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De l'usage du calcul

opérationnel en assurance sur la vie

Par iVfarc-PTe/iri yimsZer, Lausanne

Résumé

Le calcul opérationnel, basé sur la transformation de Laplace, est. utilisé, tra-
ditionnellement, clans la théorie des équations différentielles.

Il permet, comme l'indique cet article, de démontrer également les relations
fondamentales des mathématiques d'assurance sur la vie.

En cherchant à délimiter, expliciter et résoudre les problèmes
posés par l'assurance sur la vie, les actuaires ont créé une méthode,

développé un langage mathématique capable tant de les seconder dans

leurs raisonnements théoriques que de les aider à obtenir les valeurs

numériques indispensables à l'exercice de leur métier. Les difficultés
rencontrées n'ont pas été et ne sont pas avant tout d'ordre mathéma-

tique; elles résident plus dans le choix des bases techniques, statistiques
et économiques. Les actuaires-vie n'ont pas été mis, p. ex., dans la
nécessité de faire appel, de façon notable, aux mathématiques supé-

rieures, ni aux mathématiques appliquées, créées pour résoudre les

problèmes soulevés par la technique. Chacun sait qu'un tournant se

dessine actuellement, sur ce point, depuis que les problèmes d'assurance
choses et dommages sont à l'ordre du jour.

L'outil que représente l'appareil mathématique, s'il n'a pas été
le centre des préoccupations de l'actuaire, n'a pas moins été l'objet de

soins constants. La présente communication est consacrée à cet appa-
reil mathématique, qui, partant de la découverte, au début du XIX®
siècle, des nombres de commutation par Barrett et Tetens, a permis
de mettre en formules, de façon satisfaisante, la plus grande partie des

phénomènes rencontrés par le technicien de l'assurance sur la vie. Nous

nous proposons d'aborder les problèmes actuariels-vie d'un point de



— 184 -
vue différent de celui qu'on rencontre ordinairement dans les manuels.
Nous ferons usage d'une méthode très générale, empruntée aux mathé-
rnatiques appliquées et fort appréciée des ingénieurs pour la résolution
pratique d'un bon nombre de leurs problèmes: la méthode du calcul

opérationnel.
Conçu par Heaviside à la fin du NIX® siècle pour résoudre des pro-

blêmes d'oscillations électriques, le calcul opérationnel a trouvé sa

justification par des travaux théoriques ultérieurs, spécialement par
ceux de Doetsch; il est actuellement d'un usage courant dans la tech-

nique de résolution des équations différentielles, cette forme mathé-

matique par laquelle se concrétisent bon nombre de problèmes posés

par la technique.
Le calcul opérationnel repose, en fait, sur une astuce mathéma-

tique qui permet de remplacer la résolution de certaines équations
différentielles par celle d'équations algébriques, plus aisées à maîtriser.
Cette astuce est connue sous le nom de transformation de Laplace.
Pour l'ingénieur, la transformation de Laplace n'est qu'un outil, la
transformée d'une fonction qu'une abstraction, commode à manipuler.
L'actuaire, lui, manie la transformation de Laplace à journée faite, et,
la plupart du temps, sans le savoir. C'est, en effet, par une transfer-
mation de Laplace que l'actuaire passe d'une succession de prestations
échelonnées dans le temps à la valeur actuelle de ces prestations; la
détermination de la transformée de Laplace, si elle n'est qu'un détour
utile pour l'ingénieur, représente pour l'actuaire, bien souvent, l'objet
même de son étude.

Dans les pages qui suivent, nous exposerons, sur la base d'exemples
concrets tirés des mathématiques financières et des mathématiques
d'assurance sur la vie, l'essentiel, pour l'actuaire, du calcul opérationnel
et de la théorie de la transformation de Laplace. Afin de conserver à

cette théorie sa forme originale, nous avons représenté les phénomènes
d'assurance sous leur forme continue. Nos considérations seront, ainsi,
d'un intérêt plutôt théorique. Dans un travail ultérieur, nous adap-
terons la méthode du calcul opérationnel aux exigences spécifiques des

problèmes actuariels, à savoir au caractère discontinu des phénomènes
d'assurance. De plus, pour ne pas compliquer inutilement les déve-

loppements, nous nous sommes limité aux considérations conduisant

aux primes pures, à l'exclusion de l'élément chargements pour frais de

gestion.
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§ 1. Les fonctions de Dirac

Le modèle mathématique caractérisant l'état d'assuré se définit
aisément à partir de la notion de fonction de Dirac. Les fonctions de

Dirac sont bien connues de l'ingénieur, moins de l'actuaire; nous en

rappellerons rapidement les définitions et propriétés.

Considérons la fonction de la variable indépendante f

F(<)

0 pour f < 0

1 /e pour 0 <11 Si e

o pour f > e

représentée par la figure 1. L'intégrale de cette fonction sur un domaine

comprenant l'intervalle (0,e) est égale à 1. Lorsque e tend vers zéro,

l'amplitude de la fonction au voisinage de l'origine tend vers l'infini.
La limite de cette fonction pour e 0 est connue sous le nom de fonc-
tion «choc unitaire» ou «impulsion unitaire». On la représente par le

symbole 1(f).

fonction choc unitaire 1(f)

surface 1

0

fonction palier unitaire l(t)

1

f

Figure 1
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L'intégrale de la fonction choc unitaire définit la fonction «palier
unitaire»

^

1(f) / 1(f) df,
— co

fonction nulle pour < < 0, égale à l'unité pour f > 0. Elle présente un
saut de hauteur +1 à l'origine (fig. 1). Nous utiliserons ici le symbole
usuel 4 pour caractériser l'opération de la dérivation et le symbole 4~'

pour caractériser l'intégration. On a en particulier

4{4-il(0} 1(<) (1.1)

exprimant que la fonction choc unitaire est, en un certain sens, la déri-
vée de la fonction palier unitaire.

