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Über ein neues Mass zur Beurteilung
der Glätte von Punktreihen und dessen Anwendung

in der Ausgleichsreclinung

Für die Beurteilung von ausgeglichenen Reihen ist die «Glätte» ein wesent-
liches Merkmal. Die übliche Methode, mit Hilfe von dritten oder höheren Differenzen
die Glätte einer Reihe zu bestimmen, führt nicht immer zu vernünftigen Ergeh-
nissen. In einer neuen Definition des Glättemasses werden die Nachteile des «klas-
sischen» Verfahrens weitgehend ausgemerzt; die Ergebnisse nach klassischer und
neuer Methode stimmen in einem überwiegenden Teil überein. Anhand eines Aus-
gleichsverfahrens (Differenzengleichungsverfahren) wird das neue Glättemass prak-
tisch erprobt. Die Lösung des dabei auftretenden mehrdimensionalen Minimum-
problems erfolgt mit Hilfe von zwei numerischen Rechenverfahren, die auf einem

Computer vom Typ IBM 1620 durchgeführt werden. Die Berechnungen (Sterbe-
tafel SM 1939/44) zeigen, dass das neue Glättemass im allgemeinen vernünftige
Werte liefert..

Fori Otto Hanger, BaseZ

Zusammenfassung
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1. Einleitung

Die für die Beurteilung einer ausgeglichenen Reihe massgebenden
Merkmale sind ihre Glätte und ihre Abweichungen von den rohen Beob-

achtungen. Unser Augenmerk richtet sich in dieser Arbeit ausschliess-

lieh auf das erste Merkmal, auf die Glätte.
In der Literatur, die sich mit der Ausgleichung und deren Beur-

teilung befasst, sind eingehende Betrachtungen und Untersuchungen
über die Glätte nur vereinzelt vorhanden. Natürlich ist das darauf
zurückzuführen, dass die übliche Methode, mit Hilfe von dritten oder

höheren Differenzen die Glätte einer Reihe zu messen, im allgemeinen
als befriedigend anerkannt wird. Diese Methode ist äusserst einfach
in ihrer Anwendung, und sie führt bei Ausgleichungen im Versiehe-

rungswesen fast immer zu vernünftigen Ergebnissen. Der englische
Mathematiker Bizley [1]*) hat jedoch in seiner Arbeit «A Measure of
Smoothness and some Remarks on a new Principle of Graduation» die

Mängel dieses klassischen Masses aufgezeigt, und es ist ihm gelungen,
ein neues Glättemass zu definieren, welches diese Mängel vermeidet.
Die originelle Arbeit von Bizley behandelt jedoch nur kontinuierliche
Kurven.

Das Hauptziel der vorliegenden Arbeit ist es, für den für die Praxis
viel interessanteren Fall der diskreten Reihe ein Glättemass zu finden,
welches nicht mehr mit den Mängeln des klassischen Masses behaftet,
jedoch in der Anwendung diesem ebenbürtig ist.

Das Differenzengleichungsverfahren, das die ausgeglichenen Werte
in der Weise bestimmt, dass die Summe aus der Glätte der ausgeglichenen
Reihe und ihren quadratischen Abweichungen von den rohen Daten
minimal wird, erlaubt es, das neue Glättemass direkt in einem Aus-

gleichsprozess zu verwenden. Im allgemeinen ist dieses Minimumproblem
nur mit Hilfe numerischer Methoden zu lösen. Im zweiten Teil dieser
Arbeit werden solche Verfahren beschrieben, deren praktische Durch-
fülirung jedochnur mittels einer elektronischen Rechenmaschine möglich
ist. Für derartige Berechnungen stand uns der Computer IBM 1620 (60 K)
im Rechenzentrum der Universität Basel zur Verfügung.

D Die in eckige Klammem [] gesetzten Zahlen weisen auf das Literatur-
Verzeichnis hin.



— 70 -

A: Die Glätte einer Reihe

2. Die verschiedenen Definitionen der Glätte

2.1. Die klassischen De/irhlionen

Bevor wir uns mit den klassischen Definitionen der Glätte befas-

sen, wollen wnr die beiden Begriffe «Reihe» und «Kurve», die wir im
folgenden immer wieder verwenden werden, definieren.

Eine «Reihe» ist eine Eolge von reellen Zahlenpaaren (a:,-, '//,-)

i 1, 2, ...,n, deren Reihenfolge durch den Index i genau fest-

gelegt ist. Diese Zahlenpaare lassen sich als Punkte in der euklidischen
Ebene darstellen.

Unter einer «Kurve» verstehen wir die Menge aller Zahlenpaare
(r(f), î/(f)), wobei t alle Werte des abgeschlossenen Intervalls [a,h]
annimmt. a:(f) und y(f) sind reelle, mindestens dreimal stetig differen-
zierbare Funktionen. Wir können eine solche Kurve auch als Spur
eines Weges in der euklidischen Ebene auffassen.

Es ist allgemein üblich, als lokales Glättemass einer Reihe die
absoluten Beträge oder auch die Quadrate von dritten oder höheren
Differenzen zu verwenden; also

zRî/.| oder (2l®î/;)®.

Die entsprechenden Masse für eine Kurve sind

oder (M.
da;® ;

'
d.r®

Die Summen
V Zlh/; S oder V

über die ganze Reihe bzw. die Integrale

^ ds oder f Wu,
da;® I \da;®,

über die ganze Kurve definieren das globale Glättemass der Reihe
bzw. der Kurve. Dabei ist die Reihe bzw. die Kurve um so glätter,
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je kleiner diese Werte ausfallen. Diese Glättemasse wollen wir im wei-
teren als die klassischen bezeichnen.

Da mit steigenden Werten die Glätte abnimmt, shid diese Grössen

im eigentlichen Sinne des Wortes keine Glättemasse. Sie messen die

Abweichungen von der idealen Glätte, und es wäre deshalb viel
logischer, von Unglättemassen zu reden. Trotz dieser sprachlichen
Unlogik wollen -wir weiterhin den Ausdruck Glättemass dafür ver-
wenden.

Viele Mathematiker und Statistiker ([2], [3], [4], [5]) sind der

Ansicht, dass diese klassischen Glättemasse die in der Praxis gestellten
Ansprüche zur Genüge befriedigen. Die folgenden Überlegungen, die
teilweise der Arbeit von Bizley [1] entnommen sind, zeigen deutlich,
dass sie nicht immer vernünftige Ergebnisse liefern müssen.

Betrachten wir die Funktion y e* (x >0), so ergibt das lokale

cü?/ j

klassische Mass j-—I im Punkt (as,e*) den Wert e*. Mit wachsen-
dar

dem x steigt diese Grösse, d.h. die Kurve wird immer weniger glatt.
Wenn war bedenken, dass diese Kurve mit zunehmendem x immer
weniger von einem geradlinigen, also von einem ideal glatten Verlauf
abweicht, so müssen wir zugeben, dass das klassische Mass in diesem

Falle ungeeignet ist.
Die dritte Ableitung der Umkehrfunktion x In ?/ (y > 1) hat

den Wert 2/y®.

Der Verlauf der Glätte dieser Funktion, welche die gleiche Kurve
wie oben darstellt, ist in dieser Form durchaus vernünftig. Für den

Punkt (x,U) erhalten wir den Glättewert 2/e^. Je nachdem, von
welchem Standpunkt aus die Kurve betrachtet wird, liefert das klas-
sisehe Glättemass einmal den Wert e* und einmal den Wert 2/e^h

Im nächsten Beispiel liegen die Punkte der Reihe, deren lokale
Glätte :

1 ^r messen wollen, auf der Kurve

1000
^ ~ 1000 —x

'

Wie die Tabelle 1 zeigt, nimmt auch in diesem Falle das Glätte-
mass immer mehr zu, je stärker sich der Verlauf der Reihe einer
Geraden nähert.
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Tabelle 1

1000
/GJ, MV£ h 7/

1000 — x

994 166,7
33,3

995 •200
50

16,7
16,6

99G 250
83,3

33,3
50.1

997 333,3
166,7

83,4
249,9

998 500
500

333,3

999 1000

Aus den beiden Beispielen sehen wir, dass die klassischen Masse

nicht mehr genügen, sobald der Verlauf der Kurve bzw. der Reihe

zu steil wird.
Neben diesen wichtigsten Glättemassen gibt es noch weitere Krite-

rien, welche für die Beurteilung der Glätte vorgeschlagen worden sind.
So vertritt Ammeter [5] die Auffassung, dass jede Kurve, die

sich durch einen analytischen Ausdruck darstellen lässt, glatt sei, und
dass es, wie er auf Seite 32 hinzufügt, «... wohl keinen Sinn (bat),
den Unterschied in der Glätte zu untersuchen, welcher zwischen zwei

analytischen Kurven, z.B. Parabel und Exponentialkurve, besteht».
Natürlich ist es zwecklos, sich über die Glätte einer Kurve zu unter-
halten, wenn die Wahl des Kurventyps gar nicht mehr zur Diskussion
steht. Hingegen kommt es insbesondere auch im Versicherungswesen
häufig vor, dass wir aus mehreren Kurventypen einen auswählen
müssen. In einem solchen Falle ist die Frage nach der Glätte der ein-
zelnen Kurven durchaus berechtigt.

Nach Henderson [2] weisen Kurven, welche wenige Parameter
in ihrem formelmässigen Aufbau besitzen, einen glatten Verlauf auf.
Ebenso vertritt Barnett [6] einen ähnlichen Gedanken, wenn er eine

Reihe, die möglichst nahe an den Verlauf einer einfachen mathe-
matischen Funktion kommt, als glatt bezeichnet.

Unserer Ansicht nach lassen alle diese Kriterien dem subjektiven
Empfinden einen viel zu grossen Spielraum, und sie sind für quanti-
tative Messungen der Glätte nicht geeignet.
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Ein weiteres Mass, auf das Niedermann [7] hingewiesen hat, ver-
langt von einer glatten Reihe, dass die folgenden Bedingungen erfüllt
sind :

zÜ (-*1 'i" für alle i und fc. (1)
oder

Wie wir aus den weiteren Überlegungen sehen werden, ist die

Bedingung (1) nur für einen kleinen Teil aller glatten Reihen erfüllt.
Wir betrachten eine Reihe, deren fc-te Differenzen an irgendeiner

Stelle mit Ausnahme der Randpunkte ein lokales Extremum besitzen.
Es existieren also drei Werte ZÜt/,„, zÜ7/„,^ und ZÜy,,,^ derart, dass

entweder
< <«/„, •, >

oder zÜ?/„, > zl*j/„+i < gilt.

fc kann die Werte 0, 1, 2, annehmen, wobei wir unter J®i/j den

Wert (/; verstehen.
Ein derartiges Verhalten ist beispielsweise dann gegeben, wenn

die Reihe an irgendeiner Stelle mit Ausnahme der Randpunkte ein

lokales Maximum oder Minimum oder einen Wendepunkt besitzt. Es

ist wohl selbstverständlich, dass auch solche Reihen glatt sein können.
Ist ein Extremum im obigen Sinne, dann haben die hei-

den Grösse)! und verschiedene Vorzeichen. Berück-
sichtigen wir die Gleichung

so folgt (zü+'i/j' > (ZÜ+VJ*>

und > (zl^Vm+i)".

d.h. die Bedingung (1) ist nicht erfüllt, womit gezeigt ist, dass auch
dieses Kriterium nur in beschränktem Masse Gültigkeit besitzt.

2.2. Die Giäfte emer Jfw?-re wac/i Tfele;/

Der englische Mathematiker Bizley [1] hat, so scheint es uns,
das Wesen der Glätte richtig erkannt. Er hat die folgende einfache
und treffende Überlegung gemacht.



— 74 —

Stellen wir uns vor, ein Auto fahre mit konstanter Geschwindig-
keit auf einem mit hohen Hecken flankierten Weg. Der Weg sei über-
all so breit, dass das Fahrzeug ungehindert passieren kann. Hat der

Fahrzeuglenker nur ganz gemächlich am Steuerrad zu drehen, um
auf dem Weg zu bleiben, so sagen wir, der Verlauf des Weges sei glatt.
Muss er hingegen schnelle Umdrehungen ausführen, so ist die Weg-
führung unglatt. Etwas präziser ausgedrückt besagt dies:

Der Weg ist lokal um so glätter, je weniger Umdrehungen der
Fahrzeuglenker pro Zeiteinheit am Steuerrad ausführen muss.

In die geometrische Sprache übersetzt bedeutet dieser Satz: Je
kleiner die Änderung der Krümmung pro Zeiteinheit ist, um so lokal
glätter ist die Kurve. Da aber bei konstanter Geschwindigkeit Zeit
und Weg proportional verlaufen, lautet nun die endgültige Fassung:

Sei im Punkte P der Kurve die Änderung der Krümmung dfc(P)
im Wegintervall ds, so ist der Quotient

das Mass für die lokale Glätte der Kurve im Punkte P, und es gilt:
Je kleiner z(P) ist, um so glätter verläuft die Kurve in P.

Für die Beurteilung der globalen Glätte einer ganzen Kurve IT
verwendet Bizley den Ausdruck

Waren bei den klassischen Definitionen alle Polynome bis zu einem

gewissen Grade ideal glatt, so haben bei der neuen Definition nur der
Kreis und die Gerade das Glättemass 0.

Die wichtigste Eigenschaft des neuen Glättemasses, die sich sofort
aus der geometrischen Bedeutung herleiten lässt, ist die Invarianz gegen-
über Translationen und Rotationen. Bedenken wir, class die Glätte eine

zur Krümmung analoge geometrische Eigenschaft der Kurve ist, so

scheint es uns beinahe selbstverständlich, dass diese Invarianz gilt.
Bizley [1] hat gezeigt, dass alle Vorwürfe, die wir in 2.1. gegen-

über den klassischen Methoden erhoben haben, für das neue Mass

dahinfallen. Es ist ihm jedoch nicht gelungen, ein entsprechendes
Mass auch für diskrete Punktreihen zu finden. Wir wollen nun im
weiteren versuchen, ein Mass zu entwickeln, das sich vor allem für

[z(P)ds.
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Punktreihen eignet. Dabei wollen wir darauf achten, das neue Mass

für die Reihen, soweit es möglich ist, in Einklang mit dem Bizleyschen
Mass zu bringen.

3. Bedingungen für ein allgemeines Glättemass für Reihen

Wenn wir im nächsten Abschnitt dazu übergehen, ein Glätte-
mass für diskrete Reihen zu suchen, so sind wir uns im klaren darüber,
dass dabei noch mehr Unsicherheitsfaktoren vorhanden sind als für
kontinuierliche Kurven. Es ist deshalb von Vorteil, einige allgemeine
Bedingungen aufzustellen, anhand deren wir wenigstens bis zu einem

gewissen Grad prüfen können, ob ein Vorschlag brauchbar oder un-
brauchbar ist. Die nachstehenden Bedingungen sind so minimal ge-
halten, dass sie nur ein rohes Kriterium für die Beurteilung eines

Glättemasses abgeben. Schlussendlich müssen wir immer noch auf
Grund unserer Erfahrung und unserer Vorstellung von der Glätte
entscheiden, ob ein Mass vernünftig ist oder nicht.

Pedmpwig M

Die Anzahl der benachbarten Werte, welche beim Messen der Glätte
in einem Punkt oder zwischen zwei aufeinanderfolgenden Punkten
mitberücksichtigt werden, soll möglichst klein sein.

Wollen wir die Glätte einer Reihe im Punkte P^ oder zwischen
den Punkten P; und P^, messen, so verlangt diese Bedingung, dass

dazu möglichst wenig weitere Punkte miteinbezogen werden müssen.
Einmal soll damit vermieden werden, dass der Pormelapparat zu um-
fangreich und zu kompliziert wird. Sodann wird dadurch die Möglich-
keit gegeben, die Glätte einer Reihe bis nahe an ihren Anfang und
ihr Ende messen zu können. Es wird unser Bestreben sein, analog der
klassischen Methode mit vier Punkten ein Glättemass zu definieren.

ßedmpwwpP

Das Glättemass soll invariant sein gegenüber Kongruenz trans-
formationen (Rotation, Translation).

Mit dieser Bedingung erreichen wir, dass zwei Reihen, deren

Bilder auf der euklidischen Ebene kongruent sind, den gleichen
Glättewert besitzen, unabhängig davon, wo sie auf der Ebene hegen.
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Die Glätte ist demnach eine geometrische Eigenschaft der Reihe wie
etwa die Winkel zwischen den die einzelnen Punkte der Reihe ver-
bindenden Strecken. Im Gegensatz zum klassischen Mass, das diese

Bedingung nicht erfüllt, soll es nun für den Glättewert unwesentlich
sein, von welcher Seite aus wir die Reihe betrachten.

£>ec?w!<7«u(/ C

Stark unglatte Reihen sollen einen grossen Glättewert besitzen.
Die Reihen, die wir in der Praxis zu beurteilen haben, sind in

den allerwenigsten Fällen stark unglatt. Es sind meistens bereits aus-
geglichene und folglich auch mehr oder weniger glatte Wertfolgen.
Von einem gewissen Grad der Unglätte an ist es uninteressant, den

genauen Glättewert zu kennen. Einzig wichtig in einem solchen Falle
ist es, dass das Mass eine stark unglatte Reihe mit einem hohen
Glättewert anzeigt. Da uns in diesem Bereich die Erfahrung und die

Vorstellung von der Glätte vollständig fehlen, ist es nicht möglich,
für stark unglatte Reihen feinere Kriterien anzugeben.

Bedmgfwngr I)

Im Grenzfalle, wenn die Punkte der Reihe auf einer Kurve gegen-
einanderstreben, soll das neue Mass in das Bizleysche Glättemass
übergehen.

Da Bizley [1] für Kurven bereits eine befriedigende Lösung ge-
funden hat, würde es befremden, wenn diese Bedingung nicht erfüllt
wäre. Der gegenteilige Fall könnte als Hinweis dafür aufgefasst wer-
den, dass eines der beiden Masse nicht richtig ist.

4. Vorstufen zu einem neuen Glättemass

4.1. 1. Feraicfc

Bei unserem ersten Versuch, ein neues Glättemass zu definieren,
wollen wir von der bekannten Tatsache ausgehen, dass in jedem
Punkt einer Kurve das Produkt aus Krümmung und Radius des

Krümmungskreises gleich 1 ist.
Wir postulieren, dass auch für eine diskrete Reihe die genannte

Beziehung zwischen Krümmung und Krümmungsradius gilt.
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Durch drei aufeinanderfolgende Punkte .4, Ii, C einer Reihe (siehe

Figur 1) ziehen wir einen Kreis Ii. Lassen wir die Punkte .4 und C

auf einer Kurve gegen B streben, so geht der Kreis Ii" in den Krüm-
mungskreis der Kurve im Punkte B über.

Figur 1

10 -

Demnach liegt es nahe, diesen Kreis Ii als «Krümmungskreis
der Reihe im Punkte B» zu definieren. Durch die drei Punkte ,4, B
und C ist der Kreis II eindeutig bestimmt und somit auch die Länge
seines Radius r(B).

Mit Plilfe des Postulats, das wir zu Beginn dieses Abschnitts
aufgestellt haben, ist es uns möglich, den Betrag der Krümmung
fc(B) im Punkte B der Reihe anzugeben:

1

fc(B)j^ 'I r(B)
Für die Bestimmung des Vorzeichens von fc(B) mögen wir uns

an die folgende Vorschrift halten.
Bewegen wir uns auf der Geraden durch .4 und C in der Richtung

von .4 nach C, so ist die Krümmung positiv, wenn der Punkt B zu

unserer Rechten, negativ, wenn er zu unserer Linken liegt. Beispiels-
weise ist in Figur 1 1(B) negativ und fc(B) positiv. Im weiteren wollen
wir in gleicher Weise auch den Radius des Krümmungskreises r(B)
mit einem Vorzeichen versehen.
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Bizleys Vorschlag, den Ausdruck

Krümmungsänderung

Länge des Weges

für das Glättemass zu verwenden, führt uns bei konsequenter Über-

tragung vom Kontinuierlichen ins Diskrete auf die Formel für die

Glätte 2(,4,B,C,D)

4,/>,(,/h -, (2)

sofern s die Länge des Weges zwischen B und 0 bedeutet.

Die Formel (2) definiert die Glätte in irgendeinem Punkte der
Reihe zwischen B und C. Wir können sie aber auch als durchschnitt-
liehe Glätte der Keihe zwischen B und C auslegen. Folglich berechnet
sich nun die «integrale Glätte» zwischen den beiden benachbarten
Punkten II und 0 nach der Formel

c

f fc(B) — fc(C)

s
ds. (8)

£

Treffen wir die Annahme, dass die durchschnittliche Glätte zwischen
B und C konstant ist, so können wir folgendermassen weiterrechnen:

c

Mb)—we)! r
(3) ^ ^ " I ds fc(B) - fc(C) (4)

£

Anstelle des absoluten Betrags von fc(B)— fc(C) wollen wir das

Quadrat davon verwenden, und es ergibt sich folgende Definition:

Das Glättemass 2(A,B,C,D) einer Reihe zwischen den zwei auf-
einanderfolgenden Punkten B und C berechnet sich nach der Formel

*(A,B,C,D) (fc(B)-fc(<7))*. (5)

Setzen wir die Krümmungsformel ein, so können wir (5) folgen-
dermassen weiterführen:

.toW* *y.m=#y. m
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Somit berechnet sich beispielsweise die Glätte der aus 4 Punkten
bestehenden Reihe der Figur 1 wie folgt:

r(-B) —4, r(C) 4,

^(G,B,G,D) (—I—i)» W
Um die Glätte zwischen den beiden benachbarten Punkten Ii

und C angeben zu können, benötigen wir die Koordinaten der 4 Punkte
G, Ii, G und I). Damit ist die Anzahl der verwendeten Punkte auf
ein Minimum beschränkt worden, und die Bedingung G in 3. ist
erfüllt. Das gleiche gilt für die Invarianzbedingung D, da bekanntlich
Kreise und Strecken, die einzigen Elemente, die in (5) und (6) ver-
wendet werden, invariant sind gegenüber Kongruenztransformationen.
Nach der Art, wie wir zu Beginn dieses Abschnitts die diskrete Krüm-
mung definiert haben, ist leicht zu erkennen, dass auch die Be-

dingung D erfüllt ist. Es muss dabei nur berücksichtigt werden, dass

die Formel (2) bis auf das Quadrieren dem Bizleyschen Glättemass

entspricht. Die Bedingung G, die für unglatte Reihen einen hohen
Glättewert verlangt, wollen wir etwas genauer untersuchen.

Figur 2

Das in (5) und (6) definierte Glättemass liefert für die Reihe

E, E, G, II der Figur 2 den gleichen Wert wie für die Reihe E, E', G, iE,
da die Radien der drei Kreise Kj, Kg, Eg alle gleich gross sind. Dies

widerspricht jedoch unserer Vorstellung von der Glätte. Die Reihe
E, E, G, H ist bestimmt viel weniger glatt als die Punktfolge E, E', G, IE.
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Da es, um auf dem Kreis von A nach G zu gelangen, zwei

Wege gibt, einen über 2'' und einen über P", ist es nicht verwunder-
lieh, dass die Definition der Glätte in diesem Fall versagt.

Es besteht kein Zweifel darüber, dass die Unsicherheit und Un-
korrektheit eines Glättemasses um so grösser werden, je weiter die
Punkte der Eeihe auseinander liegen. Über das Verhalten der Reihe
zwischen den einzelnen Punkten liegen keine Informationen vor, und
wir müssen irgendeine Annahme über den dortigen Verlauf der Reihe
treffen. Jedes Mass wird um so vernünftiger und korrekter erscheinen,
je mehr Informationen zur Verfügung stehen, das heisst, je kleiner
die Abstände der sich folgenden Punkte sind. Die Annahme, die dem
ersten Versuch zugrunde liegt, dass die Reihe zwischen den gegebenen
Punkten auf einem Kreis liegt, hat zu unbefriedigenden Resultaten
geführt.

