, gewisse Integraltransformationen [2]1), so-
genannte Erwartungswerte von der Form

1y [ ] siehe Literaturverzeichnis.
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o)

[K(t,0) dF(2)

zu betrachten.
Der Kern IL(t. x) hat im allgememen eine der Formen, wenn ¢t canz-
zahlig und positiv 1st

und fir kontimuerliches ¢

Ikv(‘t, J'j) — [‘,(kr
il:

Das erste Beispiel mit dem Kern x' ergibt die wohlbekannte Darstellung
der Momente, withrend die Formmit dem Kern e'' charakteristischeFunlk-
tion [5] genannt wird (12 = — 1, x und ¢ reell).

Die allgememste Kerndarstellung mit der e-Funktion ergibt sich,
wenn der Exponent des Kerns ' auf beliebige komplexe Werte cr-
weitert wird, Damit gelangt man zum Kern ¢*' der Laplace-Transfor-
mation mit s = r + 1y. Wird der Realteil von s Null gesetzt, =o folgt
erneut der Kern

¢'¥t Jer Fourier- Transformierten oder charakteriztischen Funktion.

Seine Zerlegung in die Winkelfunktionen

¢ = cos yt+isinyt
liefert ferner fir verschwindenden Real- bzw. Imamnarteil
O

sin i t den Kern der Sinustransformierten und
cos y t denjenigen der Cosinustransformierten.

Dass auch die beiden letztgenannten Transformationen nicht nur
theoretizchen Wert besitzen, folgt schon daraus, dass charakteristische
Funktionen symetrischer Verteilungen imnmer in eine cos-Transformierte
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ausarten. Je nach Art der zu bearbeitenden Verteilungsfunktionen wird
deshalb mut Vorteil die eine oder andere dieser Transformierten gewahlt.

Alle vier Transformationen besitzen dieselbe wichtige Eigenschaft.
Sie ermoglichen eine ein-eindeutige Abbildung in einen Bildraum, in
dem gewisse transzendente Operationen algebraisiert werden. Es sei
deshalb erlaubt, je nach Eignung einmal die eine und einmal die andere
zu verwenden.

Die anschaulichsten Darstellungen liefert die Laplace-Transfor-
mation, da sie eine vollstindige analytische Funktion darstellt, auf die
die weittragenden Sitze der Funktionentheorie angewendet werden
kénnen. Auch erlaubt sie sehr anschauliche Darstellungen auf der
Gauss’schen Ebene, weshalb wir uns im ersten Teil dieser Publikation,
wo es uil das Sichtbarmachen der Grundidee geht, hauptsichlich auf sie
statzen werden, Sie hat aber auch Méngel. Thre Konvergenz ist oft erst
gesichert, wenn das Intervall von — oo bis oo auf 0 bis oo oder noch
mehr eingeschriankt wird.

In ihr enthalten ist die Fourier-Transformation, deren absolute
Konvergenz fiir Verteilungsfunktionen ausnahmslos gesichert 1st, denn
es gilt

Fe“‘"dF(,r:) | < “” e’ 1 dF(z) = I dF(z) —1

weil ¢''* den Vektor auf dem Einheitskreis, und das letzte Integral die
immer auf die Einheit normierte Verteilungsfunktion bedeuten.

3. Charakteristische Funktion und Fourier-Reihe

Einen ersten Einblick in das Fourler-Integral gewinnt man, wenn
von der Darstellung einer Funktion als Fourler-Reihe ausgegangen
wird [4]. Der Ansatz der Fourier-Reihe lautet

flx) = ao + z (a,cos vz +b,siny ).
p=

Obwohl die Glieder dieser Rethe transzendente Funktionen sind, lassen
sich erstaunlich vielgestaltige, auch nicht transzendente Funktionen
durch sie darstellen. Als einfache Beispiele seien erwihnt

1



die Gerade f(x) = x mit dem Bild
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Entsprechend der Periodizitét von sin und cos sind diese Darstellungen
im allgemeinen periodisch mit der Periode 2 7. Darum ergab sich fur
f(xr) = x das Bild einer periodischen Funktion.

An der Darstellung der Konstanten f(r) = ¢ lisst sich sehr schon

zeigen, wie die schrittweise Anniherung durch eine Uberlagerung von
Sinusschwingungen zustande kommt (Fig. 2).

