Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries
Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker
Band: 66 (1966)

Artikel: Uber ein neues Mass zur Beurteilung der Glatte von Punktreihen und
dessen Anwendung in der Ausgleichsrechnung

Autor: Hauger, Otto

DOl: https://doi.org/10.5169/seals-966939

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-966939
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber ein neues Mass zur Beurteilung
der Glitte von Punktreihen und dessen Anwendung

in der Ausgleichsrechnung

Von Otto Hauger, Basel

Zusammenfassung

Fiir die Beurteilung von ausgeglichenen Reihen ist die « Glitte» ein wesent-
liches Merkmal. Die iibliche Methode, mit Hilfe von dritten oder héheren Differenzen
die Glitte einer Reihe zu bestimmen, fithrt nicht immer zu verniinftigen Ergeb-
nissen. In einer neuen Definition des Gliattemasses werden die Nachteile des «klas-
sischen» Verfahrens weitgehend ausgemerzt; die Ergebnisse nach klassischer und
neuer Methode stimmen in einem iiberwiegenden Teil tiberein. Anhand eines Aus-
gleichsverfahrens ( Differenzengleichungsverfahren) wird das neue Glattemass prak-
tisch erprobt. Die Losung des dabei auftretenden mehrdimensionalen Minimum-
problems erfolgt mit Hilfe von zwei numerischen Rechenverfahren, die auf einem
Computer vom Typ IBM 1620 durchgefiihrt werden. Die Berechnungen (Sterbe-
tafel SM 1939/44) zeigen, dass das neue Glittemass im allgemeinen verniinftige
Werte liefert.
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1. Einleitung

Die fir die Beurteilung einer ausgeglichenen Reihe massgebenden
Merkmale sind ihre Gliatte und ihre Abweichungen von den rohen Beob-
achtungen. Unser Augenmerk richtet sich in dieser Arbeit ausschliess-
lich auf das erste Merkmal, auf die Glitte.

In der Lateratur, die sich mit der Ausgleichung und deren Beur-
teilung befasst, sind eingehende Betrachtungen und Untersuchungen
iber die Glatte nur vereinzelt vorhanden. Natiirlich ist das darauf
zuriickzufithren, dass die iibliche Methode, mit Hilfe von dritten oder
héheren Differenzen die Glidtte einer Reihe zu messen, 1m allgemeinen
als befriedigend anerkannt wird. Diese Methode ist dusserst einfach
in ihrer Anwendung, und sie fithrt bei Ausgleichungen im Versiche-
rungswesen fast immer zu verniinftigen FErgebnissen. Der englische
Mathematiker Bizley [1]!) hat jedoch in seiner Arbeit « A Measure of
Smoothness and some Remarks on a new Principle of Graduation» die
Miéngel dieses klassischen Masses aufgezeigt, und es ist ithm gelungen,
ein neues Glittemass zu definieren, welches diese Mingel vermeidet.
Die originelle Arbeit von Bizley behandelt jedoch nur kontinuierliche
Kurven.

Das Hauptziel der vorliegenden Arbeit 1st es, fur den fir die Praxis
viel interessanteren Fall der diskreten Reihe ein Glattemass zu finden,
welches nicht mehr mit den Méngeln des klassischen Masses behaftet,
jedoch in der Anwendung diesem ebenbiirtig ist.

Das Differenzengleichungsverfahren, das die ausgeglichenen Werte
in der Weise bestimmt, dass die Summe aus der Glitte der ausgeglichenen
Reihe und ihren quadratischen Abweichungen von den rohen Daten
minimal wird, erlaubt es, das neue Glattemass direkt in einem Aus-
gleichsprozess zu verwenden. Im allgemeinen ist dieses Minimumproblem
nur mit Hilfe numerischer Methoden zu losen. Im zweiten Teil dieser
Arbeit werden solche Verfahren beschrieben, deren praktische Durch-
fithrung jedochnur mittels einer elektronischen Rechenmaschine méglich
1st. I'iir derartige Berechnungen stand uns der Computer IBM 1620 (60 K)
im Rechenzentrum der Universitit Basel zur Verfiigung.

1) Die in eckige Klammern [] gesetzten Zahlen weisen auf das Literatur-
verzeichnis hin.



A: Die Glatte einer Reihe
2. Die verschiedenen Definitionen der Glitte

2.1. Die klassischen Definitionen

Bevor wir uns mit den klassischen Definitionen der Glitte befas-
sen, wollen wir die beiden Begriffe « Reihe» und «Kurve», die wir im
folgenden immer wieder verwenden werden, definieren.

Eine «Reihe» ist eine Folge von reellen Zahlenpaaren (x;,y;)
1=1,2,...,n, deren Reihenfolge durch den Index 7 genau fest-
gelegt ist. Diese Zahlenpaare lassen sich als Punkte in der euklidischen
Ebene darstellen.

Unter einer « Kurve» verstehen wir die Menge aller Zahlenpaare
(z(t), y(t)), wobei t alle Werte des abgeschlossenen Intervalls [a,b]
annimmt. z(t) und y(f) sind reelle, mindestens dreimal stetig differen-
zierbare Funktionen. Wir kénnen eine solche Kurve auch als Spur
eines Weges in der euklidischen Ebene auffassen.

Es ist allgemein iiblich, als lokales Glittemass einer Reihe die
absoluten Betrige oder auch die Quadrate von dritten oder hoheren
Differenzen zu verwenden; also

A3y, oder (43y;)?.

Die entsprechenden Masse fir eine Kurve sind

Die Summen | |
DV Ay oder > (4%,)*

iiber die ganze Reihe bzw. die Integrale

By @y \*
1£Y 35 oder —y) ds
dma ‘ dx®

iiber die ganze Kurve definieren das globale Glittemass der Reihe
bzw. der Kurve. Dabei ist die Reihe bzw. die Kurve um so glitter,
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je kleiner diese Werte ausfallen. Diese Glittemasse wollen wir im wei-
teren als die klassischen bezeichnen.

Da mit steigenden Werten die Gldtte abnimmt, sind diese Grossen
im eigentlichen Sinne des Wortes keine Gldttemasse. Sie messen die
Abweichungen von der idealen Glédtte, und es wire deshalb viel
logischer, von Unglittemassen zu reden. Trotz dieser sprachlichen
Unlogik wollen wir weiterhin den Ausdruck Glittemass dafiir ver-
wenden.

Viele Mathematiker und Statistiker (2], [3], [4], [5]) sind der
Ansicht, dass diese klassischen Gldttemasse die in der Praxis gestellten
Anspriiche zur Geniige befriedigen. Die folgenden Uberlegungen, die
teilweise der Arbeit von Bizley [1] entnommen sind, zeigen deutlich,
dass sie nicht immer verninftige Ergebnisse liefern mussen.

Betrachten wir die Funktion y = e* (x > 0), so ergibt das lokale

| d®
klassische Mass | — y im Punkt (z,¢) den Wert e®. Mit wachsen-

| da3 |
dem z steigt diese Grosse, d.h. die Kurve wird immer weniger glatt.
Wenn wir bedenken, dass diese Kurve mit zunehmendem z immer
weniger von einem geradlinigen, also von einem ideal glatten Verlauf
abweicht, so miissen wir zugeben, dass das klassische Mass in diesem
Falle ungeeignet 1st.

Die dritte Ableitung der Umkehrfunktion z =1In y (y > 1) hat
den Wert 2/y5.

Der Verlauf der Gliatte dieser Funktion, welche die gleiche Kurve
wie oben darstellt, 1st in dieser Form durchaus verniinftig. Fir den
Punkt (z,e”) erhalten wir den Glittewert 2/e¢**. Je nachdem, von
welchem Standpunkt aus die Kurve betrachtet wird, liefert das klas-
sische Glittemass einmal den Wert ¢” und einmal den Wert 2 /™.

Im néchsten Beispiel liegen die Punkte der Reihe, deren lokale
Glatte {A?’yi% wir messen wollen, auf der Kurve

1000
1000 — z

y:

Wie die Tabelle 1 zeigt, nimmt auch in diesem Falle das Glatte-
mass immer mehr zu, je stérker sich der Verlauf der Reihe einer
Greraden nihert.



Tabelle 1

1000
: - A2, A3,
r Y= 1500 —= Ay Yy Y
994 166,7
83,3
995 200 16,7
50 16,6
996 250 33,3
83,3 50,1
997 333,3 83,4
166,7 249 9
998 500 333,3
500
999 1000

Aus den beiden Beispielen sehen wir, dass die klassischen Masse
nicht mehr gentigen, sobald der Verlauf der Kurve bzw. der Reihe
zu steil wird.

Neben diesen wichtigsten Glattemassen gibt es noch weitere Krite-
rien, welche fiir die Beurteilung der Glitte vorgeschlagen worden sind.

So vertritt Ammeter [5] die Auffassung, dass jede Kurve, die
sich durch einen analytischen Ausdruck darstellen ldsst, glatt sei, und
dass es, wie er auf Seite 32 hinzufigt, «... wohl keinen Sinn (hat),
den Unterschied in der Gliatte zu untersuchen, welcher zwischen zwei
analytischen Kurven, z.B. Parabel und Exponentialkurve, besteht».
Naturlich ist es zwecklos, sich iiber die Gliatte einer Kurve zu unter-
halten, wenn die Wahl des Kurventyps gar nicht mehr zur Diskussion
steht. Hingegen kommt es insbesondere auch im Versicherungswesen
héufig vor, dass wir aus mehreren Kurventypen einen auswéhlen
missen. In einem solchen Falle ist die Frage nach der Gliatte der ein-
zelnen Kurven durchaus berechtigt.

Nach Henderson [2] weisen Kurven, welche wenige Parameter
i ihrem formelmissigen Aufbau besitzen, einen glatten Verlauf auf.
Ebenso vertritt Barnett [6] einen dhnlichen Gedanken, wenn er eine
Reihe, die moglichst nahe an den Verlauf einer einfachen mathe-
matischen Funktion kommt, als glatt bezeichnet.

Unserer Ansicht nach lassen alle diese Kriterien dem subjektiven
Empfinden einen viel zu grossen Spielraum, und sie sind fiir quanti-
tative Messungen der Gldtte nicht geeignet.
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Ein weiteres Mass, auf das Niedermann [7] hingewiesen hat, ver-
langt von einer glatten Reihe, dass die folgenden Bedingungen erfiillt
sind :

(A 1y)? < (A'y,)?
fir alle © und k. (1)
oder (4% 1y)* < (i)

Wie wir aus den weiteren Uberlegungen sehen werden, ist die
Bedingung (1) nur fir einen kleinen Teil aller glatten Reihen erfiillt.
Wir betrachten eine Reihe, deren k-te Differenzen an irgendeiner
Stelle mit Ausnahme der Randpunkte ein lokales Extremum besitzen.
‘ et ’ : s k k k, ' ‘
Es existieren also drei Werte 4%y, , A4%y,,,, und A%y, ., derart, dass

entweder
k - Ak k.
4 Ym < 4 Ym+1 >4 Yo

oder Akym - Akym-i-.l < Ak?/m+z gl]t

k kann die Werte 0,1, 2, ... annehmen, wobel wir unter A%, den
Wert g, verstehen.

Ein derartiges Verhalten ist beispielsweise dann gegeben, wenn
die Rethe an irgendeiner Stelle mit Ausnahme der Randpunkte ein
lokales Maximum oder Minimum oder einen Wendepunkt besitzt. Hs
18t wohl selbstverstdndlich, dass auch solche Reihen glatt sein kénnen.

Ist A%y, ., ein BExtremum im obigen Sinne, dann haben die bei-
den Grossen A* 'y . und A¥ 'y, verschiedene Vorzeichen. Beriick-
sichtigen wir die Gleichung

YR Ly
so folat (A2, > (4+1y, )2,
and (AR N2 > (A+y 92,
d.h. die Bedingung (1) ist nicht erfallt, womit gezeigt ist, dass auch
dieses Kriterilum nur in beschrinktem Masse Giltigkeit besitzt.
2.2, Dne Glitte evner Kurve nach Bizley

Der englische Mathematiker Bizley [1] hat, so scheint es uns,
das Wesen der Glitte richtig erkannt. Er hat die folgende einfache
und treffende Uberlegung gemacht.



Stellen wir uns vor, ein Auto fahre mit konstanter Geschwindig-
keit auf einem mit hohen Hecken flankierten Weg. Der Weg sei iiber-
all so breit, dass das Fahrzeug ungehindert passieren kann. Hat der
Fahrzeuglenker nur ganz gemichlich am Steuerrad zu drehen, wn
auf dem Weg zu bleiben, so sagen wir, der Verlauf des Weges sei glatt.
Muss er hingegen schnelle Umdrehungen austiithren, so ist die Weg-
fihrung unglatt. Etwas priziser ausgedriickt besagt dies:

Der Weg ist lokal um so glitter, je weniger Umdrehungen der
Fahrzeuglenker pro Zeiteinheit am Steuerrad ausfithren muss.

In die geometrische Sprache ubersetzt bedeutet dieser Satz: Je
kleiner die Anderung der Kriimmung pro Zeiteinheit ist, um so lokal
glatter 1st die Kurve. Da aber bei konstanter Geschwindigkeit Zeit
und Weg proportional verlaufen, lautet nun die endgiltige Fassung:

Sei im Punkte P der Kurve die Anderung der Kriitmmung dk(P)
1im Wegintervall ds, so ist der Quotient

¥P) = (d%?)‘l oder Z(P) =

| dR(P)

i
l i

ds

das Mass fiir die lokale Glitte der Kurve im Punkte P, und es gilt:
Je kleiner Z(P) ist, um so gliatter verliuft die Kurve in P.

Far die Beurteilung der globalen Gléitte einer ganzen Kurve K
verwendet Bizley den Ausdruck

f 3(P) ds.
K

Waren bei den klassischen Definitionen alle Polynome bis zu einem
gewissen Grade ideal glatt, so haben bei der neuen Definition nur der
Kreis und die Gerade das Glittemass 0.

Die wichtigste Eigenschaft des neuen Glittemasses, die sich sofort
aus der geometrischen Bedeutung herleiten 1isst, ist die Invarianz gegen-
tiber Translationen und Rotationen. Bedenken wir, dass die Glitte eine
zur Krimmung analoge geometrische Eigenschaft der Kurve ist, so
scheint es uns beinahe selbstversténdlich, dass diese Invarianz gilt.

Bizley [1] hat gezeigt, dass alle Vorwiirfe, die wir in 2.1. gegen-
iitber den klassischen Methoden erhoben haben, fiir das neue Mass
dahinfallen. Es ist ithm jedoch nicht gelungen, ein entsprechendes
Mass auch fiar diskrete Punktreihen zu finden. Wir wollen nun im
welteren versuchen, ein Mass zu entwickeln, das sich vor allem fiir
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Punktreihen eignet. Dabei wollen wir darauf achten, das neue Mass
fur die Reihen, soweit es moglich i1st, in Einklang mit dem Bizleyschen
Mass zu bringen.

3. Bedingungen fiir ein allgemeines Glittemass fiir Reihen

Wenn wir im nédchsten Abschnitt dazu iibergehen, ein Glitte-
mass fur diskrete Reithen zu suchen, so sind wir uns im klaren dariber,
dass dabei noch mehr Unsicherheitsfaktoren vorhanden sind als fur
kontinuierliche Kurven. Es ist deshalb von Vorteil, einige allgemeine
Bedingungen aufzustellen, anhand deren wir wenigstens bis zu einem
gewissen Grad prifen konnen, ob ein Vorschlag brauchbar oder un-
brauchbar ist. Die nachstehenden Bedingungen sind so minimal ge-
halten, dass sie nur ein rohes Kriterium fiir die Beurteilung eines
Glattemasses abgeben. Schlussendlich miussen wir immer noch auf
Grund unserer Erfahrung und unserer Vorstellung von der Glitte
entscheiden, ob ein Mass verniinftig ist oder nicht.

Bedingung 4

Die Anzahl der benachbarten Werte, welche beim Messen der Glatte
in einem Punkt oder zwischen zwei aufeinanderfolgenden Punkten
mitberticksichtigt werden, soll maoglichst klein sein.

Wollen wir die Glitte einer Reithe im Punkte P; oder zwischen
den Punkten P; und P, ; messen, so verlangt diese Bedingung, dass
dazu moglichst wenig weitere Punkte miteinbezogen werden miissen.
Einmal soll damit vermieden werden, dass der Formelapparat zu um-
fangreich und zu kompliziert wird. Sodann wird dadurch die Mdéglich-
keit gegeben, die Glitte einer Reihe bis nahe an ihren Anfang und
ihr Ende messen zu konnen. Es wird unser Bestreben sein, analog der

klassischen Methode mit vier Punkten ein Gliattemass zu definieren.

Bedingung B

Das Glidttemass soll invariant sein gegeniiber Kongruenztrans-
formationen (Rotation, Translation).

Mit dieser Bedingung erreichen wir, dass zwei Reihen, deren
Bilder auf der euklidischen Ebene kongruent sind, den gleichen
Glattewert besitzen, unabhingig davon, wo sie auf der Ebene liegen.



76 —

Die Glitte ist demnach eine geometrische Eigenschaft der Reihe wie
etwa die Winkel zwischen den die einzelnen Punkte der Reihe ver-
bindenden Strecken. Im Gegensatz zum klassischen Mass, das diese
Bedingung nicht erfiillt, soll es nun fur den Glittewert unwesentlich
sem, von welcher Seite aus wir die Reithe betrachten.

Bedingung C

Stark unglatte Reihen sollen einen grossen Glidttewert besitzen.

Die Reihen, die wir in der Praxis zu beurteilen haben, sind in
den allerwenigsten Féllen stark unglatt. Es sind meistens bereits aus-
geglichene und folglich auch mehr oder weniger glatte Wertfolgen.
Von einem gewissen Grad der Ungldtte an ist es uninteressant, den
genauen Glittewert zu kennen. Finzig wichtig in einem solchen Falle
18t es, dass das Mass eine stark unglatte Rethe mit einem hohen
Glattewert anzeigt. Da uns in diesem Bereich die Erfahrung und die
Vorstellung von der Glitte vollstindig fehlen, ist es nicht méglich,
fir stark unglatte Reihen feinere Kriterien anzugeben.

Bedingung D

Im Grenzfalle, wenn die Punkte der Reihe auf einer Kurve gegen-
einanderstreben, soll das neue Mass in das Bizleysche Glattemass
itbergehen.

Da Bizley [1] fir Kurven bereits eine befriedigende Losung ge-
funden hat, wiirde es befremden, wenn diese Bedingung nicht erfullt
wire. Der gegenteilige Iall konnte als Hinweis dafiir aufgefasst wer-
den, dass eimnes der beiden Masse nicht richtig ist.

4. Vorstufen zu einem neuen Glattemass

4.1. 1.Versuch

Be1 unserem ersten Versuch, ein neues Gliattemass zu definieren,
wollen wir von der bekannten Tatsache ausgehen, dass in jedem
Punkt einer Kurve das Produkt aus Krimmung und Radius des
Kriitmmungskreises gleich 1 ist.

Wir postulieren, dass auch fir eine diskrete Reihe die genannte
Beziehung zwischen Krimmung und Kriiommungsradius gilt.
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Durch drei aufeinanderfolgende Punkte 4, B, C einer Reihe (siche
Figur 1) ziehen wir einen Kreis K. Lassen wir die Punkte 4 und C
auf einer Kurve gegen B streben, so geht der Kreis K in den Kriim-
mungskreis der Kurve im Punkte B iiber.

Figur 1

”

10

(91

1 5 10 15 T

Demnach liegt es nahe, diesen Kreis K als «Kriimmungskreis
der Reihe im Punkte B» zu definieren. Durch die drei Punkte 4, B
und C ist der Kreis K eindeutig bestimmt und somit auch die Linge
seines Radius »(B).

Mit Hilfe des Postulats, das wir zu Beginn dieses Abschnitts
aufgestellt haben, 1st es uns moéglich, den Betrag der Krimmung
k(B) im Punkte B der Reithe anzugeben:

k(B)| = ! ]

- r(B)

Fiar die Bestimmung des Vorzeichens von %(B) mégen wir uns
an die folgende Vorschrift halten.

Bewegen wir uns auf der Geraden durch 4 und C in der Richtung
von 4 nach C, so ist die Krimmung positiv, wenn der Punkt B zu
unserer Rechten, negativ, wenn er zu unserer Linken liegt. Beispiels-
weise 1st 1n Figur 1 k(B) negativ und k(C) positiv. Im weiteren wollen
wir in gleicher Weise auch den Radius des Krummungskreises r(B)
mit einem Vorzeichen versehen.
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Bizleys Vorschlag, den Ausdruck

- Kriitmmungsénderung
~ Lénge des Weges

fiir das Glittemass zu verwenden, fithrt uns bei konsequenter Uber-

tragung vom Kontinuierlichen ins Diskrete auf die Formel far die

Glatte z2(4,B,C,D)

K(B)—K(O)|

S

£(4,B,C,D) =

; (2)

sofern s die Linge des Weges zwischen B und C bedeutet.

Die Formel (2) definiert die Gldtte in irgendeinem Punkte der
Reihe zwischen B und C. Wir konnen sie aber auch als durchschnitt-
liche Glédtte der Reihe zwischen B und C auslegen. Folglich berechnet
sich nun die «integrale Glidtte» zwischen den beiden benachbarten
Punkten B und C nach der Formel

C

f k(B) — k(C)] ” )

S

B

Treffen wir die Annahme, dass die durchschnittliche Glatte zwischen
B und C konstant 1st, so kénnen wir folgendermassen weiterrechnen:
¢
E(B) —K(C) | \ |
@ = A2 (”fwzk@wu@. n

S
B

Anstelle des absoluten Betrags von k(B)—k(C) wollen wir das
Quadrat davon verwenden, und es ergibt sich folgende Definition:

Das Gléattemass z(4,B,C,D) einer Reihe zwischen den zwei auf-
einanderfolgenden Punkten B und C berechnet sich nach der Formel

2(4,B,C,D) = (k(B)—k(C))2. - (5)

Setzen wir die Krimmungsformel ein, so kénnen wir (5) folgen-
dermassen weiterfithren:

Zuﬁﬁmz@&_w%ﬁ{%gjgy e
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Somit berechnet sich beispielsweise die Glitte der aus 4 Punkten
bestehenden Reihe der Figur 1 wie folgt:

r(B) = —4,  r(C) = 4,
2(4,B,0,D) = (—1—1)2 = 0,25.

4

Um die Glétte zwischen den beiden benachbarten Punkten B
und C angeben zu kénnen, benétigen wir die Koordinaten der 4 Punkte
A, B, C und D. Damit ist die Anzahl der verwendeten Punkte auf
ein Minimum beschrinkt worden, und die Bedingung 4 in 3. ist
erfallt. Das gleiche gilt fiur die Invarianzbedingung B, da bekanntlich
Kreise und Strecken, die einzigen Elemente, die in (5) und (6) ver-
wendet werden, invariant sind gegeniiber Kongruenztransformationen.
Nach der Art, wie wir zu Beginn dieses Abschnitts die diskrete Krium-
mung definiert haben, ist leicht zu erkennen, dass auch die Be-
dingung D erfillt ist. Es muss dabei nur beriicksichtigt werden, dass
die Formel (2) bis auf das Quadrieren dem Bizleyschen Glittemass
entspricht. Die Bedingung C, die fir unglatte Reihen einen hohen
Glattewert verlangt, wollen wir etwas genauer untersuchen.

