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Spezielle Lösungen

der erweiterten Erneuerungsgleichung

Fori K. JFeffensc/imZer, PFiZ f-SG,)

Zusammenfassung

N"nch der Methode der iterierten Kerne werden die Lösungen der erweiterten

Erneuerungsgleichung' in zwei Spezialfällen exakt hergeleitet ((lesetz von Dormoy,
bzw. Moivre als Ausscheidefunktionen). In einem dritten Fall ((lesetz von Jecklin
und Leimbacher) ist der lösende Kern so kompliziert, dass nur der Weg zu einem

approximativen Resultat angegeben wird.

Die erweiterte Brnewerww(/s(/feic/tMw/

<P(0 S(o + [<P(ft)p(*-fc) dfc (l)
Ô

mit $(f) ff'(0 + ff(0) p,(0

lässt sich leicht interpretieren: H(f) bezeichne den C/m/anry einer offenen

Gesamtheit zur Zeit f. Die f/(0) Anfangselemente werden nach einer

Alttssclteide/wn/dion p„(0 eliminiert, während die neueintretenden Ble-

mente nach einer Funktion p(f) ausscheiden. Die Zahl der gesamten
Eintritte in einem Moment f (bei unserer kontinuierlichen Betrachtungs-
weise heisst das im Intervall < bis < + df) nennt man die ErnewerarM/s-

2«/d 0(f)- Gleichung (1), nach H'(f) aufgelöst, besagt nun, dass die Än-

derung des Bestandes sich aus den Eintritten minus Summe der Aus-

tritte zusammensetzt. Setzen wir die Entwicklung des Bestandes und

die Ausscheidefunktion als bekannt voraus, so stellt sich die Aufgabe,
die unbekannte Erneuerungszahl 0(f) zu bestimmen.

Nach der mathematischen Gestalt ist (I.) eine lineare in/iomo<yeîie

Jnfe(/rof<y/eic/mn</ toto Fofterrascken Ty/pns sweifer Art. Durch sulczes-

sive Approximation nach der Methode der iterierten Kerne ergibt sich

die Lösung

0(f) S(f) + JS(r)r(f -t) (It. (2)
0
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Der lösende Kern, auch Resolvente genannt, ist

/'(<— t) ' T) + — T) + (8)

wobei sich die —t) nach der Rekursionsformel

*

—*) //"•' //MVl/ Ti'///, A', (7 .v; p(f •//),
T

berechnen. Wenn geeignete Rechenmaschinen zur Verfügung stehen,
lassen sich mit dieser Methode auch numerische Aufgaben anfassen,
während die eleganten Lösungswege mittels Differentiation odor Laplace-
transformation leider oft nur theoretische Möglichkeiten bieten.')

Bekanntlich können analytische Sterbegesetze im allgemeinen nicht
befriedigen. Hingegen werden Ausschnitte aus der empirischen Über-

lehensordnung oft genügend gut durch Funktionsausdrücke wieder-

gegeben. Da in der L'raxis vor allem Personengesamtheiten mit Altern
zwischen 20 und 70 (Aktivitätsspanne) wichtig sind, lässt sich wohl der
Versuch rechtfertigen, die Erneuerung unter Zugrundelegung einer

anu/yh'.s'c/ien RMSscZtefdeordrntw/ zu berechnen. Die Neueintretenden
sollen das gleiche Eintrittsalter wie die Anfangsgeneration haben.

Ferner wollen wir ein nnfürZic/tes Hmcctc/fsen des Bestandes annehmen,
d.h. der Zuwachs soll nach dem Gesetz von Malthus in jedem Moment
proportional zum jeweiligen Bestand sein.

Wir setzen nun in Gleichung (1) für f/(f) immer //(<) c', während
für p(<) verschiedene Ausdrücke eingesetzt werden. Aus der Ausscheide-

Ordnung p(<) folgt sofort auch die FerweiZswa/irse/iefwZ'ieAfcefZ

*

P(Z) 1—Jjj(T)dr.
0

Im übrigen nehmen wir an, der Ahlauf erfolge stets rechnungsmässig,
d.h. dass die beobachteten Werte mit den ihnen zugrunde liegenden
Wahrscheinlichkeiten übereinstimmen sollen. Dabei sind die Rechen-

grossen eigentlich Erwartungswerte.