Eine erste Erweiterung der Fourier-Reihe wird durch die Substi-
tution r = o y erreicht. Das erweitert das Periodizititsmtervall von
27 auf e beliebiges Intervall . Fir grosse [ reduziert sich daduarch
unszere Darstellung auf die emne, fest ansgezogene Gerade (Fig. 1),

Werden fiir die Koeffizienten @, und b, ihre Bestimimungsintegrale
in die Fourier-Reihe emgesetzt

T g
. 4 1 . :
fr) = ag+ N — | f(t) cos vt - cos v dt — f(t) sin vt - sin v di
r=1 T T

«
= =
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und der Grenziibergang [ —» oo vollzogen, so resultiert das sogenannte
Fouriersche Integraltheorem

il \
flx) = — f(t) cos alx—t) dt da
x
0 —co
oder etwas umgeschrieben
) -
f(x) = - | cos axda | f(t) cos at di.
&
0 0

Die Integrale [f(f) cos vt cos vz dt + [f(f) sin +¢ sin »x dt redu-
zieren sich nach dem Cosinus-Additionstheorem auf das Integral

[da tber. ek

" Aus dieser Darstellang der Cosinustransformierten wird eine der
wichtigsten Eigenschaften unserer Transformationen, ihre Umkehrbar-
keit klar erkennbar.

oo
{1t cos a(x—t) dt und die Sunme > geht in das dussere Integral

Ausgehend von der ergibt sich vermittels des Cosinusoperators
Originalfunktion die Bildfunktion
/9 -
11 RSP —— ]/’ = | eosatf(t) dt = ¢(a)
-
0
S co v
2
f(x) =- ] — | cos ar ¢(a) da
7
0
wieder die Original- und daraus, wenn nochmals die Cosinus-
funktion. transformation angewendet wird

Praktisch werden die Integrationen in den meisten Fillen nicht
durchgefiihrt. Entweder beniitzt man Tabellen, in denen Original- und
Bildfunktionen einander gegeniibergestellt sind, oder es werden eine
Anzahl Sdtze verwendet wie etwa der



Ahnlichkeitssatz,

Verschiebungssatz.

Dampfungssatz,

Integrations- oder

Differentiationssatz,
mit deren Hilfe direkt an der Bildfunktion abgelesen werden kanmn,
welche Verdnderungen die Originalfunktion erfihrt und wmgekehrt.

4. Laplace-Transformation, Potenz- und Laurentreihe

Eine etwas einfachere, dafiir weniger tiefgreifende aber nin <0 an-
schaulichere Einfithrung, diesmnal der Laplace-Transformierten. gibt
Doetsch in seinem dreibindigen Handbuch [1].

Er geht aus von der Darstellung einer Funktion als Potenzreihe

und verallgemeinert diese Entwicklung indem er den ganzzahlicen
Exponenten » durch eine beliebige aufsteigende Reihe nicht negativer

Zahlen 4, ersetzt. Der Faktor % wird 1m allgemeinen vieldeutig sein,
weil die 4, gebrochene Zahlen sind. Um diese Vieldeutigkeit zu besei-
tigen, denkt man sich am besten die Reihenglieder auf der unendlich
vielbldtterigen Riemannschen Fliche des Logarithmus aufgetragen. Die
Transformation z == ¢7® bildet die Glieder dieser Reihe auf eine rechte
Halbebene ab. Das Resultat 1st die Reihe von Dirichlet

Von hier aus i1st es nur noch ein kleiner Schritt, die diskreten 7 -
Werte durch eine kontinuierliche Variable ¢, die @, durch eine kontiuier-
liche Funktion f(f) und die Summation durch ein Integral zu ersetzen,
womit man zur Laplace-Transformierten

Ine'” f(t) dt gelangt ist.
0

Eine dritte Moghichkeit der Einfithrung des Laplace-Integrals geht

aus von der Laurententwicklung einer Funktion

@) =N a2

= ‘-O
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und endet nut der Einfuhrung des zweiseitigen Laplace-Integrals

PJ?C’-_S[ i(t) dt.