Figur 2

Das mn (5) und (6) definierte Glidttemass hefert fir die Reihe
E,F,d, H der Figur 2 den gleichen Wert wie fir die Reihe E, F', G, H’,
da die Radien der drei Kreise K, K,, K, alle gleich gross sind. Dies
widerspricht jedoch unserer Vorstellung von der Glitte. Die Reihe
E,F, G, Hist bestimmt viel weniger glatt als die Punktfolge I, I, G, H'.
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Da es, um auf dem Kreis K, von F nach ¢ zu gelangen, zwei
Wege gibt, emnen tiber F' und einen uber F’, 1st es nicht verwunder-
lich, dass die Definition der Glitte in diesem Fall versagt.

Es besteht kein Zweifel dariber, dass die Unsicherheit und Un-
korrektheit eines Glittemasses um so grosser werden, je weiter die
Punkte der Reihe auseinander liegen. Uber das Verhalten der Reihe
zwischen den einzelnen Punkten liegen keine Informationen vor, und
wir miissen irgendeine Annahme tber den dortigen Verlauf der Reihe
treffen. Jedes Mass wird um so verniinftiger und korrekter erscheinen,
je mehr Informationen zur Verfiigung stehen, das heisst, je kleiner
die Abstinde der sich folgenden Punkte sind. Die Annahme, die dem
ersten Versuch zugrunde liegt, dass die Reihe zwischen den gegebenen
Punkten auf einem Kreis liegt, hat zu unbefriedigenden Resultaten
gefithrt.

4.2. 2. Versuch

Die Krummung einer Kurve ist bekanntlich folgendermassen
definiert:

In den beiden Punkten P, und P, (siche Figur 3) sind die beiden
Tangenten T, und T, an die Kurve K gezogen. Sie schneiden sich
unter einem Winkel de, der, je nachdem ob T, im positiven oder im
negativen Sinne gedreht werden muss, um in die Richtung von 7T,
zu kommen, ein positives oder ein negatives Vorzeichen erhilt. Be-
deutet ferner ds die Linge des Kurvenstiicks zwischen P, und P,,
so strebt der Quotient du/ds gegen die Kritmmung k(P,) im Punkte P,
sofern der Punkt P, auf der Kurve K gegen P, wandert.

Figur 3
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Der Grundgedanke dieser Definition spiegelt sich in dem Ausdruck

" Anderung der Tangentenrichtung
lIn e A e s — e s
Weglinge
wider, und dieser soll auch fiir eine Definition der Kriimmung im Dis-
kreten wegleitend sein, wobei natirlich auf den Grenziibergang ver-
zichtet werden muss.

Jede Kurve K, die durch die Punkte 4 und B geht (siehe Figur 4),
besitzt dazwischen mindestens einen Punkt P;, in welchem die Tan-

gente an K die gleiche Richtung aufweist wie die Sekante AB. Die
entsprechende Feststellung gilt auch fur die Punkte P, zwischen B
und C nnd P, zwischen C und D. Die Anderung der Tangentenrichtung
wird demnach durch die Winkel « und f angezeigt.

Figur 4
10 |-
5H
1 p—
| 1 1 | -
5 10 15 @

Verwenden wir als Weglinge zwischen P, und P, die Nédherung
(a+b)/2, so ldsst sich die Kriimmung %k(B) der Reihe im Punkte B
wie folgt definieren:

o 2a

uih) = a-+b - a+b’ (7)

2

Das Vorzeichen von « wird wie bei der kontinuierlichen Krum-
mungsdefinition festgelegt.



. 82 _

Das weitere Vorgehen ist nun gleich wie 1im 1.Versuch. Fir die
durchschnittliche Gléitte z2(4,B,C,D) zwischen B und € erhalten wir
analog zur Formel (2)

£(4,B,C,D) = ‘k(B)—,h,(gH (8)

S

Das Glattemass z(4,B,C,D) einer Reihe zwischen den beiden auf-
einanderfolgenden Punkten B und C wird analog zu (5) mit Hilfe von

2(4,B,0,D) = (k(B)—K0))? (9)

berechnet. Verwenden wir die Beziehung (7), so ergibt sich:

[ 2a 26 \?
2(4,B,C,D) = o Sl Sripe) (10)

Als Beispiel dazu wollen wir die in Figur 4 gezeichnete Reihe be-
nutzen.

7 7T
«0=——=, f=-—, a=b=c= 5,66,
2 2
2
—7 7
z2(4,B,C,D) = (- — ) = 0,308.
11,82 11,32, —_

Im Vergleich dazu ergab das im 1. Versuch definierte Glattemass
tur die gleiche Reihe einen Wert von 0,25 (vgl. Figur 1).

Es lasst sich leicht nachweisen, dass auch fiir den 2. Versuch die
in 3. aufgestellten Bedingungen 4 und B erfillt sind. Da wir die Kriim-
mung in Anlehnung an das kontinuierliche Vorbild definiert haben,
1st es wenigstens heuristisch sofort einzusehen, dass auch die Be-
dingung D (Ubergang in das Bizleysche Mass) gilt. Auf den genauen
Bewels mochten wir verzichten, da sich auch dieser Versuch als nicht
ganz befriedigend herausstellen wird. Die Bedingung C, welche fiir
stark unglatte Reihen einen sehr grossen Glidttewert vorschreibt, wol-
len wir etwas nidher betrachten.

Bewegt sich der Punkt B in Figur 4 auf der Geraden ¢ nach
oben, so wird die Reithe immer weniger glatt. Die Winkel o und f
werden dadurch grosser und streben gegen die Werte —z und 3 x.
Dagegen sind die Nenner von (10), (a+b) und (b+¢), die durch
diesen Vorgang ebenfalls zunehmen, nach oben nicht beschrinkt, so
dass das Gldttemass sehr klein wird, wenn B geniigend weit nach
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oben rutscht. Somit haben wir fur eine stark unglatte Reihe einen
kleinen Glittewert gefunden, und wir missen auch diesen Versuch als
misslungen betrachten.

5. Ein neues Gliattemass fiir diskrete Reihen
5.1. Definition

Bei der Herleitung des neuen Glittemasses wollen wir uns nicht
mehr in dem Masse, wie wir es in den fritheren Versuchen getan haben,
vom kontinuierlichen Vorbild leiten lassen. Vor allem wollen wir nicht
wieder die kontinuierliche Kritmmungsdefinition in irgendeiner Form
zu kopieren versuchen.

Wie vorher soll die Krimmung durch drei Punkte bestimmt sein.
Um die Invarianzbedingung im Abschnitt 3. nicht zu verletzen, stehen
uns fiir die Krimmungsdefinition lediglich die Strecken und Winkel
des durch diese drei Punkte gebildeten Dreiecks zur Verfiigung.
Natiirlich sollen moglichst wenige dieser Elemente verwendet werden,
um eine einfache Formel zu gewédhrleisten.

Figur 5

\%

Die Winkel beim Punkt B (siehe Figur 5) zeigen an, ob die Reihe
zwischen 4 und C flach verlduft oder ob sie dort eine starke Spitze
aufweist. Je grosser der Aussenwinkel « ist, um so spitzer verliuft die
Reihe zwischen 4 und C, also um so grésser muss das Krimmungs-
mass ausfallen. Geht o gegen =z, so soll die Kriitmmung unendlich
gross werden.
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Ist & = 0, d.h. liegen die drei Punkte auf einer Geraden, so soll
auch die Krimmung den Wert 0 haben. Eine einfache Funktion,
die ein derartiges Verhalten zeigt, ist tg «/2.

Bestiinde die Formel firr die diskrete Kriimmung ausschliesslich
aus Funktionen von Winkeln, so wirden geometrisch dhnliche Kon-
figurationen die gleichen Krummungswerte besitzen. Auf Grund der
folgenden Uberlegung erkennen wir jedoch, dass dies nicht richtig
sein kann.

Wir verschieben die Punkte 4 und € in Figur 5 auf den Geraden
g, und g, derart gegen den Punkt B hin, dass das Verhdltnis a/b
konstant bleibt. Die dabei entstehende Figur ist immer dhnlich zum
Ausgangsdreleck. Aus Analogie zur kontinuierlichen Krammungs-
definition muss durch diesen Vorgang die diskrete Kriimmung immer
grosser werden, da der « Weg», wihrend welchem die Richtungsinde-
rung erfolgt, immer kleiner wird, die Richtungsinderung o dabei aber
unveréndert bleibt.

Das  diskrete Krimmungsmass trigt auf einfache Art diesem
Verhalten Rechnung, wenn es proportional zu 1/(a +0b) oder zu 1/p
gesetzt wird. Unter Beriicksichtigung der vorher erwihnten Abhéngig-
keit von o« erhalten wir somit fir die Definition der Krimmung die
beiden einfachen Formeln:

_ tga/2
k(B) = _ga/ (11)
a+b
oder b 5.0
k(B == m. St (12)
p

m und m sind Proportionalititsfaktoren, deren Grosse wir noch fest-
legen mussen.
Wenn wir in Figur 5 den Punkt B bei festem 4 und C senkrecht
zu AC nach unten verschieben, so strebt die Kriimmung nach (11)
gegen einen endlichen Grenzwert. Iis gilt namlich (siehe Figur 5):
tga/2  ctga/2 1+cosa

a+b a+b sin o (a + b)

Ist » der Radius des Umkreises des Dreiecks 4BC, so i1st nun
mit Hilfe der Sehnenformel p = 2rsina leicht zu beweisen, dass (11)
beschrinkt bleibt. Wir haben jedoch verlangt, dass, wenn « gegen =
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geht, die Krimmung unendlich gross werden muss. Die Formel (11)
konnen wir somit ausschalten, und es bleibt als einzige Lisung in dieser
einfachen Form: ,
tg o/2 :
k(B) =m " (13)
p
Die Konstante m bestimmen wir so, dass (13) in die Krimmungs-
definition fiir eine Kurve ubergeht, falls die drei1 Punkte 4, B und C
auf einer solchen gegeneinander streben. Unter diesen Umstinden ergibt
sich fiir m der Wert 4. Den Beweis dafiir werden wir im Abschnitt
6.2. erbringen.
Die diskrete Kritmmung %(B) 1st demnach durch die folgende
Forme! (14) definiert:
4 tg O(.flg
k(B) = — : (14)
p
Das Vorzeichen von k(B) wird gleich festgesetzt wie im ersten
Versuch (siehe 4.1.).
Die durchschnittliche Glatte z2(4, B,C,D) zwischen B und C ergibt

sich analog zu (2) und (8) aus

| k(B) —k(C) |

2(4,B,C,D) = ; (15)
Das Gldttemass z(4,B,C,D) erhalten wir analog zu (5) und (9) aus
2(4,B,C,D) = (k(B)—k(C))2 (16)

Bezeichnen wir die Punkte der Reihe mit 4, die Aussenwinkel
% bel 4; mit «; sowie die Strecken p zwischen 4,  und 4, , mit p,,
so ergibt sich fir die Gesamtgldtte einer aus n Punkten bestehenden
Reihe R, die Formel

2
|
o
=
|
o

Z(B) = X a(di, di, Ay, Aiyg) = ) (R(A)—k(4,,))?
=1 i—2
2 (dtga /2 4tga;, /2
_ E( bal _ galj—l/ ). (17)
i=2 Pi Piy1
Sei a; die Strecke zwischen 4; und A4, ,, so erhalten wir mit
der Formel Z(R)
ZM(R,) = — (18)
M a
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ein Mass fiir die durchschnittliche Gliatte der Reihe. Der Ausdruck (18)
lehnt sich an eine Formel aus dem kontinuierlichen Bereich an. In
dieser wird der Durchschnitt einer Funktion lings eines Weges berechnet
aus dem Integral iiber diese Funktion lings des Weges dividiert durch
die Linge des Weges.

5.2. Ehgenschaften

Bevor wir priifen, ob alle in 3. aufgestellten Bedingungen erfiillt
sind, wollen wir eine weitere geometrische Eigenschaft der Kriimmungs-
formel (14) kennenlernen.

Alle Punkte B’ (siehe Figur 6), die unterhalb der Strecke AC
auf dem Kreis K liegen, besitzen zusammen mit 4 und € die gleiche
Kriimmung wie 4, B, C, da ihre Aussenwinkel alle gleich « sind.

Figur 6

M = Mittelpunkt des

Kreises K
r = Radius von I{
p/Q = !NC’;
w = {NB?
q=QN|
A, B, C sind Punkte der
Reihe

In der Figur 6 gelten die folgenden Winkelbeziehungen:

e == p = a' (@ == pnfD.



87

Mit Hilfe dieser Beziehungen lisst sich die Kriimmung (14) um-
formen zu
2tga/2 2tg 2 2 2
. / oV _ p/__ = . (19

p/2 p/2  p/2 q q

k(B) = k(B)| =
Oder mit ¢ = 2r—w
1

— )

k(B) = |k(B)| =

Diese Formel (20) erlaubt es uns, eine Verbindung zum ersten
Versuch herzustellen. Der Kriummungsradius r» im ersten Versuch
wird in (20) durch das Korrekturglied w/2 verkleinert. Diese Korrektur
st jedoch nur dann wirksam, wenn die dren Punkte A4, B und C stark
von einem geradlinigen Verlauf abweichen. Die Formel (20) kann auch
als eine zum Kontinuierlichen analoge Beziehung zwischen Krium-
mung und Krimmungsradius aufgefasst werden. In erster Ndherung
ist K der Kriommungskreis, und die Kriimmung ist umgekehrt-
proportional zu dessen Radius r.

Wir mussen nun zeigen, dass die im Abschnitt 3. aufgestellten
Bedingungen auch tatsdchlich erfiillt sind. Weil das Glattemass
mittels 4 Punkten definiert wird und weil die Kriiommungsdefinition
(14) nur Strecken und Winkel des Dreiecks A BC verwendet, sind die
Bedingungen 4 und B erfiillt. Das gleiche gilt auch fiir D (Grenz-
tibergang ins Kontinulerliche). Den Beweis dafiur werden wir aller-
dings erst im Abschnitt 6.2. erbringen. Hs bleibt also noch die Be-
dingung C zu diskutieren, welche fir eine stark unglatte Reihe einen
grossen Glattewert verlangt.

Obwohl fiir eine unglatte Reihe das neue Mass (17) im allgemeinen
sehr gross wird, gibt es doch gewisse spezielle unglatte Konfigura-
tionen, fur welche (17) kein befriedigendes Resultat liefert. Treten
in einer Reithe grosse einmalige Spriinge auf, wie etwa in Figur T zwi-
schen 4; und A4,,, oder zwischen A4, und 4, ;, und folgt nicht un-
mittelbar danach ein Ricksprung, so zeigt das Gliattemass einen zu
kleinen Wert an. Da dieser Retoursprung fehlt, sind die Aussenwinkel
nirgends viel grosser als n/2; die Strecken p; konnen jedoch unver-
héltnisméssig gross sein, was beides zur Folge hat, dass die Kriim-
mungen und somit auch die Glattewerte in diesen Bereichen klein
bleiben.
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Fur diese Spezalfille 1st es deshalb von Vorteil, die Kriimmung
k(A,) mit einem Korrekturfaktor f von der Form

2 2
g T 0

f == (21)

2a0,,a;
zu versehen (siehe Figur 7). Dieser Faktor hat die Wirkung, dass bei
starker Unsymmetrie des Dretecks 4,_, 4,,4,,,d.h. wenn Min (a,_,, a,)
viel kleiner ist als Max (a;_;, a;), die Krimmung nicht mehr so sehr
von o; und p; (also auch von «; und Max(a,_,, a;)) als vielmehr von
o; und Min (a,_,, a;) abhingt. Etwas ungenauer ausgedriickt besagt
dies, dass durch den Faktor f in der Kriimmung der Punkt, welcher
A, am néchsten liegt, mehr berticksichtigt wird als der von A4, weiter
entfernte.

ot 7
Figur 7

Seien k; und z; das Kriimmungs- bzw. Glittemass, in welchen
der Faktor f beriicksichtigt ist, so ergeben sich analog zu (14) und
(16) die Formeln
dtga; /2 @i +ai

BA,) = -

29
P 2a;a; )

zf(Ai—-lsA-i’Ai+1’A‘i+2) = (k/(Ai)_kf(AiH))z- (23)
Bs 1st klar, dass dieser Faktor f den ganzen Formelapparat

grosser und komplizierter macht. Wir wollen deshalb nur dann von
ithm Gebrauch machen, wenn es wirklich nétig ist, d.h. wenn wir eine
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stark unglatte Rethe zu beurteilen haben. Die praktischen Beispiele
i den Abschnitten 7. und 12.2. werden zeigen, dass wenn eine Reihe
einigermassen glatt verlduft, die Unterschiede zwischen den Glattewerten
mit und ohne Beriicksichtigung des Korrekturfaktors unbedeutend sind.

6. Die Koordinatenformeln und deren Folgerungen

6.1. Allgemeine Formeln

Aus dem Kreis der vielen Formeln, die es erlauben, das Glittemass
direkt aus den Koordinaten der Rethenpunkte zu gewinnen, méchten
wir eine auswihlen, die, wie es uns schent, sich vor allem fur die
Berechnung mit Hilfe elektronischer Rechenautomaten gut eignet.

Die Idee, nach der wir in der Krimmungsdefinition (14) den
tg /2 bestimmen wollen, ldsst sich folecendermassen kurz skizzieren.

Figur 8

A, B und C selen drei aufeinanderfolgende Punkte einer Reihe
(siehe Figur 8). In B wollen wir die Krimmung bestimmen. Der Punkt
M wird auf der Geraden durch 4 und B so gewihlt, dass die beiden
Strecken | BC' und | BM | gleich gross sind. Setzen wir den Hilfspunkt
N auf der Geraden MC genau in die Mitte zwischen M und C, so ist
der Winkel » bei B gleich dem gesuchten Winkel «/2, und es gilt

_|on]
BN

(&)

tgo/2 = tgy (24)
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Die Koordinaten der drei Reihenpunkte 4, B und C wollen wir
mit (z,9,), (z4,Y,) und (z;,y;) bezeichnen.
Die Koordinaten des Punktes M, (z,y), missen die folgenden
zwel Gleichungen erfillen:
Geradengleichung AB: (Y—1Yy) (Xg—2;) — (T—23) (Yo—1Yy) = 0, o
S 25
BM| = |BC: (y—ya)®+ (x—29)% = (Y3—Ya)® + (23— x,)%

Das System (25) besitzt, da es quadratisch ist, zwei Losungen.

Der Punkt M kann auf beiden Seiten von B auf der Geraden AB
liegen. Da aber der in Figur 8 gezeichnete Punkt M fiir unsere Zwecke
der einzig richtige ist, miissen wir zu (25) eine weitere Bedingung hinzu-
fiugen. Die Forderung |
AM | = Max (26)

fihrt zusammen mit (25) zur folgenden Losung:

v mt (5 | WY (@t
o (Yo—41)2 + (xa—x4)? ’
(27)

(Ys—Y2)® + (23— 1,)" '
(Yo—y1)® + (23— 1y)?

Y = Yo+ (Y2— Y1)

Als Abkiirzung setzen wir
(yz “y)? + (wf~x)
Far die Koordinaten (Z,%) des Punktes N folgt somit:

:le + 3:3 35'2““ .CCI
- - +

Bedenken wir, dass

p = | (&— 2%+ (go— 9
ist, so kénnen wir mit Hilfe von (24) den Betrag der Kriammung 4(B)
angeben: (30)

\k(Blwétl/ N R ) (7R SN .
(25202 + (45— 10)?) - [(wo—a + (23—, ) Q) + (Ya—va + L
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Setzen wir in der Geradengleichung (25) den Punkt C (z5,15)
ein, so ergibt sich:

(Ys— Ya) (Ta— 1)) — (T3—T) (Yo— 1) = L. (31)
Die Grosse [ besitzt nur dann den Wert null, wenn C auf der

Geraden AB liegt. Das Vorzeichen von [ gibt daritber Auskunft, ob

der Punkt C rechts oder links der Geraden AB liegt.

Wiihlen wir fiir die Kriimmung k(B) das gleiche Vorzeichen wie [,
so 1st zusammen mit (30) die Krimmung eindeutig bestimmt. Wir er-
halten somit das gleiche Vorzeichen wie im ersten Versuch (siehe 4.1.).

Selbstverstindlich liessen sich weitere Formeln fir die Krim-
mung angeben, vor allem solche, in welchen das Vorzeichen mit-
enthalten 1st. Jedoch sind diese Formeln etwas komplizierter als (30)
und besitzen, da mindestens einmal die Hessesche Normalform der
Geraden verwendet wird, meistens ein Wurzelzeichen mehr. Da auch
elektronische Rechenanlagen relativ viel Zeit fiir das Wurzelziehen
beanspruchen, haben wir einer solchen Darstellung die Formeln (30)
und (31) vorgezogen.

Fir den Korrekturfaktor f (siehe (21)) erhalten wir die Formel

. (yzﬁ_yl)z + (2 2ﬁ$1)2_+(1/3iy2)2f(x3—‘r2)r2 (32)
2 l/[(yz"“?/i_)2+ (%2 —21)%] - [(Y3— o) ® + (T3—32)%]

Die endgiiltige Berechnung der Glitte einer Reihe R, bestehend
aus den n Punkten 4, (1 = 1,2, ..., n) ergibt sich aus

Z(Rn) = E (k(‘4i)_k(Ai+1))2: (33)
=2
wobel Betrag und Vorzeichen von k(4,) aus den Gleichungen (30),
(31) und evtl. (32) entnommen werden konnen.

6.2. Das Verhalten der diskreten Kriimmung und Glitte
beim Ubergang in den kontinuterlichen Bereich

Wir wollen uns in diesem Abschnitt tiberlegen, wie sich die dis-
krete Kriimmung und Glétte verhalten, wenn die Punkte einer Reihe
auf emer Kurve gegeneinander streben.
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Die drei aufeinanderfolgenden Punkte 4, B und C emer Reihe
gehen auf einer Kurve K, welche durch (x(t),y(t)) gegeben ist, gegen
den Punkt P, der auf K zwischen 4 und C liegt. Die Koordinaten
dieser Punkte haben die Form:

A (x(ty),yt)) = (21,91,

B: (2(ty),y(t)) = (22,7s), (h<ty<ty),

C: (2t ylt) = (@395),  (h<te<ty),
( to) s Y( 0))

Fithren wir die folgenden Bezeichnungen ein
o= g, 2" =a"lk), ="=1"),
Y=y, ¥ =y"t), Yy =y"t),

so gilt fir die kontinuierliche Kriimmung k(B) im Punkte B die
folgende Formel (34) (vgl. beispielsweise A. Ostrowski, «Vorlesungen
tiber Differential- und Integralrechnung», Bd.2, p.397):

Bpy =LY (34)

(22 + y'?)3

Wir missen zeigen, dass, wenn A4, B und C gegen P streben,
sich die Grosse m in

to o /2
K(B) = m -1
P

so bestimmen lisst, dass k(B) — | k(B) gegen 0 geht (siehe 5.1. (13)).

