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De 'usage du calcul

opérationnel en assurance sur la vie

Par Marc-Henrt Amsler, Lausanne

Résumé

Le ealeul opérationnel, basé sur la transformation de Laplace, est utilisé, tra-
ditionnellement, dans la théorie des équations différentielles.

Tl permet, comme l'indique cet article, de démontrer également les relations
fondamentales des mathématiques d’assurance sur la vie.

En cherchant & délimiter, expliciter et résoudre les problémes
posés par l'assurance sur la vie, les actuaires ont eréé une méthode,
développé un langage mathématique capable tant de les seconder dans
leurs raisonnements théoriques que de les aider & obtenir les valeurs
numériques indispensables a l'exercice de leur métier. Les difficultés
rencontrées n’ont pas été et ne sont pas avant tout d’ordre mathéma-
tique; elles résident plus dans le choix des bases techniques, statistiques
et économiques. Les actuaires-vie n’ont pas été mis, p.ex., dans la
nécessité de faire appel, de fagon notable, aux mathématiques supé-
rieures, ni aux mathématiques appliquées, créées pour résoudre les
problémes soulevés par la technique. Chacun sait quup tournant se
dessine actuellement, sur ce point, depuis que les problémes d’assurance
choses et dommages sont & 'ordre du jour.

L’outil que représente 'appareil mathématique, s’il n’a pas été
le centre des préoccupations de I'actuaire, n’a pas moins été I'objet de
soins constants. Lia présente communication est consacrée & cet appa-
reil mathématique, qui, partant de la découverte, au début du XIXe
siecle, des nombres de commutation par Barrett et Tetens, a permis
de mettre en formules, de fagon satisfaisante, la plus grande partie des
phénomenes rencontrés par le technicien de I'assurance sur la vie. Nous
nous proposons d’aborder les problémes actuariels-vie d'un point de
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vue différent de celui qu’on rencontre ordinairement dans les manuels.
Nous ferons usage d’'une méthode tres générale, empruntée aux mathé-
matiques appliquées et fort appréciée des ingénieurs pour la résolution
pratique d’'un bon nombre de leurs problémes: la méthode du calcul
opérationnel.

Congu par Heaviside & la fin du XIXe siécle pour résoudre des pro-
blémes d’oscillations électriques, le calcul opérationnel a trouvé sa
justification par des travaux théoriques ultérieurs, spécialement par
ceux de Doetsch; il est actuellement d'un usage courant dans la tech-
nique de résolution des équations différentielles, cette forme mathé-
matique par laquelle se concrétisent bon nombre de problemes posés
par la technique.

Le calcul opérationnel repose, en fait, sur une astuce mathéma-
tique qui permet de remplacer la résolution de certaines équations
différentielles par celle d’équations algébriques, plus aisées a maitriser.
Cette astuce est connue sous le nom de transformation de Laplace.
Pour l'ingénieur, la transformation de Laplace n’est qu’'un outil, la
transformée d’une fonction qu’une abstraction, commode a manipuler.
L’actuaire, lui, manie la transformation de Laplace & journée faite, et,
la plupart du temps, sans le savoir. C’est, en effet, par une transfor-
mation de Laplace que 'actuaire passe d’une succession de prestations
échelonnées dans le temps & la valeur actuelle de ces prestations; la
détermination de la transformée de Laplace, si elle n’est quun détour
utile pour 'ingénieur, représente pour I’actuaire, bien souvent, 'objet
méme de son étude.

Dans les pages qui suivent, nous exposerons, sur la base d’exemples
concrets tirés des mathématiques financieres et des mathématiques
d’assurance sur la vie, I'essentiel, pour I'actuaire, du calcul opérationnel
et de la théorie de la transformation de Laplace. Afin de conserver &
cette théorie sa forme originale, nous avons représenté les phénomeénes
d’assurance sous leur forme continue. Nos considérations seront, ainsi,
d’un intérét plutét théorique. Dans un travail ultérieur, nous adap-
terons la méthode du calcul opérationnel aux exigences spécifiques des
problémes actuariels, & savoir au caractere discontinu des phénomeénes
d’assurance. De plus, pour ne pas compliquer inutilement les déve-
loppements, nous nous sommes limité aux considérations conduisant
aux primes pures, & I'exclusion de I'élément chargements pour frais de
gestion.
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§ 1. Les fonctions de Dirac

Le modeéle mathématique caractérisant 1'état d’assuré se définit
aisément a partir de la notion de fonction de Dirac. Les fonctions de
Dirac sont bien connues de 'ingénieur, moins de 'actuaire; nous en
rappellerons rapidement les définitions et propriétés.

Considérons Ja fonction de la variable indépendante ¢

JO pour t << 0
F(t) = | 1fe pour 0 <t =¢
lo pour i > ¢

représentée par la figure 1. L’'intégrale de cette fonction sur un domaine
comprenant I'intervalle (0,&) est égale & 1. Lorsque & tend vers zéro,
Iamplitude de la fonction au voisinage de I'origine tend vers I'infini.
La limite de cette fonction pour & = 0 est connue sous le nom de fone-
tion «choc unitaire» ou «impulsion unitaire». On la représente par le
symbole 1(t).

fonction choc unitaire 1(¢)

1
T
<|surface 1
=> |
0 €
fonction palier unitaire 4—1 1(1)

1

> i

Figure 1
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I’intégrale de la fonetion choc unitaire définit la fonetion «palier
unitaire»

fonction nulle pour ¢t << 0, égale a 'unité pour ¢ > 0. Elle présente un
saut de hauteur +1 & lorigine (fig. 1). Nous utiliserons 1ci le symbole
usuel 4 pour caractériser 'opération de la dérivation et le symbole 4™
pour caractériser I'intégration. On a en particulier

A{A7 1)} = 1() (1.1)

exprimant que la fonction choc unitaire est, en un certain sens, la déri-
vée de la fonction palier unitaire.

