
Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 64 (1964)

Artikel: Über die verallgemeinerten Teste von Kolmogorov und Smirnov für
unstetige Verteilungen

Autor: Taha, Mohamed Abdel-Hamid

DOI: https://doi.org/10.5169/seals-966967

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-966967
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Uber die verallgemeinerten Teste

von Kolmogorov und Smirnov für unstetige Verteilungen

Fou Mo/irtmed TaJw, ^4/e#ara/rierc

Einführung

Ä'[, Xj, A",y und Yi, Y2, • • •, Yj„ seien zwei Folgen von unab-

hängigen Beobachtungen, die einer Grundgesanitheifc, die nach einer
und derselben Verteilungsfunktion Vf.) F(x) verteilt ist, entnom-
men sind.

Sei /%(&') die Anzahl der Ai-, die kleiner als .r sind, dann ist

S„(I) 'V o-1

die empirische Vf. der 1.Folge. Analog ist

TuC'') 0.2

wobei fcju(:r) die Anzahl der Y,-, die kleiner als a; sind, die empirische
Vf. der 2. Folge.

Glivenko zeigte im Jahre 1933, dass

lim P [sup j ß[y(;r) /''( •'•; -> 0] — 1 0.3
jV->oo a

Dieser Satz hätte nur theoretische Bedeutung, wenn nicht von Koliuo-

gorov [14] im gleichen Heft bewiesen worden wäre, dass

lim P [sup IV* -F(a') j < 1] ^(-l)»'exp{ -2m*P}, 0.4
N->co x —00

ganz unabhängig von F(;r), wenn F(;r) stetig ist.
Diese Arbeit von Kolmogorov war - und ist bis jetzt - der Aus-

gangspunkt vieler Untersuchungen. Wir können hier nicht alle diese

Untersuchungen aufzählen, jedoch wollen wir die Hauptrichtungen
zitieren :

10
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1. Es wurden von Smirnov analoge Testfunktionen vorgeschlagen, um
die Homogenität zweier Folgen von Beobachtungen zu prüfen, näm-

sup 1 .V.V / (ÎV + M) 1

S„(®) -T«(a:) | 0.5

-Djvm Bup |/WM/(W+M) [S„(®)-T«(a:)]. 0.6

2. Es wurde versucht, die Wirksamkeit dieses Tests zu verbessern,
indem man eine Gewichtsfunktion hinzufügte. Darling und An-
derson [11 haben Testfunktionen von der Form:

sup ZV* S^(a:) — F(.r) 1(F(x)) 0.7
X

untersucht. Rényi [171 untersuchte die Verteilungen der Grösse

sup JV* | S"jy(a:) —-E(;r) | / F(r) 0.8
X

und analoger einseitiger Testfunktionen.

8. Die exakte Verteilung für endliches 2V wurde auch untersucht:
Birnbaum und Tingey [2], Gncdenko und Koroljuk [11] und viele
andere haben einige Resultate in dieser Richtung erhalten.

4. Ein analoger Test mit einem Parameter wurde auch behandelt:
Gichman [9] untersuchte die Verteilung der Grösse

sup iV- j —F(a:, 0) |, 0.9
X

wobei 0 ein Parameter ist. Darling [4] hatte auch auf die Möglich-
keit eines solchen Tests hingewiesen. Die beiden haben aber auch

bemerkt, dass einfache Sätze in dieser Richtung fehlen.

Die grösste Bedeutung dieses Tests beruht darauf, wie oben schon

erwähnt, dass die Verteilung dieser Testfunktion von F(x) unabhängig
ist, wenn nur F(x) stetig ist. Diese Voraussetzung wurde immer formu-
liert, bis P. Schmid [19] - nach einem Vorschlag von W. Saxor - eine

wichtige Verallgemeinerung dieser Sätze gefunden hat. Schmid konnte
nämlich die Verteilung der beiden Grössen und für unstetige
Vf. herleiten. In diesem Fall sind aber die Verteilungen nicht mehr
universal, in dem Sinne, dass sie von F (as) unabhängig sind; vielmehr
hängen sie von den Werten der Vf. bei den Sprungstellen ab. Diese

Werte sind aber meistens nicht bekannt, und wir müssen sie schätzen.

Dann stellt sich die Frage : Wie sind die Verteilungen der Testfunktionen
in diesem Fall beschaffen?
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Wir geben unter Abschnitt I die Verteilungen analoger Testfunk-
tionen an, die sich besser für unsere Zwecke eignen.

Es fragt sich auch, welche Schätzungen man für die Werte der

Vf. bei den Sprungstellen anwenden kann.

