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Uber die veralleemeinerten Teste
8
von Kolmogorov und Smirnov fiir unstetige Verteilungen

Von Mohamed Abdel-Hamid Taha, Alexandrien

Finfithrung
X, Xy, oo, Ayund Yy, Y,, ..., Y, seien zwel Folgen von unab-

hingigen Beobachtungen, die einer Grundgesamtheit, die nach einer
und derselben Verteilungsfunktion (= Vi) I'(z) verteilt ist, entnom-
men sind.

Sei ky(x) die Anzahl der X, die kleiner als x sind, dann ist

k()

Snlu) == 22 L 0.1
die empirische VE. der 1.1olge. Analog st
’ /‘:Py (‘L)

Tola) =" 0.2

wobet ky,(x) die Anzahl der Y, die kleiner als a sind, die empirische
VE. der 2. Folge.
Glivenko zeigte 1im Jahre 1933, dass
te} )
. o g : . ¢
lim P[sup Sy(x) —-—-F(:L)‘» U] = &, 0.3
N-co T
Dieser Satz hiitte nur theoretische Bedeutung, wenn nicht von Kolmo-
gorov [14] im gleichen Ileft bewiesen worden wiire, dass

lim P[sup N* Sy(w)—1'(x) < A] = D} (=)™ exp{—2m?42}, 0.4

N->oco T —o0
ganz unabhingig von I'(z), wenn ['(z) stetig ist.

Diese Arbeit von Kolmogorov war — und ist bis jetzt — der Aus-
cangspunkt vieler Untersuchungen. Wir konnen hier nicht alle diese
Untersuchungen aufzithlen, jedoch wollen wir die Hauptrichtungen
zitleren:

10
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1. Es wurden von Smirnov analoge Testfunktionen vorgeschlagen, um
die Homogenitit zweier ['olgen von Beobachtungen zu priifen, nim-

lick ' |
e Dyy = sup [ NM | (N+M) | Sy(a) — Ty ()] 0.5

und Dify, = sup [/ NM | (N-I— l‘/[)r [Sy() =T ()] Vb

2. Iis wurde versucht, die Wirksamkeit dieses Tests zu verbessern,
indem man eine Gewichtsfunktion hinzufiigte. Darling und An-
derson [1] haben Testfunktionen von der Form:

sup N* Sy(z)—F(x) | (F(z)) 0.7

untersucht. Rényi [17] untersuchte die Verteilungen der Grosse
sup N¥| Sy(x) —F(x) | | F(z) 0.8

und analoger einseitiger Testfunktionen.

3. Die exakte Verteilung fiir endliches N wurde auch untersucht:
Birnbaum und Tingey [2], Gnedenko und Koroljuk [11] und viele
andere haben einige Resultate in dieser Richtung erhalten.

4, Fin analoger Test mit einem Parameter wurde auch behandelt:
Gichman [9] untersuchte die Verteilung der Grosse

sup N*‘SN(;L')-«F(:B,()) , 0.9
T

wobei 0 ein Parameter ist. Darling [4] hatte auch auf die Moglich-
keit eines solchen Tests hingewiesen. Die beiden haben aber auch
bemerkt, dass einfache Sitze in dieser Richtung fehlen.

Die grosste Bedeutung dieses Tests beruht darauf, wie oben schon
erwihnt, dass die Verteilung dieser Testfunktion von I'(z) unabhingig
ist, wenn nur F'(x) stetig ist. Diese Voraussetzung wurde immer formu-
liert, bis P.Schmid [19] — nach einem Vorschlag von W.Saxer — eine
wichtige Verallgemeinerung dieser Sitze gefunden hat. Schmid konnte
némlich die Verteilung der beiden Grossen Dy und Dy fiir unstetige
VE. herleiten. In diesem Fall sind aber die Verteilungen nicht mehr
universal, in dem Sinne, dass sie von I'(z) unabhingig sind; vielmehr
hiingen sie von den Werten der VE. bei den Sprungstellen ab. Diese
Werte sind aber meistens nicht bekannt, und wir miissen sie schitzen.
Dann stellt sich die Frage: Wie sind die Verteilungen der Testfunktionen
in diesern Fall beschatfen ?
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Wir geben unter Abschnitt I die Verteilungen analoger Testfunk-
tionen an, die sich besser fiir unsere Zwecke eignen.

Iis fragt sich auch, welche Schétzungen man fir die Werte der
VE. bei den Sprungstellen anwenden kann.

In Absehnitt IT wenden wir die Methode der Maximumlikelihood
an, um Schitzfunktionen fir diese Werte zu erhalten, und zeigen, dass
diese Schitzfunktionen mit den Werten der empirischen VE. ber den
Sprungstellen @tbereinstimmen. Dazu werden die Eigenschaften dieser
Sf. niher untersucht.

In Abschnitt 11T geben wir die Verteilungen der beiden Grossen
0.5 und 0.6 fiir unstetige V. fiir endliches N, wenn N = M ist. Die
Grenzverteilungen sind ebenfalls dargestells.

Fine gewisse Verallgemeinerung des Smirnov-Tests, nédmlich:

Dynlag ) = sup N /2 |Sy(@)—Ty()], 0.10

o = F(x) <o
Dyy(ety %) = sup VN/Q[SN(QJ)—TN(C’J)] 0.11
oy = () oty
wird in Abschnitt IV untersucht. Die Verteilungen fiir endliches N und
die Grenzverteilungen werden bestimmt. Anderson und Darling [1]
gaben die Verteilung des Kolmogorovschen Analogons fiir 0.10,
Kwit [16] untersuchte diesen Fall, fand aber andere Resultate fitr den
zweiseitigon Toest.

Der Bewets der ersten zwet Sitze beruht auf einem Lemma von
Kolmogorov. Finen anderen Beweis mit Hilfe der stochagtischen Pro-
zesse habe ich hier nicht zusammengestellt,

I'ir den Bewets der Theoreme in Abschnitt 11T und IV habe ich
eine Verallgemeinerung des Spiegelverfahrens, das zum erstenmal von
Gnedenko und Koroljuk [12] beniitzt wurde, angewendet.

I. Der Kolmogorov-Test fiir eine unstetige Verteilungsfunktion,
wenn die Werte der Vf. bei den Sprungstellen geschitzt werden

F(z) sei eine V1., die tiberall stetig ist, ausser bel z,, z,, ..., z
wo sie in der folgenden Weise definiert wird:
Ple,—0) = fy,4, v=1,2,...,0+1,
) =ty poe= 0 1y B sneptyy; 1ad
und dabei st f, =0, f,,., = 1.

n
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Sy(z) sei die empirische VE., [/(z) seil die theorctischo VE. mit den
geschitzten f:5 d.h. angenommen sei, dass die analytische Form der
F(x) bei den stetigen Stellen bekannt ist, und die f; irgendwie geschiitzt
sind. Die Testfunktionen werden leicht gedindert. Betrachten wir die
beiden Grossen:

Dy — sup N Sy(@) —Fi(a) |,
D = sup N*[Sy(a) —F(x)]. 1.2
Wir behaupten: ’
Theorem 1
Falls wir die f; in folgender Weiso schitzen:

f_Zv—l = SN(wv_O) )
L, = Sy(x), v=1,%2,...,n, 1.8
dann gilt

lim P[Dy< 4] = L(4), 1.4
wobel o
L)y =[] [ N (1) exp {(——‘277&3/12)/32”_1}| 1.5
nﬁt v=0 Lm, co

S = fi—frts 1= 1,2 .., 2041, 1.6

Theorem 2

Mit den Schitzungen 1.3 gilt:

lim P[Df < 1] = Lt (), 1%
N-co
wobet
n o 1
Ly = JT] S om exp (—@m? AZ)/SZ,,_{_i}]. 1.8
y=0

my,=0

Die s; sind wie in 1.6 definiert.