Les fonctions 1(f) et 4~^ 1 (f) sont connues sous l'appellation de

fonction de Dirac, du nom de celui qui a reconnu leur utilité. On peut
définir, par dérivation et intégration répétées, des fonctions d'ordre
quelconque (entier) positif ou négatif de la fonction choc unitaire.

Remarquons que les deux fonctions 1(f) et 4~*l(f) sont continues

pour toute valeur de f, sauf à l'origine où elles présentent chacune une
discontinuité. L'origine porte le nom de «point singulier» ou de «sin-

gularité» de la fonction. Par des translations, il est possible de définir
des fonctions, dites fonctions de Dirac translatées, avec singularité en

un point quelconque de l'axe des f: la fonction 1 (f —«), par exemple,
est partout nulle sauf au point t ?i où elle est infinie.

La fonction
E„(f) 4-i 1(f)-4-1 l(f-n),

dont nous ferons largement usage, admet, elle, la valeur 1 pour t com-
pris entre 0 et n, s'annule pour toute autre valeur de < (fig. 2). Nous

l'appellerons fonction palier unitaire temporaire*).
En multipliant une fonction continue (7(f) par la fonction palier

unitaire temporaire, il est possible d'isoler la portion de la fonction
continue correspondant à l'intervalle de temps considéré. L'expression

F(f) (7(f) [4-11 (f) — 4-11 (f — n)] (1.2)

*) Cette fonction fournit une représentation analytique commode pour la rente
temporaire certaine.
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est en effet identique à (7(f) entre les valeurs t 0 et f=re, mais
s'annule en dehors de cet intervalle (fig. 2).

fonction palier unitaire temporaire

Figure 2

La fonction jP(<) définie ci-dessus, portion de la fonction continue
C(f), peut être dérivée et intégrée au même titre que la fonction (7(f) en

tout point intérieur de l'intervalle (0,n). Pour nos besoins, nous ferons

usage d'une notion de dérivation légèrement plus générale, englobant
également les points de discontinuité: la notion de dérivation que nous
utiliserons, symbolisée par l'opérateur zl, est identique à la notion de

dérivation usuelle ~ en tout point régulier, c'est-à-dire en tout point

à l'exception des points où la fonction présente des singularités; aux
points où la fonction présente des sauts, l'opération zl engendre une
fonction de Dirac de type 1(f) d'intensité égale à la hauteur du saut.
Pour la fonction F(f) définie par (1.2), par exemple, nous aurons

zlF(f) (7(o) • 1(f) + - -^-[zl-il(f)—zTM(i-w)] —C>) • l(f-n).

Les 1®* et 3® termes correspondent aux sauts de hauteur + (7(o) en
< o et —(7(n) en f n de la fonction F(f). Le deuxième terme est

identique à la dérivée de (7(f) sur l'intervalle (o,n), il est nul en dehors
de cet intervalle (fig. 3).
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Au vu de cette définition, on dit que l'opérateur zl transforme E(<)

en sa «fonction bordure», ce concept de bordure définissant, en un cer-
tain sens, le pourtour de la fonction .F(t), y compris les sauts.

Il serait facile de définir l'opérateur Zl dans toute sa généralité.
Nous ne ferons pas usage de cette généralisation.

L'opération inverse, qui fait passer de la dérivée Zl F(i) à la fonction
elle-même .F(l) est appelée intégration. Elle est représentée par le sym-
bole zTb On a

z)">{zlF(f)} F(*).

L'avantage de l'opérateur ZL' sur l'opérateur usuel J de Tinté-
gration réside essentiellement dans le fait que la présence de la fonction
de Dirac 1(1) supplée à l'introduction d'une constante d'intégration.
Les opérateurs zl et zl~' permettent de plus un symbolisme plus poussé
du calcul opérationnel. C'est dans cette acception du concept «dérivée»

que doit être comprise la propriété (1.1) de la fonction impulsion uni-
taire d'être la dérivée de la fonction palier unitaire.

§ 2. Le modèle mathématique des assurances sur la vie

Les engagements stipulés par un contrat d'assurance sur la vie se

réfèrent à l'assuré de deux façons différentes: ils sont liés soit à l'état



— 189 —

(ou qualité) du candidat, «d'être assuré», soit aux phénomènes modi-
fiant cet état. Parmi les obligations dépendant de l'état «être assuré»,

citons celle, pour l'assuré, de payer des primes, celle, pour l'assureur,
de verser des rentes, p. ex. Les prestations liées à la modification de

l'état d'assuré sont, en particulier, les primes uniques à verser lors de

l'acquisition de la qualité d'assuré, les prestations en capital échéant
lors de la perte de cette qualité par suite de décès, de résiliation du
contrat.

Mathématiquement, la qualité «d'être en vie» s'exprime par le

symbole ^ représentant, pour une personne d'âge a;, la probabilité
de posséder encore cette qualité «être en vie» après un laps de temps <.

La probabilité ^ permet de définir l'état, pour une personne, «d'être
assurée», entre les époques f o et f — n:

^(*) 1(0-^1 (<-»)]. (2-1)

l'expression entre crochets étant la fonction palier unitaire temporaire
définie au paragraphe précédent. /I (<) se nomme la fonction d'état
«être assuré» (fig. 4); le symbole 4 choisi rappelle la première lettre
du mot assuré.