In Abschnitt II wenden wir die Methode der Maximumlikelihood

an, um Schätzfunktionen für diese Werte zu erhalten, und zeigen, dass

diese Schätzfunktionen mit den Werten der empirischen Vf. bei den

Sprungstellen übereinstimmen. Dazu werden die Eigenschaften dieser

Sf. näher untersucht.
In Abschnitt III geben wir die Verteilungen der beiden Grössen

0.5 und 0.6 für unstetige Vf. für endliches Ah wenn hl M ist. Die

Grenzverteilungen sind ebenfalls dargestellt.
Eine gewisse Verallgemeinerung des Smirnov-Tests, nämlich:

Avjv(«i>«2) I/n/2 |S^(a;) —T^(a:) |, 0.10

D^v(«i.«2) sup j/w/2[Sjv(a:)— T^,(a:)] 0.11
ai</''(:c)<c«2

wird in Abschnitt IV untersucht. Die Verteilungen für endliches W und
die Grenzverteilungen werden bestimmt. Anderson und Darling [1]
gaben die Verteilung des Kolmogorovschen Analogous für 0.10,
Kwit [16] untersuchte diesen Fall, fand aber andere Resultate für den

zweiseitigen Tost.
Der Beweis der ersten zwei Sätze beruht auf einem Lemma von

Kolmogorov. Einen anderen Beweis mit Hilfe der stochastischen Pro-
zesse habe ich hier nicht zusammengestellt.

Für den Beweis der Theoreme in Abschnitt III und IV habe ich
eine Verallgemeinerung des Spiegelverfahrens, das zum erstenmal von
Gnedenko und Koroljuk [12] benützt wurde, angewendet.

1. Der Kolmogorov-Test für eine unstetige Verteilungsfunktion,
wenn die Werte der Vf. bei den Sprungstellen geschätzt werden

F(a;) sei eine Vf., die überall stetig ist, ausser bei a^, a^,
wo sie in der folgenden Weise definiert wird :

F(.r„ —0) /a„_j, v 1, 2, ra + 1,

f(b) =/2»> " 0, 1, 2, n, 1.1

und dabei ist /„ 0, 1.
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Sjf(a:) soi die empirische Vt'., Z''(œ) soi die theoretische Vf. mit den

geschätzten / ; d.h. angenommen sei, dass die analytische Form der

F(r) bei don stetigen Stellen bekannt ist, und die / • irgendwie geschätzt
sind. Die Testfunktionen werden leicht geändert. Betrachten wir die
beiden Grössen:

D,v sup W- S',y(:r) —/«'(») ',

£>+ sup jV-[.S',v(.k)

Wir behaupten :

T/teorem /

Falls wir die /. in folgender Weise schätzen:

/2V-1

/:•. =S„(a:,), v l,2,

lim Pf/Tv < A] L(A),
dann gilt

wobei

mit

L(A) // V - 1)'».' exp {(— 2m'J/F) /.Vo,,

1.2

w, 1.8

1.4

1.5

S; /, — /,-!, '/ 1,2, 2« H- I 1.6

'Z'/tßorem 2

Mit den Schätzungen 1.3 gilt:

lim P[D;v <
JV~>co

wobei

W 77 ^ (-1)"' ®*p M **) /«2,+1}
v=0 r»y 0

Die s„- sind wie in 1.6 definiert.

1.7

1.8

Wir nehmen an, dass ^ > /.^, r 0, 1, 2, «; jedoch dürf-
ton schon einige - oder alle - .s^,, ^ gleich Null sein. Die entsprechenden
Faktoren in dem Produkt 1.5 oder 1.8 werden dann gleich 1 sein.



Wenn wir annehmen, class die analytische Form der Vf. bei den

stetigen Stellen bekannt ist, dann können wir sie in der folgenden Weise

schreiben:
*'(®) /a, + tfar+i —/s,) #,(®) > ®» ^ ® < ®v+u ' • 9

V 0, 1, M

wobei Ö>„(a;) alle stetig sind und

i) lim $o(a;) 0,
x->— 00

ii) </>„(,c,) 0,

iii) 0„(r^ —0) 1. 1.10

Diese Schreibweise der Vf. hat den Vorteil, class F(œ) als Funk-
tion und sogar linear und stetig in Abhängigkeit von den / dargestellt
werden kann. Sind nun /b die richtigen Werte und wenig verschieden

von /•, dann haben wir
c>F

F(a:,/) F(z,/) + (/-/)
3/ /

1.11

FM F(R/) + (M/2,) + (/2,+ l /2r+l) .)/ '
W2V+1 iav+1

1.12

wobei f (/<,, /p Mi) ' / (/o> /1. • /a»+i) >
<*.h.

dF I 3F
IaJ"

5a a: < aj^+i, " 0, 1, n.

Wenn wir die /, als die Schätzungen für die /b übernehmen, so wird
F(a;,/) =F(a') und einfache Rechnungen ergeben:

77?/, A 77»/ \ // f \ /2M+1 /7 \ -^(®) /2V
j jQF (3;) — F(x) + (/j,, /2v) "b (/2J/ +1 1)

> 1-13
^2, |-1 ^2v hl

R bä 3J < R.,.j, J> 0, 1, 2, w.