') Es sei auf die Literatur zur Lösung von Integralgleichungen aus der Er-
neuerungstheorie verwiesen: H.Schulthess, Volterrasche Integralgleichungen in
der Versioherungsmathematik, Diss. Bern 1935; W.Haxer, Versicherungsinathe-
matik II, Springer-Verlag 1958; u.a.
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aj Gesete «on Dormo?/ P(<) of'.

Aus P(i) folgt die Ausscheidefunktion

dP(0
p(/) a In a.

Die Resolvente zu p(< — r) berechnen wir durch Addition der iterierten
Kerne

!£,(<-t) (Ina) a~<'~*>,

*

if,(f-r) (Ina)" [a~«^a"'""'' dj/ (Inaf «-<«-*) (*_T),
T

7Rj(f— T) (lna)^ Ta""''""'(•?/—r) d?/ (lna)%r''~d
^ ^

9,

Z„(i-r) (Ina)»a-"-)^_^

Also nach (8) :

P(f-r) (lna)«"l'~^ 1 + (Ina) (f-r) + ^
+

P(f-r) (lna) e<'°= Ina.

Mit dem lösenden Kern

P(< —r) Ina konstant

lässt sich jetzt leicht 0(f) bestimmen:

0(0 H'(0 +p(0 + J(H'(t) + p(t)) P(f — t) dr,
0

0(<) c' In c + a~' In a + In a J (c* In o + a~* In a) (Zr

0

c' In c + a~' In a + In a(c' — 1 — a~' + 1),

0(0 c' (In a + In c).
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Neben der Erneuerungszahl <?(/) operiert man häufig mit der ßrneue-

rwi(/.s'/Mw/chVrti 9?(<), die sich aus der Beziehung

0(0 99(0 H(0 (4)

als Intensität der Erneuerung ableitet. Die Relation (4) berüoksich-

tigend, erhalten wir in unserm Fall die äusserst einfache Erneuerungs-
funktion

9?(0 ^ Inn +lnc — konstant.

Würde der Umfang des Bestandes konstant bleiben, so wäre /'(< —t)
aus Symmetriegründen, wie ein Vergleich von (l) mit (2) zeigt, schon
die Lösung der Erneuerungsfunktion 99(0. Wir markieren diesen Fall
mit einem Index:

99„(0 In n konstant.

Gesete row Mowre P(0 - ^1 —

Vernünftigerweise kann sich hier < nur von 0 bis zu einem endlichen
Höchstalter co erstrecken. Die zugehörige Ausscheidefunktion ist

/j(0 a konstant.
CO

Summation der itorierten Kerne

/v\(< — r) o,

r) Jaady a-(< — r),
I

A's(<-r) cHj (.9 -r)cZ;/ - a»

r

*„(< -T) =a» ;(«-!)!

liefert die Resolvente

/ Ï/ -r) -= a

P(<-r)

a^(£ —r)-
l -h a(Z —t) + ^ +
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Damit hat die Form

V oO « 2'- 2

Nach (2) berechnen wir weiter die Erneuerungszahl <P(f) :

#(<) ^ c' In c -b a + Ja c"(c* In c + a) dt
0

: c' In c -h a + a In c J (e~* c)* dr + rr e"' | <T" dr
0 0

/ a In c \ / a lnc \
c In c + + e"' a - — « 4- «

In c - a / \ In c — a

(lncü — <ü
<P(f) - c -1- e

lnc-a In c-a
Dividieren wir durch H(f) c', so präsentiert sich die Erneuerungs-
funktion 99(f) in der Gestalt

99(f) ra F n 9',

wobei m, « und c/ Funktionen der am Anfang gewählten Konstanten

ci und c sind :

(In c)2 a" e®

w - w '/
lnc— a a —Inc c

c,) Gesefz row Jcc/c/m wwd Lewwbac/ter *)

P(f) j I )/c', 0^f^O)<oo,
V CO /

ist eine Art Kombination der Gesetze von Moivre und Dormov, die für
die speziellen Werte fc 1 resp. or 00 darin enthalten sind.