Wir gehen aus von der Formel (30), die wir in etwas anderer Art

schreiben wollen:
, R? + K2
k(B)| = ml/ 1\@ C (35)

mit b = [(z3—x5) ¢, — (Ta—2,) qs]%
Wy = [(ys— Y2 1 — (Y2— 1) ©=]*
N? = {(Is“f’q) * (U~ yl)z}
' {[(333_ o) @1+ (To— 1) €)% + [(Ya—¥2) @1 + (Y2— Y1) 92]2} )
G = (Ys—y)? + (2,—x,)%
G = (Ys—Y2)2+ (23— )%
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Fiir die folgenden Uberlegungen setzen wir voraus, dass z(t) und
y(t) mindestens fiinfmal differenzierbar seien. Nach der Taylorschen
Entwicklung im Punkte (z,,1,) gilt dann: (36)

Yo— Y1 = (fa—t) ¥ — 5 (—1)%y" + 5 (a—t)3y" + 0[((,—2))*],
To— &y = (—1) &' —5 (la—1)% 2" + § (fa—1)% 2" + 0[ (T, —1,)%],
Ys— Yo = (3—t) Y + 3§ (t5—1)2y" + § (l—1:)3y” + O[(t3—1,)*],
Tg— Ly = (ly—tg) 3" + 5 (l3—15) 22" + § (1) 2" + 0[(t;—1p)*]-

Demnach 1st:

7 = (a1, )2(x'2+ ﬂ)—(t —W Wy e

Mit Hilfe der binomischen Entwicklung erhalten wir:
@ = (fa—t) S —5 (la—8)* T + (t,— )3 U + O[(l,— "], (37)
S = (2'2+ y')4,

p_ Yyrae
S
7 (y'y"+a'x") + L (y?+2"®)  T®
B 28 8S "

Aus analogen Uberlegungen ergibt sich:
Qo = (tg—1tx) S+ 3 (tg—1)* T + (t;—1,)° U + 0[(t3—15)*].  (38)
Nun kénnen wir die Grossen A und h3 berechnen:

W = {[(ts—1a) (ta—1ty) &' S — 3 (b5—1y) (ta—t)22" T+ L (5—1)? (ts—t)) 2" S
+ (ty—ty) (ta—1)3 2" U —L(t,—t,)2 (t,—t)22" T+ L (t,—15)3 (t,— ;) 2 S]
—[(ts—ta) (t2— )13 S+ 5 (ts—ty)® (fa—ty) o T'— 5 (t5—ty) (,—1,)% 2" S

F (b=t (ty—t) & U =L (ty—t)? (la=t)? 2" T+ (ta—ty) (la—t)3 2" S]
+ 0[(ts—1,) (t,—t,) 4]+0[(t3—t (t—1,)%]
+ 0[(ts—t2)® (f2—11) 2] + O[(f5—1)* (ta—11)]}?
= {(ts—t2) (ta—ty) (bs—t) [32" S — J &' T+ ((t5— 1) — (ta—1))
(e S—a' U)+ 0[(t;—1y)2]]}2.
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Da t, <t, <t; 1st, ist die verkiwrzte Schreibweise O[(t;—t,)?] fir
das Restglied zuldssig.
W= (= 1)% (tp— 1) (s —1y)?

A" S= 12 T ((ty—t) — (ta—t) (Lo S~ U) -+ O[{ty—t,) 2]}
und analog (39)
h = (ts—1a)® (f2—11)® (t5—11)*

Y Sy T+ (st — (ta—1) (3" S~y U) + 0[(t,— ) 2]}

Also
W4 hE = (t3—19)2 (ta—t,)2 (E3—1,)2
(LS gy + LTy — IS8T (@ y )

+ [t (1]

[z S=2'T) (y 2" S—a' U) + (y"S—y'T) (+y" S—v/ U]#O[t —t)) %]}

Setzen wir far S, T und U die ursprunglichen Werte (37) ein,
so erhalten wir:
18 = (a1 =) =t [y = )+ [yt = ()]
[1 Sz 33”17’”+ yrpjf/f) U(wfwu_l_yf‘ju) S’T(aj’m”’w{—y’y”’)—}—TU(‘ 12+y12)]

+ 0[(ty—t,)2
Nun i1st aber: [t ]}

SU(z'z"+y'y") =TU(z*+ y'?).
Also gilt:
Wi+ e = (t3—t5)2 (t,—1,)2 (ta—1 )2{'1"(3;’;/ —y'x")2+ [(t3—ty) — (ta—1ty)]
. [’é .IS’(S :B/fxm + JHJHI) T(‘erm_*_ y/Jm )] + O[(tg_tl)z:l}-
Durch Ausmultiplizieren und Umordnen erhalten wir:
ﬁ+@=u_m@4wa4w
{ ( J r rr)2+71 [(t —f ] —t ][(l,’l I J T )( r, m y,ﬂ:m)]
+ O (t,—1,)2]}.
Setzen wir [( s~ 1) ]}
L — %[(fi}’y” yf n) (:1:/ ym yl .’E”’)],
so konnen wir schreiben:
h? + hg - (t - )2 (t _t1)2(t3_t )2
{ (z'y"— ”)2+[ (t3—1ts) — (ta—1y) ]L+ O[(ty -t1)2]} (40)
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Die Grosse N2 in (35) berechnen wir auf die folgende Art:

(x3—xy) = (t3—1)) [CL + ””” z" ((ta -t5) _tl))+ 0[(t3—t1)2ﬂ,
(Ya—yy) = (ta—t) [y +5y" ((ta—1ta) — 2—751)) +0[(t,—11)%],
(23— )% + (Y3—11)® =
= (t3—ty) [l'2+ Y2+ [(ts—ty) — (ta—t)] (2’2" + y'y") + 0[@3_751)2]]-
Weiter 1st:

(z3—22) @ = (bs—ty) (o—ty) [2' S+ § (t—tp) 2" S —, (b~ )ff T +0((ts—t)?]]
(Zo—21) o = (t3—1a) (f2-t) [wls_’-;*(tz_tl) 'S+ 4 () ' T+ O[ ts“tl ]],
(

Ty3—Ty) Gy + (Ta—4) ‘12)2 = (f3—1p)? {fa—1,)®
. [4 22824+ 22" S(x" S+ 2'T) [(tg—1o) — (t—1t) ] + O[(t3ﬁ~t1)2]].

(

Analog dazu:

((ys_yz)91 + (Y2— Y1) 92)2 =
= (ts—tp)? (t,—1 )2 [4y2 2 + 24 S (y" S + y' T) [(ts—ts) — (ba—11) ]+ O[(t5—1,)%]] -

Also erhalten wir:

N2 = (ts_t1)2 (tz“tz)z (tz—tl)z [486 + [(t:a_tz) - (t2_t1)] (485T + 45’5T)
+ O[(ts—1,)?]].
Setzen wir
W — 8($'2+ yfz)g(yfyn + wlmll),
so gilt:

NZ = (t3—1,)2 (83— 14)2 (f,—£)? [4 (2'2 4+ y' 23 4 [(tg—1y) — (Ea—E)] W
+ 0[(t;—1y)%]]. (41)
Aus (40) und (41) erhalten wir:

h1+h2 Ty =y ")+ [(t—ty) - tg—t )] L+ 0[(t;—11)?]

N2 (@4 B o [(ty—ty) — (fa—t)] W+ O[(ts—1))%]
1 (2'y"—y'z")?

T, (mlyf/ f ”)2]:/V
T 16 (a2 +y2)8 + [(ts—ts) = (t—t)] 485 64812 |

+0[(t3—11)%].
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Mit Hilfe der binomischen Entwicklung ergibt sich sodann:
B4 h2 1 2y —y'z" 1
[/12 — + [ = 4o [t — (ta—t)]

N 4@yt

L (m Y’ y s )W
' (a:.ry J,Q:”) SB 16 89 o], O[(t3_t1)2] L (42)

Setzen wir L und W ein, so erhalten wir:

]/}L?+h§ = J_r [1 d y J " = S == [(tg—tz) ]R + O[(tB"t ) ]

N? 4 (x4 yHi 4 ,
1 " " ' ’ (43)
mit , a'y"—y'x (2"y"—y'x") («'x" + y'y")
2 3 ( /2+ 1/2) ( 12+ yrg)g i

Aus dieser Gleichung (43) folgt aber, dass, wenn wir in (35) m = 4
setzen, die diskrete Kriimmung absolut genommen fir (f;-—1,) =0
(t, <ty <ty) in die kontinuierliche Form (34) iibergeht. Aus der Art,
wie wir in 4.1., 4.2. und 5.1. das Vorzeichen fiir die diskrete und kon-
tinuierliche Krummung festgelegt haben, ist leicht einzusehen, dass,
sobald die Punkte geniigend nahe beieinanderliegen, die beiden Kriim-
mungen das gleiche Vorzeichen haben. Die eben erwihnte Konvergenz
1st somit auch unter Bertuicksichtigung des Vorzeichens giiltig, und in
(42) und (43) ist unter diesen Umstinden das positive Vorzeichen einzig
richtig. Sobald t,) klein genug ist, konnen wir also schreiben:

(ts —
k(B) = k(B) + [(t;—ty) — (fa—1,)] B(ts) + 0[(25—1,)2].
Da aber x(f) und y(t) finfmal differenzierbar sind, gilt:
R(ty) = R(t,) + 0[(}a—1o)]
und somit auch:
k(B) = k(B) + [(ts—1s) — (ta—t)] Blty) + 0[(ts—1£1)%]  (44)
(b <ty <ty <ty).
Sei D (x(ty),y(ty)) ein weiterer Punkt der Reihe, welcher an C

anschliesst und ebenfalls auf der Kurve K gegen P strebt, so gilt
analog zu (44):

K(C) = B(C) + [(ty—ty) — (tz—1to)] Blto) + 0[(t,—15)?]  (45)
(fg <ty <Pg<<1hy).
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Wir miissen nun zeigen, dass, wenn die vier Punkte 4, B, C
und D auf der Kurve K gegen einen Punkt P streben, welcher auf K

zwischen B und C liegt, das diskrete Glattemass 2(4,B,C,D) in das
Bizleysche Mass Z(P) iibergeht.

Aus der Definition der Bizleyschen Glitte folgt:

k(B)—k(C
P) = hm - ( )f ( ) ~
B-P : BC:
C-P
B,CaulK
Also gilt es zu zeigen, dass
BB —HG)|  [MB)—KO)| (16)
BC| BC |

gegen 0 geht, sobald 4, B, ' und D auf K gegen P streben.
Mit Hilfe von (44) und (45) erhalten wir:

0< gy < | FBMO KB -HO)
| | BO] 'BC

YR . Vi %BO)+@_”I“ﬂ%;@ﬂ

o (t4 tg) — 2(t3“t2)+(t_t O[(t“ ]
= | Bito), BC] T BC

Damit 11n allgemeinen Fall, wenn R(¢,) == 0 ist, die diskrete Gldtte
in das Bizleysche Mass iibergeht, muss gelten:

43 L
lim T = {J, (47)
A->P BG
B->P
C-P
D-»P
A,B,C,DaulK
Diese Bedingung kénnen wir durch die folgende Uberlegung in
eine etwas verstindlichere Form bringen. Es 1st:

(ta—t) [ (&' (t) )2 + (4 (t))2 = |AB| + O[(ta— )2

Analoge Formeln gelten fiir 3BO - und |CD
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Die Bedingung (48)
. C’D — 2 BC AB3
57 o : LA o
A-=P BC

|
B->P ‘
C->P

I
=
~
H=
o8]
~—

" D->P
A,B,C,Daut K

18t somit gleichwertig mit (47).

Die zweite leferen/ CD —2|BC| + | 'AB| muss also bChHGHCI‘
gegen 0 gehen als BC |; oder was das gleiche bedeutet, CD’ —&BC‘ |
muss schneller Uegen BC’ —wAB‘ streben als ‘BC‘ gegen 0. ‘Dies 1St
beispielsweise dann erfullt wenn dle drer Strecken ’AB BC und
'OD| immer gleich gross sind.

Dass das diskrete Gldttemass nur unter der Bedingung (48) in
das kontinuierliche tibergeht, mag 1m ersten Moment enttduschend
wirken. Versuchen wir jedoch das Bizleysche Mass im Gegensatz zum
normalen Vorgehen dadurch zu gewinnen, dass wir zuerst mit Hilfe
von 4 Punkten der Kurve ein «diskretes Bizleysches Gléattemass»
bilden, wie wir das im zweiten Vorversuch 4.2. getan haben, und erst
dann den Grenziibergang durch das Zusammenziehen der vier Punkte
vollziehen, so miissen diese Punkte eine zu (48) analoge Bedingung
erfullen. Wir mussen eben bedenken, dass sich die ubliche Art, den
Grenzprozess durchzufithren, stark vom obigen Vorgehen unter-
scheidet. Bei der Definition des Bizleyschen Masses wird zuerst die
kontinuierliche Kriimmung in zwei Punkten der Kurve gebildet, und
erst dann wird der Grenziibergang durchgefithrt. Wenn wir beim
neuen diskreten Mass in gleicher Weise vorgehen, so kommen wir
immer zum richtigen Ergebnis unabhingig davon, wie die Punkte
auf der Kurve gegeneinanderstreben; denn wir haben ja gezeigt, dass
die diskrete Kriimmung in jedem Falle in die kontinuierliche iibergeht.

Mit diesem Hinweis diirfen wir wohl die Bedingung D in 3.
(Ubergang in das Bizleysche Mass) beim neuen diskreten Glittemass
als erfullt betrachten.

6.3. Spezialisierung

Bei den meisten Reihen aus der Praxis, insbesondere bei Zeit-
rethen, sind die einzelnen Punkte P, so gegeben, dass ihre z-Koordi-
naten bei fortlaufendem 7 um einen konstanten Wert steigen. Wihlen
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wir diesen konstanten Abstand als Einheit, so lassen sich die Formeln
(30) und (31) wesentlich vereinfachen. Setzen wir in (30) und (31)
(z;,,—x;) = 1, so erhalten wir:

| | (1_ Q2+ (Yo—Ys + (Y2—Y1) q)* .
‘k(B)l = 4 49
KB l/ (4 + (ys—1)?) [+ D+ (Ys— Y2+ (Y2— 1) 9)°] o
mit - l/l + (Y3—1y)*

S AL

Weiter gilt: P =By b 4ty = T4, (50)
Bekanntlich 1st das Vorzeichen von [ massgebend fir das Vor-
zeichen der Krummung k(B).

Unter der erweiterten Annahme, dass im ganzen Bereich der Reihe
der Betrag |y;.,— yii klein ist gegenuiber 1, ldsst sich eine weitere
Formel ableiten. Unter dieser Voraussetzung darf ndmlich in (49) die
Grosse g durch 1 angendhert werden. Somit ergibt sich aus (49):

I/ (Y3—2Yp + 4y)? (51)
[44 (Ys—1)2] (4 + (Ya—10)?)

Weiter wollen wir in (51) (y3— 1,)% gegentuber 4 vernachldssigen,
so dass wir als stchenstufe erhalten:

| —2 :
W) :41/(313 4y24+y1) _ 59)

Beachten wir noch die Formel (50), die das Vorzeichen von k(B)
regelt, so ergibt sich als Ndherungsformel fir die lokale Kritmmung
in B:

K(B) = A%y,. (53)

Die Voraussetzungen, die zu dieser Formel (53) sowle zu der
globalen Formel (55) fihren, seien hier nochmals erwéhnt:

1- (.’E,iJ_ —-l‘t)=1 (7;:1,2,...,%_1),
o (54)
2 | Yir1—Yil ist klein gegeniiber 1.

Es 1st klar, dass diese Ndherungen um so besser sind, je kleiner

die absoluten Betrige der y-Differenzen sind.
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Betrachten wir die folgende Formel (55) fur die globale Glitte

einer Reihe
n—3 n—3

ZR) = 3 (A2y,— A%y, )P = S, (45y,), (55)

1=1 1=1

die sich sofort aus (33) und (53) ergibt, so erkennen wir, dass wir
wieder zu der Methode der Glattebestimmung zurickgekommen sind,
die wir als die klassische bezeichnet haben. Da wir uns bei der Her-
leitung des neuen Gliattemasses ganz von der klassischen Idee gelost
hatten, 1st es um so erstaunlicher, dass diese als Spezialfall im neuen
Mass enthalten 1st. Es 1st nun auch erklérlich, dass, obwohl das klas-
sische Vorgehen zu vollstidndig falschen Resultaten fithren kann, es in
weiten Gebieten durchaus befriedigende Ergebnisse zeigt. Wenn ndmlich
die Bedingung (54) erfiillt ist, wie dies beispielsweise bei der Rethe der
einjihrigen Sterbewahrscheinlichkeiten der Fall ist, so stimmen das
neue und das klassische Mass tiberein.

Der Vollstindigkeit halber wollen wir ohne Beweis erwiithnen, dass
unter der Voraussetzung (54) auch die Glattemasse des 1. und 2. Versuchs
(siehe 4.) zu der Formel (55), also zur klassischen Definition fihren.

7. Numerische Beispiele

Da uns nun das Ristzeug fir die praktische Berechnung der
Glitte mit den in 6.1. und 6.3. abgeleiteten Formeln zur Vertiigung
steht, wollen wir an einigen Zahlenbeispielen das neue Glittemass
erproben. Es soll dabel versucht werden, vom praktischen Standpunkt
aus einige Kigenschaften zu beleuchten, um zusammen mit den in 5.2.
auf rein theoretischem Wege gefundenen Eigenheiten ein mdglichst
umfassendes Bild vom neuen Glittemass zu erhalten. Unter anderem
wollen wir auch prifen, wie empfindlich das Mass auf kleine Verschie-
bungen der Punkte reagiert.

1. Bewspuel

Die erste Reihe, deren Punkte wir durch ihre Koordinaten in
der Tabelle 2 dargestellt sehen, haben wir bereits im Abschnitt 2.1.
angetroffen. Wie wir dort gesehen haben, 1st

1000

T
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die dieser Reihe zugrunde liegende Funktion. Wir haben herausgefunden,
dass das klassische Glattemass fiir diese Reihe keine verniinftigen Resul-
tate liefert, da die dritten Differenzen 4%y zunehmen, wenn sich z dem
Werte 1000 néhert.

Tabelle 2

z y
994 166,7
995 200,0
996 250,0
997 233,3
998 500,0
999 1000,0

In der Tabelle 3 haben wir zu Vergleichszwecken die Resultate
der klassischen und der neuen Methode einander gegeniibergestellt.

Tabelle 3
- Betciah Neues Mass Klassisches Mass
) z (43y)y
994997 14,56 - 10—° 2,76 - 102
995-998 5,17 -10 25,10 - 102
996-999 1,30 - 10~ 624,50 - 102
994-999 21,03 -10-® 652,36 - 102

Die Werte des neuen Masses zeigen in dieser Tabelle den richtigen
Verlauf, indem sie abnehmen, je niher x dem Werte 1000 kommt,
d.h. je weniger die Reihe von einem geradlinigen Verlauf abweicht.

Um die Empfindlichkeit des Masses gegeniiber kleinen Verinde-
rungen der Punkte dieser Reihe zu priifen, gehen wir folgendermassen
vor:

Wir variieren die y-Komponente des Punktes (996,250) und stellen
fest, wie sich dabei der Glidttewert dndert. Die Tabelle 4 gibt dariiber
Auskunft.
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Tabelle 4
Geinderter Punkt Anderung | Wert der Glitte Anderung
T Y Ay Z A7
996 251.0 1.0 2,36 - 108 0,26 - 10-8
996 252.0 2.0 2,65 - 108 0,55 - 10-8
996 249.0 —1.0 1,89 -10-8 —0,21-108
996 248.0 —2.0 1,74 - 10-8 —0,36 - 108

Die obigen Resultate zeigen deutlich, dass fur diese Reihe das
neue Glittemass recht empfindlich gegeniiber kleinen Anderungen
der Koordinaten reagiert. Selbstverstindlich kann das Verfahren fiir
jeden weiteren Punkt der Reihe wiederholt werden; ein grundsitzlich
anderes Resultat wird dabei allerdings nicht herauskommen.

2. Bewsprel

Die beiden Reihen 4 und B, die wir in diesem Beispiel einander
gegenuberstellen wollen, sind in der Tabelle 5 durch die Koordinaten
ihrer Punkte festgelegt. Die Kurven, welche ihnen zugrunde liegen,
haben die folgende Form:

Reihe 4: y =¢%,  Reihe B: y = ¢*T%" 15, (56)
Tabelle 5
Reihe 4 Reihe B
T Y z Y
4,0 54,5982 4,0 53,6469
4.5 90,0171 45 89,4218
5,0 148,413 5,0 148,4046
5,5 244 692 5,5 245,6512
6,0 403,429 6,0 405,9835

Ohne diese Funktionen zu kennen, ist es gar nicht einfach zu
entscheiden, welche der beiden Reihen glitter 1st; um so mehr als
die klassische Methode ein ganz falsches Resultat liefert.
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Auf Grund unseres «Gefithls» von der Glitte sowie auf Grund
der Tabelle 5 und der Funktionen (56) lassen sich einige qualtative
Prognosen stellen.

1. Das Gléttemass wird bei beiden Kurven mit wachsendem z
eine fallende Tendenz zeigen. Das gleiche erwarten wir auch fur die
beiden Reihen.

2. Daraus folgt, dass die Funktion y = ¢” einen grosseren Glitte-
wert hat als y = ¢*"%%". Da wir von einem Gléttemass verlangen, dass
es invariant gegeniiber Kongruenztransformationen ist, muss demnach
auch y = ¢” den grosseren Glittewert besitzen als y = "% —15.
Also soll die Reihe B glitter sein als 4.

Die Tabelle 6 zeigt, dass diese Prognosen fiir das neue Mass erfillt
sind, wahrend beim klassischen Mass gerade ein entgegengesetztes
Verhalten vorzufinden ist.

Tabelle 6

2-Bereich Neues Gléittemass z Klassisches Glittemass (4%y)?
Reihe 4 Reihe B Reihe 4 ’ Reihe B
4,0-5,5 56,00 - 10-10 53,80 - 10-10 22,22 - 102 22 67 - 102
4,5-6,0 7,58 - 1010 7,28« 1020 60,39 - 102 61,61 - 102
4,0-6,0 63,58 - 1010 61, 08 -10-10 82,61 - 102 84,28 - 102

Gleich wie im ersten Beispiel prifen wir fir die Reihe A4 die
Empfindlichkeit des Glédttemasses gegeniiber kleinen Verschiebungen
eines Punktes. Aus der Tabelle 7 sehen wir, dass auch in diesem Falle
die Priifung befriedigend ausfillt.

Tabelle T
Geiinderter Punkt Anderung | Wert der Glitte| Anderung
® Y Ay Z AZ
5,0 148,414 0,001 6,3586 - 10-° 0,0005 - 10—®
5,0 148,415 0,002 6,3591 - 10~ 0,0010 - 10—®
5,0 148,412 —0,001 6,3576 - 10 | —0,0005 - 10~®
5,0 148,411 —0,002 6,3571 -10~* | —0,0010 - 10-®°
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3. Beispuel

Wie wir aus der Tabelle 8 lesen, unterscheiden sich die in diesem
Beispiel betrachteten 4 Reihen 4, B, ¢ und D nur dadurch, dass die
sich entsprechenden y-Komponenten ihrer Punkte um ein Vielfaches
von 10 verschieden sind.

Tabelle 8
o y-Werte der Reithen
z-Werte 4 ' B i C D
1 0,2 0,02 0,002 0,0002
2 0,1 0,01 0,001 0,0001
3 0,2 0,02 0,002 0,0002
4 10,0 1,00 0,100 0,0100
5 20,5 2,05 0,205 0,0205
6 19,9 1,99 0,199 0,0199
i 20,0 2,00 0,200 0,0200

Ziwischen den z-Werten 3 und 5 ist der sprungartige Anstieg bei
der Reithe 4 dem Betrag nach viel grosser als bei B, C und D. Wir ver-
muten deshalb, dass an dieser Stelle das normale neue Glittemass
fir 4 im Gegensatz zu den iibrigen Rethen unverniinftige Werte
liefert. Diese Vermutung wird durch die Tabelle 9 bestitigt. Das neue
Mass Z weist fur die Reithe 4 einen kleineren Wert auf als fir die
Reihe B. Erst wenn wir den Korrekturfaktor f (siehe (21)) mitberiick-
sichtigen, sind, wie die Tabelle 9 zeigt, die Gldattewerte auch fir die
Reihe 4 vernunftig.