-0

5. Konvergenzverhiltnisse

Sollen alle diese Betrachtungen mathematisch fundiert sein, so ist
es unumgdinglich, einige Bemerkungen uiber die Konvergenzverhiltmsse
dieser Darstellungen zu machen.

Potenzreithen konvergieren immer absolut und gleichméssig inner-
halb eines Kreises. Ausserhalb des Kreises sind sie immer divergent. Auf
dem Konvergenzkreis hat es im allgemeinen Punkte von beiden Arten.

Beim Laplace-Integral sind die Konvergenzverhiltnizse viel kom-
plizierter, denn das uneigentliche Integral iiber

-8 1y

€ =0"¢

konvergiert offenbar nur fur « > 0, d.h., bezogen auf die GGauss’sche
Ebene, 1n einer rechten Halbebene. Dabei braucht die Grenze fiir abso-
lute und bedingte Konvergenz nicht zusammenzufallen. Ja es kommt
sogar vor, dass Funktionen iiber die Grenze der bedingten Konvergenz
hinaus bis zu einer dritten Grenze analytisch fortgesetzt werden kénnen.

analvtisch fortsetz- bedingte absolute
bares Gebiet Konvergenz Konvergenz
Y p vﬂ
_
_
__
Fig. 3
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Bet der Potenzrethe kann es auf dem Konvergenzkreis konvergente
und divergente Punkte haben. Konvergiert jedoch bein Laplace-Inte-
gral auch nur ein Punkt auf dem Rande absoluter Konvervenz a, =0
konvergiert es absolut auf der abgeschlossenen Halbebene, d.h. also mit
Einschluss des Randes a. Das gleiche gilt jedoch nicht fur die bedingte
Konvergenz. Hier verhiilt sich die Laplace-Transformation wieder wie
die Potenzreihe.

Genauer: Das Gebiet absoluter Ikonvergenz des Laplace-Integrals ist
eine offene oder abgeschlossene Halbebene, zu der der Rand «
ganz oder gar nicht gehort. Zuin Gebiet bedingter Konvergenz
gehort B ganz, teilweise oder gar nicht.

Das hat vor allem seine Bedeutung fur die Auswertung des Umkehr-
mtegrals. Das Umkehrintegral, mit dem auns der Bildfunktion wieder die
Originalfunktion gewonnen wird, hat die Form

RS 0]
L]

Lim 1 b
m—= O e C f(s) (1-5'.
2
I—1iw

Intsprechend den Konvergenzbetrachtungen erfolgt seine Auswertung
lings einer Senkrechten zur reellen Achse. Nonvergiert die Umkelr-
funktion beispielsweise lings der ganzen lmagindren Achse mit Aus-
nahme des Nullpunktes, so kann die Konvergenz auch im Ursprung
durch eine halbkreisférmige Deformation des Integrationsweges wieder
hergestellt werden, da ja dadurch der Wert des Gauchy-Integrales
nicht fndert (Fig.4).

D)
J

Fig. 4 Fig. 5

Die Methode der Deformation des Integrationsweges wird ganz all-
gemein verwendet zur Verbesserung der Konvergenzverhiltnisse, Wird



nimlich die Vertikale durch irgendeinen Punkt s, beidseitig nach Iinks
abgebogen, so steigert sich die Konvergenz des Umkehrintegrals wegen
des Faktors e*! sehr rasch (Fig. 5). Auch kénnen oft mittels der Methode
der Integrationswegdeformation Umkehrintegrale mit abzahlbar vielen
Polen beliebiger Ordnung ausgewertet werden (Fig.6). Es ist einfach
schrittweise ein Pol nach dem andern mittels seiner Laurententwicklung

in die Rechnung einzubeziehen [6].
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Diese wenigen Bemerkungen mégen geniigen, mn einen gewlssen
Iiinblick in die meistens als ldstig empfundenen, fiw die Losung be-
stimmter Probleme jedoch hochwichtigen und oft entscheidenden Be-
trachtungen tiber die Konvergenz zu gewinnen, und es soll nun anhand
einiger Beispiele der praktische Wert der Transformationen demon-
striert werden.