Les fonctions 1(f) et 47" 1(f) sont connues sous I'appellation de
fonction de Dirae, du nom de celul qui a reconnu leur utilité. On peut
définir, par dérivation et intégration répétées, des fonctions d’ordre
quelconque (entier) positif ou négatif de la fonction choc unitaire.

Remarquons que les deux fonctions 1(t) et 471 1(f) sont continues
pour toute valeur de t, sauf & 'origine ou elles présentent chacune une
discontinuité. L’origine porte le nom de «point singulier» ou de ¢sin-
gularité» de la fonction. Par des translations, il est possible de définir
des fonctions, dites fonetions de Dirac translatées, avec singularité en
un point quelconque de 'axe des t: la fonction 1 (t—n), par exemple,
est partout nulle sauf au point { =n ot elle est infinie.

La fonction
R,(t) = A7 1({H)— A7 1 (t—n),

dont nous ferons largement usage, admet, elle, la valeur 1 pour ¢ com-
pris entre 0 et n, s’annule pour toute autre valeur de ¢ (fig. 2). Nous
I'appellerons fonction palier unitaire temporaire?).

En multipliant une fonetion continue C(t) par la fonction palier
unitaire temporaire, il est possible d’isoler la portion de la fonction
continue correspondant & l'intervalle de temps considéré. L’expression

Ft) = Cty[A 1(t) — A 1 (t—n)] (1.2)

1) Cette fonction fournit une représentation analytique commode pour la rente
temporaire certaine.
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est en effet identique & C(t) entre les valeurs t=0 et ¢t=n, mals
s’annule en dehors de cet intervalle (fig. 2).

fonction palier unitaire temporaire

A %

Rav

Py

P - 14
Figure 2

La fonction £(t) définie ci-dessus, portion de la fonction continue
C(t), peut étre dérivée et intégrée au méme titre que la fonction C(f) en
tout point intérieur de I'intervalle (0,n). Pour nos besoins, nous ferons
usage d’une notion de dérivation légérement plus générale, englobant
également les points de discontinuité: la notion de dérivation que nous
utiliserons, symbolisée par 'opérateur 4, est identique & la notion de

o d : : : ;
dérivation usuelle 2 o0 tout point régulier, ¢’est-a-dire en tout point

a I'exception des points ol la fonction présente des singularités; aux
points ot la fonction présente des sauts, l'opération A engendre une
fonction de Dirac de type 1(f) d'intensité égale & la hauteur du saut.
Pour la fonction F'(t) définie par (1.2), par exemple, nous aurons

(1.3)

AF() = C(o) - 1(t) + d(;(t) [471()— A1 (t—n)]—C(n) - 1 (t—n).

Les 1¢r et 3¢ termes correspondent aux sauts de hauteur + C(0) en
t=0 et —C(n) en t=n de la fonction F(f). Le deuxiéme terme est
1dentique a la dérivée de C(f) sur l'intervalle (0,n), il est nul en dehors
de cet intervalle (fig. 38).
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AF()

n

Figure 3

Au vu de cette définition, on dit que 'opérateur A transforme F(t)
en sa «fonction bordure», ce concept de bordure définissant, en un cer-
tain sens, le pourtour de la fonction F(t), y compris les sauts.

Il serait facile de définir 'opérateur 4 dans toute sa généralité.
Nous ne ferons pas usage de cette généralisation.

L’opération inverse, qui fait passer de la dérivée A F(t) & la fonction
elle-méme F(t) est appelée intégration. Elle est représentée par le sym-
bole A7'. On a

AHAF@)} = F(f).

L’avantage de l'opérateur 47" sur 'opérateur usuel [ de l'inté-
gration réside essentiellement dans le fait que la présence de la fonction
de Dirac 1(¢) supplée & l'introduction d'une constante d'intégration.
Les opérateurs A et A7 permettent de plus un symbolisme plus poussé
du calcul opérationnel. C'est dans cette acception du concept «dérivéen
que doit étre comprise la propriété (1.1) de la fonction impulsion uni-
taire d’étre la dérivée de Ja fonction palier unitaire.

§2. Le modéle mathématique des assurances sur la vie

Les engagements stipulés par un contrat d’assurance sur la vie se
réferent & l'assuré de deux fagons différentes: ils sont liés soit & I'état
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(ou qualité) du candidat «d’étre assuréy, soit aux phénoménes modi-
fiant cet état. Parmi les obligations dépendant de 1’état «étre assuré»,
citons celle, pour l'assuré, de payer des primes, celle, pour I'assureur,
de verser des rentes, p. ex. Les prestations liées & la modification de
I’état d’assuré sont, en particulier, les primes uniques a verser lors de
lacquisition de la qualité d’assuré, les prestations en capital échéant
lors de la perte de cette qualité par suite de déces, de résiliation du
contrat.

Mathématiquement, la qualité «d’étre en vie» s’exprime par le
symbole ,p, représentant, pour une personne d’age x, la probabilité
de posséder encore cette qualité «étre en vie» aprés un laps de temps ¢.
La probabilité ,p, permet de définir I’état, pour une personne, «d’étre
assurée», entre les époques t = o et t = n:

All) = p[A 10— A7 1 (t—n)], 2.1)

'expression entre crochets étant la fonction palier unitaire temporaire
définie au paragraphe précédent. A(f) se nomme la fonction d’état
«8tre assuré» (fig. 4); le symbole A choisi rappelle la premiére lettre
du mot assuré.