Wir nehmen an, dass f,,,. > fo,, v =0, 1, 2, ..., n; jedoch diirt-
ten schon einige — oder alle — s,, | gleich Null sein. Die entsprechenden
Taktoren in dem Produkt 1.5 oder 1.8 werden dann gleich 1 sein.
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Wenn wir annehmen, dass die analytische Iform der Vi. bei den
stetigen Stellen bekannt ist, dann konnen wir sie in der folgenden Weise

schreiben: _
() = fo, + (foupr—fo) @,(2), @, =0<wm,, 1.9
y=0,1,..., n,
wobel @, (x) alle stetig sind und

1) lim @y(z) = 0,
i) ®,(0) =0,
1i1) D(z,.,—0)=1. 1.10

Diese Schreibweise der V. hat den Vorteil, dass F(z) als Funk-
tion und sogar linear und sbetig in Abhingigkeit von den f; dargestellt
werden kann, Sind nun f; die richtigen Werte und f,- wenig verschieden
von f; dann haben wir

I'(x,f) = . f

wobei f: (fosfu "':f2n+1)’ f=(f fi> ---’on-[-x): d.h.
- _ 8F f _ oF
af2u va 3””‘ -3”"1 ()va—l-l

1.11

1.12

wf2v-t-1

T, =<,y v=01,...,m

Wenn wir die f,- als die Schiitzungen fiir die f; iibernchmen, so wird
I'(z,f) = IF(z) und einfache Rechnungen ergeben:
’ (33) - f?.v

—I'(x)
+ (Foppr—farit) ————, 1.18

SZu—I-l 2y 1
T, =< T, =012 ...n

F(-’)—F + fzp fs,) fars

Eine fundamentale Transformation ist
u = I(x). 1.14

Diese Transformation éndert nichts an der Grosse Dy, Dy w selbst ist
eine Zufallsgrosse, mit der VE. FO(z), die folgendermassen definiert ist:

0 u =<0
g | eSSk, =0l
f2v-—l va-—1<’u’< va’ T — J', 2, .

1 u =1 1.15
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Die entsprechende empirische VE. ist, wie man leicht sehen kann,
SS(u) = Sy(z). 1.16

Sei I die Vereinigung aller geschlossenen Intervalle (f,,,/,,.1),
v=20,1,2, ..., n, dann erhilt man mittels 1.11 bis 1.16 folgendes:
favit=% 7 U~ fy,

- (f2r~!—1 “fzu—H)

Sav 1 “av it |

1.17

Die f; kann man nach vielen Methoden schiitzen, die Schitzungen

1.3 haben jedoch erhebliche Vorteile; setzen wir diese Schittzungen in
1.17 ein, dann bekommen wir:

| Sy() == (fo,~ )

P[Dy<A]=P|sup /N <ﬂl :

uer

P[Dy< 2] = 1.18

. 7 INT 0 ’ J0 /. ; f2u-}-1_u Sl) u‘]‘z,, w

¥ SU}) I/ 1\7 | SN(’LL)'—M— ("SN(f:Zr) _f2v) . - ( N(f2r' |—l) “f2v+l) . | < l :
wel Sopit Soyp1

Sei nun I{ =[k,=0,1, ..., k;, ky, ky+1, ..., ky,,, = N| die Menge
aller Zahlen 7, so dass j/ N €[; ferner sollen die k; so ausgewihlt worden,
dass k; [ N-f;, wenn N gegen co strebt. Dann sei noch:

d; = k;—k;y, A@) = SY(G/N)—j|N 1.19
und - 1—ky,
Yyl = A() — 227 A,y — 1 A, 1020
a1 tlyy 1.1
Betrachten wir die Wahrscheinlichkett:
P[m:k\ Y| < AN 1.21
j

Wir definieren [4;, als das reignis
1) alle die Ungleichungen:

Yy() | <ANT, j=k ek, ke,
sind erfiillt, und Y| ) == ]

1) A(k) = i/N.
Sei P, = P[Ii,;], dannist Fy, =1,
g =0, fiir 2 = 0, 1.22

und F,y ist die gesuchte Wahrscheinlichkeit in 1.21. Diese kann man
mit den Randbedingungen 1.22 und der Rekursionsformel:

] . \'p. p .

Py, = 2 Po P[Iiy, ([By]  errechnen.  1.23

7
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Wir kénnen die Formel 1.23 in zwel Formeln zerlegen. Wenn wir
— der Kinfachheit halber — schreiben

E?'v’fv = E',,, 1.24
‘Pjvk,, = Pv’
bekommen wir nach 1.923:
‘P29 = 2 I)Zv—l IJ[EE;’/]EED—J’ 1 . 25
j‘c‘.v—l
By = E By, P[B,, /By, 1.26
Jop

Das Hireignis I4,, hat aber die Bedeutung:

1) alle die folgenden Ungleichungen sind erfiillt
Y| < AN, j=hy,, jek,
dazu 1i) Alkey,) = 75, N,

Wenn wir bemerken, dass Y(k,,) = 0 fiir alle 4, so dass 4 (k,,) = 2/N,
dann sehen wir, dass Ky, bedeutet:
1) alle die Ungleichungen
‘YN(])‘ < }'N“%’ J = hgq, el
sind erfilllt und
i Alky,) = oy N
Man sieht dann, dass das Freignis [F,,/F,, ] dem Kreignis
[A(ky,) = Jo, /N [ A(kg, ) = Jopq /N] dquivalent ist, also kénnon wir
1.25 so umschreiben:
By, = Z By P[A(ky,) = 'jzva/A (Kgpt) = Jaq [N],  1.27
12y-1
und weil Yy(k,,,) = 0 fir alle v, so dass A(k,, ) = /N, miissen wir
tiber alle moglichen Werte fiir 7,, , summieren.
Die bedingte Wahrscheinlichkeit in 1.26 kénnen wir wie nach-
stehend schreiben:

P By, 1| By) = Py P[A(ky, 1) = fopips [N [ Ak,) = 5,/ N], 1.28

wobel

P} = P[|Y,()| < AN 1.29
7= kgy g+ 1y ooy Kgyy / Alkgyyq) = Joup1 /N, A(ky,) = jz»/N]
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oder, was dasselbe 1st:

, ol Fewri—7 Ja TNy Ty
1)* - P :14 N 2v-1 ! 2v - 2y J2v41 | < AN—%’
’ (j) dZv—l— L N d‘ZVFl N 1[

'j :]ﬁ,‘zv, ’{:21’_'—1’ ""k?.v-l—l . 1.80
Damit wird 1.26

By = Z, Py By, P[A(kgyry) = fovsa /N [ A(ky,) = fp, /NT; 1.81
12y
auch hier wird itber alle méglichen Werte fiir 5,, summiert, weil
Y y(k,,) = 0 fiir alle 2, so dass A(k,,) = ¢/ N.
Wenn wir die IPormeln 1.27 und 1.81 kombinieren, erhalten wir
fiir die Wahrscheinlichkeit F,y folgendes:

PON = Z; . :_‘J I{ P: P[A(kzv—}-ﬂ = jzv‘}-l/N/A(kh) = jzu/N]
Jo ee danpr L=
« P[A(ky,) = jou | N [ A(kyp) = Jo [N];. 1.32
Gremiigs der Binomial-Verteilung gilt:
PLAGk, ) = dyp /N [ Afk) = ,/N] =
by —1, + by —k,, N—k,—1q,; (b, ., —k,) [ (N—Fk), 1.83
01 18 s e i 3
aRbEL 155 br,sip) = ()0 (L—p)"" 1.34
Die P* konnen wir in der folgenden Weise errechnen:
Sei D, das Iireignis

1) alle die Ungleichungen

l Ko, o i—17 9 ) — ko Ty |
A(f)— Sov 1T Ja 1 Hay Jayyr| < ANY,

7 5= Kyys evey Koggp
| dpyq Y dy,.y N

sind erfullt und

i1) A(k) = +/N.
Wenn W,, = P[D,,], dann ergibt sich
) Wi, =1,
i) Wiy, = 0 fiir 1 = fy,,
und = Pj. 1.35

Tav-t thay 1



Diese konnen wir bestimmmen mit den obigen Randbedingungen und
der Rekursionsformel:

IWikH - E I/V]'k p[l)ircrszl/”;’k.’l L.36
j

- .1‘1 Wicb(t—5+1, ko s+ a1 —7—5; 1/ (s, k),
j

wobel 7 nur in dem Gebiet (¢ variieren darf, welches folgendermassen
definiert ist:

k —i . k—k,, . ) ky, —k . k—k,, .
[—AN 2 g P < <AN 4 2R g
G — Ay, 11 dy, 1 ¢ dy, dzwl
j_E“ ]C 2‘ ?’21’ "l" ]‘:21,- 1.37

Diese Formel kénnen wir noch vereinfachen: ist

(Rgy y g Jap g —R—0) ! (dyy )2t a1

Koy vt Fioy . —k—i) (k—ky,)
; L | i gA.(&UIl 2r1 2
(sz—{-l Fdg, o)) (g —F) ¢

W, 1.38

Qik -

mib Jv - jv o jv—l ’
dann lautet die Rekursionsformel fitr die @), :

: 1
Qo = D\ @ . 1.39
P —j+1)le
mit den Randbedingungen:
D Qe = L 1.40
i) Qu, =0, i,
iii) Qu =0, i€ (5

und 4 darf nur in ¢ variieren.
Mit dieser Pormel kénnen wir ¢); errechnen, und gemiiss

1.38 1st

2y 1 K2y 1

d G —}-(,‘ g !edzv 1
= (o 1+ oy ) 0 .

Tav-t 15w 1 (d,, }_1)439 REX TN Tov |-1kay g "
Betrachten wir die Folge der unabhingigen Zufallsgrossen Y, die
wie folgt defintert sind:
P - . ‘
I [Ykzv - ]ZV/Z'N l = | s 1.42
P[Y, = (—1)/ANY =1/ile, 1=10,1,2, ...,

j
b b e imia Ky 1 -

921'-1-1



EY,) =0, 1.43
B(Y}) = 1/(2N),
B(Y,%) = (1+2/e) [ (B N?).
Sei ;
8= 52 ¥ 1.44
und M, das Freignis: P
1) alle die Ungleichungen

g —4 sy e, oa] |
S~ 221:,1 ' ;L?IV*_ 7(’52”21 7121\;; <l k=isk
sind erfullt und

11) S, = i/ AN,
Sei noch R, = P[M;].

Man kann sich leicht vergewissern, dass die I, derselben Rekur-
sionsformel mit denselben Randbedingungen wie die ), gehorchen.
Iis folgh dann, dass R, = ¢, und insbesondere:

Tav 1Koy 1 - Qi‘av»}-l Koy g1 1.45
aber 7 ] ‘ _
. : oyt ] ' w1
,'2”‘}_1 ’k‘ay 1 — P I ]- -P_ 612'. " AN& < LS j < 1 _i— (.{‘)v P ZN"J! ]
j= 12 dy, g Sy, = 1 fANE| o 1.48

Hier 18t S; die Summe von j aus den Zufallsgréssen Y, j 5 ky,.
Nun ist y
at, = >\ E(Y% = {/ 22N, 1.47

r=1

somit konnen wir 1.46 in folgender Weise schreiben:

Top 1k o

2y, 2y
=P|—14+ "HMaNt < 8 <1+ AN'L,,

thoy 41 ty,

=12 .., dgy ;S 5 g J AR B

Aoy 1
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Lemma [14]

Sei Y,,Y,,..., Y, eine Folge unabhingiger Zufallsgrossen, die
nur Vielfache einer Konstanten ¢ annehmen diirfen, und:

By = 0; E(Y3) = 2b,, E(|Y;|® = d;;
S, =Y+ +...4+%, h, =b;+by+ ... +b,.

Seien noch a(f) und b(t) zwei stetige differenzierbare Funktionen, die
die zwei Ungleichungen:

a(i) < b(Y),
a(0) << 0 < b(0)
erfallen, und (e, 7;s,t) die Groen’sche 'unktion der Wéarmegleichung:
of Jot = 0% [0s?
in dem Gebiet: alt) < s < b{Y), £ 0.
R,, sei die Wahrscheinlichkeit dafiir, dass
a(ty) < S, < b(ty), R S
und S == 18,
Lig gilt: R, = e{?.t(0,0;i,z‘n) -+ (5}, 1.49
wobei d--0 mit ¢, wenn die folgenden Bedingungen erfiillt sind:
Iis existieren die positiven Konstanten T, Ty, K, C und 4, so dass
1) 0< T <t, < Ty,
11) fitr jedes &k und geeignetes 1, gilt:
P[Y, = ey] > K,
PIY, = (i,+1)e] < K,
1i1) d. /b, < Ce,
1v) a(l,) + 4 <ie<<bt,)—A4.

Wie man leicht sehen kann, erfiillen die Zufallsgréssen Y;, die in 1. 42
definiert werden, alle die Bedingungen des Liemmas, dabei ist
2d,
alt) = —1+— 2L AN,

2v-1

20
bll) = + 14 ANt
d2v+1



Es folgt dann:

: Jz» Il dy, o
0,0; , + O} 1.50
u( AN 2/1'~’N) '

Rjzv—}-lk‘av-[—[ = AN?
Im Gebiet

2d 2d,,
e B it m o o L, ds
(2,_}_[ (2vil

gilt fur die Green’sche Funktion folgendes:

1 g
%(0,0;s,1) = |/L g D {=1)"exp {—07n~a(sf—ﬁ2m)2/4t} 1.51
47T m=—co
mib 0 = 2Ny, /dyy .- 1.52

v

Wenn nun N gegen oo strebt, und damit k;/N~f;, j,/N'>a
und 0->24(x,,, | —y,) /S, 1, bekommen wir:
Qj2v+~lk2v P R?'zyH’me =

1 0(; m
o =P

7 V2 1 42 42
(11— )2 4 42 ]
Do
28,11
Der Taktor in 1.41, multipliziert mit N ¥, strebt gegen:
' o o e 32196 A
V 27 Sey 1 €XP {(‘LBV LT 1’2») /2'521' l'l} y 1.54

Durch die Gleichungen 1.35, 1.41, 1.53 und 1.54 bekommen wir
schliesslich:

co
: ¥\ m 212, %
lim P} = > (—1)"™ exp {—2m3 2*[s,, ,} 1.55
N->co — 00

ganz unabhingig von den z, .