Die Krümmung einer Kurve ist bekanntlich folgendermassen
definiert :

In den beiden Punkten Pj und Pg (siehe Figur 8) sind die beiden

Tangenten und Tg an die Kurve A gezogen. Sie schneiden sich
unter einem Winkel da, der, je nachdem ob im positiven oder im
negativen Sinne gedreht werden muss, um in die Richtung von T,
zu kommen, ein positives oder ein negatives Vorzeichen erhält. Be-
deutet ferner ds die Länge des Kurvenstücks zwischen P^ und Pg,
so strebt der Quotient da/ds gegen die Krümmung fc(Pj) im Punkte 2Q,
sofern der Punkt Pg auf der Kurve A gegen Pj wandert.

4.2. 2. Fers-ac/i

Figur 3
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Der Grundgedanke dieser Definition spiegelt sich in dem Ausdruck

lim
Änderung der Tangentenrichtung

Weglänge

wider, und dieser soll auch für eine Definition der Krümmung im Dis-
kreten wegleitend sein, wobei natürlich auf den Grenzübergang ver-
ziehtet werden muss.

Jede Kurve Je, die durch die Punkte G und B geht (siehe Figur 4),

besitzt dazwischen mindestens einen Punkt Pj, in welchem die Tan-

gente an K die gleiche Richtung aufweist wie die Sekante AB. Die

entsprechende Feststellung gilt auch für die Punkte P„ zwischen B
und G und Po zwischen G und D. Die Änderung der Tangentenrichtung
wird demnach durch die Winkel a unci /S angezeigt.

Figur 4

10

_L
10 15

Verwenden wir als Weglänge zwischen P^ und Pg die Näherung

(a+5)/2, so lässt sich die Krümmung fc(B) der Reihe im Punkte B
wie folgt definieren:

: -2a
fc(B)

a + 6
(7)

a + h

2

Das Vorzeichen von a wird wie bei der kontinuierlichen Krüm-
mungsdefinition festgelegt.
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Das weitere Vorgehen ist nun gleich wie im 1. Versuch. Für die
durchschnittliche Glätte z(H,B,C,D) zwischen B und C erhalten wir
analog zur Formel (2)

I fc(-B) — fc(C) i

5(.4,B,(7,/)) '
- ----- (8)

S

Das Glättemass 2 (M ,B,C,D) einer Reihe zwischen den beiden auf-
einanderfolgenden Punkten B und C wird analog zu (5) mit Hilfe von

2(H,B,C,D) (fc(B)-fc(D))* (9)

berechnet. A'erwenden wir die Beziehung (7), so ergibt sich:

/ 2a 2fl \®

f-). (10)
\a+o 6 + c /

Als Beispiel dazu wollen wir die in Figur 4 gezeichnete Reihe be-

nutzen.
TT TT

a ß -, a o c 5,66,
2 2

-TT 57 ^ ®

c(.4./i,r.D) 0,30s.^ ' \ 11,32 11,32 / V

Im Vergleich dazu ergab das im 1. Versuch definierte Glättemass
für die gleiche Reihe einen Wert von 0,25 (vgl. Figur 1).

Es lässt sich leicht nachweisen, dass auch für den 2. Versuch die

in 3. aufgestellten Bedingungen .4 und B erfüllt sind. Da wir die Krüm-
mung in Anlehnung an das kontinuierliche Vorbild definiert haben,
ist es wenigstens heuristisch sofort einzusehen, dass auch die Be-

dingung D (Übergang in das Bizleysche Mass) gilt. Auf den genauen
Beweis möchten wir verzichten, da sich auch dieser Versuch als nicht
ganz befriedigend herausstellen wird. Die Bedingung C, welche für
stark unglatte Reihen einen sehr grossen Glättewert vorschreibt, wol-
len wir etwas näher betrachten.

Bewegt sich der Punkt B in Figur 4 auf der Geraden </ nach
oben, so wird die Reihe immer weniger glatt. Die Winkel a und /5

werden dadurch grösser und streben gegen die Werte —tt und
Dagegen sind die Nenner von (10), (a + fr) und (fr-f-c), die durch
diesen Vorgang ebenfalls zunehmen, nach oben nicht beschränkt, so

dass das Glättemass sehr klein wird, wenn B genügend weit nach
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oben rutscht. Somit haben wir für eine stark unglatte Eeihe einen

kleinen Glättewert gefunden, und wir müssen auch diesen Versuch als

inisslungen betrachten.

5. Ein neues Glättemass für diskrete Reihen

5.1. De/imtion

Bei der Herleitung des neuen Glättemasses wollen wir uns nicht
mehr in dem Masse, wie wir es in den früheren Versuchen getan haben,

vom kontinuierlichen Vorbild leiten lassen. Vor allem wollen wir nicht
wieder die kontinuierliche Krümmungsdefinition in irgendeiner Form
zu kopieren versuchen.

Wie vorher soll die Krümmung durch drei Punkte bestimmt sein.

Um die Invarianzbedingung im Abschnitt 3. nicht zu verletzen, stehen

uns für die Krümmungsdefinition lediglich die Strecken und Winkel
des durch diese drei Punkte gebildeten Dreiecks zur Verfügung.
Natürlich sollen möglichst wenige dieser Elemente verwendet werden,

um eine einfache Formel zu gewährleisten.

Die Winkel beim Punkt B (siehe Figur 5) zeigen an, ob die Reihe
zwischen ^4 und C flach verläuft oder ob sie dort eine starke Spitze
aufweist. Je grösser der Aussenwinkel a ist, um so spitzer verläuft die
Reihe zwischen M und C, also um so grösser muss das Krümmungs-
mass ausfallen. Geht a gegen tt, so soll die Krümmung unendlich

gross werden.
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Ist a 0, d.h. liegen die drei Punkte auf einer Geraden, so soll
auch die Krümmung den Wert 0 haben. Eine einfache Funktion,
die ein derartiges Verhalten zeigt, ist tga/2.

Bestünde die Formel für die diskrete Krümmung ausschliesslich

aus Funktionen von Winkeln, so würden geometrisch ähnliche Kon-
figurationen die gleichen Krümmungswerte besitzen. Auf Grund der

folgenden Überlegung erkennen wir jedoch, dass dies nicht richtig
sein kann.

Wir verschieben die Punkte A und C in Figur 5 auf den Geraden

(/i und r/2 derart gegen den Punkt B hin, dass das Verhältnis a/b
konstant bleibt. Die dabei entstehende Figur ist immer ähnlich zum
Ausgangsdreieck. Aus Analogie zur kontinuierlichen Krümmungs-
definition muss durch diesen Vorgang die diskrete Krümmung immer
grösser werden, da der «Weg», während welchem die Richtungsände-

rung erfolgt, immer kleiner wird, die Richtungsänderung a dabei aber
unverändert bleibt.

Das diskrete Krümmungsmass trägt auf einfache Art diesem
Verhalten Rechnung, wenn es proportional zu l/(a + b) oder zu l/p
gesetzt wird. Unter Berücksichtigung der vorher erwähnten Abhängig-
keit von a erhalten wir somit für die Definition der Krümmung die
beiden einfachen Formeln:

m und m sind Proportionalitätsfaktoren, deren Grösse wir noch fest-
legen müssen.

Wenn wir in Figur 5 den Punkt B bei festem A und C senkrecht
zu AC nach unten verschieben, so strebt die Krümmung nach (11)

gegen einen endlichen Grenzwert. Es gilt nämlich (siehe Figur 5):

(U)
a + b

oder

(12)

tga/2 ctga/2 1 + cos a

a + b a + b sin a (a + b)

Ist r der Radius des Umkreises des Dreiecks ABC, so ist nun
mit Hilfe der Sehnenformel p 2r sin a leicht zu beweisen, dass (11)
beschränkt bleibt. Wir haben jedoch verlangt, dass, wenn a gegen yr
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geht, die Krümmung unendlich gross werden muss. Die Formel (11)

können wir somit ausschalten, und es bleibt als einzige Lösung in dieser

einfachen Form:
tff oc/2fc(B)=m—-—(18)

Die Konstante m bestimmen wir so, dass (13) in die Krümmungs-
definition für eine Kurve übergeht, falls die drei Punkte .4, B und C

auf einer solchen gegeneinander streben. Unter diesen Umständen ergibt
sich für m der Wert 4. Den Beweis dafür werden wir im Abschnitt
6.2. erbringen.

Die diskrete Krümmung fc(B) ist demnach durch die folgende
Formel (14) definiert:

4 tg a/2
A(B) —(14)3»

Das Vorzeichen von fc(B) wird gleich festgesetzt wie im ersten
Versuch (siehe 4.1.).

Die durchschnittliche Glätte z(A,B,C,B) zwischen B und C ergibt
sich analog zu (2) und (8) aus

/;(/>') — fc(C)
z(A,B,C',B) J-A-!_LZL. (15)

o

Das Glättemass 2(U,B,C,B) erhalten wir analog zu (5) und (9) aus

0(^,B,B,B) (fc(B)-fc(C))*. (16)

Bezeichnen wir die Punkte der Beihe mit A,., die Aussenwinkel
a bei A • mit sowie die Strecken y zwischen und mit j),-,
so ergibt sich für die Gesamtglätte einer aus ra Punkten bestehenden
Beihe die Formel

Z(B„) s) 2 (fc(-4,.)-fc(^+i))'
i=l 1=2

_ ^ /4tg«,-/2
_

4tg«<+i/2\"
Pi ?i+i /

Sei a- die Strecke zwischen und so erhalten wir mit
der Formel

ZW(B„) (18)

i 2
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ein Mass für die durchschnittliche Glätte der Reihe. Der Ausdruck (18)
lehnt sich an eine Formel aus dem kontinuierlichen Bereich an. In
dieser wird der Durchschnitt einer Funktion längs eines Weges berechnet

aus dem Integral über diese Funktion längs des Weges dividiert durch
die Länge des Weges.

5.2. sc/iu/fe?;

Bevor wir prüfen, ob alle in 8. aufgestellten Bedingungen erfüllt
sind, wollen wir eine weitere geometrische Eigenschaft der Krümmungs-
formel (14) kennenlernen.

Alle Punkte B' (siehe Figur 6), die unterhalb der Strecke .IC
auf dem Kreis If liegen, besitzen zusammen mit M und C die gleiche

Krümmung wie .4, B, C, da ihre Aussenwinkel alle gleich a sind.

Figur 6

a'=a; y a'/2 a/2.
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Mit Hilfe dieser Beziehungen lässt sich die Krümmung (14) um-
formen zu

2tga/2 2tgy 2 p/2 2
fc(B') /,:(;>') * ' ^ (19)

p/2 p/2 p/2 5 g

Oder mit g 2r—

|Ä(B'): ifc(B)j
'

• (-20)
r — w/2

Diese Formel (20) erlaubt es uns, eine Verbindung zum ersten
Versuch herzustellen. Der Krümmungsradius r im ersten Versuch
wird in (20) durch das Korrekturglied tc/2 verkleinert. Diese Korrektur
ist jedoch nur dann wirksam, wenn die drei Punkte .4, J5 und C stark
von einem geradlinigen Verlauf abweichen. Die Formel (20) kann auch
als eine zum Kontinuierlichen analoge Beziehung zwischen Krüm-
mung und Krümmungsradius aufgefasst werden. In erster Näherung
ist I/f der Krümmungskreis, und die Krümmung ist umgekehrt-
proportional zu dessen Radius r.

Wir müssen nun zeigen, dass die im Abschnitt 8. aufgestellten
Bedingungen auch tatsächlich erfüllt sind. Weil das Glättemass
mittels 4 Punkten definiert wird und weil die Krümmungsdefinition
(14) nur Strecken und Winkel des Dreiecks ARC verwendet, sind die

Bedingungen .4 und B erfüllt. Das gleiche gilt auch für D (Grenz-
Übergang ins Kontinuierliche). Den Beweis dafür werden wir aller-
dings erst im Abschnitt 6.2. erbringen. Es bleibt also noch die Be-

dingung C zu diskutieren, welche für eine stark unglatte Reihe einen

grossen Glättewert verlangt.
Obwohl für eine unglatte Reihe das neue Mass (17) im allgemeinen

sehr gross wird, gibt es doch gewisse spezielle unglatte Konfigura-
tionen, für welche (17) kein befriedigendes Resultat liefert. Treten
in einer Reihe grosse einmalige Sprünge auf, wie etwa in Figur 7 zwi-
sehen N,- und oder zwischen und -4^, und folgt nicht un-
mittelbar danach ein Rücksprung, so zeigt das Glättemass einen zu
kleinen Wert an. Da dieser Retoursprung fehlt, sind die Aussenwinkel

nirgends viel grösser als tt/2 ; die Strecken p^ können jedoch unver-
hältnismässig gross sein, was beides zur Folge hat, dass die Krüm-
mungen und somit auch die Glättewerte in diesen Bereichen klein
bleiben.
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Für diese Spezialfälle ist es deshalb von Vorteil, die Krümmung
mit einem Korrekturfaktor / von der Form

/
S'-i + «;

(21)

zu versehen (siehe Figur 7). Dieser Faktor hat die Wirkung, dass bei
starker Unsymmetrie des Dreiecks .4 4 -, M j, d. h. wenn Min (o j_„ a,-)

viel kleiner ist als Max (a,-_j, o,-), die Krümmung nicht üiehr so sehr

von otj und pj (also auch von a,- und Max(a,_j, a-)) als vielmehr von

aj und Min (Oj_i, a;) abhängt. Etwas ungenauer ausgedrückt besagt
dies, dass durch den Faktor / in der Krümmung der Punkt, welcher

J; am nächsten liegt, mehr berücksichtigt wird als der von M,- weiter
entfernte.

Figur 7

-K

P» /

-D

-4?:

A-}- 1

Seien und ^ das Krümmungs- bzw. Glättemass, in welchen
der Faktor / berücksichtigt ist, so ergeben sich analog zu (14) und
(16) die Formeln

4tga;/2 a^i + a-
fc(-4,) (22

Pi 2 ßj-i

^(M,_„M,,M,.^,M,^) (ft,(^)-fc,(^))». (28)

Es ist klar, dass dieser Faktor / den ganzen Formelapparat
grösser und komplizierter macht. Wir wollen deshalb nur dann von
ihm Gebrauch machen, wenn es wirklich nötig ist, d.h. wenn wir eine
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stark unglatte Reihe zu beurteilen haben. Die praktischen Beispiele
in den Abschnitten 7. und 12.2. werden zeigen, dass wenn eine Reihe

einigermassen glatt verläuft, die Unterschiede zwischen den Glättewerten
mit und ohne Berücksichtigung des Korrekturfaktors unbedeutend sind.

6. Die Koordinatenformeln und deren Folgerungen

6.1. G%emeràe Formeln

Aus dem Kreis der vielen Formeln, die es erlauben, das Glättemass
direkt aus den Koordinaten der Reihenpunkte zu gewinnen, mochten
wir eine auswählen, die, wie es uns scheint, sich vor allem für die

Berechnung mit Hilfe elektronischer Rechenautomaten gut eignet.
Die Idee, nach der wir in der Krümmungsdefinition (14) den

tga/2 bestimmen wollen, lässt sich folgendermassen kurz skizzieren.

Figur 8

.4, 2? und G seien drei aufeinanderfolgende Punkte einer Reihe
(siehe Figur 8). In F wollen wir die Krümmung bestimmen. Der Punkt
M wird auf der Geraden durch G und F so gewählt, dass die beiden
Strecken : FC und | Fill ; gleich gross sind. Setzen wir den Hilfspunkt
A^ auf der Geraden MC genau in die Mitte zwischen M und C, so ist
der Winkel y bei F gleich dem gesuchten Winkel a/2, und es gilt

CA"
tga/2 tg y Tg]yT" ^



Die Koordinaten der drei Reihenpunkte .4, B und C wollen wir
mit (#2>2/2) und (rc.j,7/3) bezeichnen.

Die Koordinaten des Punktes M, (21, y), müssen die folgenden
zwei Gleichungen erfüllen:

Geradengleichung .4B: (y — %) (a^ — aq) — (:r —z,) (2/2 — 2/1) 0,

|BM| BC j : (22—2/2)® + (s — Zg)® (2/3—2/2)® + (^3—^2)®-

Das System ('25) besitzt, da es quadratisch ist, zwei Lösungen.

Der Punkt M kann auf beiden Seiten von B auf der Geraden AB
liegen. Da aber der in Figur 8 gezeichnete Punkt M für unsere Zwecke

der einzig richtige ist, müssen wir zu (25) eine weitere Bedingung hinzu-

fügen. Die Forderung
AM Max (26)

führt zusammen mit (25) zur folgenden Lösung:

x 0,'2+ («g— £1)

2/ 2/2+ (2/2-2/1)

Als Abkürzung setzen wir

(2/3-2/2)® + K—^2)®
(2/2—2/l)®+ (®2— *l)®

'(2/3 2/2)®+ (S3—«Ci)®

(2/2 2/l)®+ 0*2— Sj)®

(27)

3
(2/3—2/2)®+ fa—S2)®

(2/2—2/i)®+ (Sa— Si)®
(28)

Für die Koordinaten (ä,y) des Punktes ÎV folgt somit:

£

2/

+
2

2/2 + Z/3

» x+ „ g>

2/2—Z/l
+

2
«•

Bedenken wir, dass

P y"(ss—Si)®+ (2/3—2/1)®

ist, so können wir mit Hilfe von (24) den Betrag der Krümmung Zc(B)

angeben :

fc(B) 4
(®2- S3 + (Sa- Sj) g)* -I- (î/a- '2/3 + (2/2 ~ 2/i) '/)®

((S3-S1)® + (2/3-2/1)®) ' [(S3-S2 + (a:2-Si)g)® + (2/3-2/2 + (2/2-J/i)s)']
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Setzen wir in der Geradengleichung (25) den Punkt C (£3,^3)
ein, so ergibt sich:

(%- 2/2) (®2 — h) - (hi — hä) (/ta 2/i) * (31

Die Grösse 2 besitzt nur dann den Wert null, wenn C auf der

Geraden DB liegt. Das Vorzeichen von 2 gibt darüber Auskunft, ob

der Punkt (7 rechts oder links der Geraden DD liegt.
Wählen wir für die Krümmung fc(B) das gleiche Vorzeichen wie 2,

so ist zusammen mit (30) die Krümmung eindeutig bestimmt. Wir er-
halten somit das gleiche Vorzeichen wie im ersten Versuch (siehe 4.1.).

Selbstverständlich liessen sich weitere Formeln für die Krüm-
mung angeben, vor allem solche, in welchen das Vorzeichen mit-
enthalten ist. Jedoch sind diese Formeln etwas komplizierter als (30)
und besitzen, da mindestens einmal die Flessesche Normalform der
Geraden verwendet wird, meistens ein Wurzelzeichen mehr. Da auch
elektronische Rechenanlagen relativ viel Zeit für das Wurzelziehen
beanspruchen, haben wir einer solchen Darstellung die Formeln (30)
und (31) vorgezogen.

Für den Korrekturfaktor / (siehe (21)) erhalten wir die Formel

(2/2-2/1)* + (-'V Si)'+ (2/3—2/2)*+ (hi 'Di*

2 ]/ [('2/2 — 2/1) * + (hä- - H) *] • [(2/3— 2/2) * + (h>- Jpg)2]

Die endgültige Berechnung der Glätte einer Reihe bestehend

aus den n Punkten D; (i 1, 2, n) ergibt sich aus

Z(B„) g(fc(D,)-fc(D^))*, (33)
t 2

wobei Betrag und Vorzeichen von A(D,-) aus den Gleichungen (30),
(31) und evtl. (32) entnommen werden können.

6.2. Das FerM/ew der disfcre/en Krwmmww/ nnd G2ä22e

beim Übergrmg m den fcon/wMaer2ic7fen Bererck

Wir wollen uns in diesem Abschnitt überlegen, wie sich die dis-
krete Krümmung und Glätte verhalten, wenn die Punkte einer Reihe
auf einer Kurve gegeneinander streben.



Die drei aufeinanderfolgenden Punkte -4, B und C einer Reihe

gehen auf einer Kurve FC, welche durch (sc(f),i/(t)) gegeben ist, gegen
den Punkt P, der auf Ii zwischen xl und C liegt. Die Koordinaten
dieser Punkte haben die Form:

.4: (x(p),?/(p)) (Zi.î/i),
P: (x^),!/^)) (^2>2/2).

C: (x(p),?/(P)) (^3,7/3),

P: (x(p),?/(p)).

(P < P < P) >

(P < P < P) 1

Führen wir die folgenden Bezeichnungen ein

F x'(p), z"(P), x'" x"'(p),
y' 2/'(p), 3" y"(P)> 3"' ?/"(P),

so gilt für die kontinuierliche Krümmung 3(B) im Punkte B die

folgende Formel (84) (vgl. beispielsweise A. Ostrowski, «Vorlesungen
über Differential- und Integralrechnung», Bd.'2, p. 897) :

£(B) y x — x '

//

(x'2 + y'2)|
(84)

Wir müssen zeigen, dass, wenn .4, B und C gegen P streben,
sich die Grösse «i in

tg a/2
fc(B) m h-

P

so bestimmen lässt, dass fc(B) — | £(B) I gegen 0 geht (siehe 5.1. (13)).

Wir gehen aus von der Formel (30), die wir in etwas anderer Art
schreiben wollen :

fc(B) m
Pt[+3f

(85)

mit /p [(x -®i) ?aP>

-2/1) 12]".

— ^2)ll— (®2"

[(20—P/2"
^ {(>3— W)* + (2/3—2/I)*}

•{[(^3—^2)gi+(^2—^l) 32]'
3? (2/2 — 2/I)* + (xa—Xj)p

32 (2/3—2/2)*+ 0*3—^2)*-

[(33—2/2)31+ (32-2/i) 32]*}.
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Für die folgenden Überlegungen setzen wir voraus, dass x(<) und
»/(<) mindestens fünfmal differenzierbar seien. Nach der Taylorschen
Entwicklung im Punkte (£2>2/2) 8^ dann:

2/2—2/1 (*2—*1)2/'—J- (ü-ü)'y" + à (ü—ü)®2/"'+ o[(ü~üü].
Xg — Xi (to — /i)ü — ü(ü — G)H" + |(ü —ü)®^'"+ 0[(ü-üü]'
2/3—2/2 (ü — <2) 2/' + 0 (<3 — ü) V + 6 (Ü —ÜÜ2/'" + 0[(ü—ü)^]>

«3—^2 (ü —Ü)ü + -.y(Ü —üüü' +-J (ü~üü-ü" + 0[(<3 — <2)^]-

Demnach ist :

21 (ü~üü (*'• + 2/'®) — (ü — <1)® (?/' 2/" + -r' z")

+ (ü —ÜÜ[H'2/V" + üü") +i(2/"" + ar*)] + 0[(/j-/i)5].

Mit Hilfe der binomischen Entwicklung erhalten wir:

3l (<2 —<i)S —-§-(*2—+ (<2 — <l)® ü + 0[(<2—ü)^]. (37)

S (a:'"+i/'«)i,
2/'2/" + üx"

s " '

|(z/',/" + X'X"') + 1(2/"^ + Ü'2) H* " — 5s— " " —W
Aus analogen Überlegungen ergibt, sich:

22 ('s—*2) '5+ I (<3—g*r + (<3—g» Ü + O[(Ü—gü- (38)

Nun können wir die Grössen /fj und /t® berechnen:

ü? {[(/3-g (ü-ü) ü'5 — T(#3-/2) («2-g*r + V (ü"ÜÜ (ü-ü) *' s

+ (ü-ü) (<2- g ® r' ü - ü (/g-g 2 (<2-g * x " r+| (<3-/2)3 ^ x ,s]

[(Ü~"Ü) (Ü~Ü) ® '8 + x(<3~~ÜÜ (Ü~Ü) ^ 7 — (<3-/2) (<2~ÜÜ'^ '8

+ (<3 —'2)* (<2 Ü) Ü ü-|(<3-g3 (<2-<i)'Üx" T + -J-(<3-/,) (<2-<i)3x"'S]
"F 0[(<3 —<2) (<2 ^l)^] + 0[(<3-<2)3 (<2 — <i)3]

+ 0[(Ü~ÜÜ (Ü~Ü)^] + 0[(<g —<2)^ (<2~ü)]}^

— {(ü~ü) (ü~ü) (ü~ü) [2 ^ '8 — à ^ ü+ ((<3— <2) ~~ (ü~g)
• (J-X"'S'-x' Ü) + 0[(<3 —g)2]]}2.
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Da f1 < <2 < ^3 ist, ist die verkürzte Schreibweise 0[(ig — t^)*] für

das Eestglied zulässig.