JA®

——— —
——

Figure 4

La modification de I'état «étre assuré» s’exprimera, mathématique-
ment, par la fonction correspondant & la dérivée 4 A(t) de la fonction
A(t):

AA(M) = 1(1) + d(‘f“”') [4711()— A~ 1 (t—n)]—,p, - 1(1—n) (2.2)

e

conformément aux regles établies au paragraphe précédent (fig. 4).
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La valeur de 4 4(t) entre t =0 et t = n représente, au signe pres,
I'intensité de probabilité, pour I'assuré d’age x, de décéder au moment ¢ .
En effet, de la définition classique de ,p,:

LRl
—f;t(t) dr
€T

P =€ ol u(t) = taux instantané de déces,

R
d d —‘/‘ plz)dr
==\ u(ryde e = = —u(z+1) p,.

I’expression u(z+1) ,p, représente bien 'intensité annoncée. Le

o A0
erme ——

dt

Pour t =0 et t =n, la fonction A(t) présente des sauts de hauteur
+1 et —,p,; la dérivée 4 A(t) de A(t) sera ainsi représentée en ces
points par des fonctions choc unitaire d'intensité +1 et —,p,.

Les prestations entre assuré et assureur dépendent, comme nous
I'avons dit plus haut, soit de 'état «étre assuré» (représenté par la fonc-
tion 4 (t)), soit de la modification de cet état (représentée par la fonction
A A(t)). Nous désignerons par U,y(t) la prestation, échue au moment ¢,
liée a I'état «étre assuréy et par U,(t) la prestation, au moment ¢ égale-
ment, liée & la modification de cet état. Les espérances mathématiques
seront, par unité de temps,

Uo(f) - A(f) et Uy t) - AA®). 2.3)

on tire

est négatif.

Nous choisirons les signes des fonctions Uy(t) et U,(f) de fagon a
ce que les espérances mathématiques définies par (2.3) solent positives
s'1l s’agit de prestations de l'assuré & l'assureur, négatives dans le cas
d’une prestation de 'assureur au profit de I'assuré. La somme des deux
expressions (2.3) représente 'espérance mathématique d'une presta-
tion quelconque au moment ¢, soit 'excédent, au moment ¢, des pres-
tations de l'assuré sur celles de 'assureur:

Uty = Uyt) - A(t) + Uy(t) - A A(2). (2.4)
U(t) est donc une fonction du temps t.

I’équivalence entre les prestations de l'assuré et celles de 'assu-
reur s'exprime par la propriété suivante de la fonction Uf():
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Principe d'équivalence: la fonction U(f) est économiquement neutre.
Nous préciserons plus bas le sens exact de cette propriété, dont la
signification n’échappe évidemment & aucun actuaire.

Résumé
Le modéle mathématique de I'assurance sur la vie est représenté:
10 par les fonctions d’etat étre assuré A(#) et modification d’état
A A(t), définies par les expressions (2.1) et (2.2),
20 par les fonctions prestations U,y(t) et U,(f) lides a A(f) et 4 A(%).
L’espérance mathématique d'une prestation quelconque est
Uty = Uy(t) - A(t) + U,(t) - 4 A(¥),
30 par le principe d’équivalence: U(t) est une fonction économique-
ment neutre.

§ 3. Le calcul opérationnel de Heaviside appliqué
aux problémes actuariels

Voici, sur la base d'un exemple simple, I'essentiel du symbolisme
créé par le caleul opérationnel de Heaviside?).

Considérons 1'exemple actuariel simple de 'assurance vie entiére
d’un capital décés C'=1 financé par des primes périodiques. Dans ce
cas particulier la fonction d’état (2.1) prend la forme (n = oo)

A(t) = p, - 471(})

d
AAM) = 1(z‘)+%d”1(b). [

(3.1)

1) Le symbole A4 défini au § 1 représente ce qu’on appelle un opérateur mathé-
matique: appliqué a la fonction A(t), 'opérateur A transforme, dans notre cas, la
fonction d’état en sa fonction modification d’état. Le calcul mathématique qui {ait
intervenir des opérateurs de ce genre se nomme calcul opérationnel. La notion de
calcul opérationnel ne doit pas étre confondue, en particulier, avec celle de recher-
che opérationnelle.

Le calcul opérationnel utilise des expressions dans lesquelles interviennent
des fonctions, & I'instar du calcul ordinaire, et des opérateurs. L’expression (2.4)
définissant la fonction U(t) en est un exemple. Le calcul opérationnel définit égale-
ment la notion d’équation opérationnelle et la notion de solution d'une telle équa-
tion.
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Les fonctions prestations Uy(t) et U,(f), Liées aux états A(f) et
A A(t), sont, pour t = 0, définies par

Uy(t) = P = const. (prime périodique constante P),

0 pour t =0 (pas de prestation en acquérant
Oyll) = la qualité d’assuré)
1 pourt >0 (capital 1 en cas de perte de
la qualité d’assuré).

La fonction excédent U(f) définie par (2.4) devient

d

Ut) = Uyt) - A®) + Uy(t) - AA4(t) = PA(t) + —(é%)— A711(1).

En tirant de (3.1) la valeur du 2¢ terme du membre de droite,
on obtient

U(t) = PA(t) + AA(®)—1(1). (3.2)

La prime P est déterminée par le principe d’équivalence U(t) =0,

¢’est-a-dire
PA@f) + AA(t)—1(t) = 0.

En mettant en évidence la fonction 4(t), on obtient en considérant

l'opérateur A comme une grandeur algébrique ordinaire:

(P+A)A(t) —1(1) = 0

Yoat-Adi 1(¢
¢’est-a-dire P+A:~—(L
A(t)

enfin P o _1_(_0___[] . (3.3)

Si I'on donne maintenant & la fonction unitaire 1(f) le seas ordi-
naire du nombre 1 et I'on remplace les lettres majuscules 4 et 4 par
des minuscules a et d, on retombe sur la formule, bien connue des actu-
aires, de la prime périodique de l'assurance capital-déces

P = 1—6, (3.4)
a
ou a = valeur actuelle de la rente viagére liée a I’état A(t).