1

1

1

ft
r0

44(0?" ----

Figure 4

La modification de l'état «être assuré» s'exprimera, mathématique-
ment, par la fonction correspondant à la dérivée 44(f) de la fonction

4(f):

44(f) 1(f) + ^[zl-M(/)-Z|-M(i-n)]-„p, • l(f-n) (2.2)

conformément aux règles établies au paragraphe précédent (fig. 4).
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La valeur de zl /J (f) entre f o et < n représente, au signe près,

l'intensité de probabilité, pour l'assuré d'âge x, de décéder au moment f.
En effet, de la définition classique de ,2V

x-f f

(Pi e * oil /«(t) taux instantané de décès,

on tire

d

d4
,m(T) (ÎT

X-r /

- / /<(»)<«»

® * =—i"(z + 0f2V

L'expression ,«(x + t) ,p représente bien l'intensité annoncée. Le

terme —^ négatif.

Pour f o et f n, la fonction /I (f) présente des sauts de hauteur

+ 1 et —„2V la dérivée zVl(f) de ^4(4) sera ainsi représentée en ces

points par des fonctions choc unitaire d'intensité +1 et —,jv
Les prestations entre assuré et assureur dépendent, comme nous

l'avons dit plus haut, soit de l'état «être assuré» (représenté par la fonc-
tion .4(4)), soit de la modification de cet état (représentée par la fonction
zVi(<)). Nous désignerons par £7„(4) la prestation, échue au moment t,

liée à l'état «être assuré» et par la prestation, au moment 4 égale-

ment, liée à la modification de cet état. Les espérances mathématiques
seront, par unité de temps,

et £^(4) • ZU(4). (2.3)

Nous choisirons les signes des fonctions Dq(4) et de façon à

ce que les espérances mathématiques définies par (2.3) soient positives
s'il s'agit de prestations de l'assuré à l'assureur, négatives dans le cas

d'une prestation de l'assureur au profit de l'assuré. La somme des deux

expressions (2.3) représente l'espérance mathématique d'une presta-
tion quelconque au moment t, soit l'excédent, au moment /, des près-
tations de l'assuré sur celles de l'assureur:

£7(4) £7„(4) • ,4(4) + £7^4) • 4 ,4(4). ('2-4)

£7(4) est donc une fonction du temps f.

L'équivalence entre les prestations de l'assuré et celles de l'assu-

reur s'exprime par la propriété suivante de la fonction £7(4) :
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Principe d'équivalence : la fonction Z7(f) est économiquement neutre.
Nous préciserons plus bas le sens exact de cette propriété, dont la

signification n'échappe évidemment à aucun actuaire.

Le modèle mathématique de l'assurance sur la vie est représenté:

1° par les fonctions d'état être assuré N(/) et modification d'état
zL4(f), définies par les expressions (2.1) et (2.2),

2° par les fonctions prestations Ï7„(f) et Cq(f) liées à N(() et ZlN(f).
L'espérance mathématique d'une prestation quelconque est

3° par le principe d'équivalence: f7(£) est une fonction économique-
ment neutre.

§ 3. Le calcul opérationnel de Heaviside appliqué
aux problèmes actuariels

Voici, sur la base d'un exemple simple, l'essentiel du symbolisme
créé par le calcul opérationnel de Heaviside*).

Considérons l'exemple actuariel simple de l'assurance vie entière
d'un capital décès (7=1 financé par des primes périodiques. Dans ce

cas particulier la fonction d'état (2.1) prend la forme (w= oo)

i) Le symbole zl défini au § 1 représente ce qu'on appelle un opérateur mathé-

matique: appliqué à la fonction A(£), l'opérateur zl transforme, dans notre cas, la
fonction d'état en sa fonction modification d'état. Le calcul mathématique qui lait
intervenir- des opérateurs de ce genre se nomme calcul opérationnel. La notion de

calcul opérationnel ne doit pas être confondue, en particulier, avec celle de recher-
che opérationnelle.

Le calcul opérationnel utilise des expressions dans lesquelles interviennent
des fonctions, à l'instar du calcul ordinaire, et des opérateurs. L'expression (2.4)
définissant la fonction Uff) en est un exemple. Le calcul opérationnel définit égale-
ment la notion d'équation opérationnelle et la notion de solution d'une telle équa-
tion.

Hë'swme

L(0 HO(0-4(0 + I7i(f)./M(f),

(3.1)
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Les fonctions prestations D"„(0 et liées aux états ^4(<) et

zl^4(t), sont, pour f(>0, définies par

Do(f) P const, (prime périodique constante P),

f 0 pour f o (pas de prestation en acquérant
Di(t) la qualité d'assuré)

t 1 pour f > o (capital 1 en cas de perte de

la qualité d'assuré).

La fonction excédent £/(<) définie par (2.4) devient

U(i) U„(f) • -4(0 + Ï7i(*) • ^(Q P4(f) + d-' 1(f).
cit

En tirant de (3.1) la valeur du 2® terme du membre de droite,
on obtient

17(f) P^W +^(0-1(0- (3-2)

La prime P est déterminée par le principe d'équivalence 17(1) =0,
c'est-à-dire

P^(0 +ZU(0 —1(0 0.