Tabelle 9
Reihe 4 Reihe B Reihe C Reihe D
Neues Glattemass Z 213 2,53 4,46 - 10 4,50 - 104
Neues Glattemass Z / 2,52 -10 2,85 4,46 - 102 4,50 - 10
Klassisches Mass 4,50 - 102 4,50 4,50 -1072 4,50 - 10

Im Abschnitt 5.2.

haben wir erwahnt, dass der Korrekturfaktor
nur dann angewendet werden soll, wenn es wirklich nétig ist, d.h. wenn




die zu beurteilende Reihe stark unglatt 1st. Aus den Resultaten der
Tabelle 9 erkennen wir nun, dass es sinnlos ist, bei einigermassen
glatten Reihen den Faktor f mitzuberiicksichtigen, da er in diesen
Fillen keinen wesentlichen Einfluss auf die Glidttewerte ausibt.

Weiter sehen wir aus dieser Tabelle, dass der Unterschied zwi-
schen dem klassischen und dem neuen Mass fiir die Rethen C und D
gering 1st. Dies ist zu erwarten, da fir beide Rethen die Bedingungen
(54) in 6.3. erfiillt sind.

Selbstverstindlich konnten wir weitere Beispiele hier ankniipfen,
die uns eine Fiille von mehr oder weniger interessanten Daten liefern
wiirden. Wir wollen uns jedoch mit diesen drei Beispielen begniigen,
da sie uns die wichtigsten HFigenschaften des neuen Glidttemasses vom
praktischen Standpunkt aus vor Augen gefithrt haben.

8. Probleme der praktischen Anwendung

8.1. Die Wahl der Ersatzrethe

Wir sind bis jetzt immer davon ausgegangen, dass die Koordi-
naten (z;,y,) (1 = 1,2, ...,n), welche eine Reihe von Punkten in
einem kartesischen Koordinatensystem darstellen, zur Verfugung stehen.
Mit diesen Angaben konnten wir die Gléitte, die eine geometrische
Eigenschaft der Figur ist, bestimmen. Bei praktischen Anwendungen
finden wir jedoch vorerst nur zwei Folgen von dimensionierten Werten
vor, zwischen denen eine eindeutige Zuordnung besteht. Obwohl durch
diese Zuordnung beispielsweise der Wert 4, der ersten Folge zum
Wert B, der zweiten Folge gehort und wir dieses Wertepaar als (4, B))
schreiben kénnen, ist das alles nicht gleichbedeutend mit der Aus-
sage: «(A4,,B,) 1st ein Punkt der Ebene»; schon deshalb nicht, weil
A; und B; mit irgendwelchen, meist ungleichen Dimensionen behaftet
sind, wihrend die Komponenten der Koordinaten eines Punktes die
Dimension der Liangeneinheit des kartesischen Systems besitzen.

Trotzdem ist es uns ein Anliegen, die Beziehung zwischen den
beiden Wertefolgen graphisch darzustellen, um uns eine richtige Vor-
stellung davon machen zu kénnen. Sobald wir uns aber diese Zuord-
nung graphisch veranschaulichen wollen, miissen wir zuerst eine Mo-
dell- oder Ersatzreihe konstruieren, deren Punkte sich auf eine Ebene
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zeichnen lassen. Die Komponenten der Punkte dieser Ersatzreihe
haben also als Dimension die Liéingeneinheit des kartesischen Koordi-
natensystems; sie sind aber auch ohne Berticksichtigung der Dimen-
sion eng mit den urspriinglichen Wertefolgen verbunden.

Wenn wir beisplelsweise wie 1m Abschnitt 12.2. die Beziehung
zwischen dem Alter z und der Sterbewahrscheinlichkeit ¢, graphisch
aufzeichnen wollen, wihlen wir als Ersatzreihe (z-v, 100-q,-v), wobel
v die Dimension der auf dem Zeichenblatt zugrunde gelegten Léngen-
einheit bedeutet.

Wir brauchen nicht zu betonen, dass diese Modellreihe und somit
auch die graphische Darstellung gut oder schlecht gewihlt werden
konnen. Vor allem im Wirtschaftsleben kommt es vor, dass durch
ungeeignete Wahl dieser Modellrethen Tatsachen verfilscht werden.

Ahnliche Uberlegungen lassen sich auch fiir die Glitte machen.
Durch eine ungeschickte Wahl des Ersatzbildes, d.h. der Ersatzreihe,
konnen wir einen vollkommen falschen Glattewert erhalten. Das
zweite Beispiel des letzten Abschnitts fithrt uns dies deutlich vor
Augen.

Wir haben dort gesehen, dass die Reihe 4 weniger glatt ist als
die Rethe B. Multiplizieren wir die y-Komponenten beider Reihen mit
107%, so sind die Bedingungen (54) erfiillt, und wir diirfen das klas-
sische Mass verwenden. Die so entstandenen Reihen wollen wir mit 4
und B bezeichnen. Aus der formelmissigen Darstellung ist leicht
ersichtlich, dass beim klassischen Mass das Verhéltns der Glittewerte
zweler Reihen invariant ist gegentuiber linearen Transformationen in
der y-Richtung. Deshalb folgt aus den Resultaten der Tabelle 6, dass
auch fiir das neue Mass 4 glitter ist als B. Die Aussage B ist glitter
als A4 1st durch die lineare Transformation in der y-Richtung mit dem
Faktor 107 umgekehrt worden.

Dieses Resultat mag auf den ersten Blick befremdend wirken, da
wir vom klassischen Glattemass her gewohnt sind, dass das Verhéltnis
der Gliattewerte zweiler Reihen invariant ist gegeniiber solchen Trans-
formationen. Bei nichtlinearen Transformationen ist uns ein derartiges
Verhalten jedoch nicht mehr fremd. Das folgende Beispiel mag dies
verdeutlichen.

Wir gehen aus von zwei Reithen U und V. Die Punkte von U
liegen auf einem Kreis, und der Abstand zwischen zwel aufeinander-
folgenden Punkten ist iberall gleich. Diese Reihe ist ideal glatt und
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besitzt den Glattewert 0. Die Punkte der Reihe V sollen nicht stark
von den entsprechenden der Reihe U abweichen; jedoch sollen sie auf
einer Exponentialkurve der Form y = a% + ¢ liegen. Sie sollen weiter
so gewahlt werden, dass der Glittewert von V¥ nicht 0 wird. Trans-
formieren wir die y-Komponenten beider Reihen nach der Formel
7 = In (y—c) und bezeichnen wir die neuen Reihen mit U und ¥, so
folgt, dass ¥ geradlinig ist und den Glittewert 0 besitzt. Im allgemeinen
wird das Glittemass fiir U von 0 verschieden sein, so dass sich durch
diese Transformation die Aussage «U ist glitter als 7» umkehrt.

Was wir bei diesem Beispiel als selbstverstidndlich empfinden,
dass nidmlich die Reihen U und U bzw. ¥ und ¥ verschieden sind und
sich auch beziglich der Glitte verschieden verhalten, gilt aber auch
fiir die Reihen 4 und 4 bzw. B und B im vorigen Beispiel.

Nach den bisherigen Ausfithrungen kénnte man zur Ansicht ge-
langen, dass die Glitte auf Transformationen so empfindlich reagiert,
dass es sich im praktischen Falle iiberhaupt nicht mehr lohnt, eine
Reihe auf ihre Glitte hin zu untersuchen. Dies gilt vor allem dann,
wenn man mit gutem Gewissen iiber die Wahl der Ersatzreihe inner-
halb gewisser Grenzen geteilter Meinung sein kann. Wir miissen jedoch
bedenken, dass die gezeigten Beispiele gesucht waren, um auf die
Schwierigkeiten aufmerksam zu machen, und dass in dem erwidhnten
engen Rahmen die Glatte ihre Struktur nicht vollkommen &ndern
kann.

Das Problem der richtigen Ubertragung von der abstrakten Be-
ziehung der Wertfolgen zueinander auf das konkrete Bild der Ersatz-
reihe gehort bis zu einem gewissen Grad in die Spezialdisziplin, aus
welcher diese Werte stammen. So miissen dabei in erster Linie die
Erfahrung und die Kontinuitdt der Betrachtungsweise beriicksichtigt
werden. Erst nachher gelangen allgemeine Regeln und Uberlegungen
der folgenden Art zur Anwendung, die aber nur als Erginzungen und
Prézisierungen gedacht sind.

Es 1st zu beachten, dass die wesentlichen Merkmale nicht durch
Uber- oder Untertreibung verfilscht werden. Der Trend der Reihe
soll deutlich sichtbar sein. Die Abstinde zwischen den einzelnen
Punkten diirfen ein Vielfaches der Einheit nicht ibersteigen. Dazu
1st allerdings zu bemerken, dass der Sache mehr gedient ist, wenn wir
zwischen weit auseinanderliegenden Punkten weitere einfiigen kénnen,
als wenn wir durch eme Transformation diese Abstéinde verkleinern.
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Trotz all dieser Uberlegungen bleibt in vielen Fillen doch noch
ein Spielraum fiir die Wahl der Ersatzreihe offen, und von dieser
Wahl hingen dann, wenn auch nur i bescheidenem Rahmen, die
Glatteeigenschaften der Reihe ab.

8.2. Dne globale Glitte evner Reihe

Mit den bislang in den Abschnitten 6.1. und 6.3. zur Verfugung
gestellten Mitteln sind wir in der Lage, das lokale Verhalten der Glitte
einer Reihe eindeutig zu messen. Obwohl bei jeder ernsthaften Be-
urteilung die lokale Betrachtungsweise ausschlaggebend sein wird, ist
es schon der Ubersicht wegen wiinschenswert, mit wenigen Zahlen ein
einigermassen schliissiges Bild von der globalen Glitte einer Reihe zu
erhalten. Wir missen dabei allerdings bedenken, dass in den meisten
Reihen die lokalen Glittewerte nicht zuféllig um einen Mittelwert
schwanken, sondern dass sie einem mehr oder weniger deutlich sicht-
baren Trend folgen. Deshalb hat das globale Mass, wie es in den For-
meln (17), (33) und (55) angegeben ist, fiir lange Reihen nur dann
einen Sinn, wenn wir diese Reihen in kiirzere Teilstiicke aufgliedern,
wodurch der Einfluss des Trends abgeschwiicht wird. Das gleiche gilt
auch fir das in (18) definierte durchschnittliche Glidttemass.

Auf eine weitere Art der globalen Betrachtungsweise wollen wir
im folgenden hinweisen. Vergleichen wir die Glédtte zweier Reihen mit-
emnander, so wird unter anderem auch die Frage auftauchen: « Wie oft
1st die eine Reihe gldtter als die andere ?» oder préziser ausgedriickt:
«Wieviele Male ist der lokale Glattewert der einen Reihe kleiner als
der entsprechende der andern 2». Je nachdem wie diese Zahl ausfallt,
kann die eine Reihe, wenigstens von diesem Standpunkt aus, als die
glittere bezeichnet werden. Etwas komplizierter wird das Verfahren,
wenn wir mehr als zwei Reithen miteinander zu beurteilen haben. Wir
konnen nicht je zwei Reihen in der beschriebenen Art miteinander
vergleichen und am Schluss eine Rangliste daraus ermitteln, da fur
die Beziehung «global glitter als» bei der hier betrachteten globalen
Gléttedefinition die Transitivitdtseigenschaft nicht gilt. Aus «4 global
glitter als B» und «B global glitter als C» folgt nicht unbedingt
«A4 global glitter als C». Denn es lassen sich ohne Schwierigkeiten
drei Reithen 4, B und C so konstruieren, dass zwar A an der Mehrzahl
von lokalen Stellen glitter ist als B und auch B sich als «global glatter»
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als C erweist, dass aber die lokalen Glattewerte von 4 in der Mehrzahl
der Fille grosser sind als die entsprechenden Werte von C, d.h. dass
also C «global glidtter» als 4 ist. In einem solchen Falle miissen wir
uns auf die folgende Art behelfen. Wir vergleichen die sich entsprechen-
den lokalen Glattewerte miteinander und ordnen jeder dieser Grissen
eine Zahl zwischen 1 und N (N = Anzahl der zu vergleichenden
Reihen) zu, wobei diese Zahl dem Rang entspricht, den dieser Glatte-
wert 1m Vergleich zu den entsprechenden der iibrigen Reihen ein-
nimmt. Sind zwei Gliattewerte gleich gross, so nehmen sie auch den
gleichen Rang ein, wodurch aber der nachfolgende Rang als bereits
besetzt betrachtet wird. Die Summe all dieser Rangzahlen pro Reihe,
die sogenannte Platzziffer, gibt uber das Verhaltnis der globalen
(zlatten der einzeinen Reihen zueinander Auskunit. In der endgiiltigen
Rangliste figuriert die glidtteste Reihe mit der kleinsten Platzziffer an
erster Stelle; an zweiter Stelle steht die Reihe mit der zweitkleinsten
Platzziffer usw. Diese Rangliste zusammen mit den Platzziffern geben
doch schon ein annehmbares Bild vom Verhiltnis der Glitten der ein-
zelnen Reihen zueinander. Allerdings wird dabei die absolute Grosse
der lokalen Glétte nicht beriicksichtigt.

Es liessen sich sicher weitere Vorschlage fiir die globale Beurtei-
lung der Gliatte hier anfithren, doch wird es kaum mdglich sein, ein
tiber alle Zweifel erhabenes Kriterium zu finden, das den vielfiltigen
Gesichtspunkten bei der globalen Glattebeurteilung Rechnung trigt.
Deshalb miissen wir versuchen, mit Hilfe der lokalen sowie der ge-
nannten globalen Betrachtungsweise ein Bild von der Glidtte einer
Reihe zu erhalten.
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B: Die Ausgleichung von rohen Daten mit Hilfe des DGV

(Differenzengleichungsverfahren)
9. Das Prinzip der Ausgleichung

9.1. Das allgemeine Differenzenglerchungsverfahren (DGV)

Whittaker and Robinson [3] und Henderson [2] haben ein DGV
(Differenzengleichungsverfahren) zur Ausgleichung von rohen Daten
beschrieben, das sich besonders gut eignet, uns die Wirksamkeit und
Eigenschaften des neuen Gléttemasses nochmals vor Augen zu fiithren.
Fuar dieses Verfahren ist es nuitzlich, die folgenden Bezeichnungen ein-
zufithren.

Die Punkte der vorgegebenen unausgeglichenen Reihe besitzen die

Koordinaten
(z,9,), z=a,¢+1,...,8; « B ganz; a+ 3 < 8.

Die Koordinaten der gesuchten Punkte der ausgeglichenen Reihe
bezeichnen wir mit (z,v,).

Die z-Komponente bleibt bei der Ausgleichung unveridndert; es
wird nur in der y-Richtung ausgeglichen.

Mit z(y,) bezeichnen wir den Glittewert des neuen Masses der
ausgeglichenen Reihe zwischen z und x4 3, wéhrend (43y,)? die analoge
Bedeutung fiir das klassische Mass hat.

Das Prinzip des DGV ldsst sich auf die folgende einfache Art
erklidren. Die ausgeglichenen Werte y, sollen so gewéhlt werden, dass
sie einerseits moglichst wenig von den rohen Beobachtungen ¢, ab-
welchen und dass anderseits die ausgeglichene Reihe einen moglichst
glatten Verlauf besitzt.

Die Grosse 3 (Y.— ¥,)° (57)
wird als Mass fir die Abweichungen von den rohen Werten verwendet,
wihrend der glatte Verlauf der Reihe mit Hilfe des globalen Glidttemasses

-3
> 2(y,) (58)

T=12

gemessen wird.



— 111 —

Die einzelnen Summanden der beiden Ausdriicke (57) und (58)
wollen wir mit den Gewichten E(x) bzw. G(x) versehen. Die y, sollen
nun so gewihlt werden, dass die Summe der beiden mit diesen Ge-
wichten versehenen Summanden ein Minimum wird.

}_ E(2) (y,— §.)° + }16 2(y,) = Min. (59)

In den zu Beginn dieses Abschnitts erwdhnten Arbeiten iiber das
DGV wird selbstverstandlich anstelle des neuen Masses 2(y,) das klas-
sische (43y,)? verwendet.

Um eine moglichst allgemeine und flexible Ausgangsbasis zur Ver-
fiigung zu haben, haben wir alle Glieder von (59) mit einem Gewicht ver-
sehen. Die Gewichte E(x) betrachten wir als eine Art «Vertrauens-
koeffizient» gegeniiber den rohen Werten. Unter normalen Umstianden
hat FE(z) den konstanten Wert 1. Nur dann soll E(z) kleiner als 1 und
von z abhidngig sein, wenn wir die Gewissheit oder zumindest einen
an Gewissheit grenzenden Hinweis dafir besitzen, dass einige der
rohen Werte im Vergleich zu den tibrigen weniger vertrauenswiirdig
sind ; sei es, dass durch irgendwelche Umsténde die Messung in diesen
Fallen nicht genau durchgefiihrt werden konnte oder dass die Werte
durch eine einmalig auftretende Krscheinung verfilscht wurden.
Ebenso kann mit Hilfe dieser Gewichte die unterschiedliche Genauig-
keit der Beobachtungen beriicksichtigt werden.

Um die Funktion der Gewichte G(z) besser zu verstehen, denken
wir uns G(z) zusammengesetzt aus den beiden Faktoren £ und f(z),
wobei %k unabhingig von z sein soll. Die erste Komponente % regelt
ganz allgemein die Beziehung zwischen den sich widersprechenden
Forderungen «moglichst gute Glitte» und «moglichst gute Uberein-
stimmung mit den rohen Daten». Die Grosse von k hiingt entscheidend
davon ab, was fur Anspriiche wir an die ausgeglichene Reihe stellen,
welcher der beiden Forderungen wir den Vorrang geben. Die zweite
Komponente f(z) i1st vor allem fiir diejenigen Félle gedacht, in welchen
der Wunsch nach einer nur teilweise besseren oder schlechteren Glit-
tung der Reihe auftaucht. So kann beispielsweise bel der Ausgleichung
von rohen einjihrigen Sterbewahrscheinlichkeiten aus technischen
Grinden ein monotones Wachsen der ausgeglichenen Werte win-
schenswert erscheinen, obwohl die rohen Werte ein lokales Minimum
beim Alter 30 vermuten lassen. Durch eine geeignete Wahl der f(z)
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im Bereich 30 konnen wir diesen monotonen Anstieg erzwingen. Ks
kann auch moéglich sein, dass sich die Reihe in threm Verlauf derart
stark verdndert, dass ein von z abhéngiges (¢ notig 1st. Einem solchen
Falle werden wir im Abschnitt 12.3. begegnen.

Die Vorteile des DGV gegeniiber andern nichtanalytischen Me-
thoden liegen, abgesehen von der durch die Gewichtung der einzelnen
Summanden erzielte erhohte Anpassungsfihigkeit, vor allem darin,
dass mit ein und derselben Methode alle verfiigharen rohen Werte,
auch die Randwerte, ausgeglichen werden konnen.

9.2. Die theoretische Losung der Minamalbedingung

Die Werte y, (r = a, x+1, ..., ), welche die Minimalbedingung
(59) erfillen, miissen Liosungen des folgenden Gleichungssystems (60)
sem. Wir setzen in (59) die partiellen Ableitungen nach den y, gleich
null und erhalten somit:

2B (@) (y,—§,) + G(2) oY) | (z—1) 02(Yo) Glz—2) 02(Yy )

L9 Y o o
(e=8) =~ (60)

wobel alle Glieder wegfallen, die G(a—3), G(a—2), G(a—1), G(f—2),
G(f—1) und G(B) als Faktoren enthalten.

Um iberhaupt das System (60) aufstellen zu kénnen, miissen die
Funktionen z(y,) differenzierbar sein nach allen vier Variablen y,,
Yprty Ypoo und y,.5. Diese Voraussetzung ist bei den Formeln, die
wir in 6.1. fiir die Berechnung von z aufgestellt haben, nicht allgemein
erfilllt, da dort das Vorzeichen der Krimmung separat bestimmt
werden muss. s ist allerdings zu bedenken, dass bei der Herleitung
jener Formeln speziell darauf geachtet wurde, dass sie moglichst ein-
fach fur die Berechnung sind, und dass wir weitere Formeln finden
konnen, in welchen das Vorzeichen fiir die Kriimmung mitenthalten
1st. Wir durfen also annehmen, dass z differenzierbar ist und wir das
System (60) bilden kénnen.

Im allgemeinen ist (60) nicht linear in den y,, und wir werden
kaum durch rein theoretische Uberlegungen einen Lisungsvektor finden
konnen. Ebenso miissen wir in Betracht ziehen, dass (60) bzw. (59)
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unter Umstinden mehr als eine Losung besitzen. Wir werden deshalb
im nachsten Abschnitt versuchen, mit Hilfe numerischer Methoden
einen Weg zu den ausgeglichenen Daten zu finden.

Unter der Annahme, dass die Bedingung (54) erfillt ist, dirfen
wir anstelle von z das klassische Mass verwenden; die Gleichungen
(60) gehen in das lineare System (61) iber.

F(x) y,—G(x) A%, + BG(x—1) A3y, —BG(x—2) A%, ,
+ G(z—8) A3y, ,—E(z) g, = 0. (61)

Auch 1im System (61) fallen wieder alle Glieder weg, die G(«—3),
Gle—2), G(a—1), G(f—2), G(f—1) und G(B) als Faktoren enthalten.

Die einzige Losung von (61) kann mit Hilfe des Gaussschen
Algorithmus’ oder anderer Verfahren zur Losung linearer Gleichungs-
systeme gefunden werden.

Die Gleichungen (60) und (61) erlauben es uns, das DGV auf eine
besondere Art mit anderen Ausgleichsverfahren zu vergleichen. Setzen
wir die Werte y,, die mittels irgendeiner Ausgleichsmethode gewonnen
wurden, in diese Gleichungen ein, so erhebt sich die Frage nach den-
jenigen (¢(x), die (60) bzw. (61) zu null machen. Dabei ist allerdings
zu beachten, dass die Anzahl der gesuchten G-Werte kleiner ist als die
Anzahl der Gleichungen. Diese Komplikation lésst sich dadurch mei-
stern, dass entweder durch Hinzufiigen neuer Randwerte y, die Zahl
der Unbekannten G(z) kimnstlich erhéht wird oder dass die G(z) so
cewihlt werden, dass die Residuen der einzelnen Gleichungen még-
lichst klein werden. Setzen wir die linke Seite von (60) bzw. (61) nicht
gleich 0, sondern gleich r,, so bedeutet r, das Residuum dieser Glei-
chung. Beim Gaussschen Ausgleichsprinzip werden die G(z) so gewéhlt,
dass die Summe

\Y ,'.2

e T
T=0a

minimal wird. Es liesse sich auch in diesem Zusammenhang priifen,
ob nicht mit Hilfe des DGV innerhalb gewisser verniinftiger Grenzen
jede beliebige ausgeglichene Reihe durch Variation der Gewichte ge-
funden werden konnte. Vielleicht wiirden dadurch erginzende Er-
kenntnisse iiber die Wirksamkeit und die Unterschiede der einzelnen
Ausgleichsverfahren gewonnen werden. Wir wollen aber auf weitere
Uberlegungen, die in diese Richtung fithren, verzichten, da eine der-
artige Untersuchung iiber den Rahmen dieser Arbeit hinausginge.
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10. Numerische Methoden zur Losung der Minimalbedingung
10.1. Ewn gemischtes Verfahren (GEM-Verfahren)

Fir die Besprechung der numerischen Methoden, welche die Mini-
malbedingung (59) bzw. das Gleichungssystem (60) losen, ist es niitzlich,
die folgenden Bezeichnungen und Regelungen einzufiithren.