• x* >S'— -J x' T + ((<3-^ - J-;r"' S- x' ü) + 0[(ta-^)®]}®

und analog (39)

^ (*3-*2)» («a-«l)" (<3-*l)"
• {-!,?/' T + ((*3-**) - (D-ii)) ü ?/"' « - y' ü) +

Also

i' l + 7*2 (^3 '2) ^ (^2 ' '1) ® (^3 *l) ^

•{!«*(*"*+r®) + i-T*(x"+ f)-;ST(x'x' + y'y")
+ [(^3 '2) (^2 ^1)]

[(x'S-x'T) (-> x»S-x' ü) + (y"S-y'T) (|y"'.S«-y' U)] + O^-f,)*]}.
Setzen wir für #, T und 17 die ursprünglichen Werte (37) ein,

so erhalten wir:
Ä® + Ä* («s— <2) ® ('2— ' 1) ® (*3— ' 1) ® {i- (J^' y

" — Z/' -c ") ® + [(*3—#2) —(*2—*i)]

[-JS'2(x"x"'+îy"y'")-SD(x'x"+y'y")-J»ST(x'x"'+î/y"') + TD(a:'Hy^)]
+ 0[(<3 —ti)®]}.

IN un ist aber:

S U (x' x" + y' y ") T ü (x'* + y'*).
Also gilt :

yä + yf (<3- y2 (#2— t 1)2 (f3- f 1)2 {{- (x' y"- y' x") 2 + [(ig- f2) - (ig-f1)]

[> S(S(x"x'" + y"y"') — T(;r'x'"+ y'y'"))] + O^g-y*]}.
Durch Ausmultiplizieren und Umordnen erhalten wir:

y2 + /,2 _ ^_y2(^_y2^_y2
• {I (&' y " - y' -O * + J [('3 - ta) - (*2 - ' 1)] [(2=' y " - y' ® ") te' y"' - y' *'")]

+ 0[(<3"<l)^]}-
betzen wir

£ !l>'y"-y'z") (Uy"'-y'x'")],
so können wir schreiben:

M + 7*2 (<3-*2)^2-*1)^3-^
• [(*3—*2) — (<a—<1)]-^+ 0[(«3—*i)«]}. (40)
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Die Grösse in (35) berechnen wir auf die folgende Art:

(«3 —«1) (^3—*1) [« + -| « ((^3 ^2) (^2 ^l))~b H[(<3 ll)®]]>

(2/3-I/1) (*s—*1) [2/' + -s-^" (Ca—*s) — («2—*1» + 0[(<3—

(0:3-01)2+ (2/3-2/1)®

(<3"*i)® |>'® + 2/'® + [(<3-*a)- (*2-*i)] («'«" + 2/'2/") + 0[(«3-<i)"U•

Weiter ist:

(«3-0-2)21 (23-/3) (<2-<i) 0's+ à (<2-/1)0'r + O[(<3-<i)2]],

(Og-Oi) 2a (<3 <2) (<2 <l) [o'S — y(<2-<i) O",S'+ 1 (<3-/2) OT+0[(<3-<I)2]],

((03-02)21 +(02-01)22)® (<3-y®(<2-<l)®

• [4®"S» + 2®'S(®'S + o'T) [(<3-/3).-(<2-<i)] + 0[(#3-/ir~]].

Analog dazu :

((2/3-2/2)21 + (2/2-2/1)22)®

(<3 <2)® (<2~<i)® [42/'®>S'2 + 2t/'S(t/»S + y'T) [(<3-/3) - (<a-<i)] + 0[(<3-<i)®]]-

Also erhalten wir:

2W (<3-<i)« (<3-/3)® (<2-<i)® [4S» + [(<3-/2) - (<2-<i)] (4S®T + 4S*T)

+ 0[(<3-G)®]].
Setzen wir

TD 8(®'* + t/'»)®(i/'j/" + ®'®'),
so gilt:

AT® (<3 <l)® (<3~y® (<2-'l)® DK«'® + 2/'®)® + [(<3-^2) - (K"K)] W

+ 0[(<3"<i)®]]- (41)

Aus (40) und (41) erhalten wir:

_ i («'2/"-2/'«")® + [(<3-<2) - (*2~<i)]-k + 0[(<3-^i)®]
IV® 4 (®'2 + J/'2)3 + [(<3-/3) - (<2-<l)] 11' + 0~[(<3-<i)®]

1 (o'w" — ty'®")® „ [ 4 (i'j'-j'o'fll'—— —•—'- + r(<,-<o) -(<,-<i)l
16 (®'* + t/'*)®

*- 45" 64S"

+ 0[(<3 —Ii)®] •
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Mit Hilfe der binomischen Entwicklung ergibt sich sodann:

'
/i-j + Äg

+
1 is'-JI' 1

- - -, + 7, y-yi4 (a;'2+î/2)l- 2 ^

L (a:'j/"— y'x") 1F

//V'N» 16.S®
+ 0[(tg G) (42)

Setzen wir L und IE ein, so erhalten wir

•'
1 Vy'Ä? + Ä*

/ ,2 | /2\ 3 4 [^3 G) (G G)] ^(G) + 0[(<3 fj)^]
4 -j- ?/ j 2 4

mit
E(g

1 x'y'" — yV" (Ky"—y'a:") (Pa;" + y'y")
(43)

3 (s'* + ?/'*)i- (:r'2+y'2)»

Aus dieser Gleichung (43) folgt aber, dass, wenn wir in (35) m 4

setzen, die diskrete Krümmung absolut genommen für (fg — g =4 0

(G < #2 < ^3) in die kontinuierliche Form (34) übergeht. Aus der Art,
wie wir in 4.1., 4.2. und 5.1. das Vorzeichen für die diskrete und kon-

tinuierliche Krümmung festgelegt haben, ist leicht einzusehen, dass,

sobald die Punkte genügend nahe beieinanderliegen, die beiden Krüm-

mungen das gleiche Vorzeichen haben. Die eben erwähnte Konvergenz
ist somit auch unter Berücksichtigung des Vorzeichens gültig, und in

(42) und (43) ist unter diesen Umständen das positive Vorzeichen einzig

richtig. Sobald (<3 — y klein genug ist, können wir also schreiben:

fc(B) fc(P) + [(fa-g-fo-fi)] *(*a) + 0[(*3-*i)*]-

Da aber a:(i) und y(f) fünfmal differenzierbar sind, gilt :

P(y 7î(<o) + 0[(G— <o)]

und somit auch:

fc(B) fc(D) + [(*3-g - - («3- -g] p(y + 0[(<3—g®] (44)

(G < G < G "V g •

Sei I) (yy,?/(g) ein weiterer Punkt der Reihe, welcher an C

anschliesst und ebenfalls auf der Kurve Ii gegen P strebt, so gilt
analog zu (44) :

/«(y fc(C) + [y—y — (y-y] P(y + o[y—y *] (^)
(G < G "V G < G) •
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Wir müssen nun zeigen, dass, wenn die vier Punkte .4, 77, C

und 79 auf der Kurve 77 gegen einen Punkt P streben, welcher auf /\'

zwischen B und C liegt, das diskrete Glättemass 2(M,B,C,D) in das

Bizleysche Mass z(P) übergeht.

Aus der Definition der Bizleyschen Glätte folgt:

z(P) lim
P-»P
C-»P

P, C auf /i

fc(B) — fc(C')

PC

Also gilt es zu zeigen, dass

fc(p) - fc(G) ; /.•(/>') - k(C) i

/te pcj

gegen 0 geht, sobald J, B, C und D auf 77 gegen P streben.

Mit Hilfe von (44) und (45) erhalten wir:

fc(B)-fc(C) JE(B)-£(C)

(46)

0 < (46) <(
iBC| />'("

(<4 — fg) — 2 (fg — ig) + (G~ ^l) 6 [(<4 — fj)^]
B(<o)

' P(to)

PC
;

PC

(^4 ^3) ^ (^3 ^2) ~b (tg ^j)
^

j
0 [ tj)^]

PC
~

PC

Damit im allgemeinen Fall, wenn P(fg) =£ 0 ist, die diskrete Glätte
in das Bizleysche Mass übergeht, muss gelten:

hm 7-^ 0. (47)
A-»P
P->P
C^P
P->P

A,P, C, P auf A*

Diese Bedingung können wir durch die folgende Überlegung in
eine etwas verständlichere Form bringen. Es ist :

(^--ü)K(^oT)^^W UP! + o[(t,-<^].
Analoge Formeln gelten für PC. und CD
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Die Bedingung (48)

CD — 2 PC : + |HJ3

PC

C-*P
' Z)->P

A, B, C, Z) auf A

ist somit gleichwertig mit (47).

Die zweite Differenz CD —2 />'(.' • .1/1 muss also schneller

gegen 0 gehen als j-BCj; oder, was das gleiche bedeutet, CD —| DC
muss schneller gegen jBCj— .1 />' streben als ; BC| gegen 0. Dies ist
beispielsweise dann erfüllt, wenn die drei Strecken .1/> BCj und
CD immer gleich gross sind.

Dass das diskrete Glättemass nur unter der Bedingung (4S) in
das kontinuierliche übergeht, mag im ersten Moment enttäuschend
wirken. Versuchen wir jedoch das Bizleysche Mass im Gegensatz zum
normalen Vorgehen dadurch zu gewinnen, dass wir zuerst mit Hilfe
von 4 Punkten der Kurve ein «diskretes Bizleysches Glättemass»

bilden, wie -wir das im zweiten Vorversuch 4.2. getan haben, und erst
dann den Grenzübergang durch das Zusammenziehen der vier Punkte
vollziehen, so müssen diese Punkte eine zu (48) analoge Bedingung
erfüllen. Wir müssen eben bedenken, dass sich die übliche Art, den

Grenzprozess durchzuführen, stark vom obigen Vorgehen unter-
scheidet. Bei der Definition des Bizleyschen Masses wird zuerst die

kontinuierliche Krümmung in zwei Punkten der Kurve gebildet, und
erst dann w-ird der Grenzübergang durchgeführt. Wenn wir beim
neuen diskreten Mass in gleicher Weise vorgehen, so kommen wir
immer zum richtigen Ergebnis unabhängig davon, wie die Punkte
auf der Kurve gegeneinanderstreben ; denn wir haben ja gezeigt, dass

die diskrete Krümmung in jedem Palle in die kontinuierliche übergeht.
Mit diesem Hinweis dürfen wir wohl die Bedingung D in 8.

(Übergang in das Bizleysche Mass) beim neuen diskreten Glättemass
als erfüllt betrachten.

6.8. .S'jj&üah'sierang

Bei den meisten Reihen aus der Praxis, insbesondere bei Zeit-
reihen, sind die einzelnen Punkte P; so gegeben, dass ihre x-Koordi-
naten bei fortlaufendem i um einen konstanten Wert steigen. Wählen
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wir diesen konstanten Abstand als Einheit, so lassen sich die Formeln
(30) und (31) wesentlich vereinfachen. Setzen wir in (30) und (31)

"»+1 .r,) 1, so erhalten wir:

fc(B) : 4

mit

(i—9)"+ (;V2—2/3 +- (2/2—3/1)9)"

(4 + (2/3—2/i)") [(1 +9)"+ (2/3-2/2+ (2/2— 2/i) 9)"]

9

(49)

1 + (2/3—2/2)*

Weiter gilt:

1 + (2/2 — 2/0"

ï 2/3-22/2 + 2/1 4*2/i- (50)

Bekanntlich ist das Vorzeichen von 2 massgebend für das Vor-
zeichen der Krümmung fc(3).

Unter der erweiterten Annahme, dass im ganzen Bereich der Reihe
der Betrag ii/; -i — 2/<| klein ist gegenüber 1, lässt sich eine weitere
Formel ableiten. Unter dieser Voraussetzung darf nämlich in (49) die
Grösse g durch 1 angenähert werden. Somit ergibt sich aus (49) :

&(B) j 4
(2/3-22/2 + 2/1)*

[4+ (2/3-2/1)*] (4+ (2/3-2/1)*)
(51)

Weiter wollen wir in (51) (2/3—j/J® gegenüber 4 vernachlässigen,
so dass wir als Zwischenstufe erhalten:

/,•: />') I 4
(2/3-22/2+2/i)*

4 • 4
(52)

Beachten wir noch die Formel (50), die das Vorzeichen von fc(B)
regelt, so ergibt sich als Näherungsformel für die lokale KrümmungÖ

in ß
fc(3) ZI * ft. (53)

Die Voraussetzungen, die zu dieser Formel (53) sowie zu der

globalen Formel (55) führen, seien hier nochmals erwähnt:

1. (%,, — U-) 1 (» 1» 2, - w— 1),

2/i "2/i ist klein gegenüber 1.
(54)

Es ist klar, dass diese Näherungen um so besser sind, je kleiner
die absoluten Beträge der y-Differenzen sind.
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Betrachten wir die folgende Formel (55) für die globale Glätte
einer Reihe

n—3 n—3

Z(B„) 2 (^-^2/;+,)* 2 («"• (55)
•i l i=l

die sich sofort aus (33) und (53) ergibt, so erkennen wir, dass wir
wieder zu der Methode der Glättebestimmung zurückgekommen sind,
die wir als die klassische bezeichnet haben. Da wir uns bei der Her-
leitung des neuen Glätteinasses ganz von der klassischen Idee gelöst
hatten, ist es um so erstaunlicher, dass diese als Spezialfall im neuen
Mass enthalten ist. Es ist nun auch erklärlich, dass, obwohl das klas-
sische Vorgehen zu vollständig falschen Resultaten führen kann, es in
weiten Gebieten durchaus befriedigende Ergebnisse zeigt. Wenn nämlich
die Bedingung (54) erfüllt ist, wie dies beispielsweise bei der Reihe der

einjährigen Sterbewahrscheinlichkeiten der Fall ist, so stimmen das

neue und das klassische Mass überein.
Der Vollständigkeit halber wollen wir ohne Beweis erwähnen, dass

unter der Vorausset zung (54) auch die Glättemasse des 1. und '2. Versuchs

(siehe 4.) zu der Formel (55), also zur klassischen Definition führen.

7. Numerische Beispiele

Da uns nun das Rüstzeug für die praktische Berechnung der
Glätte mit den in 6.1. und 6.3. abgeleiteten Formeln zur Verfügung
steht, wollen wir an einigen Zahlenbeispielen das neue Glättemass

erproben. Es soll dabei versucht werden, vom praktischen Standpunkt
aus einige Eigenschaften zu beleuchten, um zusammen mit den in 5.2.

auf rein theoretischem Wege gefundenen Eigenheiten ein möglichst
umfassendes Bild vom neuen Glättemass zu erhalten. Unter anderem
wollen wir auch prüfen, wie empfindlich das Mass auf kleine Verschie-

bungen der Punkte reagiert.

7. Beispiel

Die erste Reihe, deren Punkte wir durch ihre Koordinaten in
der Tabelle 2 dargestellt sehen, haben wir bereits im Abschnitt 2.1.

angetroffen. Wie wir dort gesehen haben, ist

1000
^ " "

1000 —r
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die dieser Reihe zugrunde liegende Funktion. Wir haben herausgefunden,
dass das klassische Glättemass für diese Reihe keine vernünftigen Resul-
täte liefert, da die dritten Differenzen zRy zunehmen, wenn sich a; dem

Werte 1000 nähert.

Tabelle 2

£ 2/

994 166,7
995 200,0
996 250,0
997 333,3
998 500,0
999 1000,0

In der Tabelle 3 haben wir zu Vergleichszwecken die Resultate
der klassischen und der neuen Methode einander gegenübergestellt.

Tabelle 3

s-Bereich
Neues Mass

Z
Klassisches Mass

994^997 14,56 10-® 2,76 • 10®

995-998 5,17 • 10-® 25,10 • 10®

996-999 1,30 • 10"® 624,50 • 10®

994-999 21,03 • 10"® 652,36 • 10®

Die Werte des neuen Masses zeigen in dieser Tabelle den richtigen
Verlauf, indem sie abnehmen, je näher a; dem Werte 1000 kommt,
d.h. je weniger die Reihe von einem geradlinigen Verlauf abweicht.

Um die Empfindlichkeit des Masses gegenüber kleinen Verände-

rungen der Punkte dieser Reihe zu prüfen, gehen wir folgendermassen
vor:

Wir variieren die î/-Komponente des Punktes (996,250) und stellen
fest, wie sich dabei der Glättewert ändert. Die Tabelle 4 gibt darüber
Auskunft.
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Tabelle 4

Geänderter Punkt Änderung Wert der Glätte Änderung
2/ Oy Z dZ

996 251.0 1.0 2,36 • 10-8 0,26 • 10-8

996 252.0 2.0 2,65 • 10-8 0,55 10-8

996 249.0 — 1.0 1,89 10-8 —0,21 • 10-8
996 248.0 —2.0 1,74 • IQ"» —0,36 • 10-8

Die obigen Resultate zeigen deutlich, class für diese Reihe das

neue Glättemass recht empfindlich gegenüber kleinen Änderungen
der Koordinaten reagiert. Selbstverständlich kann das Verfahren für
jeden weiteren Punkt der Reihe wiederholt werden; ein grundsätzlich
anderes Resultat wird dabei allerdings nicht herauskommen.

2. Beispiel

Die beiden Reihen Ä und B, die wir in diesem Beispiel einander
gegenüberstellen wollen, sind in der Tabelle 5 durch die Koordinaten
ihrer Punkte festgelegt. Die Kurven, welche ihnen zugrunde hegen,
haben die folgende Form:

Reihe M : y e®, Reihe B: y —1,5. (56)

Tabelle 5

Reihe .4 Reihe B
£ y £ y

4,0 54,5982 4,0 53,6469
4,5 90,0171 4,5 89,4218
5,0 148,413 5,0 148,4046

5,5 244,692 5,5 245,6512

6,0 403,429 6,0 405,9835

Ohne diese Funktionen zu kennen, ist es gar nicht einfach zu
entscheiden, welche der beiden Reihen glätter ist; um so mehr als

die klassische Methode ein ganz falsches Resultat liefert.
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Auf Grund unseres «Gefühls» von der Glätte sowie auf Grund
der Tabelle 5 und der Funktionen (56) lassen sich einige qualitative
Prognosen stellen.

1. Das Glättemass wird bei beiden Kurven mit wachsendem a:

eine fallende Tendenz zeigen. Das gleiche erwarten wir auch für die
beiden Reihen.

2. Daraus folgt, dass die Funktion y e* einen grösseren Glätte-
wert hat als y Da wir von einem Glättemass verlangen, dass

es invariant gegenüber Kongruenztransformationen ist, muss demnach
auch y e* den grösseren Glättewert besitzen als y —1,5.
Also soll die Reihe B glätter sein als A.

Die Tabelle 6 zeigt, dass diese Prognosen für das neue Mass erfüllt
sind, während beim klassischen Mass gerade ein entgegengesetztes
Verhalten vorzufinden ist.

Tabelle 6

x-Bereich
Neues Glättemass a Klassisches Glättemass (d°r/)°

Reihe ^4 Reihe B Reihe A Reihe ß

4,0-5,5 56,00 • 10-1° 53,80 • 10-1° 22,22 • 10° 22,67 • 10°

4,5-6,0 7,58 • 10-i° 7,28 • 10-1° 60,39 • 10° 61,61 • 10°

4,0-6,0 63,58 • 10-i° 61, 08 -10-1» 82,61 10° 84,28 • 10°

Gleich wie im ersten Beispiel prüfen wir für die Reihe A die

Empfindlichkeit des Glättemasses gegenüber kleinen Verschiebungen
eines Punktes. Aus der Tabelle 7 sehen wir, dass auch in diesem Falle
die Prüfung befriedigend ausfällt.

Tabelle 7

Geänderter Punkt Änderimg Wert der Glätte Änderung
£ 2/ dy Z dZ

•5,0 148,414 0,001 6,3586 • 10"° 0,0005 • 10-°

5,0 148,415 0,002 6,3591 10"° 0,0010 • io-°
5,0 148,412 —0,001 6,3576 • 10-° — 0,0005 • 10"°

5,0 148,411 —0,002 6,3571 10"° — 0,0010 10"°
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3. Beispiel

Wie wir aus der Tabelle 8 lesen, unterscheiden sich die in diesem

Beispiel betrachteten 4 Reihen A, B, C und D nur dadurch, dass die
sich entsprechenden y-Komponenten ihrer Punkte um ein Vielfaches

von 10 verschieden sind.

Tabelle 8

x-Werte
«-Werte der Reihen

C D.4 B

1 0,2 0,02 0,002 0,0002
2 0,1 0,01 0,001 0,0001
3 0,2 0,02 0,002 0,0002
4 o © 1,00 0,100 0,0100
5 20,5 2,05 0,205 0,0205
6 19,9 1,99 0,199 0,0199
7 20,0 2,00 0,200 0,0200

Zwischen den .r-Werten 8 und 5 ist der sprungartige Anstieg bei
der Reihe A dem Betrag nach viel grösser als bei B, C und II. Wir ver-
muten deshalb, dass an dieser Stelle das normale neue Glättemass
für A im Gegensatz zu den übrigen Reihen unvernünftige Werte
liefert. Diese Vermutung wird durch die Tabelle 9 bestätigt. Das neue
Mass Z weist für die Reihe A einen kleineren Wert auf als für die
Reihe Ii. Erst wenn wir den Korrekturfaktor / (siehe (21)) mitberück-
sichtigen, sind, wie die Tabelle 9 zeigt, die Glättewerte auch für die
Reihe A vernünftig.

Tabelle 9

Reihe .4 Reihe B Reihe C Reihe D

Neues Glättemass Z 2.13 2,53 4,46 10"- 4.50 • 10-4

Neues Glättemass Z^-

Klassisches Mass
2,52 10 2,85 4,46 • 10-'- 4,50 • 10-4

4,50 • 10- 4,50 4,50 • 10^ 4,50 • 10-4

Im Abschnitt 5.2. haben wir erwähnt, dass der Korrekturfaktor
nur dann angewendet werden soll, wenn es wirklich nötig ist, d.h. wenn
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die zu beurteilende Reihe stark unglatt ist. Aus den Resultaten der
Tabelle 9 erkennen wir nun, dass es sinnlos ist, bei einigermassen
glatten Reihen den Faktor / mitzuberücksichtigen, da er in diesen
Fällen keinen wesentlichen Einfluss auf die Glättewerte ausübt.

Weiter sehen wir aus dieser Tabelle, dass der Unterschied zwi-
sehen dem klassischen und dem neuen Mass für die Reihen C und /)
gering ist. Dies ist zu erwarten, da für beide Reihen die Bedingungen
(54) in 6.3. erfüllt sind.

Selbstverständlich könnten wir weitere Beispiele hier anknüpfen,
die uns eine Fülle von mehr oder weniger interessanten Daten liefern
würden. Wir wollen uns jedoch mit diesen drei Beispielen begnügen,
da sie uns die wichtigsten Eigenschaften des neuen Glättemasses vom
praktischen Standpunkt aus vor Augen geführt haben.

8. Probleme der praktischen Anwendung

8.1. Die kFft/d der EVsatem/te

Wir sind bis jetzt immer davon ausgegangen, dass die Koordi-
naten (£;,?/;) (i 1,2, welche eine Reihe von Punkten in
einem kartesischen Koordinatensystem darstellen, zur Verfügung stehen.
Mit diesen Angaben konnten wir die Glätte, die eine geometrische
Eigenschaft der Figur ist, bestimmen. Bei praktischen Anwendungen
finden wir jedoch vorerst nur zwei Folgen von dimensionierten Werten

vor, zwischen denen eine eindeutige Zuordnung besteht. Obwohl durch
diese Zuordnung beispielsweise der Wert der ersten Folge zum
Wert B; der zweiten Folge gehört und wir dieses Wertepaar als

schreiben können, ist das alles nicht gleichbedeutend mit der Aus-

sage: «(M,,B;) ist ein Punkt der Ebene»; schon deshalb nicht, weil
M • und B- mit irgendwelchen, meist ungleichen Dimensionen behaftet
sind, während die Komponenten der Koordinaten eines Punktes die
Dimension der Längeneinheit des kartesischen Systems besitzen.