En mettant en évidence la fonction -4(0, on obtient en considérant

l'opérateur zl comme une grandeur algébrique ordinaire:

(P-M) -4(0-1(0 0

c'est-à-dire P + zl — ^" -4(0

^ P=Ä_ (3.3)
-4(0

^

Si l'on donne maintenant à la fonction unitaire 1(f) le sens ordi-
naire du nombre 1 et l'on remplace les lettres majuscules -4 et zl par
des minuscules a et <5, on retombe sur la formule, bien connue des actu-
aires, de la prime périodique de l'assurance capital-décès

P -—<5, (3.4)
a

où a valeur actuelle de la rente viagère liée à l'état -4(0-
Que le lecteur remarque le parfait tour de passe-passe réalisé par

le calcul opérationnel Qu'il ne nous accuse néanmoins pas de charla-
tanisme, le paragraphe suivant apportera la justification du procédé.
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Le passage de l'expression opérationnelle (3.3) à l'expression algé-

brique (3.4) surprend au premier abord. Il n'est pas entièrement for-
tuit: la fonction d'état «être assuré» ^4(f) cède la place à la valeur actu-
elle ûj de la rente viagère liée à cet état, ici rien de surprenant. La
substitution de l'opérateur mathématique d par le taux d'intérêt <S

mérite, elle, qu'on en approfondisse la signification.
C'est par des cheminements de ce genre qu'Heaviside trouva la

solution d'un grand nombre de problèmes restés sans réponse à son

époque. Hea-viside établit un symbolisme qui lui permit simplement
de trouver des résultats. N'étant pas mathématicien, il ne sut lui-même

justifier son procédé; il se contenta de confronter ses résultats avec

l'expérience, repoussant purement et simplement ceux d'entre eux
qui n'étaient pas conformes aux observations. Aussi le manque de

démonstrations et la nature plus que problématique de ses astuces de

calcul lui valurent de nombreuses critiques.
Nous ajoutons encore que nous avons légèrement complété le pro-

cédé imaginé primitivement par Heaviside, en ce sens que nous avons
fait intervenir - comme l'ont montré les travaux de Doetsch - les con-
ditions initiales, sous la forme de la fonction choc unitaire de Dirac.
Sous cette forme, le calcul opérationnel livre les solutions exactes des

problèmes posés, ce qui ne fut pas toujours le cas dans la forme que
lui donna Heaviside.

§ 4. Justification du calcul opérationnel
par la transformation de Laplace

La transformation de Laplace établit une correspondance entre
deux fonctions F(£) et /(d) de deux variables indépendantes £ et <5. F(£)
est dite fonction objet dans la transformation, /(<5) fonction image. Le

passage de la fonction objet à la fonction image s'effectue au moyen
de l'intégrale de Laplace

oo

/(d) jV'F(£)d£. (4.1)
0

/(d) est appelée également la transformée de Laplace de F(£). La corres-

pondance entre F(£) et /(d) est, pour les fonctions usuelles, biunivoque;
elle s'écrit symboliquement

/(<5) L[F(£)} réciproquement F(£) L~'{/(d)}.
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Le symbole L - rappelant le nom de Laplace - représente un opé-

rateur mathématique.
Quelle signification peut-on donner aux fonctions F(f) et /(<5)

Dans la théorie des équations différentielles, la fonction objet F(f) tire
sa signification du problème même à résoudre. C'est une fonction de

la variable indépendante f, dans la majorité des cas mie fonction du

temps ; quant à la fonction objet /(<5) et à la variable <5, on ne peut que
difficilement préciser leur nature: ce sont des grandeurs auxiliaires.

En sciences actuarielles, si F(f) représente des prestations (conti-
nues) échelonnées dans le temps, la fonction /(<5) définie par (4.1) est
la valeur actuelle de ces prestations, calculée au taux (instantané)
d'intérêt d. La transformée /(<5) possède pour l'actuaire - comme nous
l'avons relevé au début de cette communication - non seulement une
signification bien précise, mais représente un des buts mêmes de ses

recherches.
Les fonctions E(<) doivent satisfaire à certaines conditions très

générales, par exemple à des conditions d'intégrabilité, pour pouvoir
être transformées par l'opérateur L. La bibliographie indiquée à la fin
de la présente note renseignera le lecteur sur ce point. Les fonctions
qui intéressent l'actuaire sont, elles, de nature fort simple; elles satis-
font à ces conditions très générales. C'est le cas, en particulier, des

fonctions d'état -4(f) et zlN(i) introduites au paragraphe précédent

pour définir l'état «être assuré».

Voici, à titre d'exemple, les transformées des fonctions de Dirac
définies au premier paragraphe; eUes sont des plus simples:

CO

L{l(f)} fe-"l(t)d* 1

°
(4.2)

CO H
^

L{ZL4(0} <rb

On démontre facilement que la fonction obtenue par 7c intégrations
successives de la fonction choc unitaire 1(7), fonction représentée par
le symbole 4 1(f), possède une transformée égale à

L{zT* 1(f)} r*.
La transformation de Laplace possède des propriétés remarquables.

Nous ne mentionnerons ici que celles dont nous aurons besoin par la
suite.
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1° Trans/ormee d'wne somme

L est un opérateur linéaire, c'est-à-dire.

SI

et

L{F(f)} /(<?)

L{G(f)} #),
on a, a et à étant des constantes, positives ou négatives,

L{aF(f) + 6G(Q} aL{F(<)} + &£{G(0} a/(d) + &#). (4.3)

Cette propriété découle immédiatement de la définition (4.1)

2° Trans/ormee d'ime /onction retarde'e (om translatée)

Soit i?(t) une fonction définie sur l'axe positif des t, identiquement
nulle pour t < 0, et /(<5) sa transformée de Laplace. La fonction G(f)
obtenue par translation de _F(t) d'une quantité a dans la direction
des < positifs :

L'actuaire trouvera immédiatement la signification de ces deux

premières propriétés: la valeur actuelle d'une somme de prestations
est égale à la somme des valeurs actuelles des prestations prises isolé-

ment, et: la valeur actuelle d'une prestation retardée est égale à la
valeur actuelle sans retard multipliée par le facteur d'escompte relatif
à la durée du retard.

