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Spezielle Losungen

der erweiterten Erneuerungsgleichung

Von K. Wettenschwiler, Wil (SG)

Zusammenfassung

Nach der Methode der iterierten Kerne werden die Losungen der erweiterten
Frneuerungsgleichung in zwei Spezialfillen exakt hergeleitet (Gesetz von Dormoy,
bzw. Moivre als Ausscheidefunktionen). In einem dritten Fall (Gesetz von Jecklin
und Leimbacher) ist der losende Kern so kompliziert, dass nur der Weg zu einem
approximativen Resultat angegeben wird.

Die erweiterte Ilrneuwerungsgleichung
¢
B(t) — S(t) + [ D) p(t—F) dl: (1)
0

mit S(t) = H'(t) + H(0) po(t)

lisst sich leicht interpretieren: H(t) bezeichne den Umfang einer offenen
(Glesamtheit zur Zeit ¢. Die H(0) Anfangselemente werden nach einer
Awusschesdefunktion py(t) eliminiert, wihrend die neueintretenden Kle-
mente nach einer Funktion p(t) ausscheiden. Die Zahl der gesamten
Fintritte in einem Moment ¢ (bei unserer kontinuierlichen Betrachtungs-
weiso heisst das im Intervall ¢ bis ¢ + dt) nennt man die Erneuerungs-
zahl @(t). Gleichung (1), nach H'(t) aufgelost, besagt nun, dass die An-
derung des Bestandes sich aus den Eintritten minus Summe der Aus-
tritte zusammensetzt. Setzen wir die Kntwicklung des Bestandes und
die Ausscheidefunktion als bekannt voraus, so stellt sich die Aufgabe,
die unbekannte Frneuerungszahl @(t) zu bestimmen.

Nach der mathematischen Gestalt ist (1) eine lineare anhomogene
Integralgleichung vom Volterraschen Typus zweiter Art. Durch sulkzes-
sive Approximation nach der Methode der iterierten Kerne ergibt sich
die Losung

() = S({) + j'S(r) I't -7)dr. 2)
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Der losende Kern, auch Resolvente genannt, 1st
I't—z) = Kit—1) + Ky(t—v) + ..., (3)

wobet sich die K ({— ) nach der Rekursionsformel

14
Kplt—m) = [p—9) Ky -mdy, K (t—y) = pl—y),

berechnen. Wenn geeignete Rechenmaschinen zur Verfiigung stehen,
lagsen sich mit dieser Methode auch numerische Aufgaben anfassen,
withrend die eleganten Lidsungswege mittels Differentiation oder Laplace-
transformation leider oft nur theoretische Moglichkeiten bieten.t)

Bekanntlich kénnen analytische Sterbegesetze um allgemeinen nicht
befriedigen. Hingegen werden Ausschnitte aus der empirischen Uber-
lebensordnung oft geniigend gut durch Funktionsausdriicke wieder-
gegeben. Da in der Praxis vor allem Personengesamtheiten mit Altern
zwischen 20 und 70 (Aktivitdtsspanne) wichtig sind, Lisst sich wohl der
Versuch rechtfertigen, die Frneuerung unter Zugrundelegung einer
analytischen, Ausscheideordnung zu berechnen. Die Neueintretenden
sollen das gleiche Iintrittsalter wie die Anfangsgeneration haben.
Ferner wollen wir ein natiirliches Anwachsen des Bestandes annehmen,
d.h. der Zuwachs soll nach dem Gesetz von Malthus in jedemn Moment
proportional zum jeweiligen Bestand sein.

Wir setzen nun in Gleichung (1) fiir H(t) immer H(f) = ¢!, wiihrend
fir p(t) verschiedene Ausdriicke eingesetzt werden. Aus der Ausscheide-
ordnung p(t) folgt sofort auch die Verweilswahrschewnlichleut

Pll) = l—fp(t) dr.

Im iibrigen nehmen wir an, der Ablauf erfolge stets rechnungsmissig,
d.h. dass die beobachteten Werte mit den ithnen zugrunde liegenden
Wahrscheinlichkeiten tibereinstimmen sollen. Dabei sind die Rechen-
grossen eigentlich Krwartungswerte.