Que le lecteur remarque le parfait tour de passe-passe réalisé par
le calcul opérationnel! Qu’il ne nous accuse néanmoins pas de charla-
tanisme, le paragraphe suivant apportera la justification du procédé.
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Le passage de I'expression opérationnelle (3.3) 4 'expression algé-
brique (3.4) surprend au premier abord. Il n’est pas entiérement for-
tuit: la fonction d’état «étre assuré» A(t) céde la place & la valeur actu-
elle @, de la rente viageére liée & cet état, ici rien de surprenant. La
substitution de I'opérateur mathématique A par le taux d’intérét &
mérite, elle, qu'on en approfondisse la signification.

C’est par des cheminements de ce genre qu Heaviside trouva la
solution d’un grand nombre de problemes restés sans réponse & son
époque. Heaviside établit un symbolisme qui lui permit simplement
de trouver des résultats. N’étant pas mathématicien, il ne sut lui-méme
justifier son procédé; il se contenta de confronter ses résultats avec
I'expérience, repoussant purement et simplement ceux d’entre eux
qui n’étalent pas conformes aux observations. Aussi le manque de
démonstrations et Ja nature plus que problématique de ses astuces de
calcul lui valurent de nombreuses critiques.

Nous ajoutons encore que nous avons légerement complété le pro-
cédé imaginé primitivement par Heaviside, en ce sens que nous avons
fait intervenir — comme I'ont montré les travaux de Doetsch — les con-
ditions initiales, sous la forme de la fonction choc unitaire de Dirac.
Sous cette forme, le calcul opérationnel livre les solutions exactes des
problémes posés, ce qui ne fut pas toujours le cas dans la forme que
lui donna Heaviside.

§ 4. Justification du calcul opérationnel
par la transformation de Laplace

La transformation de Laplace établit une correspondance entre
deux fonctions F'(f) et f(0) de deux variables indépendantes t et d. F(2)
est dite fonction objet dans la transformation, f(d) fonction image. Le
passage de la fonction objet & la fonction image s'effectue au moyen
de I'intégrale de Laplace

[ee]

1(6) = f e F(t) dt. (4.1)

0
f(0) est appelée également Ja transformée de Laplace de F(f). La corres-
pondance entre F'(f) et f(9) est, pour les fonctions usuelles, biunivoque;
elle s’éerit symboliquement

Hoy == L{F (t)} réciproquement F(t) = L' {f(é)}
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Le symbole L — rappelant le nom de Laplace — représente un opé-
rateur mathématique.

Quelle signification peut-on donner aux fonctions F'(t) et f()?
Dans Ja théorie des équations différentielles, la fonetion objet F(t) tire
sa signification du probleme méme & résoudre. C’est une fonction de
la variable indépendante ¢, dans la majorité des cas une fonction du
temps; quant & la fonction objet f(9) et & la variable 4, on ne peut que
difficilement préciser leur nature: ce sont des grandeurs auxiliaires.

En sciences actuarielles, si F'(f) représente des prestations (conti-
nues) échelonnées dans le temps, la fonction f(d) définie par (4.1) est
la valeur actuelle de ces prestations, calculée au taux (instantané)
d’intérét 6. La transformée f(8) posséde pour I'actuaire — comme nous
I'avons relevé au début de cette communication — non seulement une
signification bien précise, mais représente un des buts mémes de ses
recherches.

Les fonctions F'(t) doivent satisfaire & certaines coaditions tres
générales, par exemple & des conditions d’intégrabilité, pour pouvoir
étre transformées par 'opérateur L. La bibliographie indiquée & la fin
de la présente note renseignera le lecteur sur ce point. Les fonctions
qui intéressent l'actuaire sont, elles, de nature fort simple; elles satis-
font & ces conditions trés générales. C'est le cas, en particulier, des
fonctions d’état A(t) et A4 A(t) introduites au paragraphe précédent
pour définir I’état «étre assuréy.

Voici, & titre d’exemple, les transformées des fonctions de Dirac
définies au premier paragraphe; elles sont des plus simples:

me}:j}4umdw=1

0

(4.2)

oo

1
Ligt 1) = [e¥at = = o
§ b
On démontre facilement que la fonction obtenue par k intégrations
successives de Ja fonetion choc unitaire 1(¢), fonction représentée par
le symbole A7 1(t), posséde une transformée égale &

L{A"" l(t)} =
La transformation de Laplace possede des propriétés remarquables.

Nous ne mentionnerons ici que celles dont nous aurons besoin par la
suite.
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1° Transformée d’une somme

L est un opérateur linéaire, c’est-a-dire.
s1 L{F({®)} = {()
et L{G@)} = g(9),
on a, a et b étant des constantes, positives ou négatives,
L{aF(t) + bG(t)} = aL{F(t)} + bL{G(t)} = af(d) + bg(d). (4.3)

Cette propriété découle immédiatement de la définition (4.1)

20 Transformée d'une fonction retardée (ou translatée)

Soit F'(t) une fonction définie sur 'axe positif des ¢, identiquement
nulle pour <0, et /() sa transformée de Laplace. Lia fonction G(t)
obtenue par translation de F'(f) d'une quantité a dans la direction
des t positifs:

[ 0 pour t < a

G@) =
() 1 F(t—a) pour t = a
admet pour transformée
g(6) = e f(9). (4.4)

L’actuaire trouvera immédiatement Ja signification de ces deux
premiéres propriétés: la valeur actuelle d’'une somme de prestations
est égale & la somme des valeurs actuelles des prestations prises isolé-
ment, et: la valeur actuelle d’'une prestation retardée est égale & la
valeur actuelle sans retard multipliée par le facteur d’escompte relatif
a la durée du retard.