3° Trans/ormee d'nne demee

La transformée de la dérivée, résultat de l'opération zl, définie au

premier paragraphe, est :

pour f < a

pour t 1> a

admet pour transformée

0(d) e"*"/(d). (4.4)

L{zlF(0} <5 • L{/•'(/)} <5 •/(<?) (4.5)

dans laquelle le point reliant <5 et /(<5) représente la multiplication
ordinaire. Cette propriété est fondamentale pour le calcul opéra-
tionnel (démonstration ci-après).
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Traws/ormee d'tme integrale

L'intégration, définie par l'opérateur est l'opération inverse
de la dérivation; on a

t {/T' F(t)} <5"i • L {F(f)} r' • /(<5). (4.6)

En effet, si F(f) zlG(f), en passant aux transformées et en uti-
lisant (4.5), on obtient

L{F(f)} L{zlG(f)} <5.L{G(t)}.

Mais comme F(t) zlG(f) équivaut à G(t) Z|-i.F(<), on a

L{E(f)} <5-L{zTLF(f)}

c'est-à-dire <5"* -L{F(t)}, ce qu'il fallait démontrer.

Demonstration de la proprie'te' 3°

Considérons tout d'abord la fonction

F(f) C(f) (4.7)

s'identifiant à la fonction G(t), continue et dérivable, pour t>0,
s'annulant pour t< 0 et présentant un saut de hauteur O(O) à l'origine.
La dérivée de cette fonction est, d'après (1.3),

dC(t)
ZlF(f) C(0) -1(0+—^-^ 1(f). (4.8)

Or on sait que, par intégration partielle:

/ ''^/f' ^ ^ ^

La fonction 1 (f) étant identiquement égale à 1 sur l'intervalle
zéro à infini peut être ajoutée en facteur sous les signes d'intégration
des deux membres. De plus, le premier terme du membre de droite
est égal à — 0(0), c'est-à-dire à la transformée de la fonction — C(0) 1(f) ;

en effet
oo

J e"*" C(0) 1(f) dt C(0).
0
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En passant le premier terme du membre de droite, écrit sous cette

forme, dans le membre de gauche et en réunissant les deux intégrales,
nous trouvons

La relation (4.5) est ainsi démontrée pour les fonctions de la forme

(4.7). Si la fonction de Dirac figurant dans la définition de P(f) possé-

dait un point singulier, non à l'origine, mais en un point d'abscisse a

(fonction translatée), le raisonnement serait identique: P(f) est iden-

tiquement nulle pour f<a, présente un saut de hauteur C(a) au point
f a, puis s'identifie à C(f). L'intégrale de Laplace se réduit à l'intégrale
sur l'intervalle (a,°o); elle peut être traitée comme ci-dessus. Les fonc-
tions dont nous nous occuperons par la suite étant du type (4.7), de

type (4.7) translaté ou obtenu par addition d'un nombre fini de telles

fonctions, la proposition (4.5) se trouve ainsi démontrée pour les fonc-
tions qui nous intéressent.

La 3® propriété de la transformation de Laplace (transformée
d'une dérivée) permet maintenant de démystifier le tour de passe-passe,
exhibé au § 3, qui a permis d'établir la formule de la prime périodique
de l'assurance capital-décès-vie-entière:

L'espérance mathématique P(f) définie par (3.2) est une fonction
du temps. Dire que cette fonction est économiquement neutre (selon
le principe d'équivalence émis au § 2), c'est poser que la valeur actuelle
de P(<), c'est-à-dire la transformée de Laplace

s'annule pour la valeur de <5 correspondant au taux technique. Comment

s'exprime la transformée w(d) de la fonction Î7(<) définie par (3.2)?
Dans le membre de droite de (3.2), P est une constante, donc

L 0

c'est-à-dire d'après (4.8) et (4.7)

L{z1P(l)} <5L{P(f)}.

u(ô) L{t7(<)}

L{P^(0} PL{4(«)}
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(première propriété de la transformation de Laplace) ; de plus la fonc-
tion d'état A(f) se transforme en la valeur actuelle de la rente viagère

oo 00

M^(0} (1(0 ^ <ï>x^ «x.
0 0

la dérivée zJ A(t) en dâ^. (propriété 3) et la fonction de Dirac l(i) en la
constante 1, selon (4.2). Le principe d'équivalence rt(d) 0 donne
ainsi l'équation, algébrique cette fois,

P Ü3. + <5 ôj, — 1 0

pour <5 taux technique d'intérêt, ce qui conduit immédiatement à

la valeur de P selon (3.4).
Les exemples qui suivent montreront qu'il est parfois préférable

d'opérer avec les fonctions du temps i plutôt qu'avec les valeurs
actuelles, c'est-à-dire de développer le calcul opérationnel sous la forme

que lui a donné Heaviside, puis de passer, dans une phase ultime, au
domaine des fonctions transformées selon Laplace: les valeurs actuelles.