6. Anwendungsbeispiele

An erster Stelle i1st das wohlbekannte Faltungsintegral zu nennen.
In der Wahrscheinlichkeitsrechnung und in der mathematischen Sta-
tistik treten sehr oft Integrale von der Form

[1(2) glt—a) dz

o

auf. Je nach der Beschaffenheit der Funktionen f und ¢ sind solche Aus-
driicke oft nur sehr schwer oder iherhaupt nicht integrierbar. In vielen
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dieser Fille leisten dann die behandelten 'Transfornationen scheinbar
fast miithelos Erstaunliches, verwandelt sich doch die transzendente
Operation der Faltung in ihrem Bildraum in eine ganz gewohnliche
Multiplikation. Am besten 1st das emmzusehen, wenn man mit der Be-
trachtung von hinten, das heisst mit der Multiplikation 1m Bildraum
anfingt. Die L-Transformierte der Funktion f(f)mal der L-Transfor-
mierten von ¢(t')

fc_“ f(t) dt - 'ne‘“'g(t’) at’

1st (absolute und gleichmissige Konvergenz vorausgesetzt) gleich demn
Doppelintegral

[ [0 1) gte) e ar.

Wird 1 - " = 7 gesetzt, so folgt

[ [e* i) gtz atdr

was wegen der Konvergenzvoraussetzungen auch

f e | ‘[ f(t) g(r—Hit| dr

geschrieben werden kann.

Die Verwandlung der Faltung im Bildraum in eine gewoéhnliche
Multiplikation ist also keine Wunderalgebra, die durch die Verwendung
des Komplexen oder durch die Verwendung uneigentlicher Integrale mit
den Grenzen co zustande kommt, sondern ein rein zufilliges Sonder-
ergebnis der elementaren Rechengesetze. Durch die Substitution
t + 1 = 7, welche die Faltung erzeugt, wird auch der Exponent des
Kerns ¢ unverdndert erhalten, und bei der Funktion ¢(t') entsteht
cerade die fur die Faltung notwendige Substitution g(t — {). Theoretisch
wire es moglich, statt der Basis e eine beliebige Basis zu verwenden.
Praktisch zeigt sich aber rasch, dass nur e rationell zum Ziel fithrt.

Andere Kerne kommen nicht in Frage, da nur die vier eingangs er-
widhnten bei der Faltung die Eigenschaft der Unverindertheit auf-
weisen. Wird der Kern tiberhaupt weggelassen, <o resultiert ein Doppel-
integral, statt des einfachen Integrals. Die Verwendung des Komplexen
verbessert die Konvergenzverhéltnisse und erlaubt die Verwendung der
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sehr weittragenden Gesetze der Funktionentheorie im Bildraum. Die
Verwendung uneigentlicher Integrale mit der Grenze <o hat neben ande-
rem den Vorteil, dass die Bildfunktionen einfach werden. So hat zum
Beispiel

die Bildfunktion
der Einheitssprung im Nullpunkt, d.h. die 1
Konstante 5
. ) 1
die e-Funktion e -
s—
und
a1
die Potenz t* ) ( “)

a1
-5(1

was einmal mehr auf die Frage fuhrt, ob aus dieser Abbildung, in der die
Konstante, die e-Funktion und die Potenz durch so dhnliche Ausdriicke
dargestellt sind, nicht noch mehr herauszuholen wiére.

Weitere sehr interessante Verwendungsmoéglichkeiten fiir die L-
Transformierte sollen an ein paar einfachen Beispielen illustriert werden.

Die vier nicht sehr leicht zu uberblickenden elliptischen #-Funk-
tionen haben als L-Transformierte elementare hyperbolische Funk-
tionen. Daraus lassen sich Faltungsrelationen herleiten, die auf andere
Weise nur schwer zu finden sind. So ist zum Beispiel, uin nur die ein-
tachsten zu nennen

Py(0, )* P5(0,1) =1  oder
Bq(0, )2 — B, (0, )7 = 1.
Statt die Faltungsintegrale anzuschreiben, ist es uiblich, sie durch einen
Stern anzudeuten. Der Exponent *2 bedeutet, dass die Funktion mit
sich selbst zu falten ist.
Mit Hilfe der L-Transformierten kénnen auch Lsungen von Diffe-
rentialgleichungen gefunden werden.

Ein ganz einfaches Beispiel sei folgendes:
Die lineare Differentialgleichung erster Ordnung

Y'(t) +-cY() = F()
hat 1m Bildraum die Form

s-y(s) — Y, + cy(s) =[(s)
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Funktionen 1 Originalvawm sind it groszen. im Bildrawm mit kleinen
Buchstaben bezeichnet.