Setzen wir jetzt 1.55 und 1.33 in 1.32 ein und lassen wir N co
streben, dann werden die Summen iiber 9, zu Integralen iber z,,
und weil es keine Beschrinkungen fiir die 5, gibt, rauss dann von — co
bis + co integriert werden. Da die P, von den z unabhiingig sind,
konnen wir sie aus den Integralen herausnehmen. Wir bekommen dann:

n
; I * x
lim By = [] P K, 1.56
N—>co v=0

wobel K als das Integral der 2n-dimensionalen Normalverteilung iiber
—o0 <L X, < oo, v = 1,2, ..., 2n, gleich 1 sein muss. Damit ist 1.4
bewiesen.
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Iiir den cinseitigen Test Liuft die Uberlegung genau parallel. Man

lisst einfach das Zeichen des absoluten Betrages wihrend des ganzen
Beweises fallen. I'ir das Kolmogorovsche Liemma haben wir dann:

a(t) = —oo,
b(l) = | +2dy, (ANE[d,,, . L.57
Die Green’sche IMunktion fiir dieses Gebiet ist die folgende:
1 t
%(0,0;s,1) = N =n” exp{—Om-—(x—‘Zm)“"/zlt}, 1.58
[/47[!, 0
wobel 0 genau wie in 1.52 definiert ist.
Iis folgt dann:
n L
lim Py = [[| N (=)™ exp{~2mi2*/s,, |~1}| . 1.59
N->co y=0

m,,=0

Damit 1st 1.7 auch bewtesen.

I1. Uber die Schiitzungen der Werte
eincr unstetigen Verteilungsfunktion bei den Sprungstellen

In den letzten Untersuchungen haben wir die Werte der empi-
rischen Vi, bei den Sprungstellen als die Schitzungen fiir die theo-
retischen Werte genommen, nimlich:

SN((L'V'—O) = fZV-l’ LS’N(mv) = va’ 2.1

d.h. Nf,,_, ist die Anzahl der X, die kleiner als z, sind, und Nf,, ist
die Anzahl der X, die kleiner oder gleich @, sind.

Lis stellt sich die I'rage, wie zuverlissig diese Schitzfunktionen
sind. Die Cramér-Rao-Ungleichung besagt: Die Streuung ciner Schiitz-
funktion bleibt immer grésser oder gleich einer unteren Schranke, und
wenn das Gleichheitszeichen gils, dann ist die Schitzfunktion schon
gut, nimlich vom sogenannten wirksamen Typ.

Die Maximumlikelihood-Methode lisst sich oft als eine der besten
Konstruktionsmethoden fiar Schitzfunktionen betrachten. Wir vorwen-
den diese Methode hier, um Schitzfunktionen 7', fir die f;,7 —=1,2, ..., 2n
zu erhalten und zeigen dann, dass diese Schitzfunktionen mit den in
2.1 definierten f; tibereinstimmen.
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X, Xy, ..., Xy selen eine [olge unabhingiger Beobachtungen
einer Zufallsgrosse X, die nach der VE 1.1 verteilt ist. Um die Schéitz-
funktionen zu untersuchen, formulieren wir die Fragestellung wie folgt:

Die Zufallsgrosse X hat die Verteilung

Plo, < X<z 4] =G, =01 ...,m,
P[X = z;] = qy;, Fm= by B wong iy 2B

dabei stehen die z, und ,, , fir die untere baw. die obere Grenze des
Variationsbereiches der Zufallsgrésse X, und

q; = fj"“ff—l» 2.3
d.h. X kann in einem der oben in 2.2 definierten Intervalle (oder
Punkte) mit den dabei gegebenen Wahrscheinlichkeiten angenommen
werden.
Sel nun 2, 2y, ..., 2y, die Anzahl der X;, die in das 1. bzw.
2. ... bzw. 2n+ 1. Intervall (oder Punkt) gefallen sind. In N Versuchen
betrigt die Wahrscheinlichkeit, dass z,, 2, ..., 2,,,, in das 1. bzw. 2.
... bzw. 2n+ 1. Intervall fallen:
2nt-1 ) 2n+-1

W = (N!/sz.! [T @), 9.4

f=1 1=1

dies ist auch die Likelihoodfunktion. Die besten Schatzfunktionen fiir
die f; sind die Werte der Stichprobenfunktionen, die die I'unktion W
als Funktion von den f; zum Maximum machen. Wie bekannt, ist das
Maximum bei dW [9f = 0 oder — was dasselbe ist — bei dlog W [df = 0.

2n4-1
logW = O+ >z logq;, 2.8

j=1

Nun gilt:

wobei € nicht von den f; abhiingig ist. Differenzieren wir und setzen
wir das Differential gleich Null, bekommen wir das folgende Gleichungs-
gystem:

alogW/afj :Zy'/(fj‘_‘ff__l)—zy'*_l/(fj_l_i—fj) — 0, j: ].J 2, ey Qn. 2-6

Sei T;,97=1,2, ..., 2n, die Losung dieses Systems. Wir sehen dann,
dass: ;

T, = (}_‘lei)/N, j=1,2 ...,9n. 2.7
Is ist dann klar, dass die 7', mit den in 2.1 definierten fj- iberein-
stimmen.
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Wir wollen jetzt diese Schitzfunktionen niher untersuchen. Weil
E(z) = Nq¢;, 1=1,2, ...,2n+1, gilt:
ET,—f) =0, =12 ...,2n, 2.8

d.h. die 7'; sind erwarbungstreu. Die T'; werden wirksam genannt, wenn

wWVu=uwS1tu, 2.9

wobei % ein beliebiger reeller 2n-dimensionaler Vektor ist und
V = (No,) 2.10
W N, = algiW- algiw hi=1,2 ..., %, 2.11
und S=(oy), 4,7=12,8,...,2n 2.12
Bl oy = B(T,—f) @, —1,). 9.13

Nun finden wir

= E(TiT')“"](@fj

(z + 2, Fooot2) (5t 2+ .. +2)

-—L’[ . N2 - S — i f;
-Min (4,7) :
— N—zEl > a4+ Dlaz | —1f;
r=1 g

, [ () o, .
= N7 > (N(V-1) qT+N.(1r)+N(N-~1)>I4Ms —fit;s

L =2l rts K.

somit isb 0, = f;(L—f;) [N, 1= 9. 2.14

Fiar die v;; haben wir:
N i o log W 3 log W )
e (af of,

“PKff;“ni:J@;Lf“ﬁinN'

Daraus erhalten wir:

_ 1 1 ..
1) v, = ————— 4 — - tir v =19, 2.15

T fen™h =l
i) v, =v_4,;=—1/(fi—f._), firi=9—1 oder j=4—1,

11—1

1i1) v; =0, fiir v <<j—1 oder ¢ >7+1.