Eine fundamentale Transformation ist

m F(a:). 1.14

Diese Transformation ändert nichts an der Grösse FR, D^. îc selbst ist
eine Zufallsgrösse, mit der Vf. F°(x), die folgendermassen definiert ist:

0 M R 0

« /2v^wM,+I, " 0, 1,

/sv-i /2V-1 < « < /a„, "=1,2,
1 M > 1 1.15

F°(?c)
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Die entsprechende empirische Vf. ist, wie man leicht sehen kann,

1-16

Sei i die Vereinigung aller geschlossenen Intervalle (/g, > /a»--n)»

r 0, 1, 2, ..n, dann erhält man mittels 1.11 bis 1.16 folgendes:

P[5*<A] P supl/N|S»-«-(/„-/J^-' -(Luis), <*
I ^2v+l 2v+1 I

1.17
Die / kann man nach vielen Methoden schätzen, die Schätzungen

1.3 haben jedoch erhebliche Vorteile; setzen wir diese Schätzungen in
1.17 ein, dann bekommen wir:

P[y^<A]= 1.18

P sup | < A

»/ *2» + l ®2»+l

Sei nun /v [feg 0,1, A:,, p,, Ac, + 1, • • - A,,,,., IV] die Menge
aller Zahlen y, so dass y / iV« 1; ferner sollen die /c• so ausgewählt werden,
dass /c• /N->/•, wenn V gegen co strebt. Dann sei noch:

d, M(y) S®(y/JV)—1-19
und fc —y 1 — W

Y*Ö) .'i(y)- V <î(P>,) - 1.20
2v-f-l "2p f-1

Betrachten wir die Wahrscheinlichkeit:

P [max | Y;y(y) ] < A ZV -']. 1.21
ye/r

Wir definieren Ebj. als das Ereignis

i) alle die Ungleichungen:

K(?)i< AW"', y
• /,'. 7 iV, 7c « IC,

sind erfüllt, und

h) M(A) i/iV.
Sei P,-4 P[PVJ> dann ist P„g 1,

P,o 0, für 1 W 0, 1.22

und Pgjf ist die gesuchte Wahrscheinlichkeit in 1.21. Diese kann man
mit den Randbedingungen 1.22 und der Rekursionsformel:

'Vi-1 S ^hi/#/*] errechnen. 1.23



Wir können die Formel 1.23 in zwei Formeln zerlegen. Wenn wir
- der Einfachheit halber - schreiben

W
bekommen wir nach 1.23:

P,,= 1.25
/2»-i

Pa,+i 1-26
?2»»

Das Ereignis Eo„ hat aber die Bedeutung:

i) alle die folgenden Ungleichungen sind erfüllt

|Y^)|<AiT>, / •' fc„„ M/v,

dazu ii) WW " W-W.

Wenn wir bemerken, dass Y^/W 0 für alle i, so dass WW f/W,
dann sehen wir, dass I'4„ bedeutet:

i) alle die Ungleichungen

|Y„(j)|< AW"*, )U(
sind erfüllt und

Ii) WW 'WW.

Man sieht dann, dass das Ereignis [W/Wu] dem Ereignis

[WW ?2i-/W / WW-i) Wi/W] äquivalent ist, also können wir
1.25 so umschreiben:

?2V S ^l^[d(y WW W<2.W WlW], 1.27
)2i^l

und weil YW2W 0 für 'die 7, so dass Wüu-i) i/JV, müssen wir
über alle möglichen Werte für Wt summieren.

Die bedingte Wahrscheinlichkeit in 1.26 können wir wie nach-
stehend schreiben :

P|_-®2i>+l /-®2v] ~ i'i ~ ?2v + l/W / -<4 (W) ?2v/W], 1.28

wobei

P; P[|Ytf(j)|<AJT* 1.29

~ W> ^2»"b 1> • • •; W+t / '1 (W-|-l) ?2i.+ l/W) WW ?2i./W]



oder, was dasselbe ist:

p! P
2f-1 -1 N 2t i-1 N

1 ''2t> ^2v I 1) • • > Ptt-l-l
Damit wird 1.26

1.30

P^v-i-1 EP*P2,.P[^(fc2t+i) Ul/N/^a,) UN]; 1-31
'2 t

auch hier wird über alle möglichen Werte für j'a„ summiert, weil
0 für alle 7, so dass /!(/%„) i/iV.