30 Transformée d'une dérivée
La transformée de la dérivée, résultat de I'opération A, définie au
premier paragraphe, est:

L{AF(t)} = & - L{F()} = 6 -{(9), (4.5)

dans laquelle le point reliant & et f(d) représente la multiplication
ordinaire. Cette propriété est fondamentale pour le calcul opéra-
tionnel (démonstration ci-apres).
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40 Transformée d'une intégrale
L’intégration, définie par 'opérateur A7, est I'opération inverse
de la dérivation; on a

L{A7'F@)} = 67 - L{F@t)} = 67 - {(8). (4.6)

En effet, s1 F'(t) = AG(t), en passant aux transformées et en uti-
lisant (4.5), on obtient

L{F()} = L{4G@t)} = & - L{G().

Mais comme F(f) = AG(t) équivaut & G(t) = 47'F(t), on a
L{F@#)} = é - L{A'F(t)}

c’est-d-dire L{A7'F()} = 67« L{F()}, ce qu'il fallait démontrer.

Démonstration de la propriéte 3°

Considérons tout d’abord la fonction
Fit)y = C@t)- A4711(1) (4.7)

s'identifiant & la fonction C(f), continue et dérivable, pour ¢t >0,
s’annulant pour t<< 0 et présentant un saut de hauteur C(0) a 1'origine.
La dérivée de cette fonction est, d’apres (1.3),

, 400

—1 N
7 A7 1(1). (4.8)

Or on sait que, par intégration partielle:

~ o, AC(t -
fe“” jif) dt = [C(t) e ']y + f&e“” C({) dt.
0

0

La fonction A7'1(f) étant identiquement égale & 1 sur I'intervalle
zéro & infini peut étre ajoutée en facteur sous les signes d’'intégration
des deux membres. De plus, le premier terme du membre de droite
est égal & —C(0), c’est-a-dire & la transformée de la fonction —C(0) 1(¢);
en effet

(o]

[e?tc) 1@ dt = c().

0
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En passant le premier terme du membre de droite, écrit sous cette
forme, dans le membre de gauche et en réunissant les deux intégrales,
nous trouvons

g ac()

[ [0(0) L 1(t) +7A-11(t)] it = 6 fm et [C() - A 1(t)] dt

c’est-a-dire d’apres (4.8) et (4.7)
L{AF(t)} =  L{F(t)}.

La relation (4.5) est ainsi démontrée pour les fonctions de la forme
(4.7). 51 la fonction de Dirac figurant dans la définition de F'(#) possé-
dait un point singulier, non & l’origine, mais en un point d’abscisse a
(fonction translatée), le raisonnement serait identique: F'(f) est iden-
tiquement nulle pour t<< a, présente un saut de hauteur C(a) au point
t = a, puis s’identifie & C(t). L'intégrale de Laplace se réduit & I'intégrale
sur I'intervalle (a,oc); elle peut étre traitée comme ci-dessus. Les fone-
tions dont nous nous occuperons par la suite étant du type (4.7), de
type (4.7) translaté ou obtenu par addition d’un nombre fini de telles
fonctions, la proposition (4.5) se trouve ainsi démontrée pour les fone-
tions qui nous intéressent.

La 3¢ propriété de la transformation de Laplace (transformée
d’une dérivée) permet maintenant de démystifier le tour de passe-passe,
exhibé au §3, qui a permis d’établir la formule de la prime périodique
de l'assurance capital-décés-vie-entiére:

L’espérance mathématique U(t) définie par (3.2) est une fonction
du temps. Dire que cette fonction est économiquement neutre (selon
le principe d’équivalence émis au § 2), ¢’est poser que la valeur actuelle
de U(?), c’est-a-dire la transformée de Laplace

u(®) = L{U(t)}

s’annule pour la valeur de é correspondant au taux technique. Comment
s’exprime la transformée u(d) de la fonction U(f) définie par (3.2)?
Dans le membre de droite de (3.2), P est une constante, donc

L{PA(1)} = PL{4())
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(premiére propriété de la transformation de Laplace); de plus la fone-
tion d’état A(f) se transforme en la valeur actuelle de la rente viagére

(e o] oo

L{A@)} = [ p, A1) @t = [¢* p,dt = a,,
0 0
la dérivée A A(t) en da, (propriété 3) et la fonction de Dirac 1(t) en la
constante 1, selon (4.2). Le principe d’équivalence u(d) = 0 donne
ainsi 1’équation, algébrique cette fois,

Pa, +d6a,—1 =20

pour § = taux technique d’intérét, ce qui conduit immédiatement &
la valeur de P selon (3.4).

Les exemples qui suivent montreront qu’il est parfois préférable
d’opérer avec les fonctions du temps ¢t plutét qu'avee les valeurs
actuelles, c’est-a-dire de développer le calcul opérationnel sous la forme
que lui a donné Heaviside, puis de passer, dans une phase ultime, au
domaine des fonctions transformées selon Laplace: les valeurs actuelles.

§ 5. Calcul opérationnel et mathématiques financiéres

Sur la base des trois premiéres propriétés de la transformation de
Laplace (la 4¢ propriété n’est qu'une conséquence de la 3¢), il est
possible d’établir I'essentiel des formules utilisées en mathématiques
financiéres. Ayant choisiintentionnellement, dans ce travail, la méthode
continue afin de développer le calcul opérationnel sous sa forme usuelle,
nous obtiendrons évidemment les formules des valeurs actuelles de
prestations continues. Nous montrerons ultérieurement que ce pro-
cédé peut étre transposé aux opérations financieres telles que I'activité
économique les connait, concentrées & des dates échelonnées de fagon
discontinue dans le temps.