Führten diese beiden Spezialfälle, die wir eben in cgi und unter-
sucht haben, auf erstaunlich einfache Resolventen und entsprechende
Erneuerungsfunktionen 99(f), so zeigt sich jetzt, dass schon dieses schein-

bar einfach gebaute P(f) zu Schwierigkeiten Anlass gibt. Der lösende

Kern ist schon so kompliziert, dass schnell die Übersicht verloren geht.

') EI. Jecklin und W.Leimbacher: Über ein Sterbegesetz, welches eine exakte

Darstellung der Leibrenten durch Zeitrentenwerte erlaubt. Mitteilungen der Ver-

einigung schweizerischer Versicherungsmathematiker, Bd.53 (1953).
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Es bleibt somit als einziger Weg die Berechnung einer approximativen
Lösung. Der Praxis ist auch mit einer Näherungslösung gedient, sofern

man nur sicher ist, dass auch wirklich Konvergenz stattfindet. Dass

dies hier der Fall ist, soll im folgenden gezeigt werden.

Zuerst müssen wir wieder aus

P(0 (I.
'

)/.'
\ /

die Ausscheidefunktion y(<) bestimmen:

/c< / Z \
p(*)=_P'(j) - —(1— /c'lnfe

a> \ CO /
/ 1 \ In /c

/r — In 7c + 7c f,
\ CO / CO

/ l \ In fe

p(f) 7c (a + *), o In 7c fc

\ CO / CO

Die Berechnung der Resolvente:

P(< —r) —r) + ^(f — T) +

fc<'-">(a + &(<-T)),
*

/^(Z-r) + 6(<—î/)] + 6(î/—r)] dt/,

r) Jfe<

Wegen der Faltung 7c" 7c" lässt sich von jedem FT„(Z-t)
der Faktor 7c"~*' abspalten.

P(Z-t) (Kt(W-r) + Äj(i-r) +...).

*) Mit dieser Funktion haben H. Jecklin und W. Leimbaoher in der zitierten
Arbeit Rentenwerte und Prämien der gemischten Versicherung innerhalb der

Altersgrenzen '20 und 70 berechnet, die mit den nach einer offiziellen Tafel gerech-
neten Werten gut übereinstimmen (Abweichung - 0,5 %„). Die Konstanten tu

und /c hatten dabei die umgerechneten Werte /c 1,0158 und to 88,2.
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Den Stern lassen wir weg und schreiben für i£* wieder Iii,,.

—t) a + fe(£ —r),

K ,(£-r) J [a + &(t-0)][a + fe(t/-T)]dj/
T

- «=((-»)+ («!> + !><>)
<'"*>'

+ *?-*
2! 8!

=J [« + & (£ — /y)]
m!

Ausmultiplizieren der Integranden und gliedweise Integration führt zu
lauter Termen von der Dorm

]«(...) dy «(...)

oder

denn

(m +1)

y D"

(m + 2)

J (*-2/) (:</-T)'"dy
(£ —t)"'

'

(m + 1) (m + 2)

K„(£ — r) ist demnach ein Polynom in (f — r):

2k-I P-rP^-T) *

l 71—1 •

Die Koeffizienten berechnen sich nach der Eekursionsformel

C«; ac»-i,t-i + K-i,i-2-

Man gewinnt die Übersicht über die Koeffizienten c„;, wenn man sie in
einem Schema nach der Art des Pascalschen Dreiecks zusammenstellt:
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Zi(i-T):

*s(<-T): N'/ N,^ N,,
A'r' o: N,K^ Nt„
/^(i-r): r.f X'"^ X'*^ ^X'"^ "Xx X*

® ^
^ •>' M >5« > 57 /'Afl XfiO

bedeutet Multiplikation mit a,

X* bedeutet Multiplikation mit 6,

c„;: rt gibt den Index von /v„(f — r) wieder und

(< — r) '
I gibt, den Exponenten von an, «•—1 < I <1 2«—1.