Bei einspaltigen bzw. einreithigen Matrizen sollen die iberstrichenen
Grossen immer die Spaltenmatrizen bedeuten.

¥,y sind Punkte im n-dimensionalen Raum mit den Koordinaten
(yl ) y2= SR y’.’l) bZ‘V. (y(le y(zi)’ TR yﬁiﬂ) Y

f(y)  1st eine Funktion der » Variablen y,, ys, . . ., ¥,, die mindestens
dreimal total differenzierbar ist. Gesucht ist derjenige Punkt Y
mit den Koordinaten (Y,,Y,, ..., Y,), fir welchen f(y) minimal
wird.

g(y) bedeutet den Gradientenvektor der Funktion f im Punkt y.
Die einzelnen Komponenten haben die Form

of (1 ‘
f(J) (1=1,2,...,m).
0y,
A, 1st emne n-n Matrix, deren Elemente «;,, die Bedeutung
2f(y) |

- = fin ™)

6‘3]1 aym §y=y(’i) L

haben. 4, ist symmetrisch und in der Ndhe von Y positiv
definit. 4 bedeutet die Matrix 4,, wenn y¥ = Y ist.

el

im —

Das Vorgehen zur Losung der Minimalbedingung (59) und des
Gleichungssystems (60), welche sich nun in der allgemeinen Form

f(y) = Min (62)
bzw. g(y) = 0 (Nullvektor) (63)
darstellen lassen, wollen wir in zwei Teile zerlegen. Ausgehend von
einem gegebenen Anfangspunkt % wird uns im ersten Teil das Ver-
tahren von Fletcher and Reeves [10] schrittweise in die Néhe der

Loésung Y fithren. Sobald wir nicht mehr weit von dieser entfernt sind,
kénnen wir zum zweiten Teil ibergehen, in welchem das Lineari-



— 115 —

sterungsverfahren sehr schnell den Losungsvektor Y findet. Der erste
Teil 1st deshalb notwendig, weil das Linearisierungsverfahren nur in
der Ndhe von Y konvergiert.

Das Verfahren von Fletcher and Reeves [10]

Fletcher and Reeves haben in ihrer Verdffentlichung [10] das
Verfahren eingehend dargestellt und besprochen, so dass wir uns
darauf beschrinken koénnen, das Vorgehen kurz zu beschreiben und
auf kleine Anderungen, die fiir unsere Zwecke niitzlich sind, hinzu-
welsen.

I: Wir berechnen den Gradientenvektor g, an der Stelle ¢, dem
Ausgangspunkt des Verfahrens.
o ]

I py = —go-

I11: Auf der Geraden y(t) = y” + tp, bestimmen wir durch eine noch
niher zu beschreibende Methode denjenigen Punkt y' "% fiir
welchen f(y(t)) minimal ist.

IV: Nachemander berechnen wir die Grossen
Givr = 9" ), B=""3" Pipi= it Bpi. (64)

V: Ausgehend von den Werten 4+ und p,,, wiederholen wir den
Prozess von III an sooft, bis die gewiinschte Genauigkeit erzielt
1st.

Die Vektoren p,, py, ... sind ﬁ-konjugiert (zéi-orthogonal); es

gilt also: .
pdp, =0 fir [ £ m.

Der Beweis dieser Behauptung ist in der Arbeit von Fletcher and
Reeves [10] und in einem Artikel von Beckmann in [8] angegeben.

Ist f(y) eine quadratische Funktion, so fithrt dieses Verfahren,
abgesehen von Rundungsfehlern, in hochstens » Schritten von irgend-
einem Ausgangspunkt zum Minimum. Der Ausgangspunkt ist fir die
Lésung dann massgebend, wenn f nicht quadratisch ist. Das Ver-
fahren ist ndmlich so gebaut, dass Y im gleichen «Tal» liegt wie der
Ausgangspunkt .
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Die Erfahrungen von Fletcher and Reeves haben gezeigt, dass die
Methode schneller konvergiert, wenn nach jeweilen n + 1 Schritten nicht
die Richtung p, = —g¢g,;+ Bp,_,, sondern p, = —g,, also die Richtung
des steilsten Abfalls, gewihlt wird.

Zur Bestimmung des Punktes »'* " auf der Geraden y(t) = y"") + tp,
machen wir die folgende Uberlegung.

Sei xz(t) = f(y" + tp,), so miissen wir dasjenige ¢, suchen, fir

welches dx(t) ( t ;
5 = Pug(yt) =

1st. Auf der Geraden y(t) kennen wir bereits die beiden Werte
z(0) = f(y") und &'(0) = p,y;.

Unter der Annahme, dass est (Abkirzung fiir estimate) eine
Schitzung von f(y(t)) und f(y) eine quadratische Funktion von y ist,
ldsst sich leicht ein Ndherungswert h fir ¢; finden.

; g
p— o U1 (65)
P:9;

Da die in dieser Arbeit betrachtete Funktion (59) immer grosser
als 0 1st, haben wir fiir die Schétzung est stets den Wert 0 angenom-
men. Da aber diese Schitzung weder geniigend genau noch f(y) im
allgemeinen quadratisch ist, kann h viel zu gross ausfallen. Deshalb
schlagen Fletcher and Reeves [10] eine obere Grenze fiir h vor

h= (P

Ist Min (f(y)) grosser als 0, wie das bei der Funktion (59) der Fall

1st, so folgt: :

) =} O

h = Mm( (72, 2 ------@_)_). (66)

\ P: Y;
s kann nun vor allem zu Beginn des Verfahrens vorkommen,
dass das effektive Minimum von f(y(f)) ausserhalb des Intervalls

[0,h] liegt. In einem solchen Falle berechnen wir z(f) und a'(f) fur
die nachstehenden Werte von t:

0, h, 2h, 4h, 12h, 48h, 240h, 1200h, ..., a, b. (67)

b ist der erste Wert in dieser Reihe, fiir welchen z’(f) nicht negativ
1st oder z(f) nicht abgenommen hat.
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Die Reihe (67) ist so konstruiert, dass sich der Abstand von 0
zuerst zweimal verdoppelt, dann verdreifacht, vervierfacht und dann
immer verfiinffacht. Wir haben die Schrittlingen grésser gewihlt als
Fletcher and Reeves, um in moglichst wenig Schritten die Grossen a
und b zu finden. Der Wert ¢; liegt somit zwischen a und b.

Ausgehend von den bekannten Grossen z(a), z'(a), =(b), z'(b)
verwenden Fletcher and Reeves eine kubische Interpolationsmethode,
welche zum Nidherungswert t* fithrt.

t*

h— (_33"(5) T ¥ ) (b—a),

2’ (b)— ' (a) + 2w,
() — z(b
3 Lg 2( ) 4 @)+ ), (68)

w = (22— z'(a) 2'(b))".

[
|

Ist weder z(a) noch z(b) klemer als z(t*), so begniigen wir uns
mit der Ndherung #; = t*. Andernfalls wiederholen wir den letzten
Schritt (68) fir das Intervall (a,t*) bzw. (t*,b), je nachdem xz'(t*)
positiv oder negativ ist.

Das Linearisierungsverfahren

Dieses Verfahren, welches sich letzten Endes auf die Newtonsche
Methode zur Ligsung nichtlinearer Gleichungen bei mehreren Unbekann-
ten stiitzt (siehe Stiefel [9] p.81 und Whittaker and Robinson [3] p.90),
ldsst sich auf einfache Weise erklédren.

Wir entwickeln die Funktion f(1) nach Taylor im Punkte 3.

fy) =10 + —y g+ +@—y") 4, (y—o")  (69)
+ Glieder hoherer Ordnung.
In der Nidhe von Y ist A, positiv definit. Vernachlidssigen wir

die Glieder hoherer Ordnung, so erhalten wir aus der Bedingung,
dass f(y) minimal werden soll, das lineare System

A; (y—y) + g; = 0 (Nullvektor). (70)

Mit Hilfe des Linearisierungsprozesses haben wir das nichtlineare
System (63) durch das lineare System (70) angendhert. (70) koénnen
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wir mit Hilfe des Gaussschen Algorithmus’ losen. Den Losungsvektor

Y"1 verwenden wir als Ausgangsgrésse fiir ein neues System in der
r usw. Dieser Prozess wird solange wiederholt, bis

Art (70 Dieser Prozess wird solange wiederholt, bis

rigo=Max (0 —gf) L k=12 ... m=R (7]

1st. R hat dabei die Bedeutung einer Genauigkeitslimite. Ist némlich
2%+ nahe genug bei Y, so gilt mit geniigender Genaunigkeit :

1Y) == f(y(iH)) +(Y— ,y(i+1)) §i+1 n ; (Y—-— y(i—n)) A-i‘;-q (m

Fur quadratische Funktionen fithrt aber das Linearisierungs-
verfahren abgesehen von Rundungsfehlern in einem einzigen Schritt
zum Minimum. Also gilt, wenn R gentigend klein gewihlt ist, von
einem gewissen 1 an:

Max (l y,(f“)r—Yki, k=1,2,...,n)<r,, <R.

(Gegeniiber der Methode von Fletcher and Reeves hat das Lineari-
sierungsverfahren den Vorteil, dass es sehr schnell konvergiert. Aller-
dings ist dabei zu beachten, dass far jeden Schritt die Matrix 4.
berechnet werden muss, was natiirlich eine wesentliche Mehrarbeit
erfordert.

Es erhebt sich nun die Frage: « Wann wollen wir von der Methode
von Fletcher and Reeves zum Linearisierungsverfahren hiniiber-
wechseln ?»

Sobald die Schrittlinge beim Verfahren von Fletcher and Reeves
klein wird, also sobald

Max (yf ™ —yP, k=1,2,...,0) < T (72)

ist, wollen wir mit der letzten Niherung %" zum Linearisierungs-
verfahren iibergehen. Die Grenze T muss aus den praktischen Erfah-
rungen bestimmt werden. Selbstverstindlich ist das Kriterium (72)
nicht immer dafiir massgebend, dass #**% sich in der Nihe von Y
befindet und somit das Linearisierungsverfahren konvergiert. Wir
miissen deshalb die Méglichkeit haben, bei Divergenz wieder zur
Methode von Fletcher and Reeves mit verkleinertem 7T zuriickzu-
kehren. Die Steuerung des Rechenablaufs mittels (72) hat sich beil
den Beispielen, die wir durchgefithrt haben, als verniinftig erwiesen.



— 119 —

Setzen wir wieder
r. = Max (y{®— o0V, k=1,2
rp = Max (yy—y , k=1,2,...,n),

so konvergiert das Linearisierungsverfahren sicher dann, wenn die
Folge der », fur fortschreitendes 1 schneller gegen 0 strebt als eine
geometrische Folge; also Konvergenz ist dann gegeben, wenn

r;<eS, ¢=konst.,, 0<S<1 ist. (73)

Wir miissen nun aber bedenken, dass die Werte ! mit gewissen
Rundungsfehlern behaftet sind. Sobald die Grdssenordnung von r; in
die Niihe der Rechengenauigkeit der 4 kommt, ist eine weitere Kon-
vergenz in Frage gestellt. Also ist auch das Konvergenzkriterium (73)
nur sinnvoli, solange r; gross ist gegeniiber der Rechengenauigkeit der 3.

Wir haben bereits erwihnt (siehe (71)), dass das Linearisierungs-
verfahren abgebrochen wird, sobald »;, << R 1st. Wahlen wir die
Grenze R gross genug gegeniiber der Rechengenauigkeit der 1, so
konnen wir ohne Schwierigkeiten das Kriterium (73) verwenden. In
etwas anderer Form geschrieben, besagt es:

Das Verfahren konvergiert dann, wenn

Tint g g="2c1 (74)
T 5
1st. Sind diese Bedingungen nicht erfiillt, so nehmen wir an, dass das
Verfahren divergiert.

Am Ende des Linearisierungsverfahrens miissen wir priifen, ob
nun auch wirklich ein Minimum von f erreicht ist. Hs ist durchaus
moglich, dass dieses Verfahren zu einem Maximum von f fahrt. Durch
das folgende einfache Kriterium wird diese Frage in befriedigender Weise
geprift. Ist nach dem reguldren Ablauf des Linearisierungsverfahrens

") > fy™)
oder wenn ™1 = o™ ist,
fy™ +0) > fy™), (0<o<l),

so nehmen wir an, dass wir ein Minimum erreicht haben. Bei den
Berechnungen, die wir durchgefithrt haben, haben wir fiir 6 den Wert
von R (siehe (71)) verwendet.
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10.2. Das gesteuerte Lanearisierungsverfahren

(GELI-Verfahren)

Der Nachteill des GEM-Verfahrens liegt, wie die praktischen Be-
rechnungen gezeigt haben, vor allem darin, dass der erste Teil, das
Verfahren von Fletcher and Reeves, nur in kleinen Schritten der
Losung Y zustrebt. Ist der Ausgangspunkt weit von Y entfernt, so
braucht es viele Schritte, um in die Ndhe von Y zu gelangen und
somit das Linearisierungsverfahren anwenden zu konnen. Wir haben
deshalb versucht, eine Methode zu entwickeln, die in wenigen Schritten
in die Ndhe von Y fithrt. Wir mussen dabei allerdings voraussetzen,
dass f(y) im ganzen n-dimensionalen Bereich nach unten beschrinkt
ist. Diese Bedingung ist bei der Funktion (59) erfiillt, da sie immer
positiv ist.

Be1 dieser neuen Methode wollen wir vom ersten bis zum letzten
Schritt das Linearisierungsverfahren ohne Konvergenzkriterinm (74)
verwenden. Gleichzeitig soll aber immer die Bedingung

) > ") > ... > 1™ = () (75)

erfillt sein. Nun wird aber das Linearisierungsverfahren teilweise
Werte 7" liefern, die nicht in die Reihe (75) passen. Sei beispielsweise

) = "),

so werden wir anstelle von 4" 7" einen abgedinderten Wert 3" ** suchen,
der die Bedingung

) < fy)

erfillt. Dieser korrigierte Wert 1st Ausgangspunkt fiir einen weiteren
Schritt im Linearisierungsverfahren.

Die Art der Korrektur hingt davon ab, was fir Griinde fir den
«schlechten» Wert 4™ verantwortlich sind.

1.Fall:

Befindet sich #” in der Nihe eines lokalen Maximums, so fithrt
das Linearisierungsverfahren in die falsche Richtung.

Korrektur:
gD — o L (y D — gy (e > 0). (76)



2. Fall:

Wohl sind auf der Strecke zwischen y(") und 3" alle Funktions-
werte in der Nihe von y® kleiner als f(3'"); die Linearisierung ist aber
so ungenau, dass 3" ! iiber das eigentliche Ziel weit hinausgegangen ist.

Korrektur:
YD = 4y (T — ), (0 < ky << 1), (T7)

Die Konstanten k; und k, in (76) und (77) sind innerhalb der
angegebenen Grenzen beliebig wihlbar. Bei den Berechnungen, die wir
durchgefithrt haben, haben wir k, = ky = 0.25 gesetzt. Erfullt der
abgeiinderte Wert ! die Bedingung

Fyt ) < fy®) (78)

nicht, so wiederholen wir die Korrektur solange, his (78) ailt.

Um zu pnifen Welchel der beiden oben beschriebenen Fille fir
das «schlechte» 3**1) verantwortlich ist, untersuchen wir

O + oy —y ™) —f(y") (79)
wobel d eine positive Grosse darstellt, die klein 1st gegeniiber 1.

Je nachdem (79) grosser oder klemer 0 1st, handelt es sich um den
ersten bzw. den zweiten Fall.

Ist (79) gleich 0 ('Y 5= ), so haben wir das o zu gross gewiihlt
und mussen (79) mit einem kleineren 0 neu berechnen. Die Formel (71)
soll wie frither anzeigen, wann das Verfahren abgebrochen wird.

Das GELI-Verfahren hat gegeniiber der GIEM-Methode den
Nachteil, dass das berechnete Y nicht mehr unbedingt im gleichen
«Tal» liegt wie der Ausgangspunkt. Deshalb haben wir auch die Vor-
aussetzung an den Anfang gestellt, dass f(y) nach unten beschriankt ist,
da sonst ein unerwunschtes Abgleiten moglich ist. Obwohl jeder
Schritt mehr Rechenaufwand erfordert als beim Verfahren von
Fletcher and Reeves, filhrt das GELI-Verfahren um ein vielfaches
schneller zum Ziel als die GEM-Methode. Unsere Erfahrungen er-
strecken sich natiirlich ausschliesslich tiber Funktionen der Art (59);
die vorigen Aussagen haben demnach nur beschrinkte Galtigkeit.
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11. Die Durchfiihrung der Verfahren auf dem Computer IBM 1620
11.1. Erginzende Formeln

Da es uns vor allem um die Demonstration des neuen Glétte-
masses geht, haben wir darauf verzichtet, die von z abhéngigen
Gewichte E(z) (siehe 9.1.) in den Berechnungen mitzuberticksichtigen.
Der Ausdruck (59) vereinfacht sich somit zu

B =3
f(ycx.’ T yﬁ) = 2 (y:c_gz‘ i + E G($> 2('!/3;) = F‘\[ln (80)

Ohne Miihe lassen sich die folgenden Formeln und Berechnungen
auf den allgemeineren Fall (59) sinngeméss tibertragen.

Das Verfahren von Fletcher and Reeves verlangt, dass wir den
Gradientenvektor von f kennen. Wir miissen deshalb alle partiellen
Ableitungen von f berechnen konnen. Ziehen wir in Betracht, dass
#(y,) nur von den 4 Variablen v,,,.,, 9., und v, , abhingt, so
folgt aus (80):

0 02(Y,_. 0 5
O oty + Ga—3) O | grpg) OV
oy, oY, oY,
O2(y,) 0(y.)
S e e BT T
FGle—1) =G = EL 6

Diese Formel (81) ist nur streng giiltig im Bereicha+3 < o << f-3.
Sie gilt dann auch ausserhalb dieser Grenzen, wenn wir die Einschrin-
kung machen, dass alle Glieder wegfallen, die G(«—3), G(a—2), G(e—1),
G(f—2), G(B—1), G(B) als Faktoren enthalten.

Bei der Berechnung der einzelnen partiellen Ableitungen von z
stiitzen wir uns auf die folgende Nédherung:

62(%«) Z (y:n +b’yr-i-l > y”ﬂ—z—Z’ yrc:—s) _~ z(lfz’ yn:—!—l ) ym+2 ’ ya:—%—?))
0y, b '

(32)

Wiéhlen wir b gentigend klein, so ergibt diese Nidherung befrie-
digende Werte. Fiir die partiellen Ableitungen

02(y,)  02(y,)  02(y.)
5y:t:-;—-1 7 6?]2:4—2 ’ 5yz+3

verwenden wir die zu (82) analogen Néherungsformeln.
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Ist der Wert von z(y,+ 20, ¥, 1, Ypr0, Y,.5) bekannt, so lasst
sich zum Ausdruck (82) ein Korrekturglied m hinzufiigen.

== —

2b

Z(ym+2b? ya'w}-l’ U.L—LZ’ ya:-*— '3) _ Qz(yz-i_ b’?!zi—l’ y:t:{-“l’ I/c - 3) + Z(yc’ yugl-lz yml’ ya: ~£)

(83)

Dieses Korrekturglied werden wir dann verwenden, wenn wir gleich-

zeitig auch die zweiten Ableitungen berechnen missen, da in diesem
Falle die Kenntnis von z(y, + 2b, 9, (, ¥, 10, ¥, 5) unbedingt notig ist.

Im Linearisierungsverfahren miissen wir fiir jede Nédherung die
Matrix 4, welche aus den zweiten partiellen Ableitungen von f besteht,
berechnen. Die Glieder der az-ten Zeile von .4, sind:

02 02
B gy P
6ya:aya:—~3 ay:zaym—l%

02 02
- f = G(z—8) Z(yﬁ)
6yxay1‘—2 ay:caywﬂZ

02 022(1
\_._L,, = ((z—8) - z(%“") + (Mx—
04,094 0UYo0Uz

02 02
m_iw__ = ((z—8) — Z(yﬂ-’“3)

(0y,)2 ‘ (09/,)®
0
0,0 Wi o

0%

W09y
o
0y, s

(SZZ(yx__2>
dymay:c—Z
) 522(@4‘6_—2) + Glx—1) azz(l_‘":i)m
0y 0%y 0Ya Yo
(SZZ(UI“%)_ + G(z—1) 622,(93—,1,),,
(9y,)® (031,)®
2 2
) .é Z(%:%), + G(z—1) ¢ ?,('?',’x_—i,),
(Szjxéyx 1 (Syxayxﬂ
H22(1
G(l*l) C z(y‘;—l)

0Y, 0y 19

Die restlichen Glieder der xz-ten Zeile sind 0.

(84)
0%y,
+ G O
(0y,)®
0%(y,)
x i S
ayxéyx—i—l
oo 0%(Y,)
7 ==
0Y,0U, 5
0%(yy,)
G(x)

01,01, . 5

Auch hier gilt wieder die linschrinkung, dass alle Glieder, welche
eines der Gewichte G(ax—3), G(a—2), Gla—1), G(8—2), G(B—1), G(f)

enthalten, wegfallen.

'.2
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Die Berechnung der zweiten Ableitungen von z erfolgt nach der

Néiherung
0%2(y,)
alzéyz—kt B (85)
2(y,+b, ym f{’{;‘/zfz’yﬁs) —2(Yu 0, Y1 Yoror Yz+a) =2 (Yoo Yot 1+ 05 Vs Yora) T 2(Yos Yot 15 Yoot

b2

Die iibrigen zweiten partiellen Ableitungen werden nach analogen
Formeln angenéhert.

11.2. Dre Programme der einzelnen Verfahren

Der Computer, der uns im Rechenzentrum der Universitit Basel
fir unsere Arbeit zur Verfugung stand, ist aus den folgenden Ein-
heiten zusammengesetzt:

Zentraleinheit IBM 1620 Data Processing System
(20 000 Speicherplitze)

Zusatzspeicher IBM 1623 Core Storage Unit
(40 000 Speicherplitze)

2 Plattenspeicher IBM 1311 Disk Storage Drive, Model 3
(2 % 2000 000 Speicherplétze)

Kartenleser IBM 1622 Card Read-Punch Unit

Dieses System erlaubt es, grossere Programme in Teilprogramme
aufzugliedern und diese auf die Platten zu speichern, von wo sie jeder-
zeit in den Kernspeicher eingelesen werden konnen.

Ausfithrlichen Aufschluss iiber die einzelnen Arbeitsabliufe der
in 10. beschriebenen Verfahren gibt die ungekiirzte Fassung, welche
im versicherungstechnischen Seminar der Universitit Basel, m der
Universitiitsbibliothek Basel, in der Schweizerischen Landesbiblio-
thek in Bern oder beim Verfasser eingesehen oder entlichen werden
kann.



12. Die Ausgleichung der Sterbetafel SM 1939 /44
12.1. Untersuchung iiber die Eindeutigheit der Losung

Ist die Funktion f(y) nicht quadratisch, so existieren im all-
gemeinen mehrere Losungen der (leichung (62). Far den speziellen
Fall, dass f(y) die Gestalt (80) annimmt, stellt sich nun die Frage, ob
sich innerhalb eines geniigend grossen Bereichs um die rohen Werte
herum mehr als eine Reihe als Losung finden lassen. Wurzeln, die
ausserhalb dieses Bereichs liegen, interessieren uns nicht, da sie im
Sinne der Ausgleichung unverniinftig sind.