Wenn wir die Formeln 1.27 und 1.31 kombinieren, erhalten wir
für die Wahrscheinlichkeit Pq^ folgendes:

Poiv E • • Z (//P:P[^(Vm) =UN]
fo Ja» n l»="

• PC^W L/N/ /l(/t',„.,) Ui/N]}. 1.32

Gemäss der Binomial-Verteilung gilt:

P[^(fct-M) VM/NM&,) P/N] -
(fc,+ i-fc,)/(N-fc,), 1.33

^ 6(r, s ; p) (®) p'(l — p)* h 1.34

Die P* können wir in der folgenden Weise errechnen:

Sei Z),-j das Ereignis

i) alle die Ungleichungen

^2v
h L 7 Pt P '''2 t ?2t+[ 1 AT-1 • 7. 7.

i ^
7

</liV », y fc k
I PtM N iV

sind erfüllt und

ii) G(/<) =n 1/iV.

Wenn /' /p.'. dann ergibt sich

i) a- 1.' ?2v*2v '

ii) ^i/£2, 0 für i Ja,,

und ff, P*. 1.35
J2i'+l*2v+l '
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Diese können wir bestimmen mit den obigen Bandbedingungen und
der Bokursionsformel :

1-36
;

" *1" 1 &2,+ l + Jgf M 7 ' / (&2r 1-1 &)) »

wobei j nur in dem Gebiet G variieren darf, welches folgendermassen
definiert ist :

i fco,,. I — fe fc — 'Gv
*V' 7a, + *?2HU<?<^ + - / ?2, I- fe-U

G 2f 1-1 2 e -f-1 2v I-1 2 v-t-1

' />' ' /a; '%,• 1-37

Diese Formel können wir noch vereinfachen: ist

mit i7, B —B_i,
dann lautet die Bokursionsformel für die

1

1.39

1, 1.40

0, i

und j darf nur in G variieren.

Mit dieser Formel können wir Q/.,„ ^ errechnen, und gemäss
1.38 ist

Jv+i i.'+

(dg,, i + ü,„.,)! e 2" n
IF ' - - Ç, 1.41'2H-l'2.|-l (dg |)^r M+^f+l ^2v 1-1 2v I-1

Betrachten wir die Folge der unabhängigen Zufallsgrössen Y-, die

wie folgt definiert sind:

^[Y/^ k/^-|= I. 1-42

P[Y. (»_ 1) / A N-] 1 /»! c, t 0, 1, 2,

~ + 1
> • i ^2f I-1 •

ilüc? S
/en

Bandbedingungen:

i) ^>2,'

ü) Ç
«7(2

iii) Q,7(
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Für diese Zufallsgrösse gilt:

ü?(Y,) 0,

E(Y®) 1/(AMV),

E(JY^) (l+2/6)/(A"JV*)

1.48

Sei

und M;j. das Ereignis :

S< S r-
r=fc,„

1.44

alle die Ungleichungen

Ig ^2i'+r ?2v 1 ^2» ?2i'|-l.
'

'

4... < 1
> ^2, '

: ;/ • fc

sind erfüllt und

ii) S* t/HV'.

Sei noch P^

Man kann sich leicht vergewissern, dass die derselben Itekur-
sionsformel mit denselben Randbedingungen wie die Q.j, gehorchen.
Es folgt dann, dass und insbesondere:

P,
aber

P;
J2v+1 >*2x hl

'/2v | l 1-1
"

h 1 'bli'-hl >

rl

^2i' hl

1,2,

1.45

1 -I 2i'+l 1
<-~ S' ^ I _J_

2k 1-1 1

+
P„_, P/Y* ^ A.Y- '

1.46

Hier ist 6b die Summe von j aus den Zufallsgrössen Y-, j =£

Nun ist
y

2<,. V,P(Y?) j/PJY, 1.47

somit können wir 1.46 in folgender Weise schreiben:

P, P
?2k -1*2» 1-1

~1+ " ' A/Vify<.S'y
2v + l

— 1)2, • • • > P>»+i
2v -f l

2d.

^2»

4,,.,/PY*
f HJY'H -,

rfo,

1.48
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Lemma /74/

Sei Yj,Yj, ...,Y„ eine Folge unabhängiger Zufallsgrössen, die

nur Vielfache einer Konstanten e annehmen dürfen, und :

tf(Y,)=0, Ü7(Y>)=2&,, 2ï(|Y,|»)=d,;
»5,j Yj + Yg + + Yj., 0, — &i + 6g + +

Seien noch a(<) und 6(0 zwei stetige differenzierbare Funktionen, die

die zwei Ungleichungen:
a(/) < 5(0,

o(0) < 0 < 6(0)

erfüllen, und m(<t,t;s,<) die Green'sche Funktion der Wärniegleichung:

6//3i - a«// ds2

in dein Gebiet :

a(i) < s < 6(f), 7>0.
R,„ sei die Wahrscheinlichkeit dafür, dass

«('/<) < Sfc < &(**). 'c 1» 2» • • » «

und S'„ le.