§ 5. Calcul opérationnel et mathématiques financières

Sur la base des trois premières propriétés de la transformation de

Laplace (la 4® propriété n'est qu'une conséquence de la 3®), il est

possible d'établir l'essentiel des formules utibsées en mathématiques
financières. Ayant choisi intentionnellement, dans ce travail, la méthode
continue afin de développer le calcul opérationnel sous sa forme usuelle,

nous obtiendrons évidemment les formules des valeurs actuelles de

prestations continues. Nous montrerons ultérieurement que ce pro-
cédé peut être transposé aux opérations financières telles que l'activité
économique les connaît, concentrées à des dates échelonnées de façon
discontinue dans le temps.

Quelques exemples suffiront pour démontrer l'efficacité du calcul
opérationnel en mathématiques financières.

Le tableau ci-après indique, en 1® colonne, les opérations à effectuer
sur les fonctions F(i) définissant les prestations futures, en 2® colonne
la représentation graphique deF(i), en 3® colonne les opérations à effec-

tuer sur les fonctions /(d) définissant les valeurs actuelles, en 4® colonne
les formules des valeurs actuelles correspondant aux prestations F(f).
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Presfaiî'ores

Opération F(f)

Faleurs ac(w.eï/es

Opération /(<5)

fonction
de Dirac 1(f)

intégration
de la fonction
précédente
4-11(f)

intégration
de la fonction
précédente
4-21(()

fonction de Dirac
translatée
1 (t - w)

intégration
de la fonction
précédente
Z|-l 1 (f-n)

rente perpétuelle constante

rente perpétuelle croissante

E
rente perpétuelle constante

différée

soustraction
des fonctions
de Dirac et
Dirac translatée
1 (0 -1 (f-m)

intégration
de la fonction
précédente

zHl(0-/Hl(t-rt)

intégration
de la fonction
précédente
4-21(t) —4"2l(t-w)

rente temporaire constante

rente perpétuelle croissant

temporairement

Je"" 1(0 dt
0

multiplication
de la fonction
précéden te par <5" '

(propriété 4)

multiplication
de la fonction
précédente par <H

(propriété 4)

multiplication de

/(<5) 1 par
(propriété 2)

midtiplication
de la fonction
précédente par d"*

(propriété 4)

soustraction
des transformées
respectives
(propriété 1)

multiplication
de la fonction
précédente par <5~'

(propriété 4)

multiplication
de la fonction
précédente par d"*

(propriété 4)

^ÖÖ~]

1

/>-<5n

1-e' <5n

<52
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Voici un dernier exemple : la détermination de la formule du cours

mafliematique d'ww empnmf à amorfissemenfs constants.

Taux d'intérêt nominal: <5„

Taux d'évaluation: <5

Valeur nominale: 1

Durée restant à courir : n

Etat de la dette (fig. 5) : .4(f) -W'l(i)-^l(f—w)]

Variation de cet état: 4 4(f) l(t) [4 ^ 1 (t)-— zl *l(f—n)].
72»

/
1

.4(f)

Figure 5

Si l'on désigne par B^-(t) la rente unitaire temporaire (fonction
palier unitaire temporaire), c'est-à-dire si Ton pose

on obtient
fl„-(f) [zü-i 1(f)l(t-n)],

4 4(f) l(f)--M),
c'est-à-dire, en appliquant l'opérateur 4"*, inverse de 4,

4(f) =4-i 1(f)-4-i itf-,(f).

Les prestations futures sont représentées par les fonctions :

1

n

do 4(f)

(5.1)

remboursements (constants)

intérêts

•«
c'est-à-dire, en utilisant (5.1), do4(f) dp 4"^ 1 (f) — d„4 ' — B-Zf).

71
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1

Si l'on pose zl —, le total des prestations vaut

^0
1 m / 1 \ ^»7|(0
1« + (l zl

Le cours mathématique s'obtient en remplaçant /] par d, 1(f) par 1

et 2?-(i), la rente temporaire, par à-,, sa valeur actuelle:

'o /b do \ a-.
cours mathématique — + 1 —-, ce qu'il fallait démontrer.

<5 V d / w

§ 6. Calcul opérationnel et mathématiques d'assurances

sur la vie

Voici tout d'abord, tiré du domaine actuariel, un exemple illus-
trant la propriété 3 de la transformation de Laplace (propriété de la
transformée d'une dérivée).

Le modèle mathématique de l'assurance sur la vie est défini par
les fonctions d'état et modification d'état, selon (2.1) et (2.2)

-4(0 tPx [^1(0—zT*l (<—»)] |

df u |
(*>• 1)

21.4(f) 1(f) + —M-[^-i 1(f)— /]-i i(j_„)] — j^l(f—n).

Une prestation constante unitaire {/„(f) 1 bée à l'état d'assuré
est représentée par la fonction Uq(0 .4(f) .4(f). Sa valeur actuelle est

CO CO

L{4(f)} J .4(f) df J e"^^[2l-il(t)-2l^l(f-w)]dt
0 0

c'est-à-dire
n

L{.4(f)} J ô,-, (6.2)
0

soit la valeur capitalisée de la rente viagère temporaire.

Le même raisonnement, établi à partir de la fonction modification
d'état Zl .4(f), conduit à définir une prestation constante unitaire échéant
à l'entrée dans l'assurance et à la sortie; cette prestation est représen-
tée par la fonction Dj(f)/1.4(f) /1.4(f). Les 3 termes de la seconde

expression (6.1) ont un sens très précis:
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1 prestation unitaire à l'entrée, positive, donc versée par l'assuré;
valeur actuelle L {l (f)} 1.

tZ 19

—^ [4~* 1 (f)—zl-1 (/—«)] prestation unitaire à la sortie par suite

de décès durant la période d'assurance, négative selon § 2, donc

en faveur de l'assuré; valeur actuelle —.„4j..