Fir den Fall, dass die Bedingungen (54) erfillt sind, besitzt die
Gleichung (80), wie wir in 9.2. geselien haben, eine einzige Ldsung.
Gelten jedoch diese Bedingungen nicht, so lisst sich wegen der Kom-
pliziertheit der Funktion f, welche nicht nur von den Variablen y,,
sondern auch von den Parametern i, und G(z) abhingt, auf die ge-
stellte Frage wohl kaum eine mathematisch korrekte Antwort finden.

Erhalten wir jedoch bei den praktischen Berechnungen bei glei-
chen G-Werten zweil verschiedene Reihen als Losungen von (80), so
1st diese Frage in befriedigender Weise beantwortet. Nun haben aber
unsere Berechnungen gezeigt, dass, obwohl wir von verschiedenen
Anfangsreihen ausgegangen sind, die Verfahren bei gleichen G-Werten
immer zur gleichen Losung fithren. Die Tabelle 10 gibt iiber die durch-
gefithrten Berechnungen Auskunft. Die Zahlen der Reihen beziehen
sich auf die Rethennumerierung in den Tabellen 11, 15, 19, 23 und 26.
Mit I haben wir die Reithe bezeichnet, deren Werte durch lneare
Interpolation zwischen 100 - gy, und 100 - g, hervorgegangen sind.
Die rohen Daten 100 -g, haben wir als Reihe 13 in der Tabelle 23
festgehalten. Die Vermutung liegt nun nahe, dass nur eine verntnftige
Losung von (80) existiert. Wir mochten an dieser Stelle jedoch deut-
lich hervorheben, dass unsere Berechnungen dies keineswegs sicher-
stellen. Wir sind deshalb sofort bereit, diese Hypothese aufzugeben,
sobald eine zweite, im Sinne der Ausgleichung verniinftice Losung
von (80) bei gleichen G-Werten gefunden wird.

Fur jede einzelne Reihe sind in der Tabelle 10 die Anzahl der
benotigten Schritte sowie die ungefihre Berechnungszeit angegeben.
Diese Zahlen zeigen, dass das GELI-Verfahren der GEM-Methode
tiberlegen ist.
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Tabelle 10
GEM-Verfahren GELI-Verfahren
Aus- Anzahl Schritte
Rethe | G-Wert | gangs- | Fletcher
reihe and Lin. Zeit Anzz.xh] Zeit
Schritte
Reeves
5 10 1 40 3 4h30M 8 1h40 M
5 10 1 8 1h40 M
6 100 2 43 3 4h40 M 7 1h30M
6 100 I 10 2h
7 1000 3 54 3 6h 6 1h20M
7 1000 6 17 4 2h20M
T 1000 8 37 3 4h
7 1000 I 12 2h30M
8 10000 7 5 5 1h30M
8 10000 4 7 1h30M
8 10000 I 9 1h50M
9 10 5 22 4 3h
10 100 6 5 4 1h10M
11 1000 7 1 3 50 M
12 10000 8 1 3 50 M
18 10 14 und 5 9 3 7h 3 2h30M
19 100 | 15und 6 11 3 8h 5 4h20 M
20 1000 | 16 und 7 9 5 [11h 8 Th10M

Fiar die Berechnung von 18, 19 und 20 haben die in der folgenden
Art aus zwei Reihen zusammengesetzten Wertefolgen als Ausgangs-
reihen gedient. Die erste in der Spalte «Ausgangsreithe» angegebene
Zahl bezieht sich auf die Alter 3-79, die zweite auf die Alter 80-100.

12.2. Dne Ausgleschung zwischen den Altern 80 und 100

Wir haben im Abschnitt 6.3. bereits darauf hingewiesen, dass in
der Reihe der einjihrigen Sterbewahrscheinlichkeiten die Bedingun-
gen (54) erfillt sind. Die Berechnungen haben auch gezeigt, dass die
Ausgleichung mit Hilfe des DGV unter Verwendung des klassischen
und des neuen Glittemasses die gleichen Werte liefert. Abgesehen von
einem Faktor 100 sind diese Resultate mit den Werten der Rethen 1,
2,3, 4,14, 15 und 16 in den Tabellen 11 und 23 identisch.
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Véllig andere Resultate erhalten wir jedoch, wenn wir anstelle
der rohen g, die Rethe 100-g, (Reihe 13, Tabelle 23) ausgleichen. Vor
allem in den hohen Altern sind die Bedingungen (54) nicht mehr
erfiillt. Die Ausgleichung der Reihe 13 zwischen den Altern 80 und 100
unter Verwendung des neuen Glittemasses haben die in der Tabelle 15
aufgefithrten Reihen 5, 6, 7 und 8 ergeben. Bei den Reihen 9, 10, 11
und 12 der Tabelle 19 ist der Korrekturfaktor f (siehe (21) und (32))
mitbertucksichtigt worden.

Um uns ein richtiges Bild von der Verschiedenartigkeit der aus-
geglichenen Daten machen zu koénnen, haben wir die Reihen 1, 2, 3,
4, 5,6, 7Tund 8 in den Figuren 9 bis 12 graphisch dargestellt. Weiter
haben wir fiir jede Reihe die Glitte nach klassischer und neuer Me-
thode sowie die Abweichungen von den rohen Daten berechiiet. Diese
Resultate sind in den Tabellen 12, 13, 14, 16, 17, 18, 20, 21 und 22
wiedergegeben.

Aus diesem umfangreichen Material kénnen wir die folgenden
wichtigen Ergebnisse herauslesen:

1. Im Gegensatz zum iiblichen Sterblichkeitsverlauf zeigen alle
mit dem DGV ausgeglichenen Rethen in den hichsten Altern ein von
unten konkaves Verhalten. Dies 1st in den Rethen 1, 2, 5 und 9 derart
ausgepragt, dass die Sterblichkeit am Ende der Reihe wieder abnimmt.
Der Grund fur dieses «unverniinftige» Verhalten liegt darin, dass wir
bei der Ausgleichung nur Werte bis zum Alter 100 beriicksichtigt
haben und dass 100 - g;o, verhéltnismadssig klein ist.

2. Die Reihe 5 weist beim Alter 100 ein eigenartiges Verhalten
auf. Die ausgeglichene Sterblichkeit ist dort kleiner als der schon
kleine rohe Wert. Wir haben hier einen der in 5.2. erwihnten Fille
vor uns, wo das Glittemass z einen zu kleinen Wert anzeigt. Sobald
wir den Korrekturfaktor f mitberiicksichtigen (z;), wie das bei der
Reihe 9 geschehen ist, fillt der ausgeglichene Wert wesentlich héher
aus. Durch die nachfolgende kleine Tabelle, in welcher die Gléitte-
werte des letzten Stiicks der Reihe 5 mit und ohne Faktor f ange-
geben sind, wird dies verdeutlicht.

Alter l Glattewert 2z Glattewert z [ t

97-100 5,97 -1072 5,48 - 101

96— 99 9,61 - 102 7,76 - 102 ‘
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3. Mit Ausnahme der Reihen 5 und 9 sind die Unterschiede
zwischen den sich entsprechenden Werten der Tabellen 15 und 19
nicht wesentlich. Der Korrekturfaktor f hat auch hier im allgemeinen
keinen grossen Iinfluss auf die Ausgleichung. Gleich wie im Ab-
schnitt 7 zeigt sich auch hier wieder, dass die Korrektur f sich immer
weniger auf die Resultate auswirkt, je glitter die Reihe ist. Ist ein
einigermassen glatter Verlauf vorausgesetzt, so diirfen wir bei der
Ausgleichung mittels des DGV auf f vollkommen verzichten.

4. Die Unterschiede zwischen dem Grundgedanken des klassischen
Masses, in welchem eine moglichst geringe Abweichung von einer
Parabel 2. Grades verlangt wird, und dem des neuen Masses, in dem
die Krimmungsinderung als moglichst klein gefordert wird, treten
im letzten Stick der Rethe 2 deutlich in Erscheinung. So weisen die
klassischen Glattewerte (Tabelle 13) mit wachsendem Alter eine
fallende, die neuen Werte (Tabelle 14) hingegen eine steigende Ten-
denz auf. Mit steigendem x nidhert sich die Rethe immer mehr einem
parabolischen Verlauf; die Anderung der Kritmmung dagegen wird
immer grosser. Aus dem gleichen Grund werden mit dem klassischen
Mass die beiden Reihen 2 und 8 in ihrem letzten Teilstiick etwa gleich
bewertet, wiahrend die neuen Glittewerte fiir die zwer Reihen stark
verschieden sind, was uns beim Betrachten der beiden Figuren ver-
niinftig erscheint.

5. Mit Ausnahme der Reihe 5, die einen unregelmissigen Verlauf
hat, besitzt die Folge der lokalen Glattewerte jeder Reihe, gemessen
mit demjenigen Mass, das auch bei der Ausgleichung dieser Reihe
verwendet wurde, ein lokales Maximum im mittleren Bereich der
Reihe. Dieses Maximum befindet sich an der Stelle, wo der konvexe
Verlauf in den konkaven uibergeht. Beim neuen Mass besitzen dort die
beiden zur Bestimmung des Gliattewerts bendtigten Kriimmungen
unterschiedliche Vorzeichen, was zur Folge hat, dass nicht ihre Dif-
ferenz, sondern ihre Summe quadriert wird. Das gleiche ldsst sich
auch fur das klassische Mass sagen, nur dass dabei an die Stelle der
Krammung die zweite Differenz tritt.

6. Bei der Beurteilung der globalen Glitte wollen wir uns auf das
im Abschnitt 8.2. erwihnte «Platzziffern-Kriterium» stiitzen. Nach
den Werten der Tabellen 13, 14, 17 und 18 ergeben sich die folgenden
Ranglisten:
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Klassisches Glattemass: Neues Glattemass:
Rang Reihe Platzziffer Rang Reihe Platzziffer
1. 4 23 1. 4 20
2. 3 43 2 8 51
3 2 63 3. 3 73
4, 8 77 4. 7 78
5. 7 80 8. 2 83
6. 1 98 6. 1 95
7. 6 112 7. 6 111
8. 5 144 8. 5 137

Wihrend die beiden Ranglisten in den Extremwerten tberein-
stimmen, ergeben sich dazwischen doch deutliche Unterschiede. So
fallt vor allem auf, dass die Reithen 2 und 8 beziiglich ihrer Rénge
und 1hrer Platzziffern ganz verschieden bewertet werden. Wenn wir
die Bilder der 8 Reihen miteinander vergleichen, so erkennen wir,
dass sich die zweite Rangliste (neues Glittemass) wohl am ehesten
mit den Erwartungen deckt, die wir auf Grund unserer Vorstellung
von der Glitte haben. In den wesentlichen Punkten werden diese
beiden Ranglisten sowohl durch die globalen Glittewerte als auch
durch lokale Betrachtungen bestitigt.

7. Mit Ausnahme der Reihe 5 durfen wir alle in den Figuren 9
bis 12 dargestellten Reihen als verniinftig bezeichnen. Je nachdem
was fitr Anspriiche wir beziiglich des Verlaufs der Glatte und der
Abweichungen von den rohen Daten an die ausgeglichene Reihe
stellen, werden wir der einen oder anderen Reihe den Vorzug geben.
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Tabelle 11

Ausgleichung mit Hilfe des klassischen Glittemasses

Alter Reihe 1 Reihe 2 Reihe 3 Reihe 4
G =10 G = 100 G = 1000 G = 10000

80 14.332 14.453 13.999 12.998
81 15.521 15.525 15.208 14.738
82 16.780 16.702 16.532 16.491
83 18.122 17.987 17.971 18.257
84 19.551 19.384 19.524 20.037
85 21.061 20.898 21.186 21.828
86 22.639 22.538 22.953 23.630
87 24.272 24.309 24 .814 25.438
88 26.002 26.218 26.754 27.249
89 27.925 28.270 28.754 29.059
90 30.090 30.446 30.787 30.860
91 32.445 32.703 32.822 32.647
92 34.893 34.975 34.823 34.412
93 37.267 87.197 36.751 36.148
94 39.436 39.222 38.572 37.847
95 41.273 41.026 40.252 39.505
96 42.810 42.529 41.767 41.116
97 43.983 43.677 43.095 42 .677
98 44.656 44 .423 44.226 44 .186
99 44.712 44.739 45.150 45.641
100 44.034 44.606 45.866 47.044




— 131

Tabelle 12

Abwerchungen von den rohen Daten

Alter Abweichungen
Reihe 1 Reihe 2 Reihe 3 Reihe 4
80 1.17-10 2.38-1071 —2.16 - 101 —1.22
81 | —3.02-101 —2.98-107 —6.15 - 1071 —1.09
82 1.36-10! 5.80:10"2 —1.12-101 —1.53-101
83 9.50 - 102 —4.00- 102 —5.60 - 102 2.30-101
84 2.80-102 —1.39-101 1.00-103 5.14 -1071
85 4.61-10 2.98-10 5.86 - 101 1.23
86 | —5.36-1071 —6.37- 101 —2.22 101 4.55 - 1071
87 | —1.02 —9.85-10! —4.80- 101 1.44 .10
88 5.11-1071 7.27-1071 1.26 1.76
89 1.04 1.38 1.86 2.17
90 | —7.38-101 —3.82-1071 —4.10-102 3.20-102
91 1.23 1.49 1.61 1.44
92 | —1.29 —1.21 —1.36 —1.77
93 1.76 1.67 1.25 6.43 -1071
94 | —4.00 —4.21 —4.86 —5.59
95 2.75 2.50 1.8 9.80-101
96 6.22 1071 3.41-101 —4.21-101 —1.07
97 | —1.02 —1.32 —1.91 —2.32
98 1.82 1.09 8.93 - 1071 8.53 - 101
99 | —2.35 —2.32 —1.91 —1.42
100 1.18 1.78 3.01 4.19
Quadratische Abweichungen
80-100 4.34-10 4.62-10 5.61-10 7.71-10
80— 90 .55 4.21 6.13 1.25-10
91-100 3.99-10 4.20-10 4.99-10 6.46 - 10
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Tabelle 13  Klassische Gliittewerte

Alter Reihe 1 Reihe 2 Reihe 3 Reihe 4
80— 83 1.69-104 9.00-10%® 0.00 0.00

81- 84 1.60 105 1.60-10° 1.00 108 1.00- 10
82— 85 3.60-10° 2.50-10-% 2.50-103 9.00- 10
83— 86 1.69.101 8.10-10°% 1.60-103 0.00

84— 87" 1.69-10¢ 2.50 - 1078 1.21 .10 2.50- 108
85— 88 1.76 - 103 4.90-10-° 92.95 - 104 9.00-10°%
86— 89 9.22.103 2.50-10-3 3.61-10 1.60-10-3
87- 90 2.40-103 3.61-10¢ 7.29 .10 6.40 - 103
88- 91 2.70-10-3 1.85.103 9.61-101 2.50-10-5
89— 92 9.41 - 1073 4.36-10°3 1.30-103 6.40 - 105
90- 93 2.79-10-2 7.23 103 1.52 108 4.90-10-3
91- 94 1.72-10°2 7.57-103 1.16-10°3 6.40 - 10—
92— 95 1.61-10°2 7.06-10"3 1.16 - 1073 1.60-10-5
93— 96 1.02-108 3.60-108 5.76-10 3.60 - 10-5
94— 97 4.10-10-8 2.92.10-8 4.84 -10+4 9.00-10-%
95— 98 1.85 102 2.21 -10-3 1.00-104 4.00 - 108
96— 99 1.37-10°2 7.84-10¢ 1.00-104 4.00-10-
97-100 1.37 1072 3.61-10 1.00 108 4.00 108
80-100 1.38-1071 3.85-10"2 8.83 -10°3 3.99 - 104
80— 91 1.66-10°2 2.44 - 103 9.44 - 103 1.49-104
89-100 1.22.101 3.61-10-2 6.39-10-3 2.50 104

Tabelle 14  Newue Gliittewerte z

Alter Reihe 1 Reihe 2 Reihe 3 Reihe 4
SO- 83 1.15-10% 1.40-10-3 1.75-10-3 7.05-10-10
81- 84 1.85-10°% 9.91.10 1.91-10° 8.38-10°
82— 85 9.11 - 106 7.19-10-% 1.23-10-5 1.492 - 107
83— 86 1.23 -10-3 3.59-10¢ 6.96 - 108 3.20 - 10-10
84— 87 7.83.10°8 5.797-108 8.15.10¢ 3.40 - 107
85— 88 2.33 105 3.71-10-% 6.77 - 108 1.18-107
86— 89 7T.14 - 103 3.74-10-¢ 5.83-10¢® 2.05 107
87— 90 6.80-107 1.16-10-5 7.13 -10-% 8.29 - 107
88— 91 6.37-10-° 1.65-10-% 7.41 108 3.51-107
89— 92 5.36 - 10— 2.16 - 10— 9.91-10" 9.65 1077
90- 93 8.92 .10 3.30103 1.47-10-° 8.86 107
91— 94 8.59-10-5 5.47 - 105 1.89-10-° 1.88-10-%
99— 95 2.65-101 1.83-10 3.67-10-% 6.14 - 10-7
93- 96 1.05-10% 3.32-104 5.56 + 105 1.40 - 108
94— 97 1.36-10°3 1.31-10-8 1.21-10+¢ 8.20 - 107
95— 98 1.55 102 5.98-10-3 1.94.104 7.60 107
96— 99 9.92 102 2.05-102 4,33 -10+4 9.86 - 107
97-100 1.66 - 102 2.10- 102 6.76 - 104 1.23-1077
80-100 | 1.34-107 4.95-10-2 1.65 - 107 9.93 - 10
80- 91 1.91.10¢ 7.60-10-3 8.52 .10 1.99.10¢%
89-100 1.83-101 4.94 - 102 1.56-10-3 7.93 - 108
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Tabelle 15

Awusglevchung mat Halfe des neuen Glittemasses z

Aiifas Reihe 5 Reihe 6 Reihe 7 Reihe 8
G =10 G = 100 G = 1000 G = 10000
80 14.297 14.354 14.293 14.341
81 15.608 15.510 15.524 15.502
82 16.796 16.736 16.812 16.732
83 18.008 18.061 18.164 18.039
84 19.347 19.519 19.583 19.434
85 20.946 21.120 21.069 20.927
86 23.074 22.813 22.620 22.533
87 24.644 24.431 24.232 24.269
88 25.839 25.988 25.933 26.156
89 27.285 27.705 27.802 28.215
90 30.091 29.792 29.942 30.443
91 31.950 32.084 32.396 32.772
92 34.926 34.853 35.105 85.069
93 36.518 37.361 37.604 37.184
94 40.510 40.086 39.653 39.042
95 41.437 41.617 41.216 40.641
96 42,699 42.766 42.435 42.015
97 44 .585 43.615 43.393 43.201
98 45.303 44.192 44.143 44,232
99 45.312 44 .535 44.723 45.133
100 42.630 44 .666 45.162 45.924
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Tabelle 16

Abweichungen von den rohen Daten

Alter Abweichungen
Reihe 5 Reihe 6 Reihe 7 Reihe 8
80 8.20 102 1.89-101 7.80 102 1.26 - 102
81 [—2.15-107 —3.13 - 10! —2.99 - 1071 —3.21-1071
82 1.52-1071 9.20-10°2 1.68-101 8.80-102
83 | —1.90-10"2 3.40 - 102 1,87« 102 1.20 102
84 | —1.76-101 —4.00-10-° 6.00-10* | —8.90-10"2
85 3.46-1071 5.20-107 | 4.69 1071 3.27-107
86 | —1.01-101 —3.62 101 —5.55-1071 —6.42-101
87 | —6.50-10"1 —8.63 107! —1.06 —1.03
88 3.48-101 4.97 .10 4.42 .10 6.65-101
89 8.95-1071 8.15- 101 9.12-101 1.33
90 | —7.37-101 —1.04 —8.86 - 107! —3.85-107
91 7.39-101 8.73 - 101 1.19 1.56
92 | —1.26 —1.33 —1.08 —1.11
93 1.01 1.86 2.10 1.68
94 | —2.92 —3.35 —3.78 —4.39
95 2.91 3.09 2.69 2.12
96 5.11-107 5.78 - 1071 2.47 - 1071 —1.73 .10
97 | —4.15-100 | —1.39 —1.61 —1.80
98 1.97 8.59 -10 8.10-107 8.99 .10
99 | —1.75 —2.52 —2.34 —1.93
100 | —2.27-1071 1.81 2.31 3.07
Quadratische Abweichungen
80-100 2.91-10 4.26 - 10 4.62-10 5.15-10
80— 90 1.48 3.26 3.61 4.05
91-100 2.76-10 3.94-10 4.26-10 4.75-10




Tabelle 17
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Klassische Glittewerte

Alter Reihe 5 Reihe 6 Reihe 7 Reihe 8

80— 83 2.16 - 102 8.41 -104 4.90-10"® 6.40 - 10°°
81- 84 1.06-102 1.16-103 9.00-10% 1.21.10
82— 85 1.77-102 1.00-104 0.00 1.00-10*
83— 86 7.24.10°2 2.60 103 4.00-10°% 2.25-10+4
84— 87 1.18 2.79 102 1.60-103 2.89 .10
85— 88 3.35-102 1.96-10+4 7.84 -10% 4.41 - 10
86— 89 3.92.1071 4.88 .10 6.24-103 4.41 .10
87— 90 1.23 4.41 102 1.06 - 102 9.00-10°
88— 91 5.32 2.72 102 1.85-10"8 4.62 103
89— 92 4.26 7.40-10"2 3.48-10°38 1.77-10-2
90— 93 6.26 5.45-101 2.16 - 101 2.25-10"2
91— 94 1.43-10 2.928 - 101 5.76 - 102 5.63-10-3
99— 95 2.99-.10 1.99 1.30-108 4.00 .10
93— 96 1.16 - 10 6.59 1071 2.02-102 1.16 - 108
94— 97 8.35-10"2 6.72-10°3 6.89 -108 1.37-10°8
95— 98 3.21 7.84 .10 2.81-10° 1.09 - 103
96— 99 2.11-107 1.44 -10°3 1.44 -10-8 6.25 - 104
97-100 3.93 4.84 .10 8.41 - 10 4.00-104
80-100 8.20-10 3.66 3.30-101 5.68 - 102
80- 91 8.28 1.53 1071 1.96-102 6.31-102
89-100 7.37-10 3.51 3.11 -1071 5.05-102

