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On certain integrals involving @, ,(x)

By B. Singh, Pilani ( Rajasthan), India

Summary

In this paper, the author has evaluated @, ,(z) transforms of a number of
functions making use of the self-reciprocal property of some functions.

1. Introduction: The function @, ,(x) has been defined as

o0

. . 1N dt
Bual) = Y& | T, (at) T, t)t, R(up) = — 1. (1.1)
: L,

The integral on the right was first evaluated by Rao [4] and that
it plays the role of a transform was conjectured by Watson [6]. Later,
Bhatnagar [1] proved in detail that it plays the role of a transform.
He also indicated the following properties of the function:

(l) ‘u b( ) 1, y( ) 2
( ) wv—l L( ) ’v—-I( 1;] .CL') ’
(i) @,,(x) = 0@ "} "), when z is small,

= O(a™ i), when z is large.

The object of the present paper is to obtain certain integrals
involving the function @, (r). The paper is in continuation of my
paper [5].

2. We have [3, pp. 368, (34)]
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On multiplying both sides by a’"*@, ,(ab) and integrating with
respect to a between the limits (0, Jo), we Uet

[ere]
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0
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= — f a’ta,, (ab) dafxqm \K (ax)dx
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0 0 '

2 e 1 " “ab
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[The change in the order of integrations is permissible by Fubini’s
theorem provided R(v) > —1].
. ; : ; " :
- mb”'*f:vz"“ Ko (bz) sin (L z) dw, since a*"*Kya) is R, . *)

T
0

Evaluating the integral on the right hand side, we get

[ee]

f T () K, () 3) By (ab) da
0
21Ty + 1) ,
= {nb(va-% W oot bt 1), Bo>—1. @1

Also from (1) we get

*) If f(x) = fma'iy,v(xy) f(y) dy, then f(z) is called R, ,.
0
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the change in the order of integrations is justified.
4 . . . . ;
= _fxzﬁo(a;) sin (2bz) dz, since sin (a) 1s R, ,.

T
0

Hence we obtain

[s20]

o 32
faqu/a)Kl(Va)@M(ab) do = —bsFy(2,2;4;—4b).  (2.2)
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Again, on using the result [3, pp.369, (35)]
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f:): Cos (%) K,(ax)dz = _ga_ Y, (Ja)K,(/a),

0

we get by a method similar to the above

(e}

fav_i Yl(Va’) Kl(VEA) @, ,(ab) da = _‘iv:‘gﬁ_g_—v)'}i Floyw; 53 _%bnz)’
0 R(v) > 0; (2.8)
and o0

f aY,(fa)K (fa)d_, _,(ab)da = EwTEEE (2.4)

0

3. We have [3, pp.344, (34)]

co

f(a:z—l)"}z]v(aw) dr = — %Jﬁ(—;a) Y,,(3a), R(w)>—1.
1
On multiplying both sides by a* @, ;. ;. ,.,4(ay) and integrating
with respect to a between the limits (0,<0), we get
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[The change in the order of integrations is permissible by Fubini’s
theorem provided R(A+v) = 0, Rv—1) = —1, RA) <—1 ]

1

2 .
=~y f 21—ty J (ay) de, since a*J,(a) i5 By g g,prsps [1]
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0
v+4 1 1
IO Lo+ 1)
- sk i/, ¥y FETEETY PRV PO .
V7 @ T+ To+ )T 1) VA Tev e dtod L ¥)

R@A+v) > —1.

{The integral on the right has been evaluated with the help of [3, pp. 26,

Hence we obtain

o0

f@l J{m( ;Cl) Yﬁv(éa) d’)v—l-f&,v—l—-i——&(ay) da
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YTt ot y)
Ve 2°T(A+ 1o +1)I'(v+1)
RB(A+v) =0, Rwo—2) = —1, R@i+v)>—1, RA) < 3. (3.1
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4. We have 3, pp. 385, (12)]
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2a dr -
f cos (; ) [o(@)—Lo@)] = 22}/ @) (2] ).

/

0

Multiplying both sides by @_; _,(ab) and integrating with respect
to a between the limits (0,00), we get

2 f Jo2)/a) Ko2) a)d_y._(ab) da
3 J 2 d
= f By, y(ab) da f (ﬁ) [£o(@)—Lo@)]
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= f[ln(ﬁ) — Ly(7)] ‘d?m f‘z’—}.—é(“b) cos (%) da,
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on changing the order of integrations, which is justified.