„Pzl(f—w) prestation unitaire à la sortie, en cas de vie à l'échéance;
valeur actuelle

La valeur actuelle de la prestation unitaire liée à la modification
de l'état d'assuré vaut donc

L {4 4(f)} 1- „--L- •„/•:, 1-^y (6.3)

où 4j..—| prime unique de l'assurance mixte.

La propriété fondamentale n° 3 de la transformation de Laplace,
appliquée à la fonction d'état .4(f),

L {4 4(f)} <5 L {4(f)}

prend donc la forme, selon (6.3) et (6.2):

1 "-^x:rT| ^^r:nj

c'est-à-dire 4^=1— <50,.-,.

La formule la plus classique des mathématiques actuarielles se

révèle ainsi être une conséquence immédiate de la propriété 3 de la
transformation de Laplace et du calcul opérationnel; elle établit une
relation entre la valeur actuelle de la rente liée à l'état d'assuré (<Ly)
et la valeur actuelle liée à la perte de cet état (4,.4.

Passons maintenant en revue les formes d'assurance les plus cou-
rantes et cherchons à établir les formules des primes uniques et pério-
diques par la méthode du calcul opérationnel. Nous nous distancerons
quelque peu du procédé, extrême à vrai dire, de Heaviside qui consiste
à résoudre l'équation du principe d'équivalence sous la forme 17(f) 0.

Nous passerons aussi rapidement que possible à la fonction image w(<5)

et à l'équation en valeurs actuelles rt(<5) 0.

Pour toutes les formes d'assurance traitées, l'état d'assuré est
caractérisé par les fonctions 4(f) et 4 4(f), définies par (2.1) et (2.2),
dans lesquelles la durée w est à choisir de façon adéquate.
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^s-swrance mixte

Prestation liée à l'état d'assuré: C/q(<) P const.

(prime périodique)

Prestation liée à la modification d'état: Pit. t 0

(prime unique)

1, t >0
(capital sortie décès ou vie à l'échéance).

Espérance mathématique (fonction excédent)

(7(0 Ly0-^) + (7i(0^.7(()

P ^4 (î) + P« 1 (0 + [zr* 1 (0 — zl-11 (*—»)] - 1 (t-n).

En remplaçant les 2 derniers termes par leur expression tirée de

(2.2), on obtient

(7(i) P4(0 +P«1(0 + id ^4(0—1(0-

En valeur actuelle (transformée de Laplace)

tt(<5) L{(7(t)} Pâj..-| + Pw + <Sô^ —1

Pâ,.jT| + P« —(1 —3ô,.^).

Le principe d'équivalence it(<5) 0 pour <5 taux technique d'in-
térêt, donne

en prime unique (P 0) : Pn 1 —d cq..-|

1

en primes périodiques (Pit 0) : P <5.

<W|

Assurance de rente viagère di//e're'e, sans miitwiion en cas de décès

Un développement analogue conduit à

it(d) P âj.-| + Pit —„|%.

L'équation w(d) 0 fournit les formules usuelles des primes uniques
et périodiques.

Assurance d'itn capita? di//eré en cas de vie, sans restitution

Ici également
it(d) Pâ^.-i + Pit „Ej,.
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Formes d'assurance en cas de we arec restitution, en cas de décès, des

primes rersèes, sons de'(îuc£io7i des pressions d'assurance touc/ie'es

Le groupe des formes d'assurance en cas de vie avec contre-
assurance présente, pour la méthode du calcul opérationnel, un intérêt
tout particulier. Alors que la méthode classique livre des formules assez

compliquées dans lesquelles interviennent les valeurs „(lA)^. des près-
tations variables en cas de décès, le calcul opérationnel conduit à des

expressions simples dans leur forme, immédiatement compréhensibles
et d'usage aisé pour la détermination de valeurs numériques si l'on
dispose d'un calculateur électronique.

Nous avons en vue spécialement le cas de l'assurance de rente via-
gère différée avec contre-assurance. L'assurance de capitaux en cas de

vie avec contre-assurance se traiterait d'une façon semblable.
Si, comme ci-avant, Dq(£) représente la prestation liée à l'état A(£)

(prestation en cas de vie, primes si fJ(,(£) > 0, prestations d'assurance
si Üq(£) < 0), Prt la prime unique, le capital de restitution est donné

par l'expression

pour toute valeur de £ rendant le membre de droite positif. Pour les
valeurs de £ conduisant à une valeur négative, le capital de restitution
est nul.

La valeur de £ pour laquelle le membre de droite s'annule, c'est-à-
dire la valeur £ fc pour laquelle

délimite la période durant laquelle la clause de restitution joue.
Durant la période de restitution, de durée fc, le modèle mathé-

matique est de la forme

(6.4)
0

C(fc) 0, (6.5)

Uo(£) fonction quelconque, intégrable par intervalle
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La fonction d'excédent

17(f) C7„(f).,4(f) + Ï7i(f)-/M(f)
devient

ff(*) I7o(0 «p«[^ 1W 1 («-*)] + -P« 1 (0 + C(9 --

[zT'l(f)-zr'l(f-fc)], (6.6)

le dernier terme de Dj(f) • 21.4(f) disparaissant puisque C(fc) 0 selon

(6.5).
Cette expression peut être simplifiée de la façon suivante: le fac-

teur multipliant la fonction palier unitaire temporaire provenant des

le* et 3e termes est

^(9«P« + 0(*)^Jr; (6.7)

or, sur l'intervalle (0,fc), d'après (6.4),

dP(f)
"•» " ir'

l'expression (6.7) s'écrit donc

<Px + ^(0 -

df " df

c'est-à-dire

D'autre part, le coefficient Pm figurant dans le second terme de

(6.6) est égal à la valeur prise par la fonction P(f) à l'origine. En
effet jPj.= 1 et C(f) Pw pour f 0, selon (6.4). L'expression (6.6)
devient ainsi

17(f) (7(f) ,p,l(f) + ^{C(f) ,p,}[^l(f)-^l(f-fe)]
c'est-à-dire, d'après la définition (1.3) de l'opérateur zl (ici C(fe) 0)

17(f) zl {C(f) ^ [zT* 1 (f) - zL > 1 (f- fc)]}.