Tabelle 18 Neue Gliittewerte z

Alter Reihe 5 Reihe 6 Reihe 7 Reihe 8

80- 83 1.82.108 2.16 - 10-8 1.51-107 2.27 .10
81- 84 5.55+10™% 1.02-10-° 4.38 -1077 6.89 -108
82— 85 2.77 102 9.01-10% 1.47-10% 1.98 - 107
83— 86 1.02-104 1.12-104 1.97-10-% 4.30 - 10
84— 87 1.38-102 5.40- 10+ 2.96 108 1.69-107
85— 88 2.31-10* 1.28-10-% 8.86-10-% 3.09-107
86— 89 1.73-102 1.02-10°8 5.40 - 10-3 1.32-10¢
87— 90 3.25-10°8 2.19 .10 2.06 - 103 9.78 - 10-¢
88— 91 2.96 - 102 5.19 .10 1.75-10°3 3.88-10-3
89— 92 1.55-10"2 8.31-10-5 6.39 - 10-3 7.32.10-3
90— 93 9.57-102 1.26-10-8 4.72 104 1.17-10+
91— 94 4.11-102 4.63 10 3.9510¢ 1.12-104
92— 95 1.10-101 1.14-102 6.90 - 104 8.47-10-°
93— 96 1.07-101 2.10-1014 1.70 104 4.37-10-3
94— 97 9.87-10-3 5.96 - 104 1.51-10% 9.23.10-°
95— 98 1.47.101 1.65-10-3 1.11-10-% 7.26 - 108
96— 99 9.61-10-2 8.05-10+4 4.35-10- 3.11 -10-8
97-100 5.97:10"2 3.85-10¢ 2.81-10-8 3.20-107
80-100 6.69-101 1.93-102 2.21-10-8 5.15-10*
80— 91 6.65-102 2.45 103 1.07-10¢ 5.06 10"
89-100 6.02-101 1.69-10"2 2.10-10-8 4.64-104
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Tabelle 19

Ausgleichung mit Hulfe des Glittemasses z;

Alter Reihe 9 Reihe 10 Reihe 11 Reihe 12
G =10 G =100 G = 1000 G = 10000
80 14.298 14.353 14.293 14.340
81 15.606 15.510 15.525 15.501
82 16.794 16.736 16.812 16,731
83 18.009 18.062 18.163 18.039
84 19.353 19.519 19.582 19.434
85 20.959 21.121 21.068 20.927
86 23.055 22.813 22.619 22.534
87 24.629 24 .430 24.231 24 .271
88 25.850 25.985 25.933 26.159
89 27.364 27.699 27.805 28.219
90 30.037 29.782 29.947 30.446
| 31.965 32.103 32.403 32.774
92 35.027 34.959 35.110 35.068
93 36.865 37.461 37.601 37.180
94 40.226 39.972 39.643 39.037
95 41.4928 41.538 41.208 40.636
96 42829 42,726 42.431 42.012
97 44 .208 43.602 43.392 43.200
98 44.792 44.196 44 144 44.233
99 44.755 44 .550 44 727 45.136
100 43.754 44 688 45.167 45.928




Tabelle 20

Abwerchungen von den rohen Daten

Alter Abweichungen
Rethe 9 Reihe 10 Reihe 11 Reihe 12
80 8.30- 102 1.88- 101 7.80 1072 1.25 .10
81 | —2.17-107 —3.13-101 —2.98 - 107! —3.22 1071
82 1.50-1071 9.20 - 102 1.68-1071 8.70 - 102
83 | —1.80-10 8.50 102 1.86 101 1.20-102
84 | —1.70-1071 —4.00-10-3 5.90 - 102 —8.90 - 102
85 3.59-107 5.21 -1071 4.68 - 10! 3.27 - 1071
86 | —1.20-107 —3.62 101 —5.56 -101 —6.41 - 1071
87 | —6.65-1071 —8.64-1071 —1.06 —1.02
88 3.59 1071 4.94 107 4.49 -10 6.68 -101
89 4.74 - 101 8.09 - 101 9.15- 10! 1.33
90 | —7.91-101 —1.05 —8.81 10 —3.82.10!
91 7.54-1071 8.92-1071 1.19 1.56
92 | —1.16 —1.22 —1.07 —1.12
93 1.36 1.96 2.10 1.68
94 | —38.21 —3.46 —3.79 —4.40
95 2.90 3.01 2.68 211
96 6.41-10 5.88-1071 2.43 - 101 —1.76 - 107!
97 | —7.92.107 —1.40 —1.61 —1.80
98 1.46 8.63 - 10! 8.11-1071 9.00 101
99 | —2.30 —2.51 —2.33 —1.92
100 8.97-101 1.83 2.81 3.07
Quadratische Abweichungen
80-100 3.34-10 4.31-10 4.62-10 5.15-10
80— 90 1.67 3.27 3.61 4.06
91-100 3.18-10 3.96-10 4.26-10 4.75-10
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Tabelle 21  Klassische Glittewerte

Alter Reihe 9 Reihe 10 Reihe 11 Reihe 12

80— 83 2.16 -102 9.61-104 8.10-103 8.10 - 103
81— 84 1.04-102 9.61-10 1.60-10"° 8.10 - 1075
82— 85 1.77-10°2 1.96-10* 1.00- 10 1.21-10¢
83— 86 5.20-102 3.03-10-8 4.00-108 9.56 10
84— 87 1.02 2.72- 102 1.60-10° 2.56 - 10
85— 88 2.86-10"2 1.69-101 §.41 - 10 4.41 - 104
86— 89 4.17-101 4.88 102 6.40 - 103 4.41-104
87— 90 7.50 - 101 4.41 102 1.00-10"2 2.50 105
88— 91 3.63 1.72-10°2 1.94-10-8 4.36 103
89— 92 3.53 8.82-.102 3.97-108 1.82.102
90— 93 5.56 7.90-101 2.18 - 107 2.19 - 102
91— 94 7.55 1.82.1071 5.43 - 102 5.33 108
92— 95 1.36-10 9.10- 101 7.84 101 9.00-10®
93— 96 5.56 3.21 101 1.82-10°2 1.23-10-3
94— 97 4.88-10"2 4.36 103 6.40 - 103 1.23-103
95— 98 5.98 - 101 9.00-10 2.81 .10 1.09-10°3
96— 99 3.03 -102 1.76 - 1038 1.60-10-8 6.25- 104
97-100 1.18 .10 5.76 - 104 6.76-10 3.61-10¢
80-100 4.25-10 92.39 3.26 1071 5.61-102
80— 91 5.95 1.43 .10 1.93 102 6.06 - 108
89-100 3.65-10 2.925 3.07-101 5.00-102

Tabelle 22 Neue Glittewerte z

Alter Reihe 9 Reihe 10 Reihe 11 Reihe 12

80— 83 1.33.10°8 2.65- 107 7.93 1077 7.38-108
81- 84 5.83 .10 6.64 - 10-¢ 2.23-107° 3.44 - 108
82— 85 2.66-10* 5.17-10-8 2.03-10°8 4.90-108
83— 86 4.50-10-3 1.25-104 1.97-10-8 6.68 -10-°
84— 87 1.23-102 5.28 -10 2.26 - 10 3.38-107
85— 88 1.48 .10 9.50 107 9.65-10° 3.08:107
86— 89 1.71-10°2 1.03-10°3 5.48 - 103 1.32-10-8
87— 90 1.38 103 2.23 .10 1.76 - 10-5 1.06 103
88— 91 2.13 -10°2 4.29-10* 1.62-10-3 3.68-10-
89— 92 1.18-102 7.03-10-3 6.63 - 105 7.56 105
90- 93 1.69-10-2 1.63-10-3 4.78 - 10 1.15-104
91— 94 2.09 102 2.45 .10 3.89 .10+ 1.09 - 104
92— 95 5.76 - 102 T7T.07-10-3 6.86-104 8.51 -10-3
93- 96 4.40- 102 3.98 103 1.75-10 3.98-10-°
94— 97 2.45 - 108 8§.10- 10 1.66-104 2.50 10—
95— 98 8.76 102 1.80-1038 1.16-10+# 7.20-10-%
96— 99 6.77 102 8.57.104 3.11 105 3.09-10-¢
97-100 1.88-10"2 4.18 -10¢ 1.30-10-3 1.10- 108
80-100 3.82.101 1.53 102 2.18 - 103 5.11 .10
80— 91 5.44 -10°2 92.37-10-8 1.06-10¢ 4.96 - 105
89-100 3.28-101 1.29-102 2.07 10 4.61-104
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a) Reihe 4 (G = 10 000) Figur 12 b) Reihe 8 (G = 10 000)
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12.3. Die Ausglevchung zuschen den Altern 3 und 100

Bei der Ausgleichung der Sterbetafel SM 1939/44 mit Hilfe des
DGV haben wir die Sterbewahrscheinlichkeiten der Alter 0, 1 und 2
nicht miteinbezogen. Die grossen Kriitmmungsinderungen der Kurve
der eimnjihrigen Sterbewahrscheinlichkeiten in diesem Altersbereich,
welche durch den plotzlichen Ubergang von einem steil abfallenden
in einen beinahe waagrechten Verlauf bedingt sind, wurden durch
viele Beobachtungen erhértet. Wirden wir die Ausgleichung auch auf
die ersten Werte der Sterblichkeitskurve ausdehnen, so hitte das zur
Folge, dass diese Kriimmungsinderungen verkleinert und dadurch
die richtigen Werte stark verfilscht wiirden.

Der Grund fiir dieses unglatte Verhalten der Sterblichkeitskurve
mag wohl darin liegen, dass in den allerersten Lebensjahren ganz
besondere Risiken, die mit der Geburt und deren Folgen zusammen-
hingen, fiar die hohe Sterblichkeit verantwortlich sind und dass der
Einfluss dieser Risiken sehr rasch abnimmt. Die Umschichtung der
fur die Sterblichkeit massgebenden Gefahrenmerkmale vollzieht sich
beinahe sprungartig, und deshalb sind benachbarte Sterbewahrschein-
lichkeiten beziiglich dieser Merkmale wenig miteinander verwandt.
Da aber bei jeder Ausgleichung eines Wertes die benachbarten Punkte
fir die Berechnung mitbestimmend sind, ist eine solche Ausgleichung
in den jingsten Altern nicht sehr sinnvoll. Sie ist erst dann zweck-
miéssig, wenn die Sterbewahrscheinlichkeiten nicht im Abstand von
einem Jahr, sondern vielleicht von einem Monat gegeben sind.

Mit Ausnahme der rohen Werte 100 - g, (Reithe 13) sind in der
Tabelle 23 die mit Hilfe des klassischen DGV ausgeglichenen Werte
(Reithen 14 bis 16) aufgefuhrt. Die Reithe 17 der Tabelle 26 ist die
offizielle, nach der Methode von King gegliattete Tafel. Die Resultate
der Ausgleichung nach dem DGV unter Verwendung des neuen
Masses z sind In der Tabelle 26 (Reihen 18 bis 20) angegeben. In den
Tabellen 24, 25, 27 und 28 finden wir fiir jede Reihe die Abweichungen
von den rohen Daten sowie die mit Hilfe des neuen Masses z berech-
neten Gliattewerte.

Bis etwa zum Alter 65 stimmen die Sterblichkeiten der Reihen 14
bis 16 mit den entsprechenden der Reihen 18 bis 20 weitgehend iiber-
ein. Erst in hoheren Altern machen sich Unterschiede bemerkbar, da
im letzten Teilstuck die Bedingungen (54) nicht mehr erfiillt sind.
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Die offizielle, nach King ausgeglichene Reihe 17 ist bis zum Alter 75
mit einigen lokalen Ausnahmen die ungléitteste der T Reihen 14 bis 20.
Von diesem Alter an werden die Glidttewerte von 17 immer kleiner.
Beim Vergleich der offiziellen Sterblichkeiten mit den nach dem DGV
ausgeglichenen Werten miissen wir beachten, dass beim DGV nur die
rohen Daten bis zum Alter 100 beriicksichtigt wurden; bei der offi-
ziellen Ausgleichung sind auch die Sterblichkeiten der héheren Alter
verwendet worden. Ein Vergleich ttber das Alter 90 hinaus ist deshalb
nicht sinnvoll.

Wie wir den Tabellen 23 bis 28 entnehmen konnen, ergibt das
DGV unverniinftige Resultate, solange die GG-Werte iiber den ganzen
Altersbereich hinweg konstant bleiben. So sind entweder die Sterb-
lichkeiten der hoheren Alter zwar richtig, die der fritheren Lebens-
jahre aber zu stark ausgeglichen, oder aber die Werte der fritheren
Alter sind vernunftig, dagegen ist das letzte Stiick der Rethe zu wenig
ausgeglichen. Der Grund fur dieses Verhalten liegt darin, dass in den
hohen Altern die Anzahl der unter Beobachtung gestandenen Per-
sonen mit wachsendem z immer kleiner wird, und somit die rohen
Sterblichkeiten grisseren Schwankungen unterworfen sind als in
fritheren Altern. Ob mit wachsendem = der Vertrauenskoeffizient F(x)
(siehe (59)) verkleinert oder die G-Werte vergrossert werden, der
Effekt wird der gleiche bleiben; dadurch wird dafiir gesorgt, dass die
mit wachsendem Alter zunehmenden Unregelméssigkeiten in den
rohen Daten keinen oder zumindest nur in beschriinktem Masse einen
Niederschlag in den ausgeglichenen Werten finden. Es wird jeweilen
von der Art der Problemstellung und der weiteren Verwendung der
ausgeglichenen Werte abhéngen, wie die Grossen G(x) oder FE(x)
gewithlt werden sollen.

(rerade hier zeigt sich der Nachteil des DGV in der FForm (59).
Dadurch, dass es dusserst anpassungsfihig ist, wird dem Beniitzer
zuviel Freiheit gelassen, die sich in der Unsicherheit bei der WWahl
der Gewichte manifestiert. Trotz alledem 1st das DGV wirkungsvoll.
So sind bis zum Alter 75 mit einigen lokalen Ausnahmen die Reihen 14
und 18 gléitter als die offizielle Reihe 17; und trotzdem sind, wie die
Tabellen 24 und 27 zeigen, die Abweichungen von den rohen Werten
in 14 und 18 im allgemeinen kleiner als in der Reihe 17.
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Tabelle 23

Ausglevchung mat Halfe des klassischen Glittemasses

ATbor Reihe 13 Reihe 14 Reihe 15 Reihe 16
- Rohe Werte G =10 G = 100 G = 1000
3 .254 .47 . 249 .235
4 .200 .205 .207 .202
5 .168 173 178 175
6 .144 .151 .155 .153
7 .135 .137 .137 .136
8 .146 127 .124 .125
9 115 121 115 .118
10 .113 17 .112 .116
11 .132 115 112 .119
12 .108 116 .118 127
13 .118 .122 .128 .138
14 .125 .135 .142 .152
15 .156 .154 .161 .169
16 .178 .178 .183 .188
17 .218 .205 .207 .208
18 .220 .232 .231 228
19 .251 .259 .254 247
20 .289 .281 975 .9264
21 .313 .299 .292 .280
29 .324 .310 .305 .292
23 .292 .316 .314 .302
24 .302 .319 .319 .309
25 .325 .320 .320 .313
26 .3492 .819 .319 .315
27 .304 .315 .315 .315
28 .317 .309 311 .314
29 .293 .304 .307 .313
30 .310 .301 .305 .311
31 .294 .300 .304 .811
32 .289 .304 .306 .313
33 .309 .312 311 .317
34 .345 .322 .318 .323
35 .348 .333 .329 .333
36 .325 .344 .342 .346
37 .353 .359 .360 .362
38 .876 .379 .381 .383
39 .431 .403 .406 .408
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Tabelle 23  Awusglewchung mat Hilfe

Alter Reihe 13 Reihe 14 Reihe 15 Reihe 16
Rohe Werte G =10 G =100 G = 1000

40 415 .433 .437 437
41 444 .469 .471 .470
42 517 511 511 .508
43 .584 557 .5b4 .551
44 .612 .605 .602 .597
45 .639 .655 .653 .649
46 .687 709 .709 705
47 .811 .T69 170 767
48 .814 .834 .836 .834
49 .903 .907 .908 .908
50 .970 .987 . 986 .988
51 1.104 1.076 1.072 1.076
52 1.153 1.171 1.166 1.171
53 1.276 1.273 1.269 1.276
54 1.371 1.383 1.381 1.390
55 1.579 1.502 1.506 1.514
56 1.598 1.632 1.643 1.650
57 1.730 1.781 1.795 1.798
58 1.947 1.951 1.963 1.960
59 2.155 2.143 2.146 2.137
60 2.374 2.352 2.345 2.330
61 2.575 2.575 2.560 2.541
62 2.749 2.810 2.792 2.772
63 3.148 3.058 3.042 3.025
64 3.323 3.320 3.313 3.303
65 3.602 3.603 3.610 3.609
66 3.930 3.920 3.938 3.946
67 4.912 4. 283 4.301 4.318
68 4.669 4,697 4.706 4.729
69 5.118 5.164 5.154 5.182
70 5.846 5.677 5.651 5.680
71 6.160 6.231 6.200 6.227
72 6.862 6.828 6.806 6.826
73 7.415 7.476 7.474 7.481
T4 8.287 8.186 8.209 8.196
75 8.940 8.966 9.016 8.975
76 9.770 9.832 9.899 9.822
77 10.869 10.792 10.858 10.741
78 11.667 11.847 11.890 11.736
79 12.987 12.992 12.991 12.813




des klassischen Glittemasses  (Fortsetzung)

Al Reihe 13 Reihe 14 Reihe 15 Reihe 16
AHEE 1 Rohe Werte G =10 G =100 G = 1000
80 14.215 14.207 14.155 13.975
81 15.823 15.472 15.378 15.229
82 16.644 16.779 16.660 16.578
83 18.027 18.141 18.008 18.027
84 19.523 19.573 19.435 19.579
85 20.600 21.076 20.956 21.235
86 23.175 22.645 22587 22.991
87 25.294 24.272 24.343 24 .839
88 25.491 25.998 26.237 26.767
89 26.890 27.921 28.275 28.755
90 30.828 30.087 30.441 30.779
91 31.211 32.444 32.692 32.808
92 36.183 34.893 34.962 34.804
93 35.505 37.268 37.165 36.731
94 43.434 39.436 39.213 38.552
95 38.525 41.274 41.020 40.234
96 42.188 42.810 42527 41.752
97 45.000 43.983 43.677 43.086
98 43.333 44.656 44 .425 44 .9223
99 47.059 44.712 44 .741 45.155
100 42857 44 034 44.608 45.880
Tabelle 24
Quadratische Abweichungen von den rohen Daten
Alter Reihe 14 Reihe 15 Reihe 16
3-100 4.36- 10 4.64-10 5.65 - 10

B 11 5.65 - 104 9.03 - 10~ 9.55 - 10~
11- 20 9.14 - 104 1.39 - 108 2.73 - 10-3
21- 30 2.20 - 10-3 2.51 103 3.67-10-3
31— 40 2.54-10-3 2.96 - 103 3.22-10-8
41- 50 4.65-1073 4.89 1073 5.18-1078
51— 60 1.16 - 10 1.41-10°2 1.55-1072
61— 70 4.84-102 6.21-102 6.40 - 102
71— 80 6.31-10 9.02-107? 1.31-1071

81— 90 3.58 4.21 6.11
91-100 3.99-10 4.20-10 5.01-10
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Tabelle 25

Alter Reihe 14 Rethe 15 Reihe 16
3— 6 9.17-1011 9.77 - 1012 9.93-107
4 7 3.97-10% 9.94 107 2.72-1012
5 8 1.60-10-3 1.82-10-12 1.00-108
6- 9 2.30 - 1018 9.98 - 107 3.99-10¢
7- 10 4.00-10% 4.00-108 1.00-108
8- 11 2.30-10-15 9.00 - 108 2.95 1014
9— 12 1.00-10-% 9.00-10-% 5.06-10-14
10— 13 4.00 .10t 4.00-10-8 4.00-10-¢
11- 14 4.00-10® 2.30-10-18 8.82 1014
12- 15 1.00-10-% 9.98 - 107 1.43 -10-13
13- 16 1.00-108 4.00-10-¢ 1.00- 108
14— 17 4.00 - 10-® 9.99.10-7 9.99.10-7
15— 18 8.98-10-¢ 3.99-10-8 9.99-10-7
16— 19 0.00 9.98 .10 9.99 107
17- 20 2.50-10"° 9.99-10-7 9.99-10-7
18- 21 9.96 - 107 4.00 - 10-8 9.99-10-7
19- 292 9.00 - 10 6.65 - 10-13 9.00-10°%
20— 23 3.99 - 10-8 3.89 1013 4,00 108
21— 24 4.00-108 1.87 10718 1.00-10°8
29— 25 1.00-10°% 5.76 - 1014 3.57-10"14
23— 26 1.44-10718 4.00-10® 1.00-10-%
24— 27 1.00-10°8 1.00 - 108 5.76 - 1018
25— 28 1.00- 1078 9.00-10-% 1.00-10°®
26— 29 9.00-10°¢ 0.00 1.00-108
27— 30 1.00-10-8 4.00-10-% 1.00-10-8
28— 31 1.30-1071 1.00-10-8 9.00-10-¢
29— 39 9.00-10"8 4.00-10-8 0.00
30— 33 1.00-108 2.92 -10-15 5.76 - 10718
31- 34 4.00-10°® 1.00-10-8 2.80-10-15
32— 35 1.00-10°8 4.00-10-% 4.00-10-
33— 36 1.00-10-¢ 4.00-10-¢ 1.00-10-8
34— 37 1.60-10-° 8.99 -10-8 1.23-10138
35— 38 9.97 - 1077 4.00-10-% 3.99-10-8
36— 39 1.00-10-% 9.97 107 1.00-10-%
37— 40 3.99 - 10-¢ 3.98-10-8 1.44 - 1012
38— 41 1.04-1012 8.99-10- 1.93 - 1012
39- 49 1.50-1012 8.95-10-8 9.93-10-7
40— 43 3.99 - 10-8 8.97-10-8 8.06 - 10-12
41— 44 3.98-10-¢ 3.97-10-% 3.99-10-¢
49— 45 3.28 -10-18 3.98-10-8 8.92-10-8
43— 46 3.96 108 3.96 - 10-8 3.98 - 10-8
44— 47 3.95-10°% 1.74 - 10-11 3.95-10°8
45— 48 1.00-10°% 2.05-1011 1.00-10°®
46— 49 8.83-10°°t 9.75 1077 3.92-10°%
47— 50 1.01-10% 5.89.1011 1.00-10°%
48— 51 3.86-10°8 3.88-10% 3.88.10°¢
49— 52 8.88-10° 2.63 - 1010 1.01-10°
50— 53 9.50-107 9.85-107 8.64 -10°¢
51- 54 9.36-1077 5.94 -10°10 1.02-10-%
52— 55 9.19-107 1.51-10°° 9.04 - 1077
53— 56 3.70-10-% 1.07-10% 3.65 10
54— 57 5.94 - 10 8.09-10% 3.15-10°
55— 58 3.11.10-8 T.44 -10-7 3.48 10
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Alter Reihe 14 Reihe 15 Reihe 16
56— 59 5.45-10°7 1.15-10-% 7.50-10-7
57— 60 2.44 .10 6.89-107 7.00-107
58— 61 8.70-10-¢ 1.92-10-8 3.03-10
59— 62 3.84.10-% 6.04-107 2.78 - 106
60— 63 6.82-10-7 5.43 - 10-7 2.50-10%
61— 64 6.36 - 107 6.21-105 5.63-10%
62—~ 65 3.75-10-° 1.69-10-° 4.81-10-%
63— 66 1.91-10+4 1.45-10-5 3.93 - 105
64— 67 8.40 - 10 6.75 - 10-8 6.55-10-8
65— 68 5.14 - 108 2.13 - 10— 4.77-10-8
66— 69 4.66-10-7 4.96 - 107 1.01 -10-%
67— 70 5.35-1073 7.58-107¢ 4.27-1077
68 71 2.65 1073 1.92.107° 9.43 - 1077
65— 72 2.64-10°¢ 6.97-1077 2.91-10°8
70—~ 73 1.03 - 1073 3.40-1078 8.41 -107*
71- 74 1.53-107° 1.90-1077 1.83-1077
72— 75 9.89 -107 9.93-107 6.09-1077
73— 76 1.22-10°° 3.58 -10°% 1.81-10°®
T4~ T7 2.98-10°8 1.31-10°% 2.07-10"®
75— T8 2.16 - 10— 1.82 1075 2.77 - 10°¢
76— 79 3.39-10°° 1.53-10°3 1.42-10-¢
77— 80 7.20-10-% 1.45-10-° 5.47-10%
78~ 81 4.29 .10 6.97-10¢ 1.62-10%
79— 82 7.05-10-5 1.69-10° 5.62-10°%
80— 83 4.61-10-8 9.49-10-8 3.32-10%
81— 84 3.79 -10-8 1.88-10-¢ 4.40-10-
82— 85 1.27-10-% 7.15-10°7 4.71-10-%
83— 86 3.84.-10-¢ 8.16-10-8 6.10 - 10-®
84— 87 4.95-10-¢ 2.83 .10 5.87-10-%
85— 88 2.17-10- 1.25-10-¢ 5.33 - 10-8
86— 89 7.39-10-3 3.59-10-¢ 6.55-10-%
87— 90 1.57-10°% 1.07-107° 6.00-10°®
88— 91 6.42 107 1.75-103 7.64-10°%
89— 92 5.52 1073 2.22 .10 1.12-107°
90— 93 8.79-10° 3.38-10°° 1.27-107°
91— 94 8.84.1073 5.49 .10 2.12 .10
92— 95 2.55-10¢ 1.85-10% 3.47-10°°
93— 96 1.14-10 3.23 -107* 5.61 105
94— 97 1.33-10°3 1.34-10-3 1.09 104
95— 98 1.56-102 5.89-10°8 2.04-10
96— 99 9.92 .10 2.09-102 3.93-101
97-100 1.66-102 2.07-102 6.64-101
3-100 1.34-101 4.98 .10 1.72-10-8
3- 10 2.39 .10 5.99.10-% 6.99 - 108
8- 20 4.89-10-° 3.40-10-° 9.00-10-8
18- 30 3.10-10-3 2.20-10° 1.90-10-3
28— 40 3.80-10-3 3.20-10-° 1.90-10-
38— 50 2.67-107° 3.98 .10 2.78 - 1073
48— 60 1.07-10% 3.16-10°3 2.40 - 1073
58— 70 3.16 - 10 7.50-107° 3.54-1073
68— 80 1.96 104 6.66 - 105 1.47-10°3
78— 90 1.65-104 2.67-107° 4.95-107°
88-100 1.83 101 4.95.102 1.51-10°8