— 160 —

Mit Hilfe der Definitionen fiir ¥ und S und der Gleichungen 2.14 und
2.15 kann man zeigen, dass:
V8 =41, 2.16

womit 2.9 bewlesen ist, d.h. die _’l’j- sind wirksam.

Wenn wir zwei Folgen von Beobachtungen haben: X, Xy, ..., Xy
and Yo Xo; coms Yoo 00l 258, o - o0 Sgpa g 0D W5 Wase o ¢ Wyypp 010
Anzahl der X; bzw. der Y, der betreffenden Klassen sind, kénnen wir
analog zeigen, dass die Schiitztunktionen:

i 7 / 4 1 3
T). — %(zi-i—'wi)/(i\]—l‘ﬂ/[), 1 =1,2,...,2n, 2.17

genau dieselben Figenschaften wie die 1'; besibzen. Hier bemerken wir,
mit den empirischen VE. durch:

T; = aSy(f;) + 013 (f;), 2.18
wobet ¢ +b =1 und a = N /(N -+ M), verbunden sind.

Die T (und das konnen wir auch fir die ’1’;- zelgen) haben eine
2n-dimensionale Normalverteilung als Grenzverteilung. Man kann

dass auch die T;-

nimlich zeigen, dags:

1 T2n
b Vi V’I . 1117 ’
P[NY (T-H <] = 2 cen | O%D {—A su' Vialdu', 2.19
am )
wobel 1) T = AT, Ty - oy ) s
i1) f= (fl’fz’ coos fon) s
1i1) =2 iy g U s vy Wog) s
1v) V' = (r;) und v;; wie in 2. 15 definiert,
2nt1
v) V= H (fj'"fjfl)il}'
Jﬁ

Diese Resultate sind immer giiltig, auch wenn f,;, | == f,; fitr irgendein
v (fy; darf nicht gleich f,, , sein, sonst ist @; kein Unstetigketbspunkt),

weil wie bekannt:
. W
. I‘ 1 2 2 ‘
lim exp {—— : :L‘“/O’“} de = 1. 2.20
a—>0 !, 27[0
—8
Natiirlich wird die Anzahl der (voncinander verschiedenen) f; und
damit die Dimension der Verteillung win eins kleiner.
Dieses Resultat ermdéglicht es uns, fiir eine eintache Hypothese

von der Form f = f° eine strenge kritische Region zu finden.



ITI. Smirnov-Test fiir eine unstetige Verteilungsfunktion

w(x) und Tp(x) seien, wie in 0 defintert, die empirischen VI,
zweler unabhingiger Folgen von Beobachtungen. I'(x), in 1.1 definiert,
sel die theoretische V. Gesucht sind die Verteilungen der beiden Grossen:

Dyy = sup [N 2 | Sy(@) —Ty() |, 3.1
Dyy = sup [N /2 [Sy(@)—Ty(x)]. 3.9
Wir behaupten: Theorem 3
lim P[Dyy << 4] = D(A). 8.8
N->oco
Theorem 4
lim P[Diy < A] =@ (), 3.4
N->co

wobel @(4) und @' (4) gleich wie in den Gleichungen 2 bzw. 5 in [19]
(Schmid) definiert sind.

Sei [ die Menge aller geschlossenen Intervalle (f,., f. #F =0 1
o O 2y [2v 1)) )

2 ..., m, dann ist leicht zu sehen, dass:
P[Dyy < 2] = P[sup [/ N/2 [Syla) —Ty(z)| < 1]. 3.5
F(z)€l ‘

Fiir den Beweis nehmen wir an, dass f,, (> f,,, » =0,1,2, ..., n.
Die beiden Theoreme gelten aber auch, wenn f,, == f,,, fiir cinige
(oder alle) », wegen der Bemerkung in 2.20.

IMir endliches N ist [Sy(x) —Ty(x)] immer von der Form i/ N,
wobel © eine ganze Zahl 1st. Wir untersuchen zuerst die Wahrschein-
lichkeit : |

= L | . r . I v
P[sup | Sy(z) —Ty(z)| < ¢/N], 3.6
Fla)el
wobei ¢ eine ganze Zahlist, und fiir den Grenzwert lassen wir ¢/ N gegen
A I/‘Z/N streben.
Definieren wir jetzt Iv, als das Iireignis:
" J . m (A | ; T ns = ‘
1) Sy(z) —Ty(x)| <c¢/N, ) ={, 3.7
v '0 ’. -
i) S = i,/N,
0 >
“1) 'lN(fv) == ]V/N

11
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Set P, die Wahrscheinlichkeit des Freionisses ., dann 1st:
v te) y?
By =1, firi,=74,=0 (f, = 0 definitionsgemiiss), 3.8

0 sonst.

I

Und By, | mib 2, | = Jo,. 1 = N (fo, . = | definitionsgemiiss) ist die
gesuchte Wahrscheinlichkeit in 3.6; diese konnen wir mit Hilfe der
Randbedingungen 3.8 und der Rekursionsformel:
D NP prp ! 2
kg, LIV[ LB, /1] 8.9
Lyl
in 2n-+ 1 Schritten errechnen.
Je nachdem, ob der Index gerade oder ungerade ist, erhilt man
zwel verschiedene I'ormeln, niamlich bei geradem Index:

by, = :j By, PLEy, [ 10, ] 3.10
3 ~t ' ’)l' vy i.‘ v— < ‘;' y—
= Y B, P|Sy(z,) —Sy(x,—0) = - Na '/ Syla,—0) = ivl ;

gyt —Tapt | <c

Die bedingte Wahrscheinlichkeit bezieht sich hier auf zwei unabhingige
Bireignisse. Nach dem binomischen (resetz betriigh diese Wahrscheinlich-

keit : 3 11
o N DU Y YL
b Loy Loyt s N- Mgyt }‘-2 ] f21) . b ( Jor = Josets ) s Joy-1 - fz l) -
1 —foy . L—foy,
Fiir ungeraden Index lautet die Rekursionsformel wie folgt:
Py 11 = ‘\_‘1 B, P[L,, ]I, 3.12

= % b P4, B, ).
Dabet ist A dag lireignis:
Su(@, 11 —0) —S(,) = ligyr— i)V [ Syla) = i, /N, 8.13
B das Ereignis:
Ty, —0) —Ty(@,) = (aypr— ) [N [Ty(z,) = 10,/ N, 8.14
C das Ireignis:

[Sy(x) —Ty(x)| < ¢/N, tir alle z, so dass I'(x) € (fy,,f5,,,) 3.15
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unter den Bedingungen, dass:

1) Sy(®, 11 —0) — Syl=,) = (l-va}~l_l‘;2v)/N’
11) Tn(2, 1 —0) —Ty(x,) = (Ggy 11— T20) [N

Nach dieser Definition sieht man, dass:
P[4,B,C] = P[4]P[B] P[C]. 3.16
P[A4] und P[B] kénnen wir nach dem binomischen Gesetz errechnen.
Iis ergeben sich dann analoge Ausdriicke wie in 3.11.
Tiir das Iireignis € bedienen wir uns eines anderen Schemas.
Ordnen wir die (i, —1,) dor X; und die (j,,,,—14,,) der Y; in eine

einzige olge der Grosse nach. Jedem Glied dieser Tolge ordnen wir
eine neue Zufallsgrosse z; gemiiss der folgenden Definition zu:

z; = -+ 1, wenn das 1-te Glied ein X, ist,
z; = —1, wenn dag 1-te Glied ein Y, ist.
Sei noch
,
N — 1,9 e o A '
-Z(,- == LZ,; r = 1""‘1 ""(Z - I‘Zvl-l 1y, I_?2v—|—1hﬂ?2v' 3'17
i=1

B9 Tolgt P[C] = P[|E, +iy—fo| <c¢, r=1,2,...,d], 8.18
nimlich die Wahrscheinlichkeit dafiir, dass ein Teilchen, welches sich in
der (z,t) Ibene bewegh und in (1, 7,,,0) beginnt und zu (i, |, —7,, . 1,4)
kommt, withrend seiner Irrfahrt zwischen den Vertikalen @ =¢, 2 — —¢
bleibt. Diese Wahrscheinlichkeit konnen wir mit Hilfe des bekannten
Spiegelverfahrens errechnen, sie bebragt:

+5]
IT,' — E (~_ 1)m

("‘21' | "@.2.:) ! (j‘av -1 —?I2v) !