1) Es gei auf die Literatur zur Lisung von Integralgleichungen aus der Iir-
neuerungstheorie verwiesen: H.Schulthess, Volterrasche Integralgleichungen in
der Versicherungsmathematik, Diss. Bern 1935; W.Saxer, Versicherungsmathe-
matik II, Springer-Verlag 1958; u.a.



— 217 —

a) Gesetz von Dormoy P(t) = ™.

Aus P(t) folgt die Ausscheidefunktion

dP(t)
) = — - —=a'lna.
p(t) g7 a'Ina
Die Resolvente zu p(t— 7) berechnen wir durch Addition der iterierten
Kerne
K (t—-7) = (Ina) a7,
!

K,(t—1) = lna)‘a - a0 =) dy = (Ina 2000t _ o
(t=7),

¥ )2
Ky(t— (Ina) ’fa 0 @) (y—7) dy = (Ina)’ ¢ ( ;) ,

n —-(t»t) 7@_ )”"

Kft=1) = (a0

Also nach (3):
(Ina)* (t—7)*

It—7) = (Ina)a ¥ 1—f~ (Ina) (t—7) + i - szl 5

Ii—7) = (Ina) g™ M) — Jng,
Mit dem losenden Kern
I'(t—7) = Ina = konstant

lisst sich jetzt leicht @(¢) bestimmen:

t

bt) = H'() +p(§) + [(H'(z) + p(x)) [(t—7) dx,

D) = ¢'Inc+a ' lna +In af(ct In¢+a" Ina)dr
i

=¢e+a'lna+Inale'—1—a'+1),

@) = ¢'(Ina+1Inc).
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Neben der Frneuerungszahl @(t) operiert man haufig mit der FErneve-
rungsfunktion @(t), die sich aus der Beziehung

D(t) = @(t) H(t) (4)

als Intensitit der Erneuerung ableitet. Die Relation (4) beriicksich-
tigend, erhalten wir in unserra Fall die dusserst einfache Kirneuerungs-

funktion
@(f) = Ina +Ine — konstant.

Wiirde der Umfang des Bestandes konstant bleiben, so wire ['(t—7)
aus Symmetriegriinden, wie ein Vergleich von (1) mit (2) zeigt, schon
die Losung der Iirneuerungstunktion ¢(f). Wir markieren diesen Fall

mit einem Index:
@o(t) = Ina — konstant.

L : ' t
b) Gesetz von Mowre P(t) = |1— :
w
Verniinftigerweise kann sich hier ¢ nur von 0 bis zu einem endlichen
Hochstalter o erstrecken. Die zugehorige Ausscheidefunlktion ist

1
p(t) — = @ = konstant.
w

Summation der iterierten Kerne

K((l—7) =a,
t
K(t—7) = faady = a(t-7),

T

t

t
K,(t—1) = a3f(y——r) dy — a? (

[

2!
t"‘T n—I1
K, (t—7) = a" (t-7)
(n—1)!
liefert die Resolvente
| a(t—1)2
I't—7) =al|l +alt—17) + =) + oo ],

2

It—1) = ae*t™,
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Damit hat @y(f) die Form
polt) = aq', q =

Nach (2) berechnen wir weiter die Frneuerungszahl &(t):

¢
Dty ¢lne +a + fa et () (¢*Ine + a)dr
by

4 t
sctlne+a t+alnee J (e c)" dr + a® e ’e"‘”dr
0 0
.e alnc il alne
¢ (lnc + —- |+ a— —a+a,
Ine—a, Inc—a -
, (In¢)? . — 0P
B(t) - ¢ e .
Inc—a In¢c—a

t

Dividieren wir durch H(¢) == ¢', so prisentiert sich die Frneuerungs-

funktion @(f) in der Gestalt
@(t) = m +nq',

wobei m, n und ¢ Funktionen der am Anfang gewihlten Konstanten
a und ¢ sind:
(In ¢)* a’ e’

N == q =

m — - e )
a—Ine c

A
Inc—a
¢) Gesetz von Jeckln und Levmbachert)

¢

)M 0<t< < oo,
«w

By = (1~—
ist eine Art Kombination der Gesetze von Moivre und Dormoy, die fir
die spesicllen Werte k = 1 resp. @ = oo darin enthalten sind.