Trotzdem ist es uns ein Anliegen, die Beziehung zwischen den
beiden Wertefolgen graphisch darzustellen, um uns eine richtige Vor-
Stellung davon machen zu können. Sobald wir uns aber diese Zuord-

nung graphisch veranschaulichen wollen, müssen wir zuerst eine Mo-
dell- oder Ersatzreihe konstruieren, deren Punkte sich auf eine Ebene
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zeichnen lassen. Die Komponenten der Punkte dieser Ersatzreihe
haben also als Dimension die Längeneinheit des kartesischen Koordi-
natensystems; sie sind aber auch ohne Berücksichtigung der Dirnen-
sion eng mit den ursprünglichen Wertefolgen verbunden.

Wenn wir beispielsweise wie im Abschnitt 12.2. die Beziehung
zwischen dem Alter x und der Sterbewahrscheinlichkeit graphisch
aufzeichnen wollen, wählen wir als Ersatzreihe (x • x, 100 • • x), wobei

x die Dimension der auf dem Zeichenblatt zugrunde gelegten Längen-
einheit bedeutet.

Wir brauchen nicht zu betonen, dass diese Modellreihe und somit
auch die graphische Darstellung gut oder schlecht gewählt werden
können. Vor allem im Wirtschaftsleben kommt es vor, dass durch
ungeeignete Wahl dieser Modellreihen Tatsachen verfälscht werden.

Ähnliche Überlegungen lassen sich auch für die Glätte machen.
Durch eine ungeschickte Wahl des Ersatzbildes, d.h. der Ersatzreihe,
können wir einen vollkommen falschen Glättewert erhalten. Das

zweite Beispiel des letzten Abschnitts führt uns dies deutlich vor
Augen.

Wir haben dort gesehen, dass die Reihe M weniger glatt ist als

die Reihe B. Multiplizieren wir die y-Komponenten beider Reihen mit
10""®, so sind die Bedingungen (51) erfüllt, und wir dürfen das klas-
sische Mass verwenden. Die so entstandenen Reihen wollen wir mit M

und B bezeichnen. Aus der formelmässigen Darstellung ist leicht
ersichtlich, dass beim klassischen Mass das Verhältnis der Glättewerte
zweier Reihen invariant ist gegenüber linearen Transformationen in
der y-Richtung. Deshalb folgt aus den Resultaten der Tabelle 6, dass

auch für das neue Mass M glätter ist als ß. Die Aussage B ist glätter
als .1 ist durch die lineare Transformation in der y-Richtung mit dem
Faktor 10"® umgekehrt worden.

Dieses Resultat mag auf den ersten Blick befremdend wirken, da

wir vom klassischen Glättemass her gewohnt sind, dass das Verhältnis
der Glättewerte zweier Reihen invariant ist gegenüber solchen Trans-
formationen. Bei nichtlinearen Transformationen ist uns ein derartiges
Verhalten jedoch nicht mehr fremd. Das folgende Beispiel mag dies

verdeutlichen.
Wir gehen aus von zwei Reihen ü und F. Die Punkte von (7

liegen auf einem Kreis, und der Abstand zwischen zwei aufeinander-
folgenden Punkten ist überall gleich. Diese Reihe ist ideal glatt und
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besitzt den Glättewert 0. Die Punkte der Reihe F sollen nicht stark
von den entsprechenden der Reihe Ü abweichen; jedoch sollen sie auf
einer Exponentialkurve der Form y a'* + c liegen. Sie sollen weiter
so gewählt werden, dass der Glättewert von F nicht 0 wird. Trans-
formieren wir die y-Komponenten beider Reihen nach der Formel

y In (y —c) und bezeichnen wir die neuen Reihen mit 1/ und F, so

folgt, dass F geradlinig ist und den Glättewert 0 besitzt. Im allgemeinen
wird das Glättemass für 17 von 0 verschieden sein, so dass sich durch
diese Transformation die Aussage «1/ ist glätter als F» umkehrt.

Was wir bei diesem Beispiel als selbstverständlich empfinden,
dass nämlich die Reihen [7 und 17 bzw. F und F verschieden sind und
sich auch bezüglich der Glätte verschieden verhalten, gilt aber auch
für die Reihen A und .4 bzw. IS und IS im vorigen Beispiel.

Nach den bisherigen Ausführungen könnte man zur Ansicht ge-
langen, dass die Glätte auf Transformationen so empfindlich reagiert,
dass es sich im praktischen Falle überhaupt nicht mehr lohnt, eine
Reihe auf ihre Glätte hin zu untersuchen. Dies gilt vor allem dann,
wenn man mit gutem Gewissen über die Wahl der Ersatzreihe inner-
halb gewisser Grenzen geteilter Meinung sein kann. Wir müssen jedoch
bedenken, dass die gezeigten Beispiele gesucht waren, um auf die

Schwierigkeiten aufmerksam zu machen, und dass in dem erwähnten

engen Rahmen die Glätte ihre Struktur nicht vollkommen ändern
kann.

Das Problem der richtigen Übertragung von der abstrakten Be-

ziehung der Wertfolgen zueinander auf das konkrete Bild der Ersatz-
reihe gehört bis zu einem gewissen Grad in die Spezialdisziplin, aus
welcher diese Werte stammen. So müssen dabei in erster Linie die

Erfahrung und die Kontinuität der Betrachtungsweise berücksichtigt
werden. Erst nachher gelangen allgemeine Regeln und Überlegungen
der folgenden Art zur Anwendung, die aber nur als Ergänzungen und
Präzisierungen gedacht sind.

Es ist zu beachten, dass die wesentlichen Merkmale nicht durch
Über- oder Untertreibung verfälscht werden. Der Trend der Reihe
soll deutlich sichtbar sein. Die Abstände zwischen den einzelnen
Punkten dürfen ein Vielfaches der Einheit nicht übersteigen. Dazu
ist allerdings zu bemerken, dass der Sache mehr gedient ist, wenn wir
zwischen weit auseinanderliegenden Punkten weitere einfügen können,
als wenn wir durch eine Transformation diese Abstände verkleinern.
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Trotz all dieser Überlegungen bleibt in vielen Fällen doch noch
ein Spielraum für die Wahl der Ersatzreihe offen, und von dieser

Wahl hängen dann, wenn auch nur in bescheidenem Rahmen, die

Glätteeigenschaften der Reihe ab.

8.2. 7)re r/Zoüde Glätte einer Reibe

Mit den bislang in den Abschnitten 6.1. und 6.8. zur Verfügung
gestellten Mitteln sind wir in der Lage, das lokale Verhalten der Glätte
einer Reihe eindeutig zu messen. Obwohl bei jeder ernsthaften Be-

urteilung die lokale Betrachtungsweise ausschlaggebend sein wird, ist
es schon der Übersicht wegen wünschenswert, mit wenigen Zahlen ein

einigermassen schlüssiges Bild von der globalen Glätte einer Reihe zu
erhalten. Wir müssen dabei allerdings bedenken, dass in den meisten
Reihen die lokalen Glättewerte nicht zufällig um einen Mittelwert
schwanken, sondern dass sie einem mehr oder weniger deutlich sieht-
baren Trend folgen. Deshalb hat das globale Mass, wie es in den For-
mein (17), (33) und (55) angegeben ist, für lange Reihen nur dann
einen Sinn, wenn wir diese Reihen in kürzere Teilstücke aufgliedern,
wodurch der Einfluss des Trends abgeschwächt wird. Das gleiche gilt
auch für das in (18) definierte durchschnittliche Glättemass.

Auf eine weitere Art der globalen Betrachtungsweise wollen wir
im folgenden hinweisen. Vergleichen wir die Glätte zweier Reihen mit-
einander, so wird unter anderem auch die Frage auftauchen: «Wie oft
ist die eine Reihe glätter als die andere?» oder präziser ausgedrückt:
«Wieviele Male ist der lokale Glättewert der einen Reihe kleiner als

der entsprechende der andern?». Je nachdem wie diese Zahl ausfällt,
kann die ehre Reihe, wenigstens von diesem Standpunkt aus, als die

glättere bezeichnet werden. Etwas komplizierter wird das Verfahren,
wenn wir mehr als zwei Reihen miteinander zu beurteilen haben. Wir
können nicht je zwei Reihen in der beschriebenen Art miteinander
vergleichen und am Schluss eine Rangliste daraus ermitteln, da für
die Beziehung «global glätter als» bei der hier betrachteten globalen
Glättedefinition die Transitivitätseigenschaft nicht gilt. Aus «M global
glätter als B» und «B global glätter als C» folgt nicht unbedingt
«M global glätter als C». Denn es lassen sich ohne Schwierigkeiten
drei Reihen M, B und C so konstruieren, dass zwar M an der Mehrzahl

von lokalen Stellen glätter ist als B und auch B sich als «global glätter»
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als C erweist, dass aber die lokalen Glättewerte von M in der Mehrzahl
der Fälle grösser sind als die entsprechenden Werte von C, d.h. dass

also C «global glätter» als M ist. In einem solchen Falle müssen wir
uns auf die folgende Art hehelfen. Wir vergleichen die sich entsprechen-
den lokalen Glättewerte miteinander und ordnen jeder dieser Grössen

eine Zahl zwischen 1 und W (N Anzahl der zu vergleichenden
.Reihen) zu, wobei diese Zahl dem Rang entspricht, den dieser Glätte-
wert im Vergleich zu den entsprechenden der übrigen Reihen ein-
nimmt. Sind zwei Glättewerte gleich gross, so nehmen sie auch den

gleichen Rang ein, wodurch aber der nachfolgende Rang als bereits
besetzt betrachtet wird. Die Summe all dieser Rangzahlen pro Reihe,
die sogenannte Platzziffer, gibt über das Verhältnis der globalen
Glätten der einzelnen Reihen zueinander Auskunft. In der endgültigen
Rangliste figuriert die glätteste Reihe mit der kleinsten Platzziffer an
erster Stelle; an zweiter Stelle steht die Reihe mit der zweitkleinsten
Platzziffer usw. Diese Rangliste zusammen mit den Platzziffern geben
doch schon ein annehmbares Bild vom Verhältnis der Glätten der ein-
zelnen Reihen zueinander. Allerdings wird dabei die absolute Grösse

der lokalen Glätte nicht berücksichtigt.
Es Hessen sich sicher weitere Vorschläge für die globale Beurtei-

lung der Glätte hier anführen, doch wird es kaum möglich sein, ein
über alle Zweifel erhabenes Kriterium zu finden, das den vielfältigen
Gesichtspunkten bei der globalen Glättebeurteilung Rechnung trägt.
Deshalb müssen wir versuchen, mit Hilfe der lokalen sowie der ge-
nannten globalen Betrachtungsweise ein Bild von der Glätte einer
Reihe zu erhalten.
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B: Die Ausgleichung von rohen Daten mit Hilfe des DGY

(Differenzengleichungsverfahren)

9. Das Prinzip der Ausgleichung

9.1. Das a%eraeme Di//eren2engZeic/twng'suer/a7zren fDGFJ

Whittaker and Robinson [3] und Henderson [2] haben ein DGY
(Differenzengleichungsverfahren) zur Ausgleichung von rohen Daten
beschrieben, das sich besonders gut eignet, uns die Wirksamkeit und
Eigenschaften des neuen Glättemasses nochmals vor Augen zu führen.
Für dieses Verfahren ist es nützlich, die folgenden Bezeichnungen ein-

zuführen.
Die Punkte der vorgegebenen unausgeglichenen Reihe besitzen die

Koordinaten
(r, «/J, a; a, a + 1, ...,j8; a, /3 ganz ; a + 3 5S

Die Koordinaten der gesuchten Punkte der ausgeglichenen Reihe
bezeichnen wir mit (agyj.

Die ^-Komponente bleibt bei der Ausgleichung unverändert; es

wird nur in der (/-Richtung ausgeglichen.
Mit bezeichnen wir den Glättewert des neuen Masses der

ausgeglichenen Reihe zwischen r und 1+ 3, während die analoge

Bedeutung für das klassische Mass hat.
Das Prinzip des DGY lässt sich auf die folgende einfache Art

erklären. Die ausgeglichenen Werte ^ sollen so gewählt werden, dass

sie einerseits möglichst wenig von den rohen Beobachtungen ^ ab-
weichen und dass anderseits die ausgeglichene Reihe einen möglichst
glatten Verlauf besitzt.

Die Grösse V (^— ^)2 (57)
x=a

wird als Mass für die Abweichungen von den rohen Werten verwendet,
während der glatte AVrlauf der Reihe mit Hilfe des globalen Glättemasses

ß—3

2*(&) (58)
x=a

gemessen wird.
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Die einzelnen Summanden der beiden Ausdrücke (57) und (58)

wollen wir mit den Gewichten K(,t) bzw. G(r) versehen. Die y,. sollen

nun so gewählt werden, dass die Summe der beiden mit diesen Ge-

wichten versehenen Summanden ein Minimum wird.

/3 0-3

v E(z) (&- yj» + 2 G(x) s(yj Min. (59)
2=a x=a

In den zu Beginn dieses Abschnitts erwähnten Arbeiten über das

DGV wird selbstverständlich anstelle des neuen Masses z(yj das klas-
sische (Zl®yJ® verwendet.

Um eine möglichst allgemeine und flexible Ausgangsbasis zur Ver-

fügung zu haben, haben wir alle Glieder von (59) mit einem Gewicht ver-
sehen. Die Gewichte ü(a;) betrachten wir als eine Art «Vertrauens-
koeffizient» gegenüber den rohen Werten. Unter normalen Umständen
hat I?(a;) den konstanten Wert 1. Nur dann soll 2?(a;) kleiner als 1 und

von a" abhängig sein, wenn wir die Gewissheit oder zumindest einen

an Gewissheit grenzenden Hinweis dafür besitzen, dass einige der

rohen Werte im Vergleich zu den übrigen weniger vertrauenswürdig
sind; sei es, dass durch irgendwelche Umstände die Messung in diesen

Fällen nicht genau durchgeführt werden konnte oder dass die Werte
durch eine einmalig auftretende Erscheinung verfälscht wurden.
Ebenso kann mit Hilfe dieser Gewichte die unterschiedliche Genauig-
keit der Beobachtungen berücksichtigt werden.

Um die Funktion der Gewichte G(r) besser zu verstehen, denken
wir uns G(r) zusammengesetzt aus den beiden Faktoren fc und /($),
wobei /; unabhängig von a; sein soll. Die erste Komponente fc regelt

ganz allgemein die Beziehung zwischen den sich widersprechenden
Forderungen «möglichst gute Glätte» und «möglichst gute Überein-

Stimmung mit den rohen Daten». Die Grösse von fc hängt entscheidend
davon ab, was für Ansprüche wir an die ausgeglichene Reihe stellen,
welcher der beiden Forderungen wir den Vorrang geben. Die zweite

Komponente /(#) ist vor allem für diejenigen Fälle gedacht, in welchen
der Wunsch nach einer nur teilweise besseren oder schlechteren Glät-

tung der Reihe auftaucht. So kann beispielsweise bei der Ausgleichung
von rohen einjährigen Sterbewahrscheinlichkeiten aus technischen
Gründen ein monotones Wachsen der ausgeglichenen Werte wün-
sehenswert erscheinen, obwohl die rohen Werte ein lokales Minimum
beim Alter 30 vermuten lassen. Durch eine geeignete Wahl der /(.r)
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im Bereich 30 können wir diesen monotonen Anstieg erzwingen. Es

kann auch möglich sein, dass sich die Reihe in ihrem Verlauf derart
stark verändert, dass ein von ic abhängiges G nötig ist. Einem solchen
Falle werden wir im Abschnitt 12.3. begegnen.

Die Vorteile des DGV gegenüber andern nichtanalytischen Me-

thoden liegen, abgesehen von der durch die Gewichtung der einzelnen
Summanden erzielte erhöhte Anpassungsfähigkeit, vor allem darin,
dass mit ein und derselben Methode alle verfügbaren rohen Werte,
auch die Randwerte, ausgeglichen werden können.

9.2. Die flieorefiscTie Löswwy der Mmimaï&edmgfwwy

Die Werte y^. (x oc, a+1, welche die Minimalbedingung
(59) erfüllen, müssen Lösungen des folgenden Gleichungssystems (60)
sein. Wir setzen in (59) die partiellen Ableitungen nach den y^ gleich
null und erhalten somit:

2D(Ü < +G(:X-1) + G(x 2)
'V'/,. 'V., W',:

.j/^(y.^3)+ G(.r 3) - 0, (60)

wobei alle Glieder wegfallen, die G(a—3), G(a—2), G(a—1), G(/S—2),
G(j8—1) und G(/S) als Faktoren enthalten.

Um überhaupt das System (60) aufstellen zu können, müssen die

Funktionen 2(yJ differenzierbar sein nach allen vier Variablen y_,.,

J/i+i» i/x+2 und y^. Diese Voraussetzung ist bei den Formeln, die
wir in 6.1. für die Berechnung von 2 aufgestellt haben, nicht allgemein
erfüllt, da dort das Vorzeichen der Krümmung separat bestimmt
werden muss. Es ist allerdings zu bedenken, dass bei der Herleitung
jener Formeln speziell darauf geachtet wurde, dass sie möglichst ein-
fach für die Berechnung sind, und dass wir weitere Formeln finden
können, in welchen das Vorzeichen für die Krümmung mitenthalten
ist. Wir dürfen also annehmen, dass 2 differenzierbar ist und wir das

System (60) bilden können.
Im allgemeinen ist (60) nicht linear in den y^., und wir werden

kaum durch rein theoretische Überlegungen einen Lösungsvektor finden
können. Ebenso müssen wir in Betracht ziehen, dass (60) bzw. (59)
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unter Umständen mehr als eine Lösung besitzen. Wir werden deshalb
im nächsten Abschnitt versuchen, mit Hilfe numerischer Methoden
einen Weg zu den ausgeglichenen Daten zu finden.

Unter der Annahme, dass die Bedingung (54) erfüllt ist, dürfen
wir anstelle von 2 das klassische Mass verwenden; die Gleichungen
(60) gehen in das lineare System (61) über.

£(•*) 2/i —^®Î/z+ 3G(z—1) ZDy^ — 3G(z —2) Züy^
+ G(z—3) zU//,_3 - U(a-) &. 0. (61)

Auch im System (61) fallen wieder alle Glieder weg, die G(a— 3),

G(a— 2), G(a—1), G(/3 — 2), G(/J— 1) und G(/8) als Faktoren enthalten.
Die einzige Lösung von (61) kann mit Hilfe des Gaussschen

Algorithmus' oder anderer Verfahren zur Lösung linearer Gleichungs-
système gefunden werden.

Die Gleichungen (60) und (61) erlauben es uns, das DG Y auf eine
besondere Art mit anderen Ausgleichsverfahren zu vergleichen. Setzen
wir die Werte y^., die mittels irgendeiner Ausgleichsmethode gewonnen
wurden, in diese Gleichungen ein, so erhebt sich die Frage nach den-

jenigen G(.r), die (60) bzw. (61) zu null machen. Dabei ist allerdings
zu beachten, dass die Anzahl der gesuchten G-Werte kleiner ist als die
Anzahl der Gleichungen. Diese Komplikation lässt sich dadurch mei-

stern, dass entweder durch Hinzufügen neuer Randwerte y^. die Zahl
der Unbekannten G(a:) künstlich erhöht wird oder dass die G(x) so

gewählt werden, dass die Residuen der einzelnen Gleichungen mög-
liehst klein werden. Setzen wir die linke Seite von (60) bzw-, (61) nicht
gleich 0, sondern gleich r„, so bedeutet das Residuum dieser Glei-

chung. Beim Gaussschen Ausgleichsprinzip werden die G(x) so gewählt,
dass die Summe ^

WX 1 x
x=a

minimal wird. Es liesse sich auch in diesem Zusammenhang prüfen,
ob nicht mit Hilfe des DGV innerhalb gewisser vernünftiger Grenzen

jede beliebige ausgeglichene Reihe durch Variation der Gewichte ge-
funden werden könnte. Vielleicht würden dadurch ergänzende Er-
kenntnisse über die Wirksamkeit und die Unterschiede der einzelnen

Ausgleichsverfahren gewonnen werden. Wir wollen aber auf weitere
Überlegungen, die in diese Richtung führen, verzichten, da eine der-

artige Untersuchung über den Rahmen dieser Arbeit hinausginge.
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10. Numerische Methoden zur Lösung der Minimalbedingung

10.1. Ein yewrisc/dcs Fer/uftren fGEM-Fcr/a/ire»^

Für die Besprechung der numerischen Methoden, welche die Mini-
malbedingung (59) bzw. das Gleichungssystem (60) lösen, ist es nützlich,
die folgenden Bezeichnungen und Begelungen einzuführen.

Bei einspaltigen bzw. einreihigen Matrizen sollen die überstrichenen
Grössen immer die Spaltenmatrizen bedeuten,

y,y'*' sind Punkte im «-dimensionalen Baum mit den Koordinaten
(j/i, 3/2, •, y„) bzw. (î/W, yW y«).

/(y) ist eine Funktion der n Variablen y^, yj, • • •. Oie mindestens
dreimal total differenzierbar ist. Gesucht ist derjenige Punkt Y
mit den Koordinaten (Yj, Y,, Y„), für welchen /(y) minimal
wird.

y(y) bedeutet den Gradientenvektor der Funktion / im Punkt y.
Die einzelnen Komponenten haben die Form

o/(y)
'

(i l,2,....n).
Oy»

^

ri ist, eine « • « Matrix, deren Elemente ocj„, die Bedeutung

»„
1 - /;,(!/*)

0y;0y,„
haben, rij ist symmetrisch und in der Nähe von Y positiv
définit, ri bedeutet die Matrix ri<, wenn y'*' Y ist.

Das Vorgehen zur Lösung der Minimalbedingung (59) und des

Gleichungssystems (60), welche sich nun in der allgemeinen Form

/(y) Min (62)

bzw. y(y) 0 (Nullvektor) (63)

darstellen lassen, wollen wir in zwei Teile zerlegen. Ausgehend von
einem gegebenen Anfangspunkt y® wird uns im ersten Teil das Ver-
fahren von Fletcher and Beeves [10] schrittweise in die Nähe der

Lösung Y führen. Sobald wir nicht mehr weit von dieser entfernt sind,
können wir zum zweiten Teil übergehen, in welchem das Lineari-
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sierungsverfahren sehr schnell den Lösungsvektor Y findet. Der erste
Teil ist deshalb notwendig, weil das Linearisierungsverfahren nur in
der Nähe von Y konvergiert.

Das Fer/aferen vowFfefc/ier and Heeres [10]

Fletcher and Reeves haben in ihrer Veröffentlichung [10] das

Verfahren eingehend dargestellt und besprochen, so dass wir uns
darauf beschränken können, das Vorgehen kurz zu beschreiben und
auf kleine Änderungen, die für unsere Zwecke nützlich sind, hinzu-
weisen.

I: Wir berechnen den Gradientenvektor r/p an der Stelle dein

Ausgangspunkt des Verfahrens.

II: Po "I/o-

III : Auf der Geraden i/(i) i/*' + ip; bestimmen wir durch eine noch
näher zu beschreibende Methode denjenigen Punkt für
welchen /(j/(t)) minimal ist.

IAA Nacheinander berechnen wir die Grössen

Sfi+i > Pi+i —0.-+1 + 0Pi- (64)

V: Ausgehend von den Werten i/'+b und p^ wiederholen wir den
Prozess von III an sooft, bis die gewünschte Genauigkeit erzielt
ist.

Die Vektoren Po, Pi, ••• sind M-konjugiert (Ä - orthogonal) ; es

gilt also :

Pi M p,„ 0 für 1 W w.

Der Beweis dieser Behauptung ist in der Arbeit von Fletcher and
Reeves [10] und in einem Artikel von Beckmann in [8] angegeben.