Rappelons que la fonction P(f) ci-dessus représente l'excédent
des prestations de l'assuré sur celles de l'assureur durant la période de

restitution.
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La valeur actuelle u(<5) de cette fonction Î7(<) est, selon la propriété
3 de la transformation de Laplace

«(3) 3L{C7(i),p,[^l(i)-^l(i-fc)]}, (6.8)

ou, <5 étant une constante dans la transformation de Laplace,

«(3) L {«5 C(i) [ZI"' 1 (£) 1 (£-fc)]}. (6.9)

L'interprétation actuarielle de cette dernière expression est immé-
diate:

C(f) capital de restitution,
<5C(f) intérêts produits par le capital de restitution

<5C(f) ,Pj. intérêts produits par le capital de restitution si l'assuré est

en vie;

le facteur [zl~'l(£)— Zl~'l(f— fc)] intervient pour limiter ces consi-
dérations à la période de restitution. Ainsi: la valeur actuelle w(<5)

de l'ensemble 17(f) des primes et prestations d'assurance (vie et décès)

durant la période de restitution est égale à la valeur actuelle des intérêts
produits par le capital de restitution.

Nous écrirons (6.8)
ii(<5) (6.10)

où <L:Fi —7L*l(f— fe)]} valeur actuelle de la
rente temporaire de montant égal au capital de restitution C(i).

La propriété énoncée ci-dessus, caractérisée par l'expression (6.10),
est valable quelle que soit la fonction Z7„(£), que les primes et presta-
tions en cas de vie soient constantes ou variables.

Considérons maintenant le cas particulier de la rente viagère cons-
tante, différée, avec contre-assurance, financée en partie par prime
unique (Pw), en partie par primes périodiques (P) durant n années.

Les fonctions Z7„(£) et Ui(£) sont représentées par la figure 6 (fc repré-
sente ici la durée complète de restitution, comptée dès le début de

l'assurance et non dès le début du versement des rentes).
La valeur actuelle m(3) de la fonction 17(f) durant la période de

restitution 0 < f ^ fc est égale, selon (6.10), à

ùâx:Fr
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Après la période de restitution, le contrat d'assurance est iden-
tique à celui d'une rente viagère différée, constante, sans restitution et

sans obligation financière de la part de l'assuré ; la valeur actuelle de la
fonction 77(f) vaut donc

(négatif, car au profit de l'assuré).

La valeur actuelle des prestations 77(f) pour toute la durée du
contrat est donc

"(<5) <5 A-

Le principe d'équivalence w(d) 0, c'est-à-dire

0 (6.11)

pour <S taux technique d'intérêt, conditionne prime unique et prime
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périodique (constante). Cette équation est équivalente à l'équation
classique

Pu + P ôj.-| Pw ,3x + ^ + A
• [<L+„ + (PM + » P) fc_,A • (6.12)

Relevons que le sens de l'équation (6.11) apparaît clairement à

l'actuaire, indépendamment de sa démonstration par la méthode opé-
rationnelle : les primes uniques et périodiques étant remboursées - sous
déduction des rentes touchées - à chaque assuré décédant durant la

période de restitution, la rente versée aux assurés en vie après la période
de restitution ne peut être financée que par les intérêts réalisés sur le

capital de restitution durant la période de restitution, ce qui, mathé-

matiquement, s'exprime bien par l'équation

/À
Les équations (6.11) et (6.12) sont, l'une comme l'autre, iinpli-

cites par rapport aux grandeurs cherchées, Pm et P. L'équation (6.11)
a l'avantage de permettre un calcul automatique rapide. Pour une

prime unique donnée Pu, par exemple, la prime périodique P est celle

pour laquelle la valeur actuelle de la prestation variable représentée

par la figure 7 s'annule:

intérêts sur le

(1) correspond à une prime P trop forte: k(<5) > 0,
(2) correspond à une prime P trop faible: m(<5) < 0.

Figure 7

La valeur de fc et de P s'établit par approximation successive,

procédé spécialement indiqué pour une exécution sur un calculateur
électronique.
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Zusammenfassung

Die auf die Laplacesche Transformation aufgebaute Operatorenrechnung
wird meistens in der Theorie der Differentialgleichungen angewandt. Es wird in
dieser Abhandlung gezeigt, wie diese Methode zur Herleitung der Grundformeln
der Lebensversicherungsmathematik Anwendung finden kann.

Summary

The operational calculus, based on the Laplace transform, is traditionally
used to solve differential equations. This paper would show how to make use of
this method to prove the basic mathematical relations of life-insurance.

Riassunto

II calcolo operazionale. basato sulla trasformazione di Laplace, è tradizional-
mente utilizzato nella teoria delle equazioni differenziali. Nel présente lavoro viene
dimostrato come tale metodo pub essere applicato per dedurre le formule mate-
inatiche fondamentali dell'assicurazione sulla vita.
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