Es gilt : e{«((), 0 ; 1, f„) + <5}, 1.49

wobei <5->0 mit e, wenn die folgenden Bedingungen erfüllt sind:
Es existieren die positiven Konstanten 2\, Tg, LEU und B, so dass

i) 0<2\<0,<Tg,
ii) für jedes 7c und geeignetes ^ gilt:

/'[V, el,J>Z,
P[Y,= (!„ + e]<Z,

iii) c^/T^cCe,
iv) a(/„) + U < ie < 6(0,) — U.

Wie man leicht sehen kann, erfüllen die Zufallsgrössen Y,-, die in 1.42
definiert werden, alle die Bedingungen des Lemmas, dabei ist

a(0 : - 1 + y'" " 2YU,
2 »>-{-1

9W

6(o + i+ ' ;.xE'.
»i ^2v + l
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Es folgt dann:

P, \ Im( 0,0; '
+ 4- 1-50

>a»+i*a,+ t APP | \ AiV* 2A*N/ J

Im Gebiet

-1 + -*7"+' AJV*i < « < + 1 + 7" ' ' AN»«, t > 0,
<iv + l 2v-H 1

gilt für die Green'sche Funktion folgendes:

w(0,0;.s,f) -y=.-— (— l)"'exp{-—0m— (s — 2m)^/4(} 1.51
j/ 4 7t £ m——oo

0 2AW^,,/4M-I- 1.52

Wenn nun iV gegen oo strebt, und damit /r-/^/'->/-, j„ / JV*-> »,
und ö-*2A(a:2„ ,_i —a^,)/iWt, bekommen wir:

Q, E,
^?2i< h 1 2v n 72y H*2v-M

1 W, f
11 a:„ + 4w- A* 1

1
(~ 1)'" exp I — 1.68

[/ '2TT .S'2„ 1.1 N -CO
1 ^®2>MU j

Der Faktor in 1.41, multipliziert mit iV strebt gegen:

|/27r's2H.ï'exp{(®2,,i- -«a,)®/2«2H-i}- l-ß4

Durch die Gleichungen 1.35, 1.41, 1.53 und 1.54 bekommen wir
schliesslich:

lim P* V -l)»a exp{— 2m; iF/x,,.J 1.55
2V->oo — oo

ganz unabhängig von den »,.
Setzen wir jetzt 1.55 und 1.33 in 1.32 ein und lassen wir jV->co

streben, dann werden die Summen über j, zu Integralen über »„,
und weil es keine Beschränkungen für die gibt, muss dann von — oo

bis + co integriert werden. Da die P* von den :c. unabhängig sind,
können wir sie aus den Integralen herausnehmen. Wir bekommen dann:

n
D*lim P^ JJ P* Z, 1.56

v 0

wobei Kais das Integral der 2n-dimensionalen Normalverteilung über

— oo < »,< co, v 1, 2, 2w, gleich 1 sein muss. Damit ist 1.4
bewiesen.



Für den einseitigen Test läuft die Überlegung genau parallel. Man
lässt einfach das Zeichen des absoluten Betrages während des ganzen
Beweises fallen. Für das Kolmogorovsche Lemma haben wir dann:

a(f) — oo,

6(0 - 1+2J^WÜ/^.
Die Groen'sclie Funktion für dieses Gebiet ist die folgende:

l .57

1 i

m(O,O;s,0 2 (~l)"*exp{-0TO— (s — 1.58
[/ o

wobei 0 genau wie in 1.52 definiert ist.

Es folgt dann:
l

üm 77 V (_ l)"'v exp {-2otJ ,,}
N-> oo j>=0 m^=0

Damit ist 1.7 auch bewiesen.

1.59

II. Über die Schätzungen der Werte
einer unstetigen Verteilungsfunktion bei den Sprungstellen

In den letzten Untersuchungen haben wir die Werte der etnpi-
rischon Vf. bei den Sprungstellen als die Schätzungen für die theo-
retischen Werte genommen, nämlich:

0) /"av—i
> ~ /*2>" 2.1

d.h. ist die Anzahl der AU, die kleiner als :c„ sind, und iV/g,, ist
die Anzahl der AA, die kleiner oder gleich :i;„ sind.

Es stellt sich die Frage, wie zuverlässig diese Schätzfunktionen
sind. Die Cramor-Kao-Ungleichung besagt: Die Streuung einer Schätz-
funktion bleibt immer grösser oder gleich einer unteren Schranke, und
wenn das Gleichheitszeichen gilt, dann ist die Schätzfunktion schon

gut, nämlich vom sogenannten wirksamen Typ-
Die Maximumlikelihood-Methode lässt sich oft als eine der besten

Konstruktionsmethoden für Schätzfunktionen betrachten. Wir verweil-
den diese Methode hier, um Schätzfunktionen 2' - für die/-, j 1,2, ...,2«
zu erhalten und zeigen dann, dass diese Schätzfunktionen mit den in
2.1 definierten / • übereinstimmen.