Ist /(y) eine quadratische Funktion, so führt dieses Verfahren,
abgesehen von Rundungsfehlern, in höchstens n Schritten von irgend-
einem Ausgangspunkt zum Minimum. Der Ausgangspunkt ist für die

Lösung dann massgebend, wenn / nicht quadratisch ist. Das Ver-
fahren ist nämlich so gebaut, dass Y im gleichen «Tal» liegt wie der

Ausgangspunkt î/°k
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Die Erfahrungen von Fletcher and Reeves haben gezeigt, dass die
Methode schneller konvergiert, wenn nach jeweilen w +1 Schritten nicht
die Richtung p,- —jq + /3p,_i, sondern p; —y,-, also die Richtung
des steilsten Abfalls, gewählt wird.

Zur Bestimmung des Punktes y<' + i) auf der Geraden j/(t) y'"' + fp,
machen wir die folgende Überlegung.

Sei ,r(i) /(y'*' + tp;), so müssen wir dasjenige f,. suchen, für
welches

da-(i) —
Pi^(y(0) o

ist. Auf der Geraden y(f) kennen wir bereits die beiden Werte

z(0) /(?/>) und P(0)=p;j/..
Enter der Annahme, dass est (Abkürzung für estimate) eine

Schätzung von /(y(<)) und /(»/) eine quadratische Funktion von y ist,
lässt sich leicht ein Näherungswert k für f, finden.O l

(65)
Piî/i

Da die in dieser Arbeit betrachtete Funktion (59) immer grösser
als 0 ist, haben wir für die Schätzung est stets den Wert 0 angenom-
men. Da aber diese Schätzung weder genügend genau noch /(y) im
allgemeinen quadratisch ist, kann k viel zu gross ausfallen. Deshalb

schlagen Fletcher and Reeves [10] eine obere Grenze für k vor

'S (??)--•

Ist Min (/(y)) grösser als 0, wie das bei der Funktion (59) der Fall
ist, so folgt:

k Min (p'j)--, (66)
V 2b' Sk

'

Es kann nun vor allem zu Beginn des Verfahrens vorkommen,
dass das effektive Minimum von /(y(f)) ausserhalb des Intervalls
[0,k] liegt. In einem solchen Falle berechnen wir x(i) und m'(<) für
die nachstehenden "Werte von f:

0, k, 2k, 4k, 12k, 48k, 240k, 1200k, a, fe. (67)

k ist der erste Wert in dieser Reihe, für welchen ,r'(f) nicht negativ
ist oder ,x(f) nicht abgenommen hat.
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Die Reihe (67) ist so konstruiert, dass sich der Abstand von 0

zuerst zweimal verdoppelt, dann verdreifacht, vervierfacht und dann
immer verfünffacht. Wir haben die Schrittlängen grösser gewählt als

Fletcher and Reeves, um in möglichst wenig Schritten die Grössen a

und & zu finden. Der Wert £,• liegt somit zwischen a und fr.

Ausgehend von den bekannten Grössen x(«), x'(o), u'(fr), x'(fr)
verwenden Fletcher and Reeves eine kubische Interpolationsmethode,
welche zum Näherungswert f* führt.

,* ; / s'(fc) + w — 3 \'* • &
'TN T~ä ^ —a) '

\ x (o) — x (a) -f 2 10 /

#(a)— x(fc)
- " — + œ'(a) + a:'(fr), (68)

fr — a

?c (s*— x'(a) x'(fr))"-

Ist weder ,r(a) noch x(fr) kleiner als a;(£*), so begnügen wir uns
mit der Näherung t; f*. Andernfalls wiederholen wir den letzten
Schritt (68) für das Intervall (a,£*) bzw. (<*,fr), je nachdem x'(£*)
positiv oder negativ ist.

Das Ltneamie'rawpsrer/afrren

Dieses Verfahren, welches sich letzten Endes auf die Newtonsche
Methode zur Lösung nichtlinearer Gleichungen bei mehreren Unbekann-
ten stützt (siehe Stiefel [9] p.Sl und Whittaker and Robinson [3] p.90),
lässt sich auf einfache Weise erklären.

Wir entwickeln die Funktion /(y) nach Taylor im Punkte

/(y) /(*/>) + (y- </) y* +1 (y- /') ^ < (y-*/>) (69)

+ Glieder höherer Ordnung.

In der Nähe von Y ist positiv définit. Vernachlässigen wir
die Glieder höherer Ordnung, so erhalten wir aus der Bedingung,
dass /(y) minimal werden soll, das lineare System

(y— y^) + <7; Ö (Nullvektor). (70)

Mit Hilfe des Linearisierungsprozesses haben wir das nichtlineare
System (63) durch das lineare System (70) angenähert. (70) können
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wir mit Hilfe des Gaussschen Algorithmus' lösen. Den Lösungsvektor
y<'+" verwenden wir als Ausgangsgrösse für ein neues System in der

Art (70) usw. Dieser Prozess wird solange wiederholt, bis

i Max tT»-^ fc 1, 2, n) Y H (71)

ist. iR hat dabei die Bedeutung einer Genauigkeitslimite. Ist nämlich
î/0+h nahe genug bei Y, so gilt mit genügender Genauigkeit :

/(Y) /(y<«'^>) + (Y-y(^>) ^ + L (y- -•>) H, (Y- ?/'+'>).

Pur quadratische Funktionen führt aber das Linearisierungs-
verfahren abgesehen von Rundungsfehlern in einem einzigen Schritt
zum Minimum. Also gilt, \venn B genügend klein gewählt ist, von
einem gewissen i an:

Max (j y^>-Y,|, fc 1, 2, «) ^ ^ B.

Gegenüber der Methode von Fletcher and Reeves hat das Lineari-
sierungsverfahren den Vorteil, dass es sehr schnell konvergiert. Aller-
dings ist dabei zu beachten, dass für jeden Schritt die Matrix .4,
berechnet werden muss, was natürlich eine wesentliche Mehrarbeit
erfordert.

Es erhebt sich nun die Frage: «Wann wollen wir von der Methode

von Fletcher and Reeves zum Linearisierungsverfahren hinüber-
wechseln »

Sobald die Schrittlänge beim Verfahren von Fletcher and Reeves

klein wird, also sobald

Max (| y£+«- y)l'> j, fc 1, 2, n) ^ T (72)

ist, wollen wir mit der letzten Näherung yh+h zum Linearisierungs-
verfahren übergehen. Die Grenze 2' muss aus den praktischen Erfah-

rungen bestimmt werden. Selbstverständlich ist das Kriterium (72)
nicht immer dafür massgebend, dass yö+i) sieh in der Nähe von Y
befindet und somit das Linearisierungsverfahren konvergiert. Wir
müssen deshalb die Möglichkeit haben, bei Divergenz wieder zur
Methode von Fletcher and Reeves mit verkleinertem T zurückzu-
kehren. Die Steuerung des Rechenablaufs mittels (72) hat sich bei
den Beispielen, die wir durchgeführt haben, als vernünftig erwiesen.
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Setzen wir wieder

r,- Max #-//£-" fc 1, 2, «.),

so konvergiert das Linearisierungsverfahren sicher dann, wenn die

Folge der r,- für fortschreitendes i schneller gegen 0 strebt als eine

geometrische Folge; also Konvergenz ist dann gegeben, wenn

/•; < c»S", c konst., 0 < >S' < 1 ist. (73)

Wir müssen nun aber bedenken, dass die Werte yjh mit gewissen

Eundungsfelilern behaftet sind. Sobald die Grössenordnung von in
die Nähe der Eechengenauigkeit der yj?) kommt, ist eine weitere Kon-

vergenz in Frage gestellt. Also ist auch das Konvergenzkriterium (73)

nur sinnvoll, solange ?•; gross ist gegenüber der Eechengenauigkeit der yjh.

Wir haben bereits erwähnt (siehe (71)), dass das Linearisierungs-
verfahren abgebrochen wird, sobald r,; E ist. Wählen wir die
Grenze E gross genug gegenüber der Eechengenauigkeit der y£', so

können wir ohne Schwierigkeiten das Kriterium (73) verwenden. In
etwas anderer Form geschrieben, besagt es:

Das Verfahren konvergiert dann, wenn

-WS, 'S '<1 (74)
G G

ist. Sind diese Bedingungen nicht erfüllt, so nehmen wir an, dass das

Verfahren divergiert.
Am Ende des LinearisierungsVerfahrens müssen wir prüfen, ob

nun auch wirklich ein Minimum von / erreicht ist. Es ist durchaus

möglich, dass dieses Verfahren zu einem Maximum von / führt. Durch
das folgende einfache Kriterium wird diese Frage in befriedigender Weise

geprüft. Ist nach dem regulären Ablauf des Linearisierungsverfahrens

/(/»-") > /(y<'">)

oder wenn y<"'~'> yd") ist,

/(y<"" + d) >/(y"»>), (0<d<l),
so nehmen wir an, dass wir ein Minimum erreicht haben. Bei den

Berechnungen, die wir durchgeführt haben, haben wir für <5 den Wert
von E (siehe (71)) verwendet.
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10.2. Das f/esfewerfe LineamientrM/srer/a/ircn

fGELI - Fer/a/wenj

Der Nachteil des GEM-Verfahrens liegt, wie die praktischen Be-

rechnungen gezeigt haben, vor allem darin, dass der erste Teil, das

Verfahren von Fletcher and Reeves, nur in kleinen Schritten der

Lösung Y zustrebt. Ist der Ausgangspunkt weit von Y entfernt, so

braucht es viele Schritte, um in die Nähe von Y zu gelangen und
somit das Linearisierungsverfahren anwenden zu können. Wir haben
deshalb versucht, eine Methode zu entwickeln, die in wenigen Schritten
in die Nähe von Y führt. Wir müssen dabei allerdings voraussetzen,
dass /(»/) im ganzen n-dimensionalen Bereich nach unten beschränkt
ist. Diese Bedingung ist bei der Funktion (59) erfüllt, da sie immer
positiv ist.

Bei dieser neuen Methode wollen wir vom ersten bis zum letzten
Schritt das Linearisierungsverfahren ohne Konvergenzkriterium (74)
verwenden. Gleichzeitig soll aber immer die Bedingung

/(*/<») > /(?/>) > > /(•/">) =* /(Y) (75)

erfüllt sein. Nun wird aber das Linearisierungsverfahren teilweise
Werte r/'' liefern, die nicht in die Reihe (75) passen. Sei beispielsweise

/(^) > /(/>),

so werden wir anstelle von y<' + b einen abgeänderten Wert suchen,
der die Bedingung

erfüllt. Dieser korrigierte Wert ist Ausgangspunkt für einen weiteren
Schritt im Linearisierungsverfahren.

Die Art der Korrektur hängt davon ab, was für Gründe für den
«schlechten» Wert verantwortlich sind.

I.Fall:

Befindet sich i/'> in der Nähe eines lokalen Maximums, so führt
das Linearisierungsverfahren in die falsche Richtung.

Korrektur :

yb+d y«_^(yb+U_yW), (fcj > 0). (76)
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2. Fall:

Wohl sind auf der Strecke zwischen «/<" und //' "*' alle Funktions-
werte in der Nähe von 7/'' kleiner als ; die Linearisierung ist aber

so ungenau, dass t/* über das eigentliche Ziel weit hinausgegangen ist.

Korrektur :

j,(0 + 7^(2/^+1)—?/')), (0 < fcg < 1). (77)

Die Konstanten fcj und fcg in (76) und (77) sind innerhalb der

angegebenen Grenzen beliebig wählbar. Bei den Berechnungen, die wir
durchgeführt haben, haben wir Äy A'j 0.25 gesetzt. Erfüllt der

abgeänderte Wert ?/' die Bedingung

/(j,(.-+l>) < /(y(0) (78)

nicht, so wiederholen wir die Korrektur solange, bis (78) gilt.

Um zu prüfen, welcher der beiden oben beschriebenen Fälle für
das «schlechte» y^'+O verantwortlich ist, untersuchen wir

/(/> + -?/>))-/(?/>), (79)

wobei (5 eine positive Grösse darstellt, die klein ist gegenüber 1.

Je nachdem (79) grösser oder kleiner 0 ist, handelt es sich um den

ersten bzw. den zweiten Fall.
1st, (79) gleich 0 (î/'+O ?/'>), so haben wir das ü zu gross gewählt

und müssen (79) mit einem kleineren ö neu berechnen. Die Formel (71)
soll wie früher anzeigen, wann das Verfahren abgebrochen wird.

Das GELI-Verfahren hat gegenüber der GEM-Methode den

Nachteil, dass das berechnete Y nicht mehr unbedingt im gleichen
«Tal» liegt wie der Ausgangspunkt. Deshalb haben wir auch die Vor-
aussetzung an den Anfang gestellt, dass /(y) nach unten beschränkt ist,
da sonst ein unerwünschtes Abgleiten möglich ist. Obwohl jeder
Schritt mehr Bechenaufwand erfordert als beim Verfahren von
Fletcher and Beeves, führt das GELI-Verfahren um ein vielfaches
schneller zum Ziel als die GEM-Methode. Unsere Erfahrungen er-
strecken sich natürlich ausschliesslich über Funktionen der Art (59) ;

die vorigen Aussagen haben demnach nur beschränkte Gültigkeit.
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11. Die Durchführung der Verfahren auf dem Computer IBM 1620

11.1. .Ergänzende Formed«

Da es uns vor allem um die Demonstration des neuen Glätte-
masses geht, haben wir darauf verzichtet, die von x abhängigen
Gewichte E(x) (siehe 9.1.) in den Berechnungen mitzuberücksichtigen.
Der Ausdruck (59) vereinfacht sich somit zu

(3 0-3
/(da. •••.%) S (da—diP + S Gfa) z(gj Min. (80)

a:=a rr=a

Ohne Mühe lassen sich die folgenden Formeln und Berechnungen
auf den allgemeineren Fall (59) sinngemäss übertragen.

Das Verfahren von Fletcher and Beeves verlangt, dass wir den

Gradientenvektor von / kennen. Wir müssen deshalb alle partiellen
Ableitungen von / berechnen können. Ziehen wir in Betracht, dass

z(t/J nur von den 4 Variablen J/,, J/x+i» J/*+2 and abhängt, so

folgt aus (80) :

r— «/*) + G(x—3) — G(x 2)
«tyx ^2/x

+ G(.-l)VM+fi(z)V?J, (81)
<5dx <5'dx

Diese Formel (81) ist nur streng gültig im Bereich a+ 3 <1 x ^ 3.

Sie gilt dann auch ausserhalb dieser Grenzen, wenn wir die Einschrän-
kung machen, dass alle Glieder wegfallen, die G(a—3),G(a—2),G(a—1),
G(/3—2), G(/5—1), G(/3) als Faktoren enthalten.

Bei der Berechnung der einzelnen partiellen Ableitungen von z

stützen wir uns auf die folgende Näherung:

&(&) %* + &, dx+l. î/x+2» J/.+8)—«(J/.. 2/x+l. î/x+2» î/x+s) ,q,x"T • («2)

Wählen wir fr genügend klein, so ergibt diese Näherung befrie-
digende Werte. Für die partiellen Ableitungen

Mdx) &(&) Mî/x)

^2/x+l ^l/x+2 ^dx+3

verwenden wir die zu (82) analogen Näherungsformeln.
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Ist der Wert von ä'(^+2&, f/^i, 2/®+ 2» .'/eis) bekannt, so lässt
sich zum Ausdruck (82) ein Korrekturglied m hinzufügen.

*(&+ 2/,+ t, 2/*+2> &, ?/x+l> î/,+ 2. -VC fä) + 2/»+l»2/* 2. A f 3)

Dieses Korrekturglied werden wir dann verwenden, wenn wir gleich-
zeitig auch die zweiten Ableitungen berechnen müssen, da in diesem
Falle die Kenntnis von 2(?/,. + 2h, î/x+n 2/x+2> A ,-3) unbedingt nötig ist.

Im Linearisierungsverfahren müssen wir für jede Näherung die
Matrix M -, welche aus den zweiten partiellen Ableitungen von / besteht,
berechnen. Die Glieder der r-ten Zeile von .4; sind:

(34)
W«/x-3 AA;%x-3

— G(r-3) + Gf.r—2)

^ rv m
<^(?A-3) <5MÎ/H)

r 3' - + G(o;—2)- Kli-1) —
^2/x^2/h <tyx<fyx-i ^l/x^l/x-i

^ rv m ^(f/x-s) .7 os ^Ml/x-a) <3Ms/x-i)
v

<^(2/x)
~7T"tv~ tr r—3) —- - + G(r-2 - - + G(r — 1) - —H Gm - +

- _ G(r —2) + G(r —1) — - + Gm
'A+l 'V-'.A". i

' <fyx<tyx+l A.'/V/,-
:

^ <5MA)
(Ar —1) - Gor)

'ÄS2 ^f/x^l/x+2 A'/,A".- 3

_ f*(2/*)

^3 *
A«.A". :.

Die restlichen Glieder der r-ten Zeile sind 0.

9,

Auch hier gilt wieder die Einschränkung, dass alle Glieder, welche
eines der Gewichte G(oc-3), G(oc-2), G(a-l), G(0-2), G(/?-l), G(/S)

enthalten, wegfallen.
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Die Berechnung der zweiten Ableitungen von 2 erfolgt nach der

Xäherung

:

~
(85)

2(yx+^.2/x+l+ ^.2/»+2.2/x43)-«(2/x+^.2/l+1.2/x+2.'2/«+3)-«(2/l'2/x+l+ ^.2/«+2.?/x+3) +2(2/x.2/x+1.2/x«.y

Die übrigen zweiten partiellen Ableitungen werden nach analogen
Formeln angenähert.

11.2. Die Programme fZer einzelnen Fer/a7tren

Der Computer, der uns im Rechenzentrum der Universität Basel

für unsere Arbeit zur Verfügung stand, ist aus den folgenden Ein-
lieiten zusammengesetzt :

Zentraleinheit IBM 1620 Data Processing System
(20 000 Speicherplätze)

Zusatzspeicher IBM 1628 Core Storage Unit
(40 000 Speicherplätze)

2 Plattenspeicher IBM 1311 Disk Storage Drive, Model 8

(2 x 2 000 000 Speicherplätze)

Kartenleser IBM 1622 Card Read-Punch Unit

Dieses System erlaubt es, grössere Programme in Teilprogramme
aufzugliedern und diese auf die Platten zu speichern, von wo sie jeder-
zeit in den Kernspeicher eingelesen werden können.

Ausführlichen Aufschluss über die einzelnen Arbeitsabläufe der

in 10. beschriebenen Verfahren gibt die ungekürzte Fassung, welche

im versicherungstechnischen Seminar der Universität Basel, in der

Universitätsbibliothek Basel, in der Schweizerischen Landesbiblio-
thek in Bern oder beim Verfasser eingesehen oder entliehen werden

kann.
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12. Die Ausgleichung der Sterbetafel SM 1939/44

12.1. Dnfersîtc/umf/ wfcer die Êi?idew%fceit der Löswny

Ist die Funktion /(y) nicht quadratisch, so existieren im all-
gemeinen mehrere Lösungen der Gleichung (62). Für den speziellen
Fall, dass /(y) die Gestalt (80) annimmt, stellt sich nun die Frage, ob

sich innerhalb eines genügend grossen Bereichs um die rohen Werte
herum mehr als eine Reihe als Lösung finden lassen. Wurzeln, die
ausserhalb dieses Bereichs liegen, interessieren uns nicht, da sie im
Sinne der Ausgleichung unvernünftig sind.

Für den Fall, dass die Bedingungen (54) erfüllt sind, besitzt die

Gleichung (80), wie wir in 9.2. gesehen haben, eine einzige Lösung.
Gelten jedoch diese Bedingungen nicht, so lässt sich wegen der Koni-
pliziertheit der Funktion /, welche nicht nur von den Variablen y^.,

sondern auch von den Parametern y^. und G(:r) abhängt, auf die ge-
stellte Frage wohl kaum eine mathematisch korrekte Antwort finden.

Erhalten wir jedoch bei den praktischen Berechnungen bei glei-
eben G-Werten zwei verschiedene Reihen als Lösungen von (80), so

ist diese Frage in befriedigender Weise beantwortet. Nun haben aber

unsere Berechnungen gezeigt, dass, obwohl wir von verschiedenen

Anfangsreihen ausgegangen sind, die Verfahren bei gleichen G-Werten
immer zur gleichen Lösung führen. Die Tabelle 10 gibt über die durch-

geführten Berechnungen Auskunft. Die Zahlen der Reihen beziehen

sich auf die Reihennumerierung in den Tabellen 11, 15, 19, 23 und 26.

Mit I haben wir die Reihe bezeichnet, deren Werte durch lineare

Interpolation zwischen 100 (jgo und 100 • hervorgegangen sind.
Die rohen Daten 100-^ haben wir als Reihe 13 in der Tabelle 28

festgehalten. Die Vermutung liegt nun nahe, dass nur eine vernünftige
Lösung von (80) existiert. Wir möchten an dieser Stelle jedoch deut-
lieh hervorheben, dass unsere Berechnungen dies keineswegs sicher-
stellen. Wir sind deshalb sofort bereit, diese Hypothese aufzugeben,
sobald eine zweite, im Sinne der Ausgleichung vernünftige Lösung
von (80) bei gleichen G-Werten gefunden wird.

Für jede einzelne Reihe sind in der Tabelle 10 die Anzahl der

benötigten Schritte sowie die ungefähre Berechnungszeit angegeben.
Diese Zahlen zeigen, dass das GELI-Verfahren der GEM-Methode

überlegen ist.
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Tabelle 10

GEM-Verfahren GELI -Verfahren
Aus- Anzahl Schritte

Reihe G-Wert gangs-
reihe

Fletcher
and

Reeves
Lin. Zeit

Anzahl
Schritte

Zeit

5 10 1 40 3 4 h 30 M 8 1 h 40 M
5 10 I 8 1 h 40 M
G 100 2 43 3 4 h 40 M 7 1 h 30 M
6 100 I 10 2 h
7 1000 3 54 3 G h G 1 h 20 M
7 1000 6 17 4 2 h 20 M
7 1000 8 37 3 4 h
7 1000 I 12 2 h 30 M
8 10000 7 5 5 1 h 30 H
8

8

10000
10000

4

I
7

9

1 li 30 M
1 h 50 M

9 10 5 22 4 3 h
10 100 G 5 4 1 h 10 M
11 1000 7 1 3 50 M
12 10000 8 1 3 50 M
18 10 14 und 5 9 3 7 h 3 2 h 30 M
19 100 15 und 6 11 3 8 h 5 4 h 20 M
20 1000 IG und 7 9 5 11 h 8 7 h 10 M

Für die Berechnung von 18, 19 und 20 haben die in der folgenden
Art aus zwei Reihen zusammengesetzten Wertefolgen als Ausgangs-
reihen gedient. Die erste in der Spalte «Ausgangsreihe» angegebene
Zahl bezieht sich auf die Alter 3-79, die zweite auf die Alter 80-100.

12.2. Die Husf/feic/mw# eiasc/i«! den .4 iter» 50 und 100

Wir haben im Abschnitt 6.3. bereits darauf hingewiesen, dass in
der Reihe der einjährigen Sterbewahrsclieinlichkeiten die Bedingun-

gen (54) erfüllt sind. Die Berechnungen haben auch gezeigt, dass die

Ausgleichung mit Hilfe des DGV unter Verwendung des klassischen
und des neuen Glättemasses die gleichen Werte liefert. Abgesehen von
einem Faktor 100 sind diese Resultate mit den Werten der Reihen 1,

2, 3, 4, 14, 15 und 16 in den Tabellen 11 und 23 identisch.
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Völlig andere Resultate erhalten wir jedoch, wenn wir anstelle
der rohen g^. die Reihe 100-g^. (Reihe 13, Tabelle 23) ausgleichen. Vor
allem in den hohen Altern sind die Bedingungen (54) nicht mehr
erfüllt. Die Ausgleichung der Reihe 13 zwischen den Altern 80 und 100

unter Verwendung des neuen Glättemasses haben die in der Tabelle 15

aufgeführten Reihen 5, 6, 7 und 8 ergeben. Bei den Reihen 9, 10, 11

und 12 der Tabelle 19 ist der Korrekturfaktor / (siehe (21) und (32))
mitberücksichtigt worden.