Ttiihrten diese beiden Spezialfille, die wir eben in @) und b) unter-
sucht haben, auf erstaunlich einfache Resolventen und entsprechende
Frneuerungsfunktionen g(f), so zeigt sich jetzt, dass schon dieses schein-
bar einfach gebaute P(f) zu Schwierigkeiten Anlass gibt. Der losende
Kern ist schon so kompliziert, dass schnell die Ubersicht verloren geht.

U L. Jecklin und W. Leimbacher: Uber ein Sterbegesetz, welches eine exakte
Darstellung der Leibrenten durch Zeitrentenwerte erlaubt. Mitteilungen der Ver-
einigung schweizerischer Versicherungsmathematiker, Bd.53 (1953).
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[is bleibt somit als einziger Weg die Berechnung einer approximativen
Liosung. Der Praxis ist auch mit einer Naherungslésung gedient, sofern
man nur sicher ist, dass auch wirklich Konvergenz stattfindet. Dass
dies hier der Fall 1st, soll im folgenden gezeigt werden.

Zerst missen wir wieder aus

Plt) = (1— D k!

die Ausscheidefunktion p(f) bestimmen:

k! AN
p(t) = —P'(t) = - —(1— )k Ink
w w
a! Ink
:k‘(- v_lnk) + K ——1t,
w w
g 1 Ink
p(t) = k' (a+0bt) 1), a=|——Ink), b=
1) @

Die Berechnung der Resolvente:
I't—7) = K|(t—7) + K,((—1) + ...,
K\(t—7) = K" (a+b(t—7)),

t
K,(t—1) = j RV [a+bt—y) ] kY [a +b(y—1)] dy,

......

Wegen der Faltung k% kW = k77 ligst sich von jedem K, (t—7)
der Faktor k' abspalten.

It—7) = K (K (t—7) + IG5 (t—7) + ...).

1) Mit dieser Funktion haben I. Jecklin und W.Leimbacher in der zitierten
Arbeit Rentenwerte und Pramien der gemischten Versicherung innerhalb der
Altersgrenzen 20 und 70 berechnet, die mit den nach einer offiziellen 'l'afel gerech-
neten Werten gut {ibereinstimmen (Abweichung ~ 0,5 °/,,). Die Konstanten w
und & hatten dabei die umgerechneten Werte k = 1,0158 und o = 88,2.
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Den Stern lassen wir weg und schreiben fiir K wieder I, .

K,(t—=7) = a +b(t-7),

t

Kyi—7) = [[a+bt—5)][a-+bly—7)]dy
(t—7)®

ey 2
G

= a?(t—1) + (ab + ba) 30 5

]

I{"(t——T) :f[(l +b(t*.y)] [‘ -t ( ; ‘) (y;';r)m + s d?/:

......

Ausmultiplizieren der Integranden und gliedweise Integration fithrt zu
lauter Termen von der Form

¢ 1 :
; (y—o" (t—7)mH!
Ja(...)r m dy:a(...)(m%”!.
oder i
(y—o)™ (t—7)mt2
Jol=9 (o) dy = () '(mjz)w
denn P—

[
’ f— ap M l —_ )
J( y) (y—=)"dy (m + 1) (m + 2)

K, (t—7) ist demnach ein Polynom in (t—7):

2!:7—1 - fe i
K t-7) = S, (_.__‘_T)_ _
T

t=n—1
Die Koeffizienten berechnen sich nach der Rekursionsformel
cm' = aGn—l,a‘—l £ bcn—%,i—i%‘

niy WONIN man sie in
einem Schema nach der Art des Pascalschen Dreiecks zusammenstellt :

Man gewinnt die Ubersicht iiber die Koeffizienten ¢



":r.: \( 33 4 “.1.'
Kyt o D ey e D
K (t—7 ,-;/ \m_.,;/ \‘(‘-&;‘/ (/ \.,,;{'" \(
...... SN SN N N N N
.~ bedeutet Multiplikation mit «,
\, bedeutet Multiplikation mit b,
¢,;: n gibt den Index von K, (t—7) wieder und
. , (t—7)° .
1 gibt den xponenten von L, an, n—1 <1< 2n—1.
2!

Die Anzahl Moglichkeiten zu einemn Punkt ¢,; zu gelangen wird offensicht-
lich durch emen Binomialkoeffizienten gegeben (Galtonsches Brett!).