Die Ableitung ist verschwunden, da Y '(f) nach dem Differen-
tiationssatz im Bildrawm iibergeht in den Ausdruck

s yls) — Y,

wobel Y, eine Konstante, den Anfangswert von Y (f) bedeutet.
Elementare Algebra ergibt nun im Bildrawm die Lozung

1 o1
yos) =1fls) - -+ Yo
S+ C § - C
Die Ritcktransformation in den Originalraum, die anhand einer Ta-
belle cefunden werden kann, lautet

Y e

Das erstaunlichste am Ganzen ist, wie sich das Anfangswertproblen
durch den Differentiationssatz sozusagen von =elber erledigt.

Zum Schluss soll noch eine Integralgleichung Erwidhnune finden,
die mit Hilfe der L-Transformation eine elegante Lisung findet.

Die m der Erneuerungstheorie auftretende Volterrasche Integral-
gleichung zweiter Art

!
F(t) = Gif) + | K(t-—7) F(z) dr

hat nn Bildraum die einfache Form

fls) = g(s) + k(s) - f(5)

Daraus errechnet zich die Losungsgleichung

i(s) — 4(s)
1 —k(s)

Nun ist zuerst zu itberlegen, ob die rechte Seite der Gleichung @ber-
haupt emne L-Transformierte darstellt. In der Form

o 1
J(s) = g(s) - {_ k(s)



S -

bedeutet nach unserer Faltung=algebra die Multiplikation eme Faltung.
Thr wiirde demnach eine Operation 1m Origmalraum entsprechen.
Weiter kann der Faktor e als geometrische Reihe geschrieben

— (S '
werden ‘
1+ k(s) +k3s) + ....

Auch diese findet eine Darstellung im Originalraum, da die Addition
in beiden Rdwmen unverdndert erhalten bleibt und die Potenzen wieder-
holte Faltungen darstellen. Einzig das erste Glied 1 1st aus verschie-
denen Griinden keine L-Transformierte. Diesem Mangel wird miteinem
Kunstgriff abgeholfen. Wird nédmlich die Bildgleichung erweitert auf

K(s)

1— k(s )

f(s) = y(s) +
so lautet die geometrische Reihe
kis) + k2 (s) + ....

und 1st damit 1m Originalrawm darstellbar. Nach unserer Faltungs-
algebra muss demnach die Lésung 1n Originalrauin lauten

QO

Fi) =6~ | K0+ X K™ |60

)

r=

€

Die Sache sieht sehr einfach aus. Denkt man sich aber dazu die
Konvergenzuntersuchungen, von denen bereits eine Andeutung ge-
macht wurde und dann vor allem die tatsédchliche Riicktransformation
der Bildgleichung, die rasch sehr umfangreich wird, dann ist die Wunder-
algebra wieder auf das richtige Mass zuriickgefithrt.

7. Faktorenzerlegung

Dem Titel dieser Arbeit folgend soll nun von einigen neueren kEnt-
wicklungen aut dem Gebiet der charakteristischen IFunktionen die Rede
seln.

Als erstes 1st das Problem der Faktorenzerlegung zu nennen [2].

Der Faltungssatz hat gezeigt, dass das Produkt zweler charakte-
ristischer Funktionen immer wieder eine charakteristische Funktion er-
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aibt. INs qibt also charakteristische Funktionen, die in Faktoren zerlegt
werden konnen.

Ferner kann jede charakteristische Funktion /) als Produkt von
zwel charakteristischen Funktionen

fl(t) — o™ ynd fz(t) —= f(f) g~ imt

geschrieben werden.

Diese Zerlegung von f(t), bei der einer der Faktoren ™ ist, wird eine
triviale Zerlegung genannt. Um triviale Produktzerlegungen auszu-
schliessen, 15t folgende Festsetzung getroffen worden:

Eine charakteristische Funktion wird zerleghar genannt, wenn sie
mn der Form

ft) = 1,0 - £5(1)

geschrieben werden kann, bei der keiner der Faktoren f,(t) und f,(f) nur
aus dem ausgearteten Glied ¢'™ besteht.

f1(t) und f,(t) sind dann Faktoren von f(t). Kine charakteristische
Funktion dagegen, die nur triviale Zerlegungen zuldsst, heisst unzerleg-
bar.