Um uns ein richtiges Bild von der Verschiedenartigkeit der aus-

geglichenen Daten machen zu können, haben wir die Reihen 1, 2, 3,

4, 5, 6, 7 und 8 in den Figuren 9 bis 12 graphisch dargestellt. Weiter
haben wir für jede Reihe die Glätte nach klassischer und neuer Me-

thode sowie die Abweichungen von den rohen Daten berechnet. Diese

Resultate sind in den Tabellen 12, 13, 14, 16, 17, 18, 20, 21 und 22

wiedergegeben.
Aus diesem umfangreichen Material können wir die folgenden

wichtigen Ergebnisse herauslesen:
1. Im Gegensatz zum üblichen Sterblichkeitsverlauf zeigen alle

mit dem DGV ausgeglichenen Reihen in den höchsten Altern ein von
unten konkaves Verhalten. Dies ist in den Reihen 1, 2, 5 und 9 derart
ausgeprägt, dass die Sterblichkeit am Ende der Reihe wieder abnimmt.
Der Grund für dieses «unvernünftige» Verhalten liegt darin, dass wir
bei der Ausgleichung nur Werte bis zum Alter 100 berücksichtigt
haben und dass 100 • g^o verhältnismässig klein ist.

2. Die Reihe 5 weist beim Alter 100 ein eigenartiges Verhalten
auf. Die ausgeglichene Sterblichkeit ist dort kleiner als der schon
kleine rohe Wert. Wir haben hier einen der in 5.2. erwähnten Fälle

vor uns, wo das Glättemass 2 einen zu kleinen Wert anzeigt. Sobald

wir den Korrekturfaktor / mitberücksichtigen (2^), wie das bei der
Reihe 9 geschehen ist, fällt der ausgeglichene Wert wesentlich höher
aus. Durch die nachfolgende kleine Tabelle, in welcher die Glätte-
werte des letzten Stücks der Reihe 5 mit und ohne Faktor / ange-
geben sind, wird dies verdeutlicht.

Alter Glättewert 2 Glättewert 2^

96- 99

97-100
9,61 • 10-2

5,97 10-2
7,76 10-2

5,48 10-1
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3. Mit Ausnahme der Reihen 5 und 9 sind die Unterschiede
zwischen den sich entsprechenden Werten der Tabellen 15 und 19

nicht wesentlich. Der Korrekturfaktor / hat auch hier im allgemeinen
keinen grossen Einfluss auf die Ausgleichung. Gleich wie im Ab-
schnitt 7 zeigt sich auch hier wieder, class die Korrektur / sich immer
weniger auf die Resultate auswirkt, je glätter die Reihe ist. Ist ein

einigermassen glatter Verlauf vorausgesetzt, so dürfen wir bei der

Ausgleichung mittels cles DGV auf / vollkommen verzichten.

4. Die Unterschiede zwischen dem Grundgedanken des klassischen
Masses, in welchem eine möglichst geringe Abweichung von einer
Parabel 2. Grades verlangt wird, und dem des neuen Masses, in dem
die Krümmungsänderung als möglichst klein gefordert wird, treten
im letzten Stück der Reihe 2 deutlich in Erscheinung. So weisen die
klassischen Glättewerte (Tabelle 13) mit wachsendem Alter eine

fallende, die neuen Werte (Tabelle 14) hingegen eine steigende Ten-
denz auf. Mit steigendem x nähert sich die Reihe immer mehr einem

parabolischen Verlauf; die Änderung der Krümmung dagegen wird
immer grösser. Aus dem gleichen Grund werden mit dem klassischen
Mass die beiden Reihen 2 und 8 in ihrem letzten Teilstück etwa gleich
bewertet, während die neuen Glättewerte für die zwei Reihen stark
verschieden sind, was uns beim Betrachten der beiden Figuren ver-
nünftig erscheint.

5. Mit Ausnahme der Reihe 5, die einen unregelmässigen Verlauf
hat, besitzt die Folge der lokalen Glättewerte jeder Reihe, gemessen
mit demjenigen Mass, das auch bei der Ausgleichung dieser Reihe
verwendet wurde, ein lokales Maximum im mittleren Bereich der
Reihe. Dieses Maximum befindet sich an der Stelle, wo der konvexe
Verlauf in den konkaven übergeht. Beim neuen Mass besitzen dort die

beiden zur Bestimmung des Glättewerts benötigten Krümmungen
unterschiedliche Vorzeichen, was zur Folge hat, dass nicht ihre Dif-
ferenz, sondern ihre Summe quadriert wird. Das gleiche lässt sich
auch für das klassische Mass sagen, nur dass dabei an die Stelle der

Krümmung die zweite Differenz tritt.
6. Bei der Beurteilung der globalen Glätte wollen wir uns auf das

im Abschnitt 8.2. erwähnte «Platzziffern-Kriterium» stützen. Nach
den Werten der Tabellen 13, 14, 17 und 18 ergeben sich die folgenden
Ranglisten :
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Klassisches Glättemass : Neues Glättemass:

Rang Reihe Platzziffer Rang Reihe Platzziffer

1. 4 23 1. 4 20

2. 3 43 2. 8 51

3. •2 63 3. 3 73

4. 8 77 4. 7 78

5. 7 80 5. 2 83

6. 1 98 6. 1 95

7. 6 112 7. 6 111

8. 5 144 8. 5 137

Während die beiden Ranglisten in den Extremwerten überein-
stimmen, ergeben sich dazwischen doch deutliche Unterschiede. So

fällt vor allem auf, dass die Reihen 2 und 8 bezüglich ihrer Ränge
und ihrer Platzziffern ganz verschieden bewertet werden. Wenn wir
die Bilder der 8 Reihen miteinander vergleichen, so erkennen wir,
dass sich die zweite Rangliste (neues Glättemass) wohl am ehesten

mit den Erwartungen deckt, die wir auf Grund unserer Vorstellung
von der Glätte haben. In den wesentlichen Punkten werden diese

beiden Ranglisten sowohl durch die globalen Glättewerte als auch

durch lokale Betrachtungen bestätigt.
7. Mit Ausnahme der Reihe 5 dürfen wir alle in den Figuren 9

bis 12 dargestellten Reihen als vernünftig bezeichnen. Je nachdem

was für Ansprüche wir bezüglich des Verlaufs der Glätte und der

Abweichungen von den rohen Daten an die ausgeglichene Reihe

stellen, werden wir der einen oder anderen Reihe den Vorzug geben.
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Tabelle 11

wïif iïi?/e r/es fcZassiscftem GiäWemasses

Alter
Reihe 1

G 10

Reihe 2
G 100

Reihe 3

G 1000
Reihe 4

G 10000

80 14.332 14.453 13.999 12.998

81 15.521 15.525 15.208 14.738

82 16.780 16.702 16.532 16.491

83 18.122 17.987 17.971 18.257

84 19.551 19.384 19.524 20.037

85 21.061 20.898 21.186 21.828

86 22.639 22.538 22.953 23.630

87 24.272 24.309 24.814 25.438

88 26.002 26.218 26.754 27.249

89 27.925 28.270 28.754 29.059

90 30.090 30.446 30.787 30.860

91 32.445 32.703 32.822 32.647

92 34.893 34.975 34.823 34.412

93 37.267 37.177 36.751 36.148

94 39.436 39.222 38.572 37.847

95 41.273 41.026 40.252 39.505

96 42.810 42.529 41.767 41.116

97 43.983 43.677 43.095 42.677

98 44.656 44.423 44.226 44.186

99 44.712 44.739 45.150 45.641

100 44.034 44.606 45.866 47.044
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Tabelle 12

JdwTO'ie/mwf/ew. tow dew ro7iew Dofcw

Abweichunsen
Alter

Reihe 1 Reihe 2 Reihe 3 Reihe 4

80 1.17- lO-i 2.38 • lO-i — 2.16 • lO-i — 1.22

81 — 3.02 • lO-i —2.98 • lO-i —6.15 • lO-i —1.09

82 1.36 • lO-i 5.80 • 10-2 —1.12 • lO-i — 1.53 • lO-i

83 9.50 • 10-2 —4.00 10-2 —5.60 • 10-2 2.30 • lO-i

84 2.80 • 10-2 —1.39 • lO-i 1.00 • 10-2 5.14 • lO-i

85 4.61 • lO-i 2.98 • lO-i 5.86 • lO-i 1.23

86 —5.36 • lO-i —6.37 • lO-i —2.22 • lO-i 4.55 • lO-i

87 — 1.02 —9.85 • lO-i —4.80 • lO-i 1.44 • lO-i

88 5.11 • lO-i 7.27 • lO-i 1.26 1.76

89 1.04 1.38 1.86 2.17

90 —7.38 • lO-i -3.82- lO-i —4.10 10-2 3.20 • 10-2

91 1.23 1.49 1.61 1.44

92 —1.29 — 1.21 —1.36 — 1.77

93 1.76 1.67 1.25 6.43 • lO-i

94 —4.00 —4.21 —4.86 —5.59

95 2.75 2.50 1.73 9.80 • lO-i

96 6.22 • lO-i 3.41 • lO-i —4.21 • lO-i —1.07

97 — 1.02 —1.32 —1.91 —2.32

98 1.32 1.09 8.93 • lO-i 8.53 • lO-i

99 —2.35 —2.32 —1.91 — 1.42

100 1.18 1.75 3.01 4.19

Quadratische Abweichungen

80-100 4.34-10 4.62-10 5.61 • 10 7.71 10

80- 90 3.55 4.21 6.13 1.25 • 10

91-100 3.99 • 10 4.20 10 4.99 • 10 6.46 • 10
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Tabelle 13 I£/assise/ie GZättetferfe

Alter Reihe 1 Reihe 2 Reihe 3 Reihe 4

80- 83 1.69 10-* 9.00 • 10-5 0.00 0.00
00 1—* 1 s 1.60 • 10-5 1.60 10-5 1.00 • 10-6 1.00 • 10-6
82- So 3.60 • 10-5 2.50 • 10-5 2.50 • 10-5 9.00 • 10-6
83- 86 1.69 • 10-* 8.10- 10-5 1.60 • 10-5 0.00
84- 87 1.69 • 10-* 2.50 • 10-5 1.21 • 10-* 2.50-10-5
85- 88 1.76 • 10-5 4.90 • 10-5 2.25 • 10-* 9.00 • 10-6
86- 89 9.22 • 10-5 2.50- 10-5 3.61 • 10-* 1.60 • 10-5
87- 90 2.40 • 10-5 3.61 • 10-* 7.29 10-* 6.40 • 10-5
88- 91 2.70 10-5 1.85 • 10-5 9.61 • 10"* 2.50 10-5
89- 92 9.41 • 10-5 4.36 • 10-5 1.30 • 10-5 6.40 • 10-5
90- 93 2.79 • 10-5 7.23 • 10-5 1.52 • 10-5 4.90 - 10-5
91- 94 1.72 • 10-5 7.57 10-5 1.16 • 10-5 6.40 10-5
92- 95 1.61 10-5 7.06 • 10-5 1.16 • 10-5 1.60 • 10-5
93- 96 1.02 • 10-5 3.60 • 10-5 5.76 • 10-* 3.60 10-5
94- 97 4.10 • 10-5 2.92 10-5 4.84 • 10-* 9.00 • 10-6
95- 9S 1.85 • 10-5 2.21 • 10-5 1.00 • 10-* 4.00 • 10-6
96- 99 1.37 • 10-5 7.84 • 10-* 1.00 10-* 4.00 • 10-6
97-100 1.37 • 10-5 3.61 10-* 1.00 • 10-6 4.00 • 10-6

80-100 1.38 • lO-i 3.85 • 10-5 8.83 • 10-5 3.99 • 10-*
80- 91 1.66 • 10-5 2.44-10-5 2.44 • 10-5 1.49- 10-*
89-100 1.22 • lO-i 3.61 • 10-5 6.39 • 10-5 2.50 • 10-*

Tabelle 14 Atewe Glätteteerte 2

Alter Reihe 1 Reihe 2 Reihe 3 Reihe 4

80- 83 1.15- 10-« 1.40 • 10-5 1.75 10-5 7.05 • lO-i»
81- 84 1.85 • 10-5 9.91 • 10-9 1.31 • 10-5 8.38 • 10-5
82- 85 9.11 • 10-« 7.19 • 10-6 1.23 10-5 1.42 • lO-i
83- S6 1.23 • 10-5 3.59 10-6 6.96-10-6 3.20 lO-i»
84- 87 7.S3 • 10-5 5.77 - 10-6 8.15 • 10-6 3.40 10-'
85- 88 2.33 • 10-5 3.71 • 10-6 6.77 10-6 1.18 • 10-'
86- 89 7.14 • 10-5 3.74 • 10-6 5.83 • 10-6 2.05 • 10-'
87- 90 6.80-10-' 1.16 • 10-5 7.13 • 10-6 8.29 • lO-i
88- 91 6.37 • 10-5 1.65 • 10-5 7.41 10-6 3.51 10-'
89- 92 5.36 • 10-5 2.16 • 10-5 9.91 10-6 9.65 10-'
90- 93 8.92 • 10-5 3.30 • 10-5 1.47 • 10-5 8.86 • lO-i
91- 94 8.59 10-5 5.47 10-5 1.89 • 10-5 1.38 10-6
92- 95 2.65 • lO-i 1.33 • 10-* 3.67 • 10-5 6.14 • 10-'
93- 96 1.05 • 10-* 3.32 • 10-* 5.56 • 10-5 1.40 • 10-6
94- 97 1.36 • 10-5 1.31 • 10-5 1.21 • 10-* 8.20 • lO-i
95- 98 1.55 • 10-5 5.98 • 10-5 1.94- 10-* 7.60 • 10-'
96- 99 9.92 • 10-5 2.05 • 10-5 4.33 • 10-* 9.86 • 10-'
97-100 1.66 • 10-5 2.10 • 10-5 6.76 • 10"* 1.23 • 10-'
80-100 1.34-10-1 4.95 10-5 1.65 10-5 9.93 • 10-6
80- 91 1.91 • 10-* 7.60 • 10-5 8.52 • 10-5 1.99 • 10-6
89-100 1.33 • lO-i 4.94 • 10-5 1.56 • 10-5 7.93 IQ"«
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Tabelle 15

^Msj/fcic/nmr/ mif jffii/c des «cite» Gtöfemasses 2

All" 1~VY*
Reihe 5 Reihe 6 Reihe 7 Reihe 8

Alter G 10 G 100 G 1000 G 10000

80 14.297 14.354 14.293 14.341

81 15.608 15.510 15.524 15.502

82 16.796 16.736 16.812 16.732

88 18.008 18.061 18.164 18.039

84 19.347 19.519 19.583 19.434

85 20.946 21.120 21.069 20.927

86 23.074 22.813 22.620 22.533

87 24.644 24.431 24.232 24.269

88 25.839 25.988 25.933 26.156

89 27.285 27.705 27.802 28.215

90 30.091 29.792 29.942 30.443

91 31.950 32.084 32.396 32.772

92 34.926 34.853 35.105 35.069

93 36.518 37.361 37.604 37.184

94 40.510 40.086 39.653 39.042

95 41.437 41.617 41.210 40.641

96 42.699 42.766 42.435 42.015

97 44.585 43.615 43.393 43.201

98 45.303 44.192 44.143 44.232

99 45.312 44.535 44.723 45.133

100 42.630 44.666 45.162 45.924
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Tabelle IG

yifeweic/mwjfen row den roJien Daten

Alter
Reihe 5

Abweichungen

Reihe 6
|

Reihe 7 Reihe 8

80 8.20 10-2 1.39 • lO-i 7.80 • 10-2 1.26 • lO-i

81 —2.15 • lO-i — 3.13 lO-i —2.99 • lO-i —3.21 • lO-i

82 1.52 lO-i 9.20 • 10-2 1.68 • lO-i 8.80 • 10-2

83 —1.90 10-2 3.40 • 10-2 1.37 • 10-1 1.20 • 10-2

84 —1.76 • lO-i —4.00 • 10-2 6.00 • lO-i —8.90 10-2

85 3.46 lO-i 5.20 • lO-i 4.69 • lO-i 3.27 • lO-i

86 —1.01 lO-i —3.62 lO-i — 5.55 • 10-1 —6.42 • lO-i

87 — 6.50 lO-i —8.63 • lO-i — 1.06 — 1.03

88 3.48 • lO-i 4.97 • lO-i 4.42 • lO-i 6.65 • lO-i

89 3.95 • lO-i 8.15 • lO-i 9.12 • 10"! 1.33

90 —7.37 • lO-i —1.04 —8.86 • lO-i — 3.85 • lO-i

91 7.39 • lO-i 8.73 • lO-i 1.19 1.56

92 —1.26 — 1.33 — 1.08 — 1.11

93 1.01 1.86 2.10 1.68

94 —2.92 —3.35 —3.78 —4.39

95 2.91 3.09 2.69 2.12

96 5.11 lO-i 5.78 • lO-i 2.47 • lO-i — 1.73 • lO-i

97 —4.15 • lO-i — 1.39 — 1.61 — 1.80

98 1.97 8.59 • lO-i 8.10 • lO-i 8.99 • lO-i

99 — 1.75 —2.52 —2.34 — 1.93

100 —2.27 • lO-i 1.81 2.31 3.07

Quadratische Abweichungen

80-100 2.91 • 10 4.26 • 10 4.62 • 10 5.15-10

80- 90 1.48 3.26 3.61 4.05

91-100 2.76 10 3.94-10 4.26 • 10 4.75 • 10
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Tabelle 17 Ä'lassisc/(e GZäMewerfe

Reihe 5 Reihe 6

2.16 10 " 8.41 10~*
1.06 10-2 1.16 • 10-2
1.77 • 10-2 1.00 • 10-*
7.24 • 10-2 2.60 • 10-2
1.18 2.79 • 10-2
3.35 • 10-2 1.96 • 10"*
3.92 • lO-i 4.88 • 10-2
1.23 4.41 • 10-2
5.32 2.72 • 10-2
4.26 7.40 • 10-2
6.26 5.45 lO-i
1.43 • 10 2.28 lO-i
2.99 • 10 1.99
1.16 • 10 6.59 • lO-i
8.35 • 10-2 6.72 • 10-2
3.21 7.84- 10"*
2.11 • lO-i 1.44-10-2
3.93 4.84 • 10-*

8.20 • 10 3.66
8.28 1.53 • lO-i
7.37 • 10 3.51

Reihe 7 Reihe 8

4.90 • 10-2 6.40 • 10-3
9.00 • 10-« 1.21 • 10-*
0.00 1.00 • 10-*
4.00 • 10-2 2.25 • 10-*
1.60 • 10-2 2.89 • 10"*
7.84 • 10"* 4.41 • 10-*
6.24 10-2 4.41 • 10-*
1.06 • 10-2 9.00 • 10-3
1.85 10-2 4.62 • 10-3
3.48 10-2 1.77 • 10-2
2.16 • lO-i 2.25 • 10-2
5.76 • 10-2 5.63 • 10-3
1.30 • 10-2 4.00 • 10-3
2.02 • 10-2 1.16 • 10-3
6.89 • 10-2 1.37 • 10-3
2.81 • 10-2 1.09 10-2
1.44 • 10-3 6.25 • 10-*
8.41 • 10-* 4.00 • 10"*

3.30 lO-i 5.68 • 10-2
1.96 • 10-2 6.31- 10-3
3.11 • lO-i 5.05 • 10-2

Tabelle IS iVewe Gtöfeieerie 2

Reihe 5 Reihe 6 Reihe 7 Reihe 8

1.32 • 10-3 2.16 • 10-3 1.51 • 10"' 2.27 • 10-3
5.55 • 10"* 1.02 • 10-3 4.38 • 10"' 6.89 • 10-3
2.77 • 10-* 9.01 • 10-« 1.47 • 10-9 1.98 • 10"'
1.02 • 10"* 1.12 • 10"* 1.97 • 10-9 4.30 • 10-9
1.38- 10-2 5.40 • 10"* 2.26 • 10-9 1.69 • 10"'
2.31 • 10-* 1.28 • 10-« 8.86-10-« 3.09 • 10-'
1.73 • 10-2 1.02 • 10-3 5.40 • 10-3 1.32 • 10-«
3.25 10-3 2.19 • 10-* 2.06 10-3 9.78 10-9
2.96 • 10-2 5.19 • 10-* 1.75 • 10-3 3.88 • 10-3
1.55 • 10-2 8.31 • 10-3 6.39 • 10-3 7.32 • 10-3
2.57 • 10-2 1.26 10-3 4.72 • 10-* 1.17 • 10-*
4.11 • 10-2 4.63 • 10-* 3.95 • 10-* 1.12 10-*
1.10 • 10-* 1.14 • 10-2 6.90 • 10-* 8.47 10-3
1.07 • lO-i 2.10 10-* 1.70 • 10-* 4.37 10-3
2.87 10-3 5.96 • lO-i 1.51- 10-* 2.23 • 10-3
1.47 • lO-i 1.65 • 10-3 1.11 • 10-* 7.26 • 10-»
9.61 • 10-2 8.05 • 10-* 4.35 • 10-3 3.11 • ICH
5.97 • 10-2 3.85 • 10-* 2.31 • 10-9 3.20 • 10-'
6.69 • lO-i 1.93 • 10-2 2.21 • 10-3 5.15 • 10-*
6.65 10-2 2.45 • 10-3 1.07 • 10-* 5.06 • 10-3
6.02 • IQ"* 1.69 • 10-2 2.10- 10-3 4.64 • 10-*
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Tabelle 19

.4«sf/7ei'c/n(w/ wif iM/e des GZdttmasses

Alter
Reihe 9

Cr' 10
Reihe 10
G 100

Reihe 11

G 1000
Reihe 12

G 10000

80 14.298 14.353 14.293 14.340

81 15.606 15.510 15.525 15.501

82 16.794 16.736 16.812 16.731

83 18.009 18.062 18.163 18.039

84 19.353 19.519 19.582 19.434

85 20.959 21.121 21.068 20.927

80 23.055 22.813 22.619 22.534

87 24.029 24.430 24.231 24.271

88 25.850 25.985 25.933 26.159

89 27.364 27.699 27.805 28.219

90 30.037 29.782 29.947 30.446

91 31.965 32.103 32.403 32.774

92 35.027 34.959 35.110 35.068

93 36.865 37.461 37.601 37.180

94 40.226 39.972 39.643 39.037

95 41.428 41.538 41.208 40.636

90 42.829 42.726 42.431 42.012

97 44.208 43.602 43.392 43.200

98 44.792 44.196 44.144 44.233

99 44.755 44.550 44.727 45.136

100 43.754 44.688 45.167 45.928
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Tabelle 20

-d&weicÄwije» von de» roÄe» Daten

Abweichungen
Alter

Reihe 9 Reihe 10 Reihe 11 Reihe 12

80 8.30 • 10-2 1.38 • lO-i 7.80 • 10-2 1.25 • lO-i

81 —2.17 lO-i — 3.13 • lO-i —2.98 • lO-i —3.22 lO-i

82 1.50 • lO-i 9.20 10-2 1.68 • lO-i 8.70 • 10-2

83 — 1.80 10-2 3.50 • 10-2 1.36 • lO-i 1.20 • 10-2

84 —1.70 lO-i —4.00 • 10-2 5.90 10-2 —8.90 • 10-2

85 3.59 • lO-i 5.21 • lO-i 4.68 • lO-i 3.27 • lO-i

86 —1.20 • lO-i —3.62 • lO-i —5.56 • lO-i —6.41 • lO-i

87 — 6.65 • lO-i —8.64 • lO-i —1.06 — 1.02

88 3.59 • lO-i 4.94 • lO-i 4.42 • lO-i 6.68 • lO-i

89 4.74 • lO-i 8.09 • lO-i 9.15 • lO-i 1.33

90 —7.91 lO-i —1.05 I GO GO p —3.82 • lO-i

91 7.54 lO-i 8.92 • lO-i 1.19 1.56

92 —1.16 — 1.22 — 1.07 — 1.12

93 1.36 1.96 2.10 1.68

94 — 3.21 — 3.46 —3.79 —4.40

95 2.90 3.01 2.68 2.11

96 6.41 • lO-i 5.38 • lO-i 2.43 • lO-i — 1.76 • lO-i

97 —7.92 lO-i —1.40 —1.61 — 1.80

98 1.46 8.63 10-' 8.11 • lO-i 9.00 • lO-i

99 —2.30 — 2.51 —2.33 — 1.92

100 8.97 • lO-i 1.83 2.31 3.07

Quadratische Abweichungen

80-100 3.34 • 10 4.31 • 10 4.62 • 10 5.15 • 10

80- 90 1.67 3.27 3.61 4.06

91-100 3.18 • 10 3.98 • 10 4.26 10 4.75 • 10
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Tabelle "21 J£7assisc/(e Glättewerte