_ [U{] (’i2v_+_1 _{— ?.2I,+1 ‘l" (__)1)3 (1"29 + 1..-—.,]'271’7!*1) . ,’;2‘, _l_ mc) !
¢ 2
. 3.19
( Uy, Nian 7-2v+1 - (;)m (”jzwl—?-zv i1) - mc) ! '

= Z} (# l)mzm’

wobel (] = die grésste ganze Zahl in z.
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Sei i) = ({,—fa) (1 —Fa)
i) b, b —t1s N—iq;p)
111) b:- =b (77'_'?1'-—1 ’ N— jr—l; pr) 8

Wenn wir jetzt 3.11 in 8.10 und 3.19 und die analogen Ausdriicke
fiir 8. 11 (fir P[4] und P[B]) in 3.12 ersetzen, erhalten wir:

= szv—L by, by s 3.20
PZV}‘l = Zp2vb2v -1 bév-}-[ Z (“ﬂl)mzm- 321

TMir endliches N konnen wir die beiden Formeln 3.20 und 8.21 ver-
einfachen mit der Transformation:
N—13)! (N—
I‘Vv == _( R (1 __; )J(N'—lav 7?1') y
Wir erhalten
Wy = (NPF, =00 iriey=71=0 3.9292
= 0 in den andern Fallen.

Die Rekursionsformeln fiir die W, lauten dann:

(fzu fgv l)izquv igp-1—T2p-1

I/V2u = Z, I/Vzu_l e 5 3.98

| {931 —Top-1| <¢ (g, —gpg) ! (2 — 7zu~)'

£ 12,,111"72”1”‘2.;} Jov
(f‘z’,’ﬁf . fw) . E ("“)mzm'

Waor = 2\ W,

( i2y"j2vl <c ('I.2v -1 l2v) : (]2v 1 ?2;!)
Die gesuchte Wahrscheinlichkeit ist
By = 'Wzn—m mib 29, = jzn-H = N. 3.24
Die W,, , kénnen wir mit Hilfe der Randbedingungen 3.22 und der
Rekursionsformel 3.23 errechnen.
I'iir die Berechnung der Grenzwerte boi N - oo igt es besser, fol-
gende Transformation anzuwenden:
(N—i)! (N—j,)! Novti»

R, = (N!)z (1_)cv)2Nai;i§;,”6"'aN};m v*

Far die B, finden wir: By=1 it 4y =4, =0, 3.26
= 0 in den iibrigen Fillen
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e R, — S R L Y e i
2y — oQp—1 4 ' . e o fa .
|pi2z'-1 —‘T;v—l ’ <l c (221' o ?"21!—1) / (72» —7Ja v-—l) ! GZNUJV fa-)?

(M=ot rtocte

R = > R, 4
o 3 7 - ,2‘] s v) 2,
(g1 —Tp,) ! (Jawgr—Jan) ! V21712

vkl T L)

|igy—Tay|<¢

m*

Ry, ., kénnen wir mit den Randbedingungen 3.26 und den Formeln
3.27 bestimmen. Die gesuchte Wahrscheinlichkeit ergibt sich aus der
folgenden Gleichung:

(N2 e
P2n+1 . N2V - R2n-!-l' 3.28
Wenn N gegen oo strebt und damit:
i) i,/ N1, +y,/ N, 3.29
ii) /N, + =,/ N,
ifi) ¢/ Nt=>)/2 4,

werden die Summen iiber |4, — v! < ¢ zu Integralen iiber ‘f Y, a;,,l < [/ 92,
abgesehen vom ersten Schritt, wo die Summe nur aus einem einzigen
Summanden besteht, der gegen den Ausdruck:

3.30
1 90‘ m _1 2 My ¢
N o, i\_ojo (—1)™ exp 2, (Ut + 23+ (9™ 22 Amy (y,— ) + 4m? 2
strebt.

Der Ifaktor in 3.28 multipliziert mit N strebt gegen eine Konstante.

Es gilt némlich: _
N (N2
v 2 3.31

Jedes Glied Z,, der Summe 3.29 strebt gegen:

exp - l(___)m,. [‘/i Amv(?/zv-}-lh"ww‘l-l) - ng"m'u (yzuk* $2r) + Qmﬁ /’12

.S2v 1 7
T — (_)mv | | o
+ 2 (!/21'—|-1——:12v+1) (yZv— a mgy) . 3!32

Well d/c—> co, werden die Summen tber alle m, von ——oco bis + co
erstreckt.
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Dazu kommt noch die Gleichung

{ (f, _fv—l)}i”"‘ Tv=fp—t~Tpot
(?‘ _}) ( v~l—.’v l) HN(IV Fost)
1 1 (yv“m :U;~—l)2 + ("I"vh— ‘(le—l)2

exp {— .3.33
27s, 2 S

N

v
Durch die Gleichungen 3.26 bis 3.33 bekommen wir:

lim By, ,, = lim P[ sup |[Sy(x) ———-_’I‘N(:v)} < AY2[N] = @), 3.34

N=>co N->co  Fa)€l
wobet: )
O"‘ Py my , 2n4-1 |
—2n i
D) = X ()= @a) " [T (fr—f)
Mpss M= —0CO f;'.
1 2ni T + (1, — 2
' exp |— >_, Y=Y (2, )
v=1 S,
L-oo\;z;}\cg | ‘—"J:}|\ll/2

-2 {(‘ )™ Yoy 17— Taprr) V' 2 A, — 2 A, (yy,— ,,) + 23 2

i
p=0
l — (_) m
i3 9 (Yo, b1 gy 1) (Yo — Tm)J [ S, | Ay e day, dy, L dyy,,
3.85
IIllt a"l) == yl) =5 a:‘dn +1 = y2n-+—1 = 0
Berechnen wir das Integral iiber Ay 7 =1,2, ..., 2n, und machen

wir einige weitere Umrechnungen mit den geeigneten Substitutionen,
dann bekommen wir:

n . *
co Zm,‘ 3 R
B(1) = ¢ S (—1)- [j T - 53
mp...mpy=—00 ‘]zﬂ\
L B (s, ,2Am
B E (( )" 2 H' )’ dz, ... dz,,,
p=A) b23’ o |

2n- 1

wobel 2z, = 2,,,, = 0, und C = (2n)" H (f
i=1

Der Ausdruck in 3.36 ist derselbe wie (25) in [19], womit 3.3
bewiesen ist.
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Dasselbe Verfahren kénnen wir anwenden fiir den einseitigen Test,
nur miissen wir das Zeichen des absoluten Betrags iiber den ganzen Be-
weils fallen lassen. Die Summen werden in diesem Fall itber (1, —7,) < ¢
orstreckt und danach die Integrale iber (z;) < 4 genommen. Bei der
[rrfahrt haben wir nur eine einzige Barriere, die entsprechende Wahr-

scheinlichkeit wird:

(ay 1 =20 ! (2pr1—72)" s f 3.37

1— : v :
(Vg |-1“72u_‘c)! (92, 1 ==, 4 c)!