Der Vollstindigkeit halber ist noch zu zeigen, dass ez auch unzerleg-
bare Funktionen gibt.

Das einfachste Beispiel 15t eine diskrete Verteilung mit zweil Un-
stetigkeiten.

Bei diskreten Verteilungen besteht fiir die Anzahl der Sprimge dic
einfache Abschitzung

m+n—1<N=<n.-m

N 1st die Anzahl der Unstetigkeiten der Gesamtverteillung F(x)

m diejenige von I (x)
n diejenige von Fy(r)

Soll die Zerlegung nicht trivial sein, so miiszen m und n mindestens
je 2 sein. Dazu ist nach Voraussetzung N = 2. Werden diese Werte in
obige Ungleichung eingesetzt so folgt

oo == 4 e}

was unmdoglich 1st. Einer der Faktoren m und »n muss also 1 sein, was
heisst, dass unsere Verteillung mit 2 Spriagen nur eine triviale Zer-
legung zuldsst, also unzerlegbar ist.
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Die Produktzerlegung der charakteristischen Funktionen hat ge-
wisse Parallelen mit der Zerlegung von Zahlen in Primfaktoren. Diese
Verwandtschaft geht aber nicht sehr weit, ist doch schon die eindeutige
Zerlegbarkeit, eine fundamentale Eigenschaft der ganzen Zahlen, bei
unserer Zerlegung nicht gewihrleistet. So kann

f(t) s (1 L et! i c..zf £ edat L €4ct - c:ul)

fi) = (1 + e +~¢*") und

1 ;
oty =, (1)

zerlegt werden. Gleichzeitig gilt aber auch

g,(t) = t (1 + e -6y und
J1 3 ' ;

isll) = --1— (1 + e
Ja\b) = - -

-

was durch ausmultiplizieren leicht verifiziert werden kann.

8. Unzerlegbare und unbegrenzt zerlegbare Funktionen

Im Hinblick auf die Teilbarkeit ist wohl die wichtigste Klasse der
charakteristischen Funktionen diejenige der unbegrenzt teilbaren Funk-
tionen. Sie haben offenbar die Form

1) = (O]

{.(t) ist einzig durch die Funktion f(f) bestimmt und hat die Form

fO=11t) .

wobel der Hauptzweig der Wurzel zu nehmen ist.
Beispiele fir solche Funktionen sind die Normalverteilung

2 tl
f(t) = exp ?"ut-ﬁ_o—_j _ }

.
el
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bet der
l it o \

‘ w2 I

f,(tj = exp 1st,

die Powssonverteilung mit

fit) = exp { Ae''—1) } und

f,(f) = exp { - fete=1] l
n |

und die Gammaverteilung mit

f) = [1—(it/0)]”* und
&
) = 1~ (/0]

De Tinetti 1st ex gelungen, ein notwendiges und hinreichendes
Theorem aufzustellen [2]. von welcher Form eine unbegrenzt teilbare
charakteristische Funktion sein muss. ks lautet

T(t) = lnn exp {p?ri [qm(i) T 1]}
i —»= O
Die p,, sind natirliche Zahlen und die ¢, () sind charakteristische
Funktionen.

9. Theorem von Linnik

Zum Schluss sel noch an eimem Beizpiel kurz skizziert, was die De-
trachtung der Figenschaften der charakteristizchen Funktionen im
Bildraum fir das Auffinden der Eigenschaften der Verteilungsfunk-
tionen 1m Originalraum zu leisten vermag.

Vor einigen Jahren hat Yu. V.Linnik [S], ein Russe. folgendes sehy
allgemeine und tiefliecende Theorem bewiesen:

(regeben sind
1. 2 Linearformen

Li=a;, X;+.... +a X, und
Ly=0b,X;+....+b, X,
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mit den unabhiingigen und 1identizeh verteilten stochastischen

Variablen .X; .... X und der gememsamen Vertellungsfunktion
F(a)

2. eine Bestimmungsfunktion
GHE) == =" 4=« oo = Wy, Tty e == B F

((2) ist eine ganze Funktion der komplexen Variablen z.
3. I'erner sel

max (@ ,..... «,)s=max (b, ,..... b, ) und
4. v die grosste reelle Nullstelle von G(z).