Quelques exemples suffiront pour démontrer 1'efficacité du calcul
opérationnel en mathématiques financiéres.

Le tableau ci-apres indique, en 1€ colonne, les opérations & effectuer
sur les fonctions I'(t) définissant les prestations futures, en 2¢ colonne
la représentation graphique de F(t), en 3¢ colonne les opérations a effec-
tuer sur les fonctions /() définissant les valeurs actuelles, en 4¢ colonne
les formules des valeurs actuelles correspondant aux prestations F\(f).
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Prestations Valeurs actuelles
Opération F(i) Opération 1(0)
fonction o0 5
de Dirac 1(t) Ofe 1)t = 1
intégration multiplication I -
de la fonction de la fonction 5 Gl
précédente précédente par 51
A1) rente perpétuelle constante (propriété 4)
intégration multiplication 1
de la fonction de la fonction 52
précédente précédente par 571
A2 1(1) (propriété 4)

rente perpétuelle croissante
fonction de Dirac | multiplication de ™"
translatée f(8) = 1 par e"
1(t—m) (propriété 2)

0 n
intégration ‘ multiplication gin
de la fonction de la fonction 5
précédente précédente par 671
11 (t— iét6 4
471 (t-m) rente perpétuelle constante (propriété 4)
différée

soustraction soustraction 1-¢gon
des fonctions des transformées
de Dirac et respectives
Dirac translatée " (propriété 1)
1(t)—1(t—n)
intégration multiplication 1-go  _
de la fonction de la fonction s %l
précédente précédente par 5!
A1 () =411 (t-n) ' (propriété 4)

rente temporaire constante
intégration multiplication 1-¢gon
de la fonetion de la fonction 52
précédente précédente par 61

A21(t) —A-21 (t-n)

1
|

rente perpétuelle croissant
temporairement

(propriété 4)
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Voici un dernier exemple: la détermination de la formule du cours
mathématique d’'un emprunt & amortissements constants.
Taux d’intérét nominal: 6,
Taux d’évaluation: 0
Valeur nominale: 1
n

Durée restant a courir:

/ \

t
Etat de la dette (fig.5): A(t) = (1——) [471(t)—A"1(t—n)]
n4
1
Variation de cet état:  AA({) = 1(t)——[471@#)—A"1({t—n)].
n

A A
1

Figure 5

Si 'on désigne par R (f) la rente unitaire temporaire (fonction
palier unitaire temporaire), ¢’est-a-dire si I'on pose

Raft) = [4*1()— 41 (t—n)],
on obtient

A4() = 10— By,

¢’est-a-dire, en appliquant 'opérateur A™, inverse de 4,

Aft) = A'il(t)—mA'l—"l;R;‘(t). (5.1)

Les prestations futures sont représentées par les fonctions:
1
remboursements (constants) — B ()
n
intéréts d, A(2)

1
Cest--dire, en utilisant (5.1),  dyA() = 47 1() — 0,4 — R (0
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1
Si 'on pose A™' = = le total des prestations vaut

Le cours mathématique s’obtient en remplagant A par é, 1(f) par 1
et Ry(t), la rente temporaire, par a;, sa valeur actuelle:
60

é
cours mathématique = 739— + (1 _T)

(L;I

, ce qu’ll fallait démontrer.

§ 6. Calcul opérationnel et mathématiques d’assurances
sur la vie

Voici tout d’abord, tiré du domaine actuariel, un exemple illus-
trant la propriété 3 de la transformation de Laplace (propriété de la
transformée d’'une dérivée).

Le modéle mathématique de 'assurance sur la vie est défini par
les fonctions d’état et modification d’état, selon (2.1) et (2.2)

A@) = p[471() =47 1(t—n)] ]

a(p,

) (6.1)
% ~[A7M1E) — A7 1 (E—n)]—,p, 1 (t—n). l

AA®M) = 1(t) +

Une prestation constante unitaire Uy(t) = 1 liée & 'état d’assuré
est représentée par la fonction Uy (t) A(f) = A(t). Sa valeur actuelle est

co

L{d@t)} = fe"‘”A(t) dt = fe_‘” P [471 1) — A7 1 (t—n)] dt
c¢’est-a-dire ’ '

L{A®) = [ pdt = a3, (6.2)

soit la valeur capitalisée de la rente viagére temporaire.

Le méme raisonnement, établi & partir de la fonction modification
d’état 4 A(t), conduit & définir une prestation constante unitaire échéant
4 l'entrée dans I'assurance et & la sortie; cette prestation est représen-
tée par la fonction U,(t) A A(t) = AA(). Les 3 termes de la seconde
expression (6.1) ont un sens trés précis:
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1(t) = prestation unitaire & 'entrée, positive, donc versée par l'assuré;
valeur actuelle L{1(t)} =1.

d . - . :

-—;;-m [47'1(t)—A7"1(t—n)] = prestation unitaire & la sortie par suite
de décés durant la période d’assurance, négative selon § 2, done
en faveur de l'assuré; valeur actuelle — 4.

D, 1(t—m) = prestation unitaire & la sortie, en cas de vie & I’échéance;
valeur actuelle E,.

La valeur actuelle de la prestation unitaire liée & la modification
de I'état d’assuré vaut done

L{4A@t)} =1—,4 (6.3)

ol ZE;I = prime unique de l'assurance mixte.

x—nE;z: =1 _‘ZI:E

La propriété fondamentale n° 3 de la transformation de Laplace,
appliquée & la fonction d’état A(t),

L{AA®) = 6L{4()
2

prend donc la forme, selon (6.3) et (6.