A'j.À'g, seien eine Folge unabhängiger Beobachtungen
einer Zufallsgrösse X, die nach der Vf. 1.1 verteilt ist. Um die Schätz-
funktionell zu untersuchen, formulieren wir die Fragestellung wie folgt:

Die Zufallsgrösse X hat die Verteilung

P[>,. < X < a;. » J 0, 1,

P[X a;,.] r/j;, j 1,2, ...,it, 2.2

dabei stehen die und für die untere bzw. die obere Grenze des

Variationsbereiches der Zufallsgrösse A', und

7/ /'/ //.- 2.8

d.h. X kann in einem der oben in 2.2 definierten Intervalle (oder
Punkte) mit den dabei gegebenen Wahrscheinlichkeiten angenommen
werden.

Sei nun 27, «3, ^2«+1 Anzahl der Ab, die in das 1. bzw.
2. bzw. 2w+ 1. Intervall (oder Punkt) gefallen sind. In ÎV Versuchen

beträgt die Wahrscheinlichkeit, dass «211+1 "i das 1. bzw. 2.

bzw. 2it-b 1.Intervall fallen:

/ 2n+l \ 2n-(-1

17= X1//7«,.!Wj(7A 2.4
\ / i=l

dies ist auch die Likelihoodfunktion. Die besten Schätzfunktionen für
die /• sind die Werte der Stichprobenfunktionen, die die Funktion FF

als Funktion von den / zum Maximum machen. Wie bekannt, ist das

Maximum beiSIF/S/ 0 oder - was dasselbe ist - bei Slog IF/S/ 0.

Nun gilt: _log IF G + Nj «j log 7;, 2.5

wobei C nicht von den /• abhängig ist. Differenzieren wir und setzen

wir das Differential gleich Null, bekommen wir das folgende Gleichungs-

system:

Slog FF/S/,- «,/(/,-/,-_i)-«,.|.i/(/,- + i-/*) 0, 1,2, ...,2iî. 2.6

Sei 2';, =- 1, 2, 2w, die Lösung dieses Systems. Wir sehen dann,
dass : ;

ï',- 1,2, 2.7

Es ist dann klar, dass die 2b mit den in 2.1 definierten f. überein-
stimmen.
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Wir wollen jetzt diese Schätzfunktionen näher untersuchen. Weil
#(2.) JVg,, 7 1, 2, ..2w + 1, gilt:

77(T,-/,-)= 0, j 1,2, ...,2n, 2.8

d.h. die T. sind erwartungstreu. Die T- werden wirksam genannt, wenn

m' Fit m' S'~*m 2.9

wobei m ein beliebiger reeller 2w-dimensionaler Vektor ist und

mit

F (Wu„)

9 log TF 9 log W 1

2.10

7, j 1, 2, 2«, 2.11
ö/; 3/,- J'

^ K,-), M 1, 2, 3, 2rt 2.12

<r„ 77(T,-/,)(T,-/,). 2.13

und

mit

Nun finden wir

or„ .E(T,T,)-/,/,
(*Ü + + • • • + 2;) (2t + 2<2 + + 2j.)

77
JV® 7;/;

TM
Min (1,7)

v —/,/#

TV

somit ist

Min (1,7)

2 (T7(TVl)g? + TW,,) + W(W-l)2<Ms
i l r-| s

Für die ®,- haben wir:

' 9 log JF 9 log IF '

^ J 2.14

TV - 77
\ a/. 9/

77
2; S+i 'l+i

/t /i—1 /i+1 /i / V/7' /7-I A + l ^7

Daraus erhalten wir:
1

1) V ; - + für 7 j, 2.15
/» -(-1 /i /i /i—1

ü) Vi Vi,; —!/(/; —/;-i). für 7 j-1 oder j 7-1,
iii) 0, für 7 < j -1 oder 7 > j + 1.
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Mit HilEo dor Definitionen für F und >S' und der Gleichungen 2.14 und

2.15 kann man zeigen, dass:

FS 1, 2.16

womit 2.9 bewiesen ist, d.h. die f/b sind wirksam.
Wenn wir zwei Folgen von Beobachtungen haben : A\, Ak, A',y

und Yp Y, Y„, und z, z,, z^ und w,, die
Anzahl der Ak bzw. der Y. der botreffenden Klassen sind, können wir
analog zeigen, dass die Schätzfunktionen:

T; - V(^. + W.)/(IV + M), 1,2, ...,2n, 2.17
1 1

genau dieselben Eigenschaften wie die '/'• besitzen. Hier bemerken wir,
dass auch die 7'i mit den empirischen Vf. durch:

t; aS,V//) + W?u(/,•)> 2.18

wobei a + b 1 und a V/(.Y+ M), verbunden sind.
Die Tb (und das können wir auch für die Tl zeigen) haben eine