5. Hat dann F(z) Momente bis zur Ordnung 2 i

. Y
mitm = | =-+1 |
5

-

6. soist I(x) eine Normalverterlunyg.

Die Grundidee des Beweises ist, etwas summarisch, die folgende:

Die Voraussetzung, die stochastischen Variablen X, .... X, seien
unabhingig und identisch verteilt, erlaubt fir die charakteristischen
I'unktionen den Ansatz

fla, w) flagw) .. .. fla, w) = f(byw) f(byu) . ... f(b,w)

Zn diesen Funktionen werden Majoranten gebildet und nachge-
wiesen, dass innerhalb emmes horizontalen und emes vertikalen Streifens
die Anzahl der Pole endlich bleibt und die Ordnung der Pole eine feste
obere Grenze nicht tibersteigt. Die Umgebung des Ursprungs verlangt
noch eine besondere Betrachtung.

In einem nichsten Schritt wird das Ricktransformations-Integral
der Bildfunktion herangezogen, aus dessen funktionentheoretischen
Yigenschaften die Abschétzungen mittels Residuenrechnung schritt-
weise verschirft werden. Auch gelingt es, das aus dem Schnitt des hori-
zontalen und vertikalen Streifens gebildete Rechteck mit Hilfe der
Eigenschaften des Cauchy-Integrals weiter einzuschranken. Gleich-
zeitig werden die Anzahl und die Ordnung der Pole herabgesetzt.



Das Heranziehen der Voraussetzung itber die Momente erlaubt
schliesslich den Nachweis, dass f(u) von der Form

fu) == exp { Byt = .. - B "} sein muss.

Ein Theorem von J. Marcinkiewicz [ 3], nachdem in einer charakte-
ristischen Funktion von der Form exp P(t) das Polynom P(f) hochstens
vom 2ten (Grrade sein kann, beschliesst den Bewels, denn damit bleibt
firr F(z) als mogliche Funktion nur noch die Normalverteilung aibrig.

Lukacs und Laha haben in ihren «Applications of characteristic
functions» [3] eine Anzahl Sitze zum Bewels zusammengestellt und
diesen damit zu skizzieren versucht. Die 91 Seiten umfassende englische
Ubersetzung der russischen Originalarbeit ist im Literaturverzeichnis
anter [8] zu finden.
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Résumé

Dans la premiére partie I'auteur introduit diverses transformations intégrales
au sein des fonctions caractéristiques, il donne un apercu du lien qui unit celles-ci
avec les séries de Fourier ainsi que de leurs rapports avec les séries de puissances
et de Laurent. Des remarques sur la convergence ainsi que quelques exemples
d’application sont ensuite donneés. La seconde partie traite sommairement de la
décomposition en facteurs des fonctions caractéristiques, fait allusion au probléme
des fonctions non divisibles et de celles indéfiniment divisibles. Pour terminer,
I'autenur donne un exemple qui illustre 'aide puissante que peut fournir la fonction
caractéristique & la solution de problémes de statistique.

Summary

In the first part of his paper the author introduces various integral transfor-
mations within the characteristic functions, outlines the links between the latter
and the Fourier series and points out their relations to the power and Laurent series.
Then follow some notes on convergence and some examples of application. The
second part deals briefly with the factorization problem of characteristic functions
and refers to the problem of undivisible and infinitely divisible functions. Finally
the author gives an example on the great efficiency of the characteristic functions
while resolving statistical problems.

Riassunto

Nella prima parte del suo lavoro, 'autore introduce diverse trasformazioni
integrali fra le funzioni caratteristiche, fa cenno ai legami fra queste e le serie di
Fourier e indica 1 rapporti con le serie di potenze e di Laurent. Seguono poi osser-
vazioni sulla convergenza e qualche esempio di applicazione. La seconda parte tratta
brevemente lo scomponimento in fattori delle funzioni caratteristiche ed il problema
delle funzioni non divisibili o divisibili illimitatamente. Per concludere I'autore da
un esempio che illustra l'efficace aiuto che possono dare le funzioni caratteristiche
nel risolvere problemi di statistica.
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