— 150 —

Tabelle 26 4usglewchung mat Hilfe

Albar Reihe 17 Reihe 18 Reihe 19 Reihe 20
: Off. Reihe G=10 G = 100 G = 1000
3 .254 247 . 242 .235
4 207 .205 .207 .202
5 177 173 .178 175
6 .158 151 155 .153
7 .142 137 1387 .136
8 .129 127 .124 J125
9 .120 121 115 .118
10 115 17 112 116
11 .114 115 .112 119
12 17 116 118 127
13 124 122 .128 .138
14 137 1385 142 152
15 154 .154 .161 .169
16 77 178 .183 .188
17 .205 . 205 .207 .208
18 . 234 .232 .231 .228
19 .262 .259 .254 . 247
20 .283 .281 2175 . 264
21 . 296 .299 .292 .280
22 .305 .310 .305 .292
23 .311 .316 .314 .302
24 .314 .319 .319 .309
25 315 .320 .320 .313
26 .314 .319 .819 .315
27 .309 .315 .315 .315
28 .303 .309 .311 .314
29 .299 .804 .307 .313
30 .299 .300 .305 311
31 .301 .300 .304 311
32 .306 .304 .306 .313
33 .313 .312 .311 317
34 .322 .322 .318 .322
35 .334 .333 .329 .333
36 .347 .344 .342 .346
37 .362 .359 .360 .362
38 .380 .379 .381 .383
39 .402 .403 .406 .408




des neuen Glittemasses z

\lter Reihe 17 Reihe 18 Reihe 19 Reihe 20
B Off. Reihe G =10 G = 100 G = 1000
40 .432 .433 .437 437
41 .468 .469 471 471
42 .510 511 511 .508
43 .558 .557 .554 .551
44 .609 .605 .602 597
45 .663 .655 .653 .649
46 .718 .709 .709 .705
47 T4 .769 .T70 .T66
48 .835 : .834 .836 .834
49 .903 .906 .908 907
50 .981 .987 .986 98T
51 1.066 1.076 1.072 1.074
52 1.158 1.171 1.166 1.170
53 1.258 1.274 1.269 1.274
54 1.370 1.383 1.381 1.388
55 1.498 1.502 1.506 1.512
56 1.639 1.632 1.643 1.648
57 1.792 1.780 1.795 1.797
58 1.958 1.950 1.962 1.959
59 2.141 2.142 2.145 2.136
60 2.343 2.352 2.344 2.330
61 2.556 2.576 2.559 2.541
62 2.781 2.812 2.790 2.772
63 3.025 3.061 3.040 3.025
64 3.299 3.322 3.312 3.302
65 3.611 3.603 3.609 3.607
66 3.954 3.917 3.939 3.943
67 4.322 4.276 4.305 4.313
68 4.726 4.691 4.714 4.721
69 5.176 5.162 5.168 5.172
T0 5.681 5.682 5.669 5.669
71 6.231 6.239 6.217 6.215
72 6.819 6.839 6.816 6.817
T3 7.462 7.490 7.471 7.478
74 8.177 8.198 8.187 8.205
75 8.979 8.967 8.973 9.001
76 9.870 9.810 9.839 9.874
77 10.838 10.747 10.796 10.826
78 11.883 11.792 11.848 11.861
79 13.002 12,984 12.992 12.978
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Tabelle 26 _Ausgleichung mit Hilfe des neuen Glittemasses z  (Forts.)

Alter Reihe 17 Reihe 18 Rethe 19 Reihe 20
Off. Reihe G =10 G = 100 G = 1000

80 14 .194 14.284 14.207 14.172
81 15.451 15.582 15.463 15.436
82 16.767 16.789 16.746 16.761
83 18.141 18.014 18.092 18.146
84 19.573 19.354 19.545 19.589
85 21.072 20.949 21.132 21.088
86 929,652 23.073 292 .811 29 .641
87 924 317 24 .644 94 4925 24 250
88 26.071 25.839 925.983 25.944
89 27.919 27.9285 27.702 27.806
90 29.866 30.091 29.792 29.941
91 31.918 31.950 32.086 32.392
92 34.080 34.926 34.853 35.102
93 36.357 36.518 37.360 37.603
94 38.757 40.510 40.086 39.654
95 41 .9286 41 .437 41.617 41.216
96 43.950 42.699 42.766 49.436
97 46.757 44 585 43.616 43.394
98 49.715 45.303 44 .192 44 143
99 52.831 45.312 44 535 44 724
100 56.115 42.630 44 .666 45.162

Tabelle 27

Quadratische Abweichungen von den rohen Daten

Alter Reihe 17 Reihe 18 Reihe 19 Reihe 20
3-100 2.95 102 2.92-10 4.928-10 4.64-10
3- 10 6.93 - 104 5.65 10 9.03 .10+ 9.55- 104
11- 20 1.11-10-3 9.14 - 104 1.39-10-3 2.73 - 10-3
21- 30 2.42-10-3 2.922-10-8 2.51-10-3 3.67-10-3
31- 40 2.79-103 2.54-10-3 2.96-10-3 3.22-10-3
41- 50 4.78-10°8 4.64 - 108 4.89.10°3 5.28-10°38
51- 60 1.52-10°2 1.15 .10 1.41-10"2 1.54-10"2
61- 70 6.37 102 4.51-102 5.84-102 6.46 - 102
T1- 80 8.10-102 5.79-10-2 6.25 102 7.17-10"2
81- 90 3.94 1.48 3.29 3.63
91-100 2.91-102 2.76 - 10 3.94-10 4.96 10
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Tabelle 28 Neue Gliittewerte z
Alter Reihe 17 Reihe 18 Reihe 19 Reihe 20
3—- 6 3.57-10°% 9.17-1011 9.77 10712 9.93 - 107
4- 7 6.39 .10 3.97-10°% 9.94-1077 2.72 - 1012
5 8 1.86 1013 1.60-10- 1.82 10712 1.00-10-®
6 9 1.00-10-% 2.30-1018 9.98 - 1077 3.99-10-¢
7—- 10 1.87-10-13 4.00 - 108 4.00-10% 1.00-10-%
8 11 5.76-10-14 2.30 10715 9.00-10° 2.25-10-14
9- 12 2.30 - 1015 1.00-10-¢ 9.00- 108 5.06 - 1014
10— 13 2.07-1014 4.00-10¢ 4.00-10-% 4.00-10-8
11- 14 4.00-10-8 4.00-10-t 2.30-1013 8.82-10-1
12— 15 4.00-10-% 1.00-10-% 9.98 - 107 1.43-10-13
13- 16 3.99-10-¢ 1.00-10-% 4.00-10-8 1.00-10-®
14- 17 1.00-10-8 4.00-10-8 9.99-107 9.99 . 107
15— 18 1.60-10-° §.98-10-¢ 3.99-10¢ 9.99 . 10-7
16— 15 3.95-10-% 0.060 9.98-167 5.99 - 10-7
17— 20 3.59-.10-5 2.50-10-° 9.99.107 9.99.10-7
18- 21 1.01-10-¢ 9.96 - 107 4.00- 108 9.99 - 107
19— 22 1.60-107% 9.00 - 108 6.65 1013 9.00-10°¢
20— 23 9.99-1077 3.99 -10-8 3.89.10-18 4.00-10%
21— 24 2.62-10714 4.00-10-°% 1.87-1018 1.00-10°¢
20— 25 1.00-10°® 1.00-10°¢ 5.76 - 1014 3.57 10714
23— 26 1.44.10718 1.44 10718 4.00-10 1.00-10°%
24— 97 4.00-10t 1.00-10® 1.00-10-® 5.76 - 1018
95— 98 9.00-10t 1.00-10® 9.00-10-® 1.00-10%
26— 29 9.00-10°¢ 9.00-10% 0.00 1.00-10-¢
27— 30 4.00-10% 2.95-10718 4.00-10t 1.00-10-¢
28— 31 4.00-10% 9.00-10¢ 1.00-10°¢ 9.00-10-®
29— 32 1.00-10"% 0.00 4.00-10¢ 0.00
30— 33 1.00-10°¢ 3.69-1014 2.92 .10 5.76 - 10-16
31- 34 7.05 - 1015 4.00-10-° 1.00-10-¢ 2.30-10°15
32— 35 9.99 . 107 1.00-10-® 4.00-10-% 4.00-10¢
33— 36 4.00-10" 1.00-10-% 4.00-10-% 1.00-10-¢
34— 37 9.99 -107 1.60-10-° 8.99 - 108 1.23-10-18
35— 38 9.99 .10 9.97-10-7 4.00-10-% 3.99 . 10-¢
36— 39 9.98-107 1.00-10-¢ 9.97-10-7 1.00-10-¢
37— 40 1.60-10-5 3.99.10-5 3.98.10-% 1.44.10-12
38— 41 4.01-10% 1.04-1011 8.99.10-¢ 9.94.10-7
39— 42 1.50-1011 1.50-10-11 8.95-10-8 3.99 - 10-¢
40— 43 2.04-1012 3.99-10-% 8.97.108 8.95-10-5
41— 44 8.96-10°® 3.98-10-¢ 3.97-10® 8.97-10-%
42— 45 1.87.10712 3.28.10-13 3.98 .10t 8.92 - 10-¢
43— 46 3.97-10°¢ 3.96 -10-8 3.96-10°¢ 3.98 - 10-¢
44— 47 2.68 1014 3.95-10-% 1.74.-10™11 9.84 - 107
45— 48 1.58-107° 1.00-10% 2.05-1011 3.93 -10-%
46— 49 3.93 -10°% 3.92.10t 9.75-1077 3.97-10°%
47— 50 8.79-10°% 3.88-10¢ 5.89.1011 3.90-10°¢
48— 51 8§.94-10% 1.02-10°% 3.88-10% 1.34-10710
49— 59 1.51-10710 3.96 .10 2.63-10710 3.84.10"¢
50— 53 9.45-1077 3.84 -10°¢ 9.35-1077 1.01-10°
51- 54 1.53 -10° 3.93-10% 5.94 - 10710 3.77-10°¢
52— 55 1.49-10-3 1.53-10°% 1.51-10-3 1.10-10-°
53— 56 9.03-10¢ 8.85-107 1.07-10% 3.65-10°%
54— 57 1.07-10-¢ 4.54 - 1073 8.09-10% 8.31-1077
55— 58 8.06 - 107 1.37-10°° 9.39-10° 5.11 - 10-°
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Tabelle 28  Neue Glittewerte z (Fortsetzung)

Alter Reihe 17 Reihe 18 Reihe 18 Reihe 20
56— 59 1.39-10-3 5.28 -10-8 7.17-107 3.36 - 108
57— 60 3.02-10°° 1.60 - 105 1:67 - 108 3.18-10°8
58— 61 5.87-10- 1.52-10°° 1.92-108 2.35-10-8
59— 62 7.39 - 107 3.84 - 10-8 2.17-108 6.83 -10°¢
60— 63 4.03 103 6.81 - 107 6.69 - 108 2.50 - 10-®
61- 64 9.37- 105 1.03 - 10-® 6.08 - 108 2.18 - 10-¢
62— 65 4.06 - 10-% 4.99 -10-3 5.36 -10°® 9.67 - 10
63— 66 4 .87-10-° 1.23 - 10+ 4.13 -107® 3.94 - 10-6
64— 67 3.24-10-° 8.57-10-° 2.74 - 10-8 3.02-10-8
65— 68 6.92-10- 5.06 - 10-3 2.06 - 10-5 5.07-10-®
66— 69 4.29 - 10 6.87-10-¢ T7.75 - 10-10 6.75-10-¢
67— 70 2.15-10-° 5.70 - 10-° 8.62-10-8 3.42 - 107
68— T1 §8.61-10-3 1.00 - 10-® 3.59 - 108 4.71-10-8
69— 72 3.83-10-° 6.94 - 10-® 4.22 - 107 5.65 - 10-8
70- 73 8.14 - 10-° 1.02-10-5 5.88 - 107 7.52-10-7
- 74 4.63 - 10-3 1.38 -10-¢ 3.02-10-8 8.74 - 10-7
72- 15 1.05-10-° 2.50 -10-7 2.44 - 10-8 3.42 - 10-8
73— 76 1.96 - 10- 1.01-10-3 7.74 - 107 1.13 -10-8
74- TT7 8.69 -10-° 1.82-10-5 5.53 -10-° 9.05 - 10-6
75— T8 1.09 -10-° 2.23 - 10-7 1.14-10-3 4.88-10-¢
76— T9 1.46-10-° 2.35-10-° 2.79 -10-° 1.42-10-
77— 80 7.19-10-8 2.92 - 104 7.91-10-° 1.85-10-°
8- 81 1.61-10-3 7.27 - 104 8.09 - 10-° 1.59 - 10-5
79— 82 7.92-10-% 4.69 - 10 1.45-10-5 1.34-10-5
80— 83 1.74 - 10-% 7.14 - 10-4 5.76 - 103 1.89-10-8
81- 84 9.58 - 10-7 4.90 - 104 4.97-10-% 1.95-10-¢
82— 85 4.32-10-7 3.59 -10-4 1.51-10-% 1.48 - 10-®
83— 86 1.20-10-8 1.25-10-4 8.39-10- 1.12 -10-8
84— 87 6 651077 1.38-10-2 4.93 - 104 1.14 - 10-7
85— 88 6.74 - 1077 2.49 - 104 3.56 - 10-7 1.06 - 10-°
86— 89 4.96 - 1077 1.73 - 10-2 9.79-104 6.40 - 10-°
87— 90 5.19 -107 3.25-10°8 2.16 - 107 2.23 - 103
88— 91 4.04 - 107 2.96 - 102 5.24 -1074 1.83 -10-5
89- 92 5.28 -1077 1.88 - 102 8.15-10° 6.42 -10-5
90— 93 4.90 1077 2.57 102 1.24-10-3 4.78 - 10~
91- 94 2.45-1077 4.11-102 4.66 - 10 3.95 10
92— 95 3.84-107 1.10 - 1071 1.14-1072 7T.11-107*
93— 96 3.48 - 1077 1.07 - 1071 2.11 -104 1.52-10*
94— 97 2.30-10-7 2.87-10°° 5.75 - 10 1.68-10*
95— 98 2.22-1077 1.47-1071 1.78 - 1073 1.17-10
96— 99 2.34-107 9.61-102 7.09-10* 2.43 - 10-®
97-100 1.41-107 390 - LU0 4.11 - 10 1.68-10-°

3-100 1.24 103 6.71-10 1.98 - 102 2.50 - 103

3- 10 1.01-10-4 2.39 - 103 5.99 - 10-® 6.99 - 10-®

8- 20 6.89 -10-3 4.89-10° 3.40-10- 9.00 - 10-8
18- 30 4.50-10-° 3.00-10- 2.20 - 10-3 1.90 -10-*
28— 40 2.99-10-3 3.70 - 10-8 3.20 -10- 1.90-10-°
38— 50 4.55-1073 2.47 - 10-° 3.98 - 108 4.86 - 10-5
48- 60 6.79 - 105 1.04 10 2.98 1075 1.97-10°°
58— 70 4.49 - 10 3.93 - 104 8.29 -10°5 4.03 -107°
68— 80 4.02-104 4.63 10 1.26 -104 5.73 - 1073
78— 90 3.07-10-5 3.75-1072 1.98-10°8 1.33 -10+4
88-100 3.23-108 6.32-101 1.74-102 2.14 - 103




13. Zusammenfassung

Abschliessend wollen wir versuchen, die wichtigsten Ergebnisse
der vorliegenden Arbeit zusammenzustellen.

Die Aufgabe, die uns gestellt wurde, bestand aus zwei Teilen.
Einmal war ein neues Glidttemass zur Beurtellung der Glitte einer
Reihe zu definieren, das nicht mehr mit den Méngeln des klassischen
Masses behaftet ist. Sodann war eine Methode auszuarbeiten, die es
erlaubt, mit Hilfe des Differenzengleichungsverfahrens (DGV) unter
Verwendung des neuen Glittemasses rohe Daten auszugleichen.

I der neuen Definition des Glattemasses fir Rethen, die wir in
dieser Arbeit entwickelt haben, sind die Nachteile des klassischen
Masses weiltgehend ausgemerzt worden. Soweit wir das nach den
durchgefithrten Uberlegungen und Beispielen beurteilen kénnen, ergibt
das neue Mass 1n seiner allgemeinsten Form vernunftige Glattewerte.
Es hat sich gezeigt, dass die Ergebnisse der klassischen und neuen
Definition im Versicherungswesen zu einem iiberwiegenden Teil iiber-
einstimmen. Fir die in diesem Gebiet seltenen Fille, wo diese Gleich-
heit nicht gilt, erfordert die Berechnung der Gldtte mit dem neuen
Mass erheblich mehr Aufwand als mit dem klassischen.

Bei der Beurteillung des DGV unter Verwendung des neuen
Glattemasses miissen wir zwel Falle unterscheiden:

1. Die maximale Anderung der Ordinaten von zwei aufeinander-

folgenden rohen Punkten, Max (!Agz ‘), 1st klein gegeniiber 1:
x
Die ausgeglichenen Werte ergeben sich auf einfache Art als ein-

deutige Losung eines linearen Gleichungssystems. Die durch-
gefithrten Berechnungen anhand der Sterbetafel SM 1939/44
haben gezeigt, dass dieses Verfahren im allgemeinen eine gut
ausgeglichene Reihe liefert. Die so gefundenen Werte sind im
Altersbereich 3 bis 75 der offiziellen Reihe sogar uberlegen.

Lo

Max (| A7, ) ist nicht klein gegeniiber 1:

Die Lésung der Minimalbedingung des DGV ist nur auf nume-
rischem Wege mit Hilfe eines Computers méoglich. Obwohl wir
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damit verniinftige Ergebnisse erzielt haben, wird das DGV in
diesem Falle fiir die praktische Ausgleichung wohl wenig Bedeu-
tung erlangen, da andere Ausgleichsmethoden, die erheblich
weniger Rechenaufwand erfordern, zu gleichwertigen Resultaten
fithren.

Wohl kann das DGV in seiner allgemeinsten Fassung den ver-
schiedensten Anspriichen, die man an eine ausgeglichene Reihe stellt,
gerecht werden; vielfach wird aber die richtige Wahl der Gewichte
grosse Schwierigkeiten bereiten.

Von den beiden dargestellten numerischen Methoden zur Losung
der Minimalbedingung des DGV ist das gesteuerte Linearisierungsver-
fahren dem gemischten Verfahren uberlegen, da es in wenigen Schrit-
ten und in verhéltnisméssig kurzer Zeit zur Losung fithrt. Der einzige
Nachteil gegenuber dem gemischten Verfahren liegt darin, dass das
gefundene Minimum nicht unbedingt 1m gleichen «Tal» liegen muss
wie der Ausgangspunkt.
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Résumé

Le «lissage» est un critére important lorsqu’il s’agit de juger la qualité de
I'ajustement d’une suite. La méthode habituelle pour déterminer le lissage d'une
suite sur la base des différences du troisieme ordre — ou d'un ordre plus élevé —
ne conduit pas toujours a des résultats acceptables. A l'aide de la nouvelle défini-
tion introduite par l'auteur d'une mesure pour le lissage on arrive & éliminer
grandement les défauts de la méthode «classiquen; les résultats selon cette méthode
et la nouvelle coincident en grande partie. Un ajustement — au moyen d’équations
aux différences finies — permet d’essayer pratiquement la nouvelle netion de
mesure. Le probléme de minimum & plusieurs dimensions, rencontré lors de cet
ajustement, est résolu & l'aide de deux calculs numériques exécutés sur un com-
puter du type IBM 1620. Les calculs (table de mortalité SM 1939/44) montrent que
la nouvelle mesure pour le lissage donne en général des valeurs acceptables.

Summary

‘Smoothness’ is an important feature in order to appreciate the graduation
of a set. The common method to determine the smoothness of a set and which
makes use of the third and higher differences, does not always lead to rational
results. In a new definition of the measure of smoothness, most disadvantages of
the ‘ classical” procedure are eliminated, the results obtained through the classical
method and the new mostly concur. The new measure of smoothness is tested in
practice with the use of a graduation process (difference equation process). The
solution of the problem which then appears, a problem of minimum in several
dimensions, is found with the use of two numerical calculations performed by a
IBM-1620 computer. The calculations (mortality table SM 1939/44) prove that
the new measure of smoothness would generally give reasonable figures.

Riassunto

Una caratteristica importante per 'apprezzamento della perequazione in una
serie & la «levigatezza». Il metodo usuale per determinare la levigatezza di una
serie e che si basa sulle differenze di terzo grado o pii, non conduce sempre a del
risultati ragionevoli. In una nuova definizione della misura di levigatezza i svan-
taggi del procedimento «classico» vengono in gran parte eliminati, 1 resultati
secondo il metodo classico ed il nuovo concorrono in buona parte. La nuova misura
di levigatezza viene messa praticamente in prova secondo un processo di perequa-
zione (processo dell’equazione di differenze). La soluzione del problema che inter-
viene, problema sul minimo in piu dimensioni, segue con l'aiuto di due calcoli
numerici che sono eseguiti da un computer del tipo IBM 1620. I calcoli (tavola
di mortalita SM 1939/44) mostrano, che la nuova misura di levigatezza fornisce
generalmente dei valori ragionevoli.
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