2?t-dimensionale Normalverteilung als Grenzverteilung. Man kann
nämlich zeigen, dass:" »1 *2n

P[tf*(T-/)<®] j j cxp{->'F'«}d«', 2.19

— OO — CO

wobei i) T (T„T„
ü) / (/1./2- ••>/•>„),
iii) Y ("p m,, «J
iv) F' (r;.) und »w wie in 2. 15 definiert,

2«+ l
»> r /7

y=i
Diese Resultate sind immer gültig, auch wenn /g.—/g. für irgendein
4 (/g,- darf nicht gleich sein, sonst ist :rç kein Unstetigkeitspunkt),
weil wie bekannt :

h S

lim I exp {— .1 Y'/aHda; 1. 2.20
„>0 ('2 71 er J

» l - ' J

— S

Natürlich wird die Anzahl der (voneinander verschiedenen) /• und
damit die Dimension der Verteilung um eins kleiner.

Dieses Resultat ermöglicht es uns, für eine einfache Hypothese
von der Form / /" eine strenge kritische Liegion zu finden.



III. Smirnov-Test für eine unstetige Verteilungsfunktion

>S',y(;r) und T^(a:) seien, wie in 0 definiert, die empirischen Vf.
zweier unabhängiger Folgen von Beobachtungen. F(:c), in 1.1 definiert,
sei die theoretische Vf. Gesucht sind die Verteilungen der beiden Grössen :

JV sup |fo/2 | ,V*) -2V,(®) 13
•

1

a;

Awv p |/v/2 [Sjy(a;) —21y(a;)]. 3.2
a:

Wir behaupten: 27teorem <3

lim P[D,viv < 31] 0(A). 3.3
2V->oo

27teorem 4

limP[D+v< A] 0' (A), 3.4
iV->oo

wobei 0(A) und 0' (A) gleich wie in den Gleichungen 2 bzw. 5 in [19]
(Sehmid) definiert sind.

Sei i die Menge aller geschlossenen Intervalle (/._,,,, i> 0,1,
2, w, dann ist leicht zu sehen, dass:

P[P>aw< 31] P[sup|/iV/2 |S]y(:r) - 2(v(x): < 3.5
/'(x) /

Für den Beweis nehmen wir an, dass ^ r 0, 1, 2, ».
Die beiden Theoreme gelten aber auch, wenn /^, für einige
(oder alle) r, wegen der Bemerkung in 2.20.

Für endliches V ist [<S"^(a;) — 2]y(a;)] immer von der Form t/iV,
wobei i eine ganze Zahl ist. Wir untersuchen zuerst die Wahrschein-

^keit: p[supjStf(®)-Ttf(s)|<c/tf], 3.6

wobei c eine ganze Zahl ist, und für den Grenzwert lassen wir c/iV gegen

A[/2/iY streben.

Definieren wir jetzt als das Ereignis:

i) |S]y(a;)--T^(a;)j < c/JV, F(z) 5S /„, 3.7

ii) *$(/,) - G/V,
iü) nCÜ G/F.

Ii
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Sei 7>„ die Wahrscheinlichkeit des Ereignisses 7t',, dann ist:

Pq 1, für /„ 0 (/„ 0 definitionsgemäss), 3.8
0 sonst.

Und Pg„, | mit W 1 definitionsgemäss) ist die

gesuchte Wahrscheinlichkeit in 3.6; diese können wir mit Hilfe der

Randbedingungen 3.8 und der Rekursionsformel:

3-9

in 2w+ t Schritten errechnen.

Je nachdem, ob der Index gerade oder ungerade ist, erhält man
zwei verschiedene Formeln, nämlich bei geradem Index:

^ 3.10

_ v p pZ. i
* 2v-l

'iii'-i '/ai- i <«
-0) ;

W--2v(U -0) A'^V-0)

Die bedingte Wahrscheinlichkeit bezieht sich hier auf zwei unabhängige
Ereignisse. Nach dem binomischen Gesetz beträgt diese Wahrscheinlich-
keit: g.,,

&(v—iW-i.W • ü>:-! : À A"')- —?2,-l —72v-ii A A'"')-
\ * /2>-l • \ * /2»-l /

Für ungeraden Index lautet die Rekursionsformel wie folgt:

?2,M - 3.12

Vp^p[ö4,P,G].
Dabei ist A das Ereignis:

^vOVn 9) (Wi-v)/JV/5Ä v/-^< 3.13

B das Ereignis:

%H" -0) (Î2,+i-Î2„)/N/T^,) 7^/JV, 3.14

G das Ereignis:

»S'^(.r)- -Tjv(a')| < c/N, für alle .r, so dass Z*'(;r) « 3.15



unter den Bedingungen, dasa:

i) $w(^c+i 0) S„(œ,) 2 v+1 ' 2 v) /A »

ü) 2w(œ,+1 - 0) — T*(œ„) fo, ^—j'J / A.