— f[jo(x (z)] cos (§ bx)dx, since cos (z) is B_, _,, [1]

T

1
= f sin (u) Ko(5 bu) du,

0

{ & b2 = ‘LB L4
= (1+4)10g( jﬂ +4), on using [2, pp,105, (46)].
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Thus we obtain

o)

e e 2+ (0 + 4)}
Jo2) a) Ko2) a) d_y, _y(ab) da = (b2 +4)"tog |- 7 | . (4.1)
0
By a similar method we can prove that
b+ (b*+4
fJO('ZVa o2) a) @, 4(ab) da = —(b2+4)‘*10 —i2+ﬁ)J (4.2)
7

0
5. We know that 3, pp.347, (52)]

co

/a i dz s -
cos (2— [sin (x) Yo(z) — cos (z) Jo(2)] — = w4/ a) Yy(/a), a > 0.
0
Multiplying both sides by @_, _,(ab) and integrating with respect
to a between the limits (0,00), we get

¥ e f To)/ @) Vo) @) é_, _, (ab) da

f[bll’l (z) Yo(z) — cos (z) Jo(x )]d%fcos (—;;)cb_g,_%(ab) da.

(The change in the order of integrations on the right hand side is
justified).



Hence we obtain
f[sm ) —cos (z) J o(z) ] cos (2bx) dx, since cos (z) is B_; _;.[1]

Evaluating the right hand side with the help of [2, pp.103, (31),
and pp.46, (19)] we have

co

f l/ V“ _3(ab) da = —;ﬁ(b_bz)—%

0

+;;l;[(ﬂbz)‘*log{(l+2b)—21/b+b’} + (b—b¥) Fsin (1—2b)],

O=h=2]. (5.1)
= ;_2 [(b+b%)log{2b+1)—2)/b + b2 }]
“1:2‘ [(bz*b)—%log{(zbml)—QVBé'”_‘”B}], b>1. (5.2)
6. On using the result [8, pp. 346, (51)]
f [sin () Jo(x) + cos (z) Y, ]sm( Qw) dj = nd|/a)Y/a),
o

f (@) Yo() @) &, 4(ab) da
h 1 eo ”

= nf[sin (z) Jo(z) + cos (z) Yy(z ]f—fsin (%) @, 4(ab) da.

[The change in the order of integrations on the right hand side is
justified. ]

f[sm ) + cos (z) Yy(x)] sin (2bz) dz,

since sin(z) is By ;. [1]
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On evaluating the integrals on the right hand side, we get

f Tol) @) Yol @) @y 4(ab) da
0 1 1
= 55 O0 L b og [(26+1) —2)/b 1 8]
1
— 5 (b—=b)tsin T (1-20), O<b<i. (6.1)
7T
1 o\—1 1 - 1 ¥
= Cy. (b—b= ™ 4 ) (b + b3~ *log [(2b + 1) —2(b + b?)*]
1
+ = (0=t~ sin T 2b—1), [ <b<1. (6.2)
T
1
= (b + 0% log [(2b +1) —2(b + b%)1]

1
+ -, (=) log [(2b—1) —2(b2—b)*], b>1. (6.3)

7. We have the result [3, pp.333, (7)]
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Therefore we get
f AT L) J_y(ha) B,y e aa(ay) da
co 1
L
= preesssens | @M. 2 oo ol Sal ‘
Vﬂ F( ér—v) f“ By iy, v 1-40Y) f( %) A08) — e
0 0
1 co

g o o ay
= | "2 dx | T, (a) By gy i | — ) da.
]/_/n [1(; —U)j ( ) j ( ) Atd v+ &( T >

0 0

[The change in the order of integrationb 1s permissible by Fubini’s
theorem provided R(v) > R(A) <—+, B(v+4) >—1, Rv) <+
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Evaluating the integral on the right hand side with the help of
[3, pp.205, (36)], we get

(o]

av+/’l Jv(",]z CL) J—v(%‘“) Cav—i.+§,v+2—-%(a’y) da

0 Q4v+2:1—1 yz O
= (- ,
4 lv—1,204+A— 5, 0+A—5

R@2i+v)<?, Rv+4) >0, 1>RBw+14) =0, Rv) <. (7.1

If we take A = — 29, we obtain

(]

f&_v Jv(flga’) Jwv(;'a‘) ®3v+%,~v—&(a’y) da = — y—v Jv(é y) Yv(_; ”) . (72)

0
In the end, T wish to express my sincere thanks to Dr.S.C.Mitra,

Research Professor in Mathematics, (B.1.T.8.), Pilani, for the help
and guidance in the preparation of this paper.
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Zusammenfassung

In der vorliegenden Arbeit berechnet der Autor &, ,(z)-Transformationen
verschiedener Funktionen. Dabei beniitzt er wesentlich die Tatsache, dass sich
gewisse Funktionen unter dieser Transformation selbst reproduzieren.

Résumé

Dans le présent travail, 'auteur soumet diverses fonctions & la transforma-
tion @, ,(z). Il y utilise principalement le fait que certaines fonctions se reproduisent
par cette transformation.

Riassunto

Nel presente lavoro l'autore calcola @,,,(z)-trasformazioni di differenti fun-
zioni. Egli impiega in modo essenziale il fatto che certe funzioni sottomesse a questa
trasformazione si riproducono da se stesse.



	On certain integrals involving ωμ, v(x)