Die Grenzwerte erhalten wir analog, es ergibt sich dann:

1 n

lim P[Djy < 4] = €' > (—1) 2mi 3.38
N->co My-.mp=0
| L & (Bgy—2aq)” 1 ‘:1 ()™ 29123, +24m,)*
o exp | — 2.1 ‘ T e LY
= Soy 2= Say 11
zjx;‘i(

Aéy dey « <. A2y,

Dieser Ausdruck ist gleich wie der Ausdruck (5) in [19]. Damit ist

auch 3.4 bewiesen.
Wir wollen hier bemerken, dass die Grenzwerte, d.h. @(3) und
@1 (2) dieselben bleiben, wenn wir fir die f, eine Schiitzung von der

orm:
fi=171+0(N"  wihlen. 3.39

IV. Verteilungen der ein- und zweiseitigen Smirnov-Teste
itber einen beliebigen Teil des Intervalls (0,1)

Die Uberlegungen, denen wir im vorigen Paragraph gefolgh sind,
kénnen wir hier wieder anwenden, um die Verteilungen der Smirnov-
Tests tiber einen beliebigen Teil des Variationsbereiches einer Zufalls-
grosse zu bestimmen, wenn die VE. F(z) in diesem Teil stetig ist.

Betrachten wir das geschlossene Intervall (z,,,). Nehmen wir
an, I*(x) sei iiber diesem Intervall stetig; «;,o, sind folgenderweise zu

bestimmen :
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Wir behaupten: Theorem
& . 1
lim P sup [/ N2 | Sy(a) — Ty(a) < 2] = 4.2
‘\J > Cco ’1[\1’\1)“ do . QTE I/ ] "’”Qu
ap b()

2

22 9 P 2
(d 2oz 242 ) co
| — 48 % & T & e i
exp [ 1(131 dz, + 9 (=) g2

2(1—92)

. . m=1
—ap —bg e,
(34202, 2, + 2 _
fcm e 122 ) dz, dz,,
2(1—¢) “
wobei t, = (A—2mAa)) [} o (1 —2y) , 4.3
b,, = (A—2mA (1l —ay)) [/oc; o)
0" = o (1 —ay) [0, (1—aty).
Theorem 6
, e 1
lim P[ sup [/ N/2 (Sy(e)—Ty@)) <] = _ ., | 4.4
Nooo oy < F(z) <o 2n l/l—«@“
b.n ) . f:: a1
(22022, +22) ot (#4202 2,1 22)
expl— e dz, dz,— e exp{— S dz, dzs |
[ [[ 2(1"_92‘) L l 9(1——()3) 1554

wobei ay, by, ¢, und b, wie in 4.3 definiert sind.

Wie vorher elwahnt ist Sy(x) —T'y(x) tmmer von der Form 2/ N,
wobei 1 eine ganze Zahl ist. Wir untersuchen dann zuerst die Wahr-
scheinlichkett

P[ max |Sy(z)—Ty(x)| < ¢/ N] = Byloy, ) 4.5

< P(z) <oy
und fiir die Berechnungen der Grenzwerte als N—»co, lagsen wir ¢ gegen
ZI/QN streben.
Definieren wir jetzt die Iireignisse 4., 4,, B;, By, C wie folgt:

4, sei das Freignis, dass Sy(z,) = 7,/ N, 4.6

A, sei das Freignis, dass T'y(z,) = 75/ N,

B, sei das Kreignis, dass Sy(xs) = /N, Sy(z,) = 9,/ N,

B, sei das Ereignis, dass T'y(x,) = %/N Tiloy) = 15/ N,

C sei das Iireignis, dass [Sy(x) —Ty(x)| < ¢/ N, I'(z) € (o, 0t9),
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unter den Bedingungen, dass B, B, eingetreten sind. Wir kénnen
dann gleich sehen, dass die gesuchte Wahrscheinlichkeit:
1 N ] Z
Bolo sog) = >, > P[4;, 4, By, By, C], 4.7
.\ Y pr4per DIR Pl DI (T
~ NN P4, Pldy] PLB,] P[By] P[],
liy—ial<e |f1—7al<e |
weil jedes von diesen Ireignissen von den anderen unabhéngig ist. Die
Wahrscheinlichkeiten der Iireignisse A, und B, konnen wir nach demn
binomischen Gesetz errechnen. [ C] miissen wir aber nach dem Ver-
fahren in I1I bestimmen. Iis ergibt sich dann ein analoger Ausdruck
wie 3.19. Wir erhalten fiir Py(e, o) folgendes:

P\I(alyaz) RN (N')2 (1 —Aa2)2N—i1—iz _(Ot2ﬁa])52 Fi1—j1—Ja ( )jl.,_h-
I

= (N—a)! (N—ig)! (3—i)! (a—72)! ()! (42)!

R
( g+ 1y ()" (1g— 1 i g+ 1 — (=)™ (Iy—1 _ 4
[«c‘] L ()" (12— 1) -~y2+mc)!(2 1 )(u 1)7—71»«'mc |
9 '\ 9
wobet die Summe iiber ‘@1 —-7'2\{ < ¢, jl—jzj < ¢ 1ist 4.8
und d = i, +15—7 —fa; [2] = die grosste ganze Zahl in z.

I'iir die Berechnungen der Grenzwerte lassen wir N> co und da-
mit: ¢c>A)2N, 1,/ N>ag+y; [N, j;/N>a,+2;/)/N streben. Die
Summen {iiber ‘il——?,'2; < ¢, und ‘|;i1—~y'21< ¢ werden zu Integralen
iiber |y, —ua| < )24 baw. |2, —ay < )22, und wir bekommen:

lim Py (g o) = K7 \1 "‘] j fj
N->oo m—u-cc

—00\.’023‘-._00 |ﬂ:]_ {L‘g \AV&

—co<pp<co |¥1” M1\AV2

1“‘&2 ‘ OCZ-‘—C(l O(.l

1 -
— {(—)’"(yz—yl)ml/z A2 Am(xy—a)) + 2m2 A2

Ug— &y

1_ _\m
e 2( (y—=y) (92_1“2)} dzydydy, dy,, 4.9

wobei K = 27 |/ o, (aty—or,) (1—aty) .
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Wenn wir einige geeignete Substitutionen machen, konnen wir das

[o it o) o )
Integral iber x, und y, errechnen. Wir bekommen dann fiir die rechte
Seite der Gleichung 4.9 folgendes

4.10

) » » 9 b} D]

i 1 2 (—)"2y—2,+2m)* 2z

.| 2 2 "R T |
K : (=)™ exp | — ’ . ( ) s dz, dz, .

ps Jo. 2 1oy Oy —ty) Gy

|z5] =<4
Sei nun:

2y = Wy— (—)"2mA(1 —ay), 2, = w, + 2miey, 4.11

dann bekommen wir:

lim Py(oy, ) = K™ \‘ () g 2me A

N->co — O

( -1 [—a o
9 - | 2

: exp | s + (=)™ 210, Wy + w*
2 (ot —oty) =R %,

dw, dw,, 4.12

wobel das Integral zu erstrecken ist iiber:
— A4+ (O)"2mA(L —oy) <wy < A+ ()" 2mA(1l—ay),
—A—2m A, <, << A—2mio.