. ( n ) @O ] << 9p 1.
nt ,b_ (,n’__l) = ==

Die Summe der Exponenten betragt n. Die Kombinationszahlen ent-
nimmb man dem Pascalschen Dreieck.

Setzen wir jetzt in

Iit—1) = K iff,,(t—r) (5)

n=1

fiar I{,, die Potenzreihen ein, so lisst sich (5) als Doppelsumme schreiben :

co  2n—1 g o t—'z’)i
) D NN n ) on—t—i pi—{(n—1) ( g
L) = K73 3 (@ﬂ 1) == )

Die Summationen lassen sich vertauschen:

; 29 t— 'IZ') i il mn L.
I - I.(l——r) Q ( ) \! ( 2n-1-iy z—(n~l)’ 7
(t—1) =k % T @A(n—1))“ ) (7)

A —_ . .
{ ] bedeutet die néichst grossere ganze Zahl =
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I'(t—7) hat in (7) die Form einer Potenzreihe. Iis ist anzunehmen, dass
die Koeffizienten langsamer wachsen als 1!. Die Koeffizienten, will man
sie bestimmen, sind jedoch so kompliziert, dass man schnell die Uber-
sicht verliert.

Versuchen wir, ob es gelingt, wenigstens itber die Konvergenz der
TFunktionenreihe (5) Aussagen zu machen.

(0]

M K, (t—71) Reihe der Funktionen K,,.

n=1

2n—1 ‘L') i

_Kn (t — -g) = Z" (’i_ (’"l )) 21 i) ,(L—T,,,,__

i=n—1 -(n—1 7!
IMiir jedes m > N(t) gilt:
(t—7)""t _ (t—7)"

-t T wl

)

— T
denn 1 > fiir endliches (t—1) und n > N,.
n

Wenn wir beachten, dass nach dem binomischen Lehrsatz

£ % n—1—i pi~(n-1)
n-l=i pisn-1) _ n
i;TzJ—1 (’i“ (n—l)) ‘ (@07

so ist fir K,(t—7), n> N,, folgende Abschitzung statthaft:

o 2n—1
(a+b)" EQnt—) m <K,(t—-1) < (a+b)

(=t
(n—1)! "

Die rechte und die linke Seite streben fiir wachsende n gegen Null und
mit ihnen auch die Funktionen K, (t— 7).

Die Funktionenreihe > K, (t—7) hat die Majorante

S oy [0 DT
n=Ng (n—l)‘.

Diese Majorante konvergiert sicher, denn ihr Restglied R, ist iden-
tisch mit dem Restglied der nach MacLaurin entwickelten Funktion
(CZ s b) 8(0. |- b) (t—1) .
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Nach der Restgliedformel von Lagrange 1st

[(@+b) (t—7)]"

R” pa— (CL SE b) _(,;b__‘_l)_p = ee(a'l' b) U“f)J 0< @ <1,
71
< (a +b) ( kf)T e® < g, fiir n geniigend gross.

Damit haben wir sichergestellt:

Die unendliche Funktionenreihe I'(t—7) konvergiert fiir jedes
endliche ({—7) absolut und gleichméssig.

Nun lisst sich die Reihe gliedweise integrieren und man erhilt @(t) in
beliebig exakter Approximation.

Résumé

Les solutions de 'équation de renouvellernent élargie sont déterminées exacte-
ment — d’aprés la méthode des noyaux itérés — dans deux cas particuliers (loi de
Dormoy, resp. de Moivre comme fonctions d’extinction). Dang un troisiéme cag (loi
de Jecklin et Leimbacher) le noyau résolvant est si compliqué que seule la voie
conduisant & un résultat approximatif est indiquée.

Summary

Using the method of iterated kernels, the solutions of the extended renewal
equation have been exactly worked out in two gpecial cases (law of Dormoy and
Moivre ag eliminate functions). In the third case (law of Jecklin and Leimbacher),
the kernel is so complicated that only the way to an approximate result has been
indicated.

Riassunto

Secondo il metodo dei nuclei iterati, le soluzioni della equazione ampliata di
rinnovamento di una popolazione sono risultate esatte in due casi speciali (regola di
Dormoy, rigp. di Moivre come funzioni di eliminazione). In un terzo caso (regola di
Jecklin e Lieimbacher) il nucleo risolvente & talmente complicato che puod essere
indicata unicamente la via per un risultato approsgimativo.
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