¢’est-a-dire A=

La formule la plus classique des mathématiques actuarielles se
révele ainsi étre une conséquence immédiate de la propriété 3 de la
transformation de Laplace et du calcul opérationnel; elle établit une
relation entre la valeur actuelle de la rente liée a 'état d’assuré (a,.;)
et la valeur actuelle liée & la perte de cet état (Zrlﬁ~-p. |

Passons maintenant en revue les formes d’assurance les plus cou-
rantes et cherchons & établir les formules des primes uniques et pério-
diques par la méthode du calcul opérationnel. Nous nous distancerons
quelque peu du procédé, extréme & vrai dire, de Heaviside qui consiste
& résoudre I’équation du principe d’équivalence sous la forme U(t) = 0.
Nous passerons aussi rapidement que possible & la fonction image u(0)
et & 'équation en valeurs actuelles u(d) = 0.

Pour toutes les formes d’assurance traitées, 1'état d’assuré est
caractérisé par les fonctions A(t) et A A(f), définies par (2.1) et (2.2),
dans lesquelles la durée n est & choisir de fagon adéquate.
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Assurance maixte

Prestation liée & 'état d’assuré: U,(t) = P = const.
(prime périodique)

Prestation liée & la modification d’état: U,(f) = Pu. t =0
(prime unique)

=1,t>0
(capital sortie déces ou vie a 1'échéance).

Espérance mathématique (fonction excédent)

Ult) = Uyft) - A) + Uy(t) - A A()
d
— PA®) + Pul() + ‘px [471(t)— A1 (t—mn)] —,p, 1 (—n).

En remplagant les 2 derniers termes par leur expression tirée de
(2.2), on obtient

Ul) = PA{) + Pul(t) + A A{t)—1().
En valeur actuelle (transformée de Laplace)

u(0) = L{U(t)} Pa,m+Pu+dda,;—1

z:in|

- Paz:n§ + Pu— (1_6a:r:n_)'
Le principe d’équivalence u(d) =0 pour § = taux technique d’in-
térét, donne

en prime unique (P = 0): Pu =1—0ad,z

en primes périodiques (Pu =0): P = —— —4.

Assurance de rente mageére différée, sans restitution en cas de décés
Un développement analogue conduit &
w() = Pa,;+ Pu—,a,.
L’équation u(d) = 0 fournit les formules usuelles des primes uniques
et périodiques.
Assurance d'un capital différé en cas de vie, sans restitution

Ici également

() = Pa,.- + Pu— E..

2]
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Formes d’assurance en cas de vie avec restitution, en cas de deéces, des
primes versées, sous déduction des prestations d assurance touchées

Le groupe des formes d’assurance en cas de vie avec contre-
assurance présente, pour la méthode du calcul opérationnel, un intérét
tout particulier. Alors que la méthode classique livre des formules assez
compliquées dans lesquelles interviennent les valeurs ,(I4), des pres-
tations variables en cas de déces, le calcul opérationnel conduit & des
expressions simples dans leur forme, immédiatement compréhensibles
et d’usage aisé pour la détermination de valeurs numériques si 'on
dispose d’un calculateur électronique.

Nous avons en vue spécialement le cas de 'assurance de rente via-
gere différée avec contre-assurance. L’assurance de capitaux en cas de
vie avec contre-assurance se traiterait d’'une fagon semblable.

51, comme ci-avant, U(f) représente la prestation liée & I’état A(t)
(prestation en cas de vie, primes si Uy(f) >0, prestations d’assurance

s1 Uy(t) < 0), Pu la prime unique, le capital de restitution est donné
par I’expression

C(t) = Pu + f U,(t') dt’, (6.4)
0

pour toute valeur de ¢ rendant le membre de droite positif. Pour les
valeurs de ¢t conduisant & une valeur négative, le capital de restitution
est nul.

La valeur de t pour laquelle le membre de droite s’annule, ¢’est-a-
dire la valeur ¢t = k pour laquelle

Clk) = 0, (6.5)

délimite la période durant laquelle la clause de restitution joue.
Durant la période de restitution, de durée k, le modele mathé-
matique est de la forme

Al = [ 1) — 47" 1(¢—W)]
d 11 x

AAR) = 1(t) + — 2[4 1) — A 1t —k) ] — . 1 —F)

U,(t) = fonction quelconque, intégrable par intervalle

0. fPu = prime unique, & verser par l'assuré, pour t = 0
) =
! ] C(t) = capital de restitution selon (6.4), pour 0 <<t =< k.
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La fonction d’excédent
devient ) = Tult) - 40 + Ualt) - 440
U(t) = Uy(t) p [47'1(#) — 47" 1(t—Fk)] + Pul(t) + C() _‘_p?_
'[A*MQ—A41Q—ML (6.6)

le dernier terme de U,(f) - A4 A(t) disparaissant puisque C(k) = 0 selon
(6.5).

Cette expression peut étre simplifiée de la fagon suivante: le fac-
teur multipliant la fonction palier unitaire temporaire provenant des
ler et 3¢ termes est

- N b

Go®) ip: + C) =% (6.7)
or, sur 'intervalle (0,%), d’apres (6.4),
dC’(t)

Uyt) =
I'expression (6.7) s’écrit donc

ac) d,p,
T =T ( i

dt

¢’est-a-dire

d
I {C(t) zPr} .

D’autre part, le coefficient Pu figurant dans le second terme de
(6.6) est égal & la valeur prise par la fonction C(t) ,p, & I'origine. En
effet ;p,=1 et C(f) = Pu pour t =0, selon (6.4). L’expression (6.6)
devient ainsi

d
U(t) = C(t) i, 1(0) + 5{0@) 0 [47 1) — A7 1 (E—F)]

c’est-a-dire, d’aprés la définition (1.3) de I'opératenr 4 (ici C(k) = 0)
U(E) = {C’(i) P [471 (t)—A“’ll(thk)]}.