Alter Reihe 9 Reihe 10 Reihe 11 Reihe 12

80- 83 2.16 • 10-2 9.61 • lO-i 8.10 • 10-5 8.10 • 10-5
81- 84 1.04 • 10-2 9.61 • lO-i 1.60 • 10-5 8.10 • 10-5
82- 85 1.77 • 10-2 1.96 • lO-i 1.00 • 10-« 1.21 • 10-»
83- 86 5.20 • 10-2 3.03 • 10-3 4.00 10-3 2.56 • 10"»
84- 87 1.02 2.72 • 10-2 1.60 • 10-5 2.56 • 10"»
85- 88 2.86 • 10-2 1.69 • lO-i 8.41 • 10"» 4.41 • 10-»
86- 89 4.17 • lO-i 4.88 • 10-2 6.40 • 10-3 4.41 10"»
87- 90 7.50 • lO-i 4.41 • 10-2 1.00 • 10-2 2.50 10-5
88- 91 3.6:3 1.72 • 10-2 1.94 • 10-3 4.36 • 10-3
89- 92 3.53 8.82 • 10-2 3.97 • 10-3 1.82 • 10-2
90- 93 5.56 7.90 • lO-i 2.18 • lO-i 2.19 • 10-2
91- 94 7.55 1.32 lO-i 5.43 • 10-2 5.33 • 10-3
92- 95 1.36 10 9.10- lO-i 7.84 • 10-» 9.00 • 10-3
93- 96 5.56 3.21 • lO-i 1.82 • 10-2 1.23 • 10-3
94- 97 4.88 • 10-2 4.36 • 10-3 6.40 10-3 1.23 10-3
95- 98 5.98 • lO-i 9.00 • 10-» 2.81 • 10-3 1.09 10-3
96- 99 3.03 • 10-2 1.76 • 10-3 1.60 • 10-3 6.25 • 10-»
97-100 1.18 • 10"! 5.76 • lO-i 6.76 • 10-» 3.61 • 10-»

80-100 4.25 • 10 2.39 3.26 • lO-i 5.61 • 10-2
80- 91 5.95 1.43 lO-i 1.93 • 10-2 6.06 10-3
89-100 3.65 • 10 2.25 3.07 lO-i 5.00 • 10-2

Tabelle 22 Anette GZätecerte 2

Alter Reihe 9 Reihe 10 Reihe 11 Reihe 12

SO- 83 1.33 10-2 2.65 10-5 7.93 • 10"' 7.38 10-3
81- 84 5.33 • lO-i 6.64- 10"« 2.23 • 10"' 3.44- 10-8
82- 85 2.66 • lO-i 5.17 • 10-« 2.03 10-3 4.90 10-8
83- 86 4.50 • 10-5 1.25 • 10-» 1.97 • 10-3 6.68 • 10-3
84- 87 1.23 • 10-2 5.28 • 10-» 2.26 • 10-« 3.38 10"'
85- 88 1.48 • lO-i 9.50 lO-i 9.65 10-« 3.08 10-'
86- 89 1.71 • 10-2 1.03 10-3 5.48 • 10-5 1.32 • 10-«
87- 90 1.38 • 10-2 2.23 • 10-» 1.76 • 10-5 1.06 10-5
88- 91 2.13 10-2 4.29 • 10-» 1.62 • 10-5 3.68 10-5
89- 92 1.18- 10-2 7.03 • 10-5 G. 63 10-5 7.56 • 10~5

90- 93 1.69 • 10-2 1.63 10-3 4.78 • 10"» 1.15- 10-»
91- 94 2.09 • 10-2 2.45 10-» 3.89 • 10-» 1.09 10-»
92- 95 5.76 • 10-2 7.07 • 10-3 6.36- 10-» 8.51 • 10-5
93- 96 4.40 10-2 3.98 10-5 1.75 • 10-» 3.98 • 10-5
94- 97 2.45 10-2 8.10 • 10-» 1.66 • 10-» 2.50 • 10-5
95- 98 8.76 • 10-2 1.80 • 10-3 1.16 • 10-» 7.20 • 10-«
96- 99 6.77 • 10-2 8.57 • 10-» 3.11 • 10-5 3.09 • 10-3
97-100 1.88 • 10-2 4.18 • 10"» 1.30 • 10-5 1.10 • 10-3

80-100 3.82 • 10"! 1.53 • 10-2 2.18 • 10-3 5.11 • 10"»
80- 91 5.44 • 10-2 2.37 • 10-3 1.06 • 10"» 4.96 • 10-5
89-100 3.28 • lO-i 1.29 • 10-2 2.07 • 10-3 4.61 • 10-»



aj Reihe 1 (G 10)

.4ws<yZeic/mn</ wui feiassisc/tem GiäMemass

Reihe 5 (G 10)

^4ws(/ZeicltMrt(/ mii neuem Giaitemass



aj Reihe 2 (G 100) Figur 10 Reihe 6 (G 100)

«)t< /i7f(s.s'is'6'//e?// Gfâfemass wh wewm CZâ'Jfemu.ss



rtj Eeihe 3 (G 1000) Figur 11 6; Eeihe 7 (G 1000)

.'lwsf/feïcfrww/ ««< newem GZäfferatiss
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a; Reihe 4 (G 10 000) Reihe 8 (G 10 000)

mii newew Giäfemass
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12.3. Die MttsflZeic/mw/ 2wisc7ien dew Hifcrn <3 m/m7 7ÖÖ

Bei der Ausgleichung der Sterbetafel SM 1939/44 mit Hilfe des

D6V haben wir die Sterbewahrscheinlichkeiten der Alter 0, 1 und 2

nicht miteinbezogen. Die grossen Krümmungsänderungen der Kurve
der einjährigen Sterbewahrscheinlichkeiten in diesem Altersbereich,
welche durch den plötzlichen Übergang von einem steil abfallenden
in einen beinahe waagrechten Verlauf bedingt sind, wurden durch
viele Beobachtungen erhärtet. Würden wir die Ausgleichung auch auf
die ersten Werte der Sterblichkeitskurve ausdehnen, so hätte das zur
Folge, dass diese Krümmungsänderungen verkleinert und dadurch
die richtigen Werte stark verfälscht würden.

Der Grund für dieses unglatte Verhalten der Sterblichkeitskurve

mag wohl darin liegen, dass in den allerersten Lebensjahren ganz
besondere Risiken, die mit der Geburt und deren Folgen zusammen-
hängen, für die hohe Sterblichkeit verantwortlich sind und dass der
Einfluss dieser Risiken sehr rasch abnimmt. Die Umschichtung der
für die Sterblichkeit massgebenden Gefahrenmerkmale vollzieht sich
beinahe sprungartig, und deshalb sind benachbarte Sterbewahrschein-
lichkeiten bezüglich dieser Merkmale wenig miteinander verwandt.
Da aber bei jeder Ausgleichung eines Wertes die benachbarten Punkte
für die Berechnung mitbestimmend sind, ist eine solche Ausgleichung
in den jüngsten Altern nicht sehr sinnvoll. Sie ist erst dann zweck-

massig, wenn die Sterbewahrscheinlichkeiten nicht im Abstand von
einem Jahr, sondern vielleicht von einem Monat gegeben sind.

Mit Ausnahme der rohen Werte 100 • i^. (Reihe 13) sind in der
Tabelle 23 die mit Hilfe des klassischen DGV ausgeglichenen Werte
(Reihen 14 bis 16) aufgeführt. Die Reihe 17 der Tabelle 26 ist die

offizielle, nach der Methode von King geglättete Tafel. Die Resultate
der Ausgleichung nach dem DGV unter Verwendung des neuen
Masses « sind in der Tabelle 26 (Reihen 18 bis 20) angegeben. In den
Tabellen 24, 25, 27 und 28 finden wir für jede Reihe die Abweichungen
von den rohen Daten sowie die mit Hilfe des neuen Masses 0 berech-
neten Glättewerte.

Bis etwa zum Alter 65 stimmen die Sterblichkeiten der Reihen 14

bis 16 mit den entsprechenden der Reihen 18 bis 20 weitgehend über-
ein. Erst in höheren Altern machen sich Unterschiede bemerkbar, da

im letzten Teilstück die Bedingungen (54) nicht mehr erfüllt sind.
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Die offizielle, nach King ausgeglichene Reihe 17 ist bis zum Alter 75

mit einigen lokalen Ausnahmen die unglätteste der 7 Reihen 14 bis 20.

Von diesem Alter an werden die Glättewerte von 17 immer kleiner.
Beim Vergleich der offiziellen Sterblichkeiten mit den nach dem DGY
ausgeglichenen Werten müssen wir beachten, dass beim DGV nur die
rohen Daten bis zum Alter 100 berücksichtigt wurden; bei der offi-
ziehen Ausgleichung sind auch die Sterblichkeiten der höheren Alter
verwendet worden. Ein Vergleich über das Alter 90 hinaus ist deshalb
nicht sinnvoll.

Wie wir den Tabellen 23 bis 28 entnehmen können, ergibt das

DGV unvernünftige Resultate, solange die G-Werte über den ganzen
Altersbereich hinweg konstant bleiben. So sind entweder die Sterb-
lichkeiten der höheren Alter zwar richtig, die der früheren Lebens-

jähre aber zu stark ausgeglichen, oder aber die Werte der früheren
Alter sind vernünftig, dagegen ist das letzte Stück der Reihe zu wenig
ausgeglichen. Der Grund für dieses Verhalten liegt darin, dass in den
hohen Altern die Anzahl der unter Beobachtung gestandenen Per-
sonen mit wachsendem a; immer kleiner wird, und somit die rohen
Sterblichkeiten grösseren Schwankungen unterworfen sind als in
früheren Altern. Ob mit wachsendem ,r der Vertrauenskoeffizient J5(x)

(siehe (59)) verkleinert oder die G-Werte vergrössert werden, der
Effekt wird der gleiche bleiben; dadurch wird dafür gesorgt, dass die

mit wachsendem Alter zunehmenden Unregelmässigkeiten in den
rohen Daten keinen oder zumindest nur in beschränktem Masse einen

Niederschlag in den ausgeglichenen Werten finden. Es wird jeweilen
von der Art der Problemstellung und der weiteren Verwendung der

ausgeglichenen Werte abhängen, wie die Grössen G'(.t) oder U(.r)
gewählt werden sollen.

Gerade hier zeigt sich der Nachteil des DGV in der Form (59).

Dadurch, dass es äusserst anpassungsfähig ist, wird dem Benutzer
zuviel Freiheit gelassen, die sich in der Unsicherheit bei der Wahl
der Gewichte manifestiert. Trotz alledem ist das DGA* wirkungsvoll.
So sind bis zum Alter 75 mit einigen lokalen Ausnahmen die Reihen 14

und 18 glätter als die offizielle Reihe 17 ; und trotzdem sind, wie die
Tabellen 24 und 27 zeigen, die Abweichungen von den rohen Werten
in 14 und 18 im allgemeinen kleiner als in der Reihe 17.



Tabelle 23

^wsjdeicTiwrcgf iîii/e des 7cZassisc/ien G'Zädemas-se.s

Alter Reihe 13
Rohe Werte

Reihe 14
G 10

Reihe 15
G 100

Reihe 16
G 1000

3 .254 .247 .242 .235
4 .200 .205 .207 .202

5 .168 .173 .178 .175
6 .144 .151 155 .153
7 .135 .137 .137 .136
8 .146 .127 .124 .125
9 .115 .121 .115 .118

10 .113 .117 .112 .116
11 .132 .115 .112 .119
12 .108 .116 .118 .127
13 .118 .122 .128 .138
14 .125 .135 .142 .152

15 .156 .154 .161 .169
16 .178 .178 .183 .188
17 .218 .205 .207 .208
18 .220 .232 .231 .228
19 .251 .259 .254 .247

20 .289 .281 .275 .264
21 .313 .299 .292 .280
22 .324 .310 .305 .292
23 .292 .316 .314 .302
24 .302 .319 .319 .309

25 .325 .320 .320 .313
26 .342 .319 .319 .315
27 .304 .315 .315 .315
28 .317 .309 .311 .314
29 .293 .304 .307 .313

30 .310 .301 305 .311
31 .294 .300 .304 .311
32 .289 .304 .306 .313
33 .309 .312 .311 .317
34 .345 .322 .318 .323

35 .348 .333 .329 .333
36 .325 .344 .342 .346
37 .353 .359 .360 .362
38 .376 .379 .381 .383
39 .431 .403 .406 .408
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Tabelle 23 ffiZ/e

Alter Reihe 13
Rohe Werte

Reihe 14
G 10

Reihe 15
G 100

Reihe 16
G 1000

40 .415 .433 .437 .437
41 .444 .469 .471 .470
42 .517 .511 .511 .508
43 .584 .557 .554 551
44 .612 .605 .602 .597

45 .639 .655 .653 649
4G .687 .709 .709 .705
47 .811 .769 .770 .767
48 .814 .834 .836 .834
49 .903 .907 .908 .908

50 .970 .987 .986 .988
51 1.104 1.076 1.072 1.076
52 1.153 1.171 1.166 1.171
53 1.276 1.273 1.269 1.276
54 1.371 1.383 1.381 1.390

55 1.579 1.502 1.506 1.514
56 1.598 1.632 1.643 1.650
57 1.730 1.781 1.795 1.798
58 1.947 1.951 1.963 1.960
59 2.155 2.143 2.146 2.137

60 2.374 2.352 2.345 2.330
61 2.575 2.575 2.560 2.541
62 2.749 2.810 2.792 2.772
63 3.148 3.058 3.042 3.025
64 3.323 3.320 3.313 3.303

65 3.602 3.603 3.610 3.609
66 3.930 3.920 3.938 3.946
67 4.212 4.283 4.301 4.318
68 4.669 4.697 4.706 4.729
69 5.118 5.164 5.154 5.182

70 5.846 5.677 5.651 5.680
71 6.160 6.231 6.200 6.227
72 6.862 6.828 6.806 6.826
73 7.415 7.476 7.474 7.481
74 8.287 8.186 8.209 8.196

75 8.940 8.966 9.016 8.975
76 9.770 9.832 9.899 9.822
77 10.869 10.792 10.858 10.741
78 11.667 11.847 11.890 11.736
79 12.987 12.992 12.991 12.813
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des fctessiscteen GZàïfemasses (Fortsetzung)

Alter Reihe 13
Rohe Werte

Reihe 14
G 10

Reihe 15
G 100

Reihe 16
G 1000

80 14.215 14.207 14.155 13.975
81 15.823 15.472 15.378 15.229
82 16.644 16.779 16.660 16.578
83 18.027 18.141 18.008 18.027
84 19.523 19.573 19.435 19.579

85 20.600 21.076 20.956 21.235
86 23.175 22.645 22.587 22.991
87 25.294 24.272 24.343 24.839
88 25.491 25.998 26.237 26.767
89 26.890 27.921 28.275 28.755

90 30.828 30.087 30.441 30.779
91 31.211 32.444 32.692 32.808
92 36.183 34.893 34.962 34.804
93 35.505 37.268 37.165 36.731
94 43.434 39.436 39.213 38.552

95 38.525 41.274 41.020 40.234
96 42.188 42.810 42.527 41.752
97 45.000 43.983 43.677 43.086
98 43.333 44.656 44.425 44.223
99 47.059 44.712 44.741 45.155

100 42.857 44.034 44.608 45.880

Tabelle 24

Quadratische ^frteeic/m-wgrew row dew roftew Datew

Alter Reihe 14 Reihe 15 Reihe 16

3-100 4.36 10 4.64 • 10 5.65 10
3- 10 5.65 • 10-» 9.03 • 10-" 9.55 • 10-»

11- 20 9.14 • 10-" 1.39- 10-3 2.73 • 10-3
21- 30 2.20 • 10-3 2.51 • 10-3 3.67 • 10-3
31- 40 2.54 10-3 2.96 10-3 3.22 • 10-3
41- 50 4.65 • 10-3 4.89 • 10-3 5.18 • 10-3
51- 60 1.16 • 10-3 1.41 • 10-3 1.55 • 10-3
61- 70 4.S4 10-3 6.21 • 10-3 6.40 • 10-3
71- 80 6.31 10-3 9.02 • 10-3 1.31 • lO-i
81- 90 3.58 4.21 6.11
91-100 3.99 • 10 4.20 10 5.01 • 10
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Tabelle 25

Alter Reihe 14 Reihe 15 Reihe 16

3- G 9.17 • lO-ii 9.77 • 10-18 9.93 • 10-'
4- 7 3.97 10-8 9.94 10-' 2.72 • 10-18

5- 8 1.60 10-8 1.82 • 10-18 1.00-10-8
6- 9 2.30 10-18 9.98 lO-i 3.99 10-8
7- 10 4.00 10-8 4.00 • 10-« 1.00 • 10-«
8- 11 2.30 • 10-18 9.00 • 10-« 2.25 • 10-»
9- 12 1.00 • 10-8 9.00 • 10-8 5.06 • lO-ii

10- 13 4.00 • 10-8 4.00 • 10-8 4.00 • 10-8
11- 14 4.00 • 10-8 2.30 • lO-i» 8.82 • lO-ii
12- 15 1.00 • 10-8 9.98 • 10-' 1.43 • lO-i"
13- 16 1.00 • 10-8 4.00 • 10-8 1.00-10-8
14- 17 4.00 • 10-8 9.99 • 10-' 9.99 • 10-'
15- 18 8.98 10-8 3.99 • 10-« 9.99 • 10-'
16- 19 0.00 9.98 • 10-' 9.99 • lO-i
17- 20 2.50 • 10-8 9.99 • lO-i 9.99 • 10-'
18- 21 9.96 • 10-' 4.00 • 10-8 9.99 • 10-'
19- 22 9.00 10-8 6.65 • lO-i® 9.00 • 10"«
20- 23 3.99 • 10-8 3.89 lO-i» 4.00 • 10-8
21- 24 4.00 • 10-8 1.87 • lO-i' 1.00 • 10-8
22- 25 1.00 • 10-8 5.76 • 10-" 3.57 • lO-ii
23- 26 1.44 • 10-18 4.00 • 10-8 1.00 • 10-8
24- 27 1.00 • 10"8 1.00 • 10-8 5.76 • lO-i«
25- 28 1.00 • 10-8 9.00 10-« 1.00-10-«
26- 29 9.00 • 10"8 0.00 1.00-10-8
27- 30 1.00 10"8 4.00 • 10-8 1.00 • 10-8
28- 31 1.30 • 10-18 1.00 • 10-8 9.00 • 10-8
29- 32 9.00 • 10"« 4.00 10-8 0.00
30- 33 1.00 • 10-8 2.92 10-18 5.76 • lO-i«
31- 34 4.00-10-8 1.00 • 10-8 2.30 • lO-i"
32- 35 1.00 10-8 4.00 10-8 4.00 10-8
33- 36 1.00 • 10-8 4.00 • 10-8 1.00 10-8
34- 37 1.60 • 10-8 8.99 • 10-8 1.23 • lO-i"
35- 38 9.97 10-' 4.00 10-8 3.99 • 10-8
36- 39 1.00 10-8 9.97 • lO-i 1.00 10-8
37- 40 3.99 • 10-8 3.98 10-8 1.44-10-18
38- 41 1.04 • lO-ii 8.99 10-8 1.93 • 10-18
39- 42 1.50 lO-ii 8.95 • IG-« 9.93 • 10-'
40- 43 3.99 • 10-8 8.97 • 10-8 8.06 • 10-18
41- 44 3.98 • 10-8 3.97 • 10-8 3.99 • 10-8
42- 45 3.28 • 10-18 3.98 10-8 8.92 • 10-8
43- 46 3.96 • 10-8 3.96 • 10-8 3.98 • 10-8
44- 47 3.95 • 10"8 1.74 lO-ii 3.95 10-8
45- 48 1.00 • 10"8 2.05 lO-ii 1.00 • 10-8
46- 49 8.83 • 10"8 9.75 • 10-' 3.92 • 10"«
47- 50 1.01 • 10-8 5.89 • lO-ii 1.00 10"8
48- 51 3.86 • 10-8 3.88 • 10-8 3.88 • 10-8
49- 52 8.88 • 10-8 2.63 lO-i» 1.01 • 10-8
50- 53 9.50 • 10"' 9.35 10-' 8.64 10-«
51- 54 9.36 • lO-i 5.94 lO-i" 1.02 • 10-8
52- 55 9.19 10-' 1.51 • 10-8 9.04 • 10-'
53- 56 3.70 • 10-8 1.07 10-8 3.65 • 10-8
54- 57 5.94 • 10-8 8.09 • 10-8 3.15- 10-"
55- 58 3.11 • IQ-« 7.44 • 10-' 3.48 ID"®
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iVeite Gfâteîuerfe 2

Alter Reihe 14 Reihe 15 Reihe 16

56- 59 5.45 • 10-' 1.15- 10-« 7.50 • 10-'
57- 60 2.44 10-» 6.89 10-' 7.00- 10-'
58- 61 8.70 10-« 1.92 • 10-« 3.03 • 10-«
59- 62 3.84 • 10-« 6.04- 10-' 2.78 • 10-«
60- 63 6.82 10-' 5.43 • 10-' 2.50 10-«
61- 64 6.36 • 10-' 6.21 • 10-« 5.63 • 10"«
62- 65 3.75 • 10-» 1.69 • 10-» 4.81 10-«
63- 66 1.21 • 10-» 1.45 • 10-» 3.93 • 10-«
64r- 67 8.40 • 10-» 6.75 • 10-« 6.55 • 10-6
65- 68 5.14 • 10-« 2.13 • 10-» 4.77 10-«
66- 69 4.66 • 10-' 4.96 • 10-' 1.01 • 10-6
67- 70 5.35 • 10"» 7.58 • 10'« 4.27 10"'
68- 71 2.65 • 10-» 1.22 • 10"» 9.43 • 10"'
69- 72 2.64 • 10-« 6.97 • 10"' 2.21 • IC"«
70- 73 1.03 10-» 3.40 10-8 8.41 • 10-8
71- 74 1.53 10"» 1.90 10"' 1.33 • 10-'
72- 75 9.89 • 10"' 9.93 • 10-' 6.09 • 10"'
73- 76 1.22 • 10-» 3.58 • 10"« 1.31 • 10"«
74— 77 2.98 • 10-« 1.31 • 10-» 2.07 • 10-«
75- 78 2.16 • 10-» 1.82 • 10-» 2.77 • 10-6
76- 79 3.39 • 10"» 1.53 10-» 1.42 10-«
77- 80 7.20 10-» 1.45 • 10"» 5.47 • 10-«
78- 81 4.29 • 10-» 6.97 • 10"« 1.62 • 10"«
79- 82 7.05 • 10-« 1.69 • 10"« 5.62 10-«
80- 83 4.61 • 10-« 9.49 • 10-8 3.32 • 10-«
81- 84 3.79 • 10-« 1.33 10"« 4.40 • 10-6
82- 85 1.27 • 10-« 7.15 • 10-' 4.71 • 10-6
83- 86 3.84 • 10-« 8.16 • 10-8 6.10 • 10-«
84- 87 4.25 • 10-« 2.33 • 10-' 5.87 • 10-6
85- 88 2.17 • 10-» 1.25 • 10-« 5.33 • 10-«
86- 89 7.39 • 10-» 3.59 • 10"« 6.55 • 10-«
87- 90 1.57 • 10-« 1.07 • 10"» 6.00 • 10-6
88- 91 6.42 • 10-» 1.75 • 10"» 7.64 • 10"«
89- 92 5.52 • 10"» 2.22 • 10"» 1.12 • 10-5
90- 93 8.79 • 10"» 3.38 • 10-» 1.27 • 10-»
91- 94 8.84 10"» 5.49 • 10"» 2.12 • 10-»
92- 95 2.55 • 10-» 1.35 10-» 3.47 • 10-»
93- 96 1.14 • 10-» 3.23 • 10-» 5.61 • 10-»
94- 97 1.33 • 10"« 1.34 10-8 1 .09 • 10-»
95- 9S 1.56 • 10-2 5.89 10-8 2.04 • 10"»
96- 99 9.92 • 10-2 2.09 10-2 3.93 10-»
97-100 1.66 10-2 2.07 10-2 6.64 • 10-»

