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A Theorem in Opcrational Calculus

By R.S. Dahiya, Pilani ( Rajasthan), India

Summary

The author proves a theorem in the field of Laplace transformations. Two

examples show the possible applications.

1. Introduction. The integral equation

(o9}

Bp) = p ‘['a—”‘f(l) di, R(p)>0. (1.1)
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represents the classical Laplace transform and the functions @(p) and
f(t) related by (1.1), are said to be operationally related to each other.
®(p) 1s called the image and f(t) the original. Symbolically we can write

b(p) = [(t) or () = @(p).

The transforms, we have dealt with, are either the Hankel transform
or another transform in which the kernel is designated by @ , (), where

oo
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The integral on the right was first evaluated by C.V.H.Rao [1] and
that it plays the role of a transform was conjectured by Watson [2].
Later on Bhatnagar has proved in detail that it plays the role of a
transform. In this paper, we make use of Goldstein’s theorem [3]

as follows:
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Let (1) Dy(p) = fi(1),
(it) Dy(p) = fo(t),

then after applying Goldstein’s theorem, we geb

where @(p) is the image and f({) 1s the original.

2. Theorem. Let

(1) w(p) = f(x),
(ii) () be R
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provided f(z) is absolutely integrable in (0,cc), t" 74 f(£) and a** f(x)
are integrable in (0,c0), and B(u) = —, B(v) = —,, B(A+2) = 0.
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By putting m = p—24+ } and then evaluating the integral, we get
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On writing t for x we have
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Also from (D), (ap)r—*+t @, (ap) = I c::) (D)

Applying Goldstein’s theorem to (C) and (D), we get

[f ) (at) l,(nt) j p(t) k“‘(;) Cit. (2.8)

On writing = for a and multiplying by «* to both sides, it follows
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Interpreting with the help of (A), we get
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If ¢4 i(t) is R

we obtain the required result.

1,7
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3. ixample 1. Let L sgac _
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4. Iixample 2. Let
e L) be R
bhen f(f) = "ML K (f)
sm[n + A+ D) ] L'(4 k2)
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I am thankful to Prof. S.C. Mitra and Dr. B. Singh for their kind
help and encouragement in the preparation of this paper.
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Zusammenfassung
Der Autor beweist einen Satz aus dem Gehiet der Laplace-T'ransformationen
und illustriert ihn an zwei Beigpielen.
K Vi »
Résumé

Dans la présente note, 'auteur établit un théoréme appartenant & la trans-
formation de Laplace et en donne deux applications.

Riassunto

L’autore prova un teorema riguardante la trasformazione di Laplace e ne da
due egempi.
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