Rappelons que la fonction U(f) ci-dessus représente 'excédent
des prestations de I'assuré sur celles de 'assureur durant la période de
restitution.
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La valeur actuelle u(5) de cette fonction U(?) est, selon la propriété
3 de la transformation de Laplace

w(®) = SL{C(t) p [471(H)— A" 1(t—Fk)]}, (6.8)
ou, d étant une constante dans la transformation de Laplace,
u(®) = L{8C(t) ;p[A71(t)—A7"1(t—k)]}. (6.9)

L’interprétation actuarielle de cette derniére expression est immé-
diate:

C(t) = capital de restitution,
0 C(t) = intéréts produits par le capital de restitution
0 C(t) ;p, = Intéréts produits par le capital de restitution si 'assuré est
en vie;

le facteur [A7'1(t)— A7 1(t—k)] intervient pour limiter ces consi-
dérations & la période de restitution. Ainsi: la valeur actuelle w(d)
de I'ensemble U(t) des primes et prestations d’assurance (vie et déces)
durant Ja période de restitution est égale & la valeur actuelle des intéréts
produits par le capital de restitution.

Nous écrirons (6.8)
u(0) = da,g (6.10)

ol @, = L{C(t) p [47'1(t)—A"1({t—Fk)]} = valeur actuelle de la
rente temporaire de montant égal au capital de restitution C(f).

La propriété énoncée ci-dessus, caractérisée par 1'expression (6.10),
est valable quelle que soit la fonction Uy(f), que les primes et presta-
tions en cas de vie solent constantes ou variables.

Considérons maintenant le cas particulier de la rente viagére cons-
tante. différée, avec contre-assurance, financée en partie par prime
unique (Pu), en partie par primes périodiques (P) durant n années.
Les fonctions Uy(t) et U,(t) sont représentées par la figure 6 (k repré-
sente icl la durée compléte de restitution, comptée des le début de
I’assurance et non des le début du versement des rentes).

La valeur actuelle u(d) de la fonction U(t) durant la période de
restitution 0 <<t < k est égale, selon (6.10), &

éax:k—i.
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Apres la période de restitution, le contrat d’assurance est iden-
tique & celul d’une rente viagére différée, constante, sans restitution et
sans obligation financiére de la part de 'assuré; la valeur actuelle de la
fonction U(f) vaut donce

——k;a—’x
(négatif, car au profit de I'assuré).

La valeur actuelle des prestations U(f) pour toute la durée du
contrat est donc

u(d) = 4 &I:,@—;kam.

/\Uo(t)
|
I)
T | & > ¢
l
|
|
|
l
ey
]
! !
| l
| |
| |
| |
. ] I
U,(t) = COH i |
{ :
| |
| |
I
pente P | |
\ I « pente —1
| 1
|
Pu : |
1 . > t
In 1k
Figure 6

Le principe d’équivalence u(d) = 0, c’est-a-dire
80, p— i, =0 (6.11)

xz

pour ¢ = taux technique d’intérét, conditionne prime unique et prime
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périodique (constante). Cette équation est équivalente & 1’équation
classique

Pu+P,;=Pu,d,+P I4,+E,
' [dx—;—n + (Pu + n P) k—n‘d.r-— n k—rz];l.rﬂ!] & (6 ® 12)

Relevons que le sens de l'équation (6.11) apparait clairement a
I'actuaire, indépendamment de sa démonstration par la méthode opé-
rationnelle: les primes uniques et périodiques étant remboursées — sous
déduction des rentes touchées — & chaque assuré décédant durant la
période de restitution, la rente versée aux assurés en vie aprées la période
de restitution ne peut étre financée que par les intéréts réalisés sur le
capital de restitution durant la période de restitution, ce qui, mathé-
matiquement, s’exprime bien par I'équation

‘ka'x - 6 ax:fc“; :

Les équations (6.11) et (6.12) sont, I'une comme l'autre, 1mpli-
cites par rapport aux grandeurs cherchées, Pu et P. I.’équation (6.11)
a l'avantage de permettre un caleul automatique rapide. Pour une
prime unique donnée Pu, par exemple, la prime périodique P est celle
pour laquelle la valeur actuelle de la prestation variable représentée
par la figure 7 s’annule:

intérets sur le

Acapital de A
: . - Y l
restitution ' (1)
N\
N N
N N
0. Pu (2) SN
) A N
N \ f
0 n [ A
U B
I : rente constante
T O A L

(1) correspond a une prime P trop forte: w(d) > 0,
(2) correspond a une prime P trop faible: w(d) <C 0.

Figure 7

La valeur de k et de P s’établit par approximation successive,
procédé spécialement indiqué pour une exécution sur un calculateur
électronique.
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Zusammenfassung

Die auf die Laplacesche Transformation aufgebaute Operatorenrechnung
wird meistens in der Theorie der Differentialgleichungen angewandt. Es wird in
dieser Abhandlung gezeigt, wie diese Methode zur Herleitung der Grundformeln
der Lebensversicherungsmathematik Anwendung finden kann.

Summary

The operational calculus, based on the Laplace transform, is traditionally
used to solve differential equations. This paper would show how to make use of
this method to prove the basic mathematical relations of life-insurance.

Riassunto

11 caleolo operazionale, basato sulla trasformazione di Laplace, & tradizional-
mente utilizzato nella teoria delle equazioni ditferenziali. Nel presente lavoro viene
dimostrato come tale metodo puo essere applicato per dedurre le formule mate-
matiche fondamentali dell’assicurazione sulla vita.
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