^

Die Anzahl Möglichkeiten zu einem Punkt c,,,- zu gelangen wird offensicht-
lieh durch einen Binomialkoeffizienten gegeben (Galtonsches Brett!).

c,„. f. X w — 1 < i < 2n —1.
U-(w-l)/

Die Summe der Exponenten beträgt m Die Kombinationszahlen ent-
nimmt man dem Pascalschen Dreieck.

Setzen wir jetzt in
oo

r(t-r) (5)
»1=1

für A'„ die Potenzreihen ein, so lässt sich (5) als Doppelsumme schreiben :

co 2« 1 / -M \ 7X *

/'(/ r) A"«V V » ' (6)

Die Suminationen lassen sich vertauschen:

r(t-r) S /" nV"(7)' i=o »! \»-(»-l)/

fi + 'LI i H 1

j bedeutet die nächst grössere ganze Zahl ^2 2
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jT(< —r) hat, in (7) die Form einer Potenzreihe. Es ist anzunehmen, dass

die Koeffizienten langsamer wachsen als i!. Die Koeffizienten, will man
sie bestimmen, sind jedoch so kompliziert, dass man schnell die Über-
sieht verliert.

Versuchen wir, ob es gelingt, wenigstens über die Konvergenz der
Funktiononreihe (5) Aussagen zu machen.

V jf^ (< — t) Reihe der Funktionen if„.
n=l

Für jedes « > A'o(<) gilt:

(< —r)"

(w — 1)! ^ n!

£ — T
denn 1 > für endliches (£ —t) und n > AA.

Wenn wir beachten, dass nach dem binomischen Lehrsatz

so ist für if„(£ — t), w> JVo, folgende Abschätzung statthaft:

Die rechte und die linke Seite streben für wachsende w gegen Null und
mit ihnen auch die Funktionen 7f„(£ — r).

oo

Die Funktionenreihe if„(t —r) hat die Majorante
)i Afo

V(„.j) [(« + ')
n JV„ (W —1)!

Diese Majorante konvergiert sicher, denn ihr Restglied /»'„ ist iden-
tisch mit dem Restglied der nach MacLaurin entwickelten Funktion
(ci + fo) el"'"»"-).
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Nach der Restgliedformel von Lagrange ist

f(a + &) (< — T)]""'"'-
Jî„ (a + t)

L
— 4 ^ / J

e®<" '*' <'-*>, 0 < 0 < 1,
(w + 1)

'

g" i-i

< (a + 6) e° < e, für w genügend gross.
(n +1)

Damit haben wir sichergestellt:

Die unendliche Funktionenreihe /'(£ —t) konvergiert für jedes
endliche (< — r) absolut und gleichmässig.

Nun lässt sich die Reihe gliedweise integrieren und man erhält in
beliebig exakter Approximation.

Résumé

Les solutions de l'équation de renouvellement élargie sont déterminées exacte-
ment - d'après la méthode des noyaux itérés - dans deux cas particuliers (loi de

Dormoy, resp. de Moivre comme fonctions d'extinction). Dans un troisième cas (loi
de Jeckliu et Leimbacher) le noyau résolvant est si compliqué que seule la voie

conduisant à un résultat approximatif est indiquée.

Summary

Using the method of iterated kernels, the solutions of the extended renewal

equation have been exactly worked out in two special cases (law of Dormoy and
Moivre as eliminate functions). In the third case (law of Jecklin and Leimbacher),
the kernel is so complicated that only the way to an approximate result has been

indicated.

Riassunto

.Seconde il metodo dei nuclei iterati, le soluzioni della equazione ampliata di
rinnovamento di una popolazione sono risultate esatte in due casi speciali (regola di
Dormoy, risp. di Moivre come funzioni di eliminazione). In un terzo caso (regola di
Jecklin e Leimbacher) il nucleo risolvente è talmente complicate che pub essere
iudicata unicamente la via per un risultato approssimativo.
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