3-100 1.34 lO-i 4.98 • 10-2 1.72 • 10-8
3- 10 2.39 • 10-» 5.99 • 10-« 6.99 • 10-6
8- 20 4.89 • 10-» 3.40 • 10-» 9.00 • 10-6

IS- 30 3.10 • 10-» 2.20 • 10-» 1.90 • 10-»
28- 40 3.80 10-» 3.20 10-» 1.90 • 10-»
38- 50 2.67 • 10"» 3.98 • 10-» 2.78 • 10"»
48- 60 1.07 • 10"» 3.16 • 10-» 2.40 10-»
58- 70 3.16 • 10-» 7.50 • 10"» 3.54 • 10-»
68- 80 1.96 • 10-» 6.66 10"» 1.47 • 10"»
78- 90 1.65 10-» 2.67 • 10-» 4.95 • 10-»
88-100 1.33 • lO-i 4.95 • 10-2 1.51 • IQ"«
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Tabelle '26 ^«st/Zeic/iMngf mit HiZ/e

Alter Reihe 17
Off. Reihe

Reihe 18
G 10

Reihe 19
G 100

Reihe 20
G 1000

3 .254 .247 .242 .235
4 .207 .205 .207 .202

5 .177 173 .178 .175
6 .158 .151 155 .153
7 .142 .137 .137 136
8 .129 .127 .124 .125
9 .120 .121 .115 .118

10 .115 .117 .112 .116
11 .114 .115 .112 .119
12 .117 .116 .118 .127
13 .124 .122 .128 .138
14 .137 .135 .142 .152

15 .154 .154 .161 .169
IG .177 .178 .183 .188
17 .205 .205 .207 .208
18 .234 .232 .231 .228
19 .262 .259 .254 .247

20 .283 .281 .275 264
21 .296 .299 .292 .280
22 .305 .310 .305 .292
23 .311 .316 .314 .302
24 .314 .319 .319 .309

25 .315 .320 .320 .313
26 .314 .319 .319 .315
27 .309 .315 .315 .315
28 .303 .309 .311 .314
29 .299 .304 .307 .313

30 .299 .300 305 .311
31 .301 .300 .304 .311
32 .306 .304 .306 .313
33 .313 .312 .311 .317
34 .322 322 .318 .322

35 .334 333 .329 333
36 .347 .344 .342 .346
37 .362 .359 .360 .362
38 .380 .379 .381 .383
39 .402 .403 .406 .408
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cZes neuen Gfâfemasses 2

A If ûv
Reihe 17 Reihe 18 Reihe 19 Reihe 20

Alter Off. Reihe G 10 G 100 G 1000

40 .432 .433 .437 .437
41 .468 .469 .471 .471
42 .510 .511 .511 508
48 558 557 554 551
44 .609 605 .602 .597

45 .663 .655 653 .649
46 .718 .709 .709 .705
47 .774 .769 .770 .766
48 835 .834 .836 .834
49 903 .906 .908 .907

50 981 .987 986 .987
51 1.066 1.076 1.072 1.074
52 1.158 1.171 1.166 1.170
53 1.258 1.274 1.269 1.274
54 1.370 1.383 1.381 1.388

55 1.498 1.502 1.506 1.512
56 1.639 1.632 1.643 1.648
57 1.792 1.780 1.795 1.797
58 1.958 1.950 1.962 1.959
59 2.141 2.142 2.145 2.136

60 2.343 2.352 2.344 2.330
61 2.556 2.576 2.559 2.541
62 2.781 2.812 2.790 2.772
63 3.025 3.061 3.040 3.025
64 3.299 3.322 3.312 3.302

65 3.611 3.603 3.609 3.607
66 3.954 3.917 3.939 3.943
67 4.322 4.276 4.305 4.313
68 4.726 4.691 4.714 4.721
69 5.176 5.162 5.168 5.172

70 5.681 5.682 5.669 5.669
71 6.231 6.239 6.217 6.215
72 6.819 6.839 6.816 6.817
73 7.462 7.490 7.471 7.478
74 8.177 8.198 8.187 8.205

75 8.979 8.967 8.973 9.001
76 9.870 9.810 9.839 9.874
77 10.838 10.747 10.796 10.826
78 11.883 11.792 11.848 11.861
79 13.002 12.984 12.992 12.978
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Tabelle 26 mi/ JTiZ/e de-s nenen G/dZ/emasses 2 (Forts.)

Alter Reihe 17
Off. Reihe

Reihe 18
G 10

Reihe 19
G 100

Reihe 20
G 1000

80 14.194 14.284 14.207 14.172
81 15.451 15.582 15.463 15.436
82 16.767 16.789 16.746 16.761
83 18.141 18.014 18.092 18.146
84 19.573 19.354 19.545 19.589

85 21.072 20.949 21.132 21.088
8G 22.652 23.073 22.811 22.641
87 24.317 24.644 24.425 24.250
88 26.071 25.839 25.983 25.944
89 27.919 27.285 27.702 27.806

90 29.866 30.091 29.792 29.941
91 31.918 31.950 32.086 32.392
92 34.080 34.926 34.853 35.102
93 36.357 36.518 37.360 37.603
94 38.757 40.510 40.086 39.654

95 41.286 41.437 41.617 41.216
96 43.950 42.699 42.766 42.436
97 46.757 44.585 43.616 43.394
98 49.715 45.303 44.192 44.143
99 52.831 45.312 44.535 44.724

100 56.115 42.630 44.666 45.162

Tabelle 27

Qnadra/i'sc/fe .15;eeicl(Mnge?i eon den ro//en Da/en

Alter Reihe 17 Reihe 18 Reihe 19 Reihe 20

3-100 2.95 10^ 2.92 • 10 4.28 10 4.64 10
3- 10 6.93 10-» 5.65 • 10-» 9.03 • 10-» 9.55 • 10-»

11- 20 1.11 10-3 9.14 • 10-» 1.39 10-3 2.73 • 10-3
21- 30 2.42 10-3 2.22 • 10-3 2.51 • 10-3 3.67 • IO»»
31- 40 2.79 10-3 2.54 • 10-3 2.96 • 10-3 3.22 • 10-3
41- 50 4.78 • 10-3 4.64 • 10-3 4.89 • 10-3 5.28 • 10-3
51- 60 1.52 • 10-2 1.15 • 10-2 1.41 • 10-2 1.54 10-2
61- 70 6.37 • 10-= 4.51 • 10-2 5.84-10-2 6.46 10-2
71- 80 8.10 • 10-2 5.79 • 10-2 6.25 • 10-2 7.17 • 10-2
81- 90 3.94 1.48 3.29 3.63
91-100 2.91 • 102 2.76 10 3.94-10 4.26 • 10
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Tabelle 28 jVewe GZäZtewerfe 0

Alter Reihe 17 Reihe 18 Reihe 19 Reihe 20

3- 6 3.57 • 10-5 9.17 • lO-ii 9.77 • 10-» 9.93 • 10"'
4- 7 6.39 10-5 3.97 • 10-6 9.94 • 10-' 2.72 • lO-ii
5- 8 1.86 IQ-" 1.60 • 10-5 1.82 • 10-» 1.00 • 10-«
6- 9 1.00 • 10-« 2.30 • lO-i« 9.98 10"' 3.99 • 10-«
7- 10 1.87 • 10-18 4.00 • 10-6 4.00- 10-« 1.00 • 10-6
8- 11 5.76 • lü-ii 2.30 lO-i« 9.00 • 10-« 2.25 10-»
9- 12 2.30 10-15 1.00 • 10-« 9.00 10"« 5.06 • 10-»

10- 13 2.07 • lO-ii 4.00 • 10-6 4.00 • 10-6 4.00-10-6
11- 14 4.00 • 10-8 4.00 10-6 2.30 • lO-i« 8.82 • 10-»
12- 15 4.00 • 10-6 1.00 • 10-6 9.98 • 10-' 1.43 • lO-i«
13- 16 3.99 • 10-6 1.00 ICH 4.00 • 10-6 1.00 • 10-6
14- 17 1.00 • 10-6 4.00 • 10-« 9.99 10"' 9.99 • 10-'
15- 18 1.60 10-5 8.98 • 10-6 3.99 • 10-6 9.99 • 10-'
16- 19 3.99 • 10-6 0.00 9.98 • 10"' 9.99 • 10-'
17- 20 3.59 • 10-5 2.50 • 10"5 9.99 • 10"' 9.99 • 10-'
18- 21 1.01 • 10-6 9.96 10-' 4.00 10-6 9.99 • 10-'
19- 22 1.60 • 10"5 9.00 • 10-« 6.65 • lO-i« 9.00 • 10"6
2(1- 23 9.99 • 10"' 3.99 • 10-« 3.89 • lO-i« 4.00 • 10-«
21- 24 2.62 • lO-ii 4.00 • 10-6 1.87 • lO-i« 1.00 • 10"6
22- 25 1.00 • 10-6 1.00 10"« 5.76 • 10"» 3.57 10~»
23- 26 1.44 • lO-i« 1.44 • lO-i« 4.00 KR« 1.00 • 10-6
24- 27 4.00 • 10-8 1.00 • 10-6 1.00 • 10-« 5.76 • lO-i«
25- 28 9.00 • 10-6 1.00 • 10-6 9.00 • 10-« 1.00 • IG"«
26- 29 9.00-10-« 9.00 10-6 0.00 1.00 • 10-«
27- 30 4.00 • 10"6 2.25 • lO-i« 4.00 • 10-6 1.00 • 10-6
28- 31 4.00 • 10-6 9.00 • 10-« 1.00-10-6 9.00 • 10-6
29- 32 1.00 • 10-6 0.00 4.00 • 10-6 0.00
30- 33 1.00 • 10-6 3.69 • 10-» 2.92-10-15 5.76 • lO-i«
31- 34 7.05 • lO-i« 4.00 10-« 1.00-10-« 2.30 • lO-i«
32- 35 9.99 • 10-' 1.00 • 10-6 4.00 • 10-6 4.00 • 10-«
33- 36 4.00 • 10-6 1.00 • 10-6 4.00 ICH 1.00 • 10~6

34- 37 9.99 • 10-' 1.60 • 10-5 8.99 10-« 1.23 • lO-i«
35- 38 9.99 • 10-' 9.97 • 10-' 4.00 KR« 3.99- 10-6
36- 39 9.98 • 10"' 1.00 • 10-6 9.97 • 10-' 1.00 • KR«
37- 40 1.60 • 10-5 3.99 • KR« 3.98 • 10-6 1.44 • 10-18

38- 41 4.01 • 10"« 1.04 • IC)-» 8.99 • 10-6 9.94 • 10-'
39- 42 1.50 • lO-ii 1.50 • If)-» 8.95 - 10-6 3.99 • 10-6
40- 43 2.04 • lO-ii 3.99 • KR« 8.97 • 10"« 8.95 10-6
41- 44 8.96 10-6 3.98 • 10-« 3.97- 10"6 S.97 • 10-«
42- 45 1.87 • lO-ii 3.28 • lO-i« 3.98 10-6 8.92 • 10-6
43- 46 3.97 • 10-6 3.96 • 10-6 3.96 • 10-6 3.98 • 10-«
44- 47 2.68 • 10-» 3.95 • 10-6 1.74 • lO-ii 9.84 10-'
45- 48 1.58 • 10"5 1.00 • 10-« 2.05 lO-ii 3.93 10-«
46- 49 3.93 • 10-6 3.92 • 10-6 9.75 • 10"' 3.97 • 10-6
47- 50 8.79 • 10-6 3.88 • 10-6 5.89 • lO-ii 3.90 • 10-6
48- 51 8.94 • 10-6 1.02 • 10-6 3.88 • 10-6 1.34 • 10-i«
49- 52 1.51 • lO-i» 3.96 • 10-6 2.63 • lO-i« 3.84 • 10"«
50- 53 9.45 • 10"' 3.84 10-6 9.35 • 10"' 1.01- 10"«
51- 54 1.53 • 10-5 3.93 • 10-6 5.94 • lO-i« 3.77 10-«
52— 55 1.49 • 10-5 1.53 • 10-5 1.51 • 10-5 1.10 10-8
53- 56 9.03 • 10-6 8.85 • 10-' 1.07 •10^ 3.65 10-6
54- 57 1.07 10-« 4.54 • 10"« 8.09 • 10-6 8.31 • 10-'
55- 58 8.06 • 10-' 1.37 • 10-5 9.39 • 10-« 5.11 • IQ-«
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Tabelle 28 A'eite GZöMewer/e 2 (Fortsetzung)

Alter Reihe 17 Reihe 18 Reihe 18 Reihe 20

56- 59 1.39- 10-» 5.28 10-« 7.17 10-' 3.36 10"«
57- 60 3.02 10-« 1.60 10-5 1.67 • 10-« 3.18 • 10"«
58- 61 5.87 • 10-« 1.52 • 10-« 1.92 10-« 2.35 • 10-«
59- 62 7.39 10-' 3.84 • 10"« 2.17 • 10"« 6.83 10-«
60- 63 4.03 10-» 6.81 • 10-' 6.69 • 10-« 2.50 10-«
61- 64 9.37 10-« 1.03 • 10-« 6.08 • 10-« 2.18 • 10-«
62- 65 4.06 • 10-« 4.99 10-5 5.36 10-« 9.67 • 10-«
63- 66 4.87 • 10"« 1.23 10-» 4.13 • 10-« 3.94 10-«
64- 67 3.24 • 10-« S.57 • 10-« 2.74 10-« 3.02 10-«
65- 68 6.92 • 10-« 5.06 • 10-« 2.06 10-« 5.07 10-«
66- 69 4.29 10-« 6.87 10-« 7.75 • lO-i» 6.75 10-«
67- 70 2.15 • 10-« 5.70 • 10-« 8.62 10-« 3.42 • 10-'
68- 71 8.61 • 10-« 1.00 10-« 3.59 • 10-« 4.71 10-«
69- 72 3.83 • 10-« 6.94 • 10-« 4.22 10-' 5.65 • 10-«
70- 73 8.14 • 10-« 1.02 • 10-« 5.88 • 10-' 7.52 10-'
71- 74 4.63 • 10-« 1.38 • 10-« 3.02 10-« 8.74 • 10-'
72- 75 1.05 • 10-« 2.50 10-' 2.44 10-« 3.42 10-«
73- 76 1.96 • 10-« 1.01 10-« 7.74 • 10-' 1.13 • 10-«
74- 77 8.69 • 10-« 1.82 • 10-« 5.53 10-» 9.05 10-«
75- 78 1.09 10-« 2.23 10-' 1.14 10-« 4.88 10-«
76- 79 1.46 • 10-« 2.35 10-« 2.79 10-« 1.42 • 10-«
77- 80 7.19 10-« 2.92 • 10-« 7.91 10-« 1.85 • 10-«
78- 81 1.61 10-« 7.27 10-« 8.09 • 10-« 1.59 • 10-5
79- 82 7.92 10-« 4.69 10-« 1.45 10-5 1.34 • 10-«
80- 83 1.74 • 10-« 7.14 • 10-« 5.76 10-« 1.89 10-«
81- 84 9.58 10-' 4.90 10-« 4.97 • 10-5 1.95 10-«
82- 85 4.32 • 10-' 3.59 10-4 1.51 • 10-« 1.48 • 10-«
83- 86 1.20 • 10-« 1.25 • 10-« 8.39 • 10-« 1.12 • 10-«
84- 87 6 65 10-' 1.38 10-2 4.93 10-« 1.14 • 10-'
85- 88 6.74 10-' 2.49 • 10-« 3.56 10-' 1.06 • 10-«
86- 89 4.96 • 10"' 1.73 • 10-2 9.79 10-« 6.40 10-5
87- 90 5.19 10-' 3.25 10~« 2.16 10-« 2.23 10-«
88- 91 4 .04 10-' 2.96 10-« 5.24 10-« 1.83 10-«
89- 92 5.28 • 10-' 1.55 • 10-2 8.15 • 10-« 6.42 10-«
90- 93 4.90 10-' 2.57 10-2 1.24 • 10-« 4.78 10-«
91- 94 2 .45 10-' 4.11 10-2 4.66 10-« 3.95 • 10-«
92- 95 3.84 • 10-' 1.10 10-» 1.14 10-2 7.11 • 10-»
93- 96 3.48 • 10-' 1.07 • lO-i 2.11 • 10"« 1.52 10"«
94- 97 2.30 10-' 2.87 • 10-« 5.75 10-« 1.68 • 10-«
95- 98 2.22 10-' 1.47 lO-i 1.78 • 10-« 1.17 • 10-4
96- 99 2.34 10-' 9.61 • 10-2 7.09 10-« 2.43 10-«
97-100 1.41 10-' 5.97 • 10-2 4.11 10-« 1.68 • 10-«

3-100 1.24 10"« 6.71 lO-i 1.98 10-2 2.50 10-«
3- 10 1.01 • 10-« 2.39 10-« 5.99 10-« 6.99 • 10-«
8- 20 6.89 10-« 4.89 • 10-« 3.40 la-« 9.00 10-6

18- 30 4.50 • 10-« 3.00 • 10-« 2.20 • 10-« 1.90 • 10-«
28- 40 2.99 10-« 3.70 • 10-5 3.20 10-« 1.90 10-5
38- 50 4.55 • 10"® 2.47 • 10-« 3.9S • 10-« 4.86 10-8
48- 60 6.79 • 10-« 1.04 10-« 2.98 10-« 1.97 • 10-5
58- 70 4.49 10-« 3.93 • 10-« 8.29 10-« 4.03 10-«
68- 80 4.02 • 10-« 4.63 10"« 1.26 • 10"« 5.73 10-«
78- 90 3.07 • 10-« 3.75 10-2 1.98 • 10-« 1.33 10-«
88-100 3.23 • 10"« 6.32 • IQ"» 1.74 IQ"» 2.14 -10-»
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13. Zusammenfassung

Abschliessend wollen wir versuchen, die wichtigsten Ergebnisse
der vorliegenden Arbeit zusammenzustellen.

Die Aufgabe, die uns gestellt wurde, bestand aus zwei Teilen.
Einmal war ein neues Glättemass zur Beurteilung der Glätte einer
Reihe zu definieren, das nicht mehr mit den Mängeln des klassischen
Masses behaftet ist. Sodann war eine Methode auszuarbeiten, die es

erlaubt, mit Hilfe des Differenzengleichungsverfahrens (DGV) unter
Verwendung des neuen Glättemasses rohe Daten auszugleichen.

In der neuen Definition des Glättemasses für Reihen, die wir in
dieser Arbeit entwickelt haben, sind die Nachteile des klassischen
Masses weitgehend ausgemerzt worden. Soweit wir das nach den

durchgeführten Überlegungen und Beispielen beurteilen können, ergibt
das neue Mass in seiner allgemeinsten Form vernünftige Glättewerte.
Es hat sich gezeigt, dass die Ergebnisse der klassischen und neuen
Definition im Versicherungswesen zu einem überwiegenden Teil über-
einstimmen. Für die in diesem Gebiet seltenen Fälle, wo diese Gleich-
lieit nicht gilt, erfordert die Berechnung der Glätte mit dem neuen
Mass erheblich mehr Aufwand als mit dem klassischen.

Bei der Beurteilung des DGV unter Verwendung des neuen
Glättemasses müssen wir zwei Fälle unterscheiden:

1. Die maximale Änderung der Ordinaten von zwei aufeinander-
folgenden rohen Punkten, Max (IzlyJ), ist klein gegenüber 1:

£
Die ausgeglichenen Werte ergeben sich auf einfache Art als ein-

deutige Lösung eines linearen Gleichungssystems. Die durch-
geführten Berechnungen anhand der Sterbetafel SM 1939/44
haben gezeigt, dass dieses Verfahren im allgemeinen eine gut
ausgeglichene Reihe liefert. Die so gefundenen Werte sind im
Altersbereich 3 bis 75 der offiziellen Reihe sogar überlegen.

2. Max zly^ ist nicht klein gegenüber 1 :

£

Die Lösung der Minimalbedingung des DGV ist nur auf nume-
rischem Wege mit Plilfe eines Computers möglich. Obwohl wir
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damit vernünftige Ergebnisse erzielt haben, wird das DGV in
diesem Falle für die praktische Ausgleichung wohl wenig Bedeu-

tung erlangen, da andere Ausgleichsmethoden, die erheblich
weniger Rechenaufwand erfordern, zu gleichwertigen Resultaten
führen.

Wohl kann das DGV in seiner allgemeinsten Fassung den ver-
schiedensten Ansprüchen, die man an eine ausgeglichene Reihe stellt,
gerecht werden; vielfach wird aber die richtige Wahl der Gewichte

grosse Schwierigkeiten bereiten.
Von den beiden dargestellten numerischen Methoden zur Lösung

der Minimalbedingung des DGV ist das gesteuerte Linearisierungsver-
fahren dem gemischten A'erfahren überlegen, da es in wenigen Schrit-
ten und in verhältnismässig kurzer Zeit zur Lösung führt. Der einzige
Nachteil gegenüber dem gemischten Verfahren hegt darin, dass das

gefundene Minimum nicht unbedingt im gleichen «Tal» hegen muss
wie der Ausgangspunkt.
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Résumé

Le «lissage» est un critère important lorsqu'il s'agit, de juger la qualité de

l'ajustement d'une suite. La méthode habituelle pour déterminer le lissage d'une
suite sur la base des différences du troisième ordre - ou d'un ordre plus élevé -
ne conduit pas toujours à des résultats acceptables. A l'aide de la nouvelle défini-
tion introduite par l'auteur d'une mesure pour le lissage on arrive à éliminer
grandement les défauts de la méthode «classique»; les résultats selon cette méthode
et la nouvelle coïncident en grande partie. Un ajustement - au moyen d'équations
aux différences finies - permet d'essayer pratiquement la nouvelle notion de

mesure. Le problème de minimum à plusieurs dimensions, rencontré lors de cet

ajustement, est résolu à l'aide de deux calculs numériques exécutés sur im com-
puter du type IBM 1620. Les calculs (table de mortalité SM 1939/44) montrent que
la nouvelle mesure pour le lissage donne en général des valeurs acceptables.

Summary
' Smoothness ' is an important feature in order to appreciate the graduation

of a set. The common method to determine the smoothness of a set and which
makes use of the third and higher differences, does not always lead to rational
results. In a new definition of the measure of smoothness, most disadvantages of
the 'classical' procedure are eliminated, the results obtained through the classical
method and the new mostly concur. The new measure of smoothness is tested in
practice with the use of a graduation process (difference equation process). The
solution of the problem which then appears, a problem of minimum in several
dimensions, is found with the use of two numerical calculations performed by a

1BM-1620 computer. The calculations (mortality table SM 1939/44) prove that
the new measure of smoothness would generally give reasonable figures.

Riassunto

Una caratteristica importante per l'apprezzamento della perequazione in ima
serie è la «levigatezza». Il metodo usuale per determinate la levigatezza di una
serie e che si basa sulle differenze di terzo grado o più, non conduce sempre a dei

risultati ragionevoli. In una nuova definizione della misura di levigatezza i svan-
taggi del procedimento «classico» vengono in gran parte eliminati, i resultati
secondo il metodo classico ed il nuovo concorrono in buona parte. La nuova misura
di levigatezza viene messa praticamente in prova secondo un processo di perequa-
zione (processo dell'equazione di differenze). La soluzione del problema che inter-
viene, problema sul minimo in più dimensioni, segue con l'aiuto di due calcoli
numerioi che sono eseguiti da un computer del tipo IBM 1620. I calcoli (tavola
di mortalità SM 1939/44) mostrano, che la nuova misura di levigatezza fornisce

generalmente dei valori ragionevoli.
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