Damit ist 4.2 bewlesen.

Das Smirnov-Theorem bekommt man von 4.3, wenn o, = 0, oty = 1.
Analog konnen wir den einseitigen Test behandeln. In diesem Iall
bekommen wir:
N e OB R VL
‘ = (N (N—i)! (5 —j)! (Ga—70)! (! ()

: B —191) ! (tg—70)!
.(1% . (1 }1)'(‘2 ?2) ’), 113
\ (i —ga—0)! (lg—J + )L
hier ist die Summe iber (1,—1,) < ¢, (),—17) < ¢.
Wenn N - co, erhalten wir:

: 12+'1.2 Y — )2+ (Yg—2,)2 2P+ B
lim Py (aty ot '"R-ljjo‘{p MY (=) (Yo — i) 2t

Nooo 1—ey oty — 0y o,

- Y—Ya—A) 2 ,
27 2') ( /1 I/Z ! ) J (ZJ‘I d(L'a d.’)’] d:{/a . 4 § 14

g — Oy

fromf-¢
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Nach einigen Umrechnungen ergibt sich:

A
~ e e N2 g2
i P o _ 1 (wy  (wy—10,) wiy ]|
m By (o) ,0t9) == K exp | — + -+ dw, duw,
—C0
bl ay
o il .
B 1 [ws (1, + w,) i ) 5
— K e exp |— + - dw, dw,. 4.15
. 2| oy Oty — Oy %,
— 00

wobel ay = A—24a;, by = A—21(1 —a,).
Damit ist auch 4.4 bewiesen.

Auch hier bekommen wir den einseitigen Smirnov-Test als Grenz-

wert, wenn o, == 0, ay = 1.

V. Appendix

i) Jede der Funktionen L(2) und L' (4) besteht aus Produkten, und
jedes dieser Produkte ist den bekannten Funktionen von Kolmogorov
bzw. Smirnov gleich. Das ermoglicht uns, die Tabellen von Smirnov [20]
anzuwenden. Dafiir brauchen wir nur die grosste Abweichung im Inter-
vall (fy;,fo; ) durch sy, zu dividieren und die entsprechende Wahr-
scheinlichkeit von den Smirnov-Tabellen abzulesen.

I8s ist auch zu bemerken, dass in jedem Intervall (f,;,f,,,,) die
Sicherheitsschranke fiir eine gegebene Wahrscheinlichkeit wm 1/)/s,;
schmiler geworden ist, was der Abnahme der Ireiheitsgrade beim
x2-Test entspricht.

Hier geben wir ein einfaches Beispicl, das die oben erwiihnten
iigenschaften erklirt. In diesem Beispiel hat es nur eine einzige Sprung-
stelle, die ganz beim Rand (z = 0) liegt.

Wiihrend einer Periode von 16 Jahren wurden die wochentlichen
Maxima der Abflussmengen der Baye de Montreux (Schweiz) registriert.
Unter den 832 beobachteten Werten gab es 246 Werte gleich Null. Fiir
diese Beobachtungen wurde folgende Verteilungstunktion vorgeschlagen :

P(X=0) =,
Vi) =f+(0—HIy, x>0, 5.1

wobel I'(y) die Normalverteilung ist und y = (log x —log b)/d.
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Iir f, b und d ergab sich:
f=10296, logb =52426, d =1,392.

Iiir den cinseitigen Test war die grosste Abweichung 0,0349, was einer
Wahrscheinlichkeit P, nach Theorem 2, von 0,057 cntspricht. Bei
dem zweiseitigen Test betrigt die grosste Abweichung 0,036, tiir welche
P = 0,092 nach Theorem 1 ist.

Zum Vergleich bringen wir hier die entsprechende Wahrseheinlich-
keiten P" und I’ nach den Theoremen 1 und 2 in [19] (was Theoremen
5 und 6 mit «; = f und oy = 1 dieser Arbeit entspricht). lis ergeben
sich in diesem [all:

Pt —0,122, P ==10218,

Dieses Beispiel verdanke ich der Abteilung fiir Hydrologic und Gla-
ziologie VAWLE an der B'TH.

i) I%s ist schon bekannt, dass die Abweichungen kein homogenes
Gewicht iiber dem ganzen Intervall (0,1) haben. Zwm Beispiel ist be-
o )
kannt, dass

E[{XyF] = t(1—1),

wobel Xy(t) = NHS¥(H) —1), d.h. die Streaung ist maximal bei ¢ = !.
Anderseits warde bewiesen (Corr. 2 in [3]), dass die grosste Abweichung
eher bei X, | als bei X eintreten wird.

Die Theoreme 5 und 6 kann man dann gebrauchen, um strengere

Teste zu konstruieren, indem man sie auf das Intervall anwendet, wo
die Abweichung starker ist.
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Zusammenfassung

Der Autor leitet die Verteilung von Kolmogorovs Testgrosse fiir unstetige
Verteilungsfunktionen her, falls die Werte an den Sprungstellen derselben geschitzt
worden sind. Anschliessend wird der Zweistichproben-Test von Smirnov auf dis-
kontinuierliche Verteilungsfunktionen iibertragen sowie die Verteilung dieser Mass-
zahl fiir ein endliches Intervall (— oo < &, < @y < -} o) angegeben. In allen
Iillen gelangen sowohl einseitige wie zweiseitige I'ragestellungen der 'T'este zur
Besprechung.

Résumé

Dang le présent travail, la distribution des critéres de Kolmogorov est calculée
pour les distributions discontinues, quand leg valeurs des sauts sont estimées. La
distribution des critéres a deux échantillons de Smirnov est aussi obtenue pour le
cas des digtributions discontinues. Fin outre, la digtribution des critéres de Smir-
nov est indiquée dans U'intervalle (— co < @, <, < 4 o). Dang chaque cas, 'au-
teur étudie les tests unilatéraux ainsi que les tests bilatéraux.

Summary

The distribution of the Kolmogorov’s criteria is obtained for discontinuous
distributions if the values of the jumps are estimated. The distribution of the
Smirnov’s two-samples criteria is also got for discontinuous distributions. Lastly, the
distribution of the Smirnov’s criteria over a finite interval (— co <) < @y <.+ o)
is given. In all the cases, both the one-sided and the two-sided tests are treated.

Riassunto

I’autore deduce la distribuzione del criterio di Kolmogorov per distribuzioni
discontinue, nel caso di valori estimati ai salti. 19 pure applicato il criterio di
Smirnov a sageio doppio, per distribuzioni discontinue. Inoltre, la distribuzione
del criterio di Smirnov & espressa nell'intervallo limitato (— co < @ < @y < -} o).
In ogni caso si perviene a trattare un quesito unilaterale che bilaterale dei tests.
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