Nach dieser Definition sieht man, dass:

P|/t,P,C] P[/I] P[P] P[DJ. 3.16

P[A] und P[ß] können wir nach dem binomischen Gesotz errechnen,
his ergeben sich dann analoge Ausdrücke wie in 3.11.

Für das Ereignis C bedienen wir uns eines anderen Schemas.

Ordnen wir die (^x+r^v) der AP und die der Y,. in eine

einzige Folge der Grösse nach. Jedem Glied dieser Folge ordnen wir
eine neue Zufallsgrösse 0; gemäss der folgenden Definition zu:

0; + 1, wenn das vte Glied ein A'. ist,

0. — 1, wenn das i-te Glied ein Y; ist.

Sei noch
r

A,. 2 r l, 2, d igx hi ^2x Y ?2v 1.1 — ?2» • 3.17
i 1

Es folgt ^ P[|£;, + ia,-7a,j < c, r 1,2, d], 3.18

nämlich die Wahrscheinlichkeit dafür, dass ein Teilchen, welches sich in
der (x,f) Ebene bewegt und in ('ia,—j'2,,,0) beginnt und zu (ig,,,—?av+1

kommt, während seiner Irrfahrt zwischen den Vertikalen x c, x —c
bleibt. Diese Wahrscheinlichkeit können wir mit Hilfe des bekannten
Spiegelverfahrens errechnen, sie beträgt :

•o
2 (-1)

(*2x
1 I ^2x) (?2v

I 1 ?2x) '

[,] (Àv, : Ax:, :-n'"('2x.,

1

3.19
^2xf-l + ?2x+l-H'"(AxH-l2x|-l)

2

wobei [x] die grösste ganze Zahl in x.
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Sei i) p, (/r-/r-l)/(Wr-l),
ii) 6, &(*r—Vi.^—ViîPr).
iii) 6; & (?V—?V-1. ?r-l ; Pr) •

Wenn wir jetzt 3.11 in 3.10 und 3.19 und die analogen Ausdrücke
für 3.11 (für P[A] und P[B]) in 3.12 ersetzen, erhalten wir:

P2,, ^2f-l ^2v ^2v > 3.20

^2v n ^2» &2v fl ^2» + l (~' 1)"' • 8-Sil

Für endliches A können wir die beiden Formeln 3.20 und 3.21 ver-
einfachen mit der Transformation:

Wir erhalten

(jV!)®Pq (dV!)» für »„ 0, 3.22

0 in den andern Fällen.

Die Bekursionsformeln für die 1F„ lauten dann:

// —/ \<2»+J2i.-'2»-l-/'2»-l

^,= S 3.23
|'2>>-l""Î2»-l|<® W2» • U2v ?2r-l/ *

(7 \*2»+l + »2» + l""'2i'~'2»
w _ V PF 02»+1 /2W v 7_\»>y"Wl - Zj ^2, NI ff -il'|'2c~'2»|<'' \ 2f |-1 2w * \/2f-e 1 /2vP

Die gesuchte Wahrscheinlichkeit ist

*2» H1 ^2» 1 mit »2„ ,.i ?2„+1 N. 3.24

Die können wir mit Hilfe der Bandbedingungen 3.22 und der

Bekursionsformel 3.23 errechnen.

Für die Berechnung der Grenzwerte bei iV->co ist es hesser, fol-

gende Transformation anzuwenden:

(2V-Ü! (JV-f,)! jV'^k
73 *' 73 Q Of,

" ~ (lV!)* (1 -/,)^' h. P^ ' '

Für die ß„ finden wir: P„ 1 für 0, 3.26

0 in den übrigen Fällen
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„ _ V 7? W
|%7i-i-xh? - V-,) ' S. 27

7?, y, e.2"+l "7" 4-J 2" \| \| JÜV(/2H-l-/2,>
'a»-^ <" \ 2"+l %DU2v+l l2»v '

E2„.^i können wir mit den Randbedingungen 3.26 und den Formeln
3.27 bestimmen. Die gesuchte Wahrscheinlichkeit ergibt sich aus der

folgenden Gleichung:

2n+l
(wi)y^

jy2tf -'I • 1 • 3.28

Wenn IV gegen oo strebt und damit:

i) »,/#-/,+ y,/tf', 3.29

ü) +

iii) c/IVU|/2"A,

werden die Summen über j 7„ - j„ j < e zu Integralen über j ?/,, — ,t„ < ]/ 2 A,

abgesehen vom ersten Schritt, wo die Summe nur aus einem einzigen
Summanden besteht, der gegen den Ausdruck:

ö*-

3.30

AI V (-1)"'» exp
2 7Ï /i —co

strebt.

-I
2/i

{2/i + 2 (/2 Arno(7/1 - .Tj) + 4Wq A®}

Der Faktor in 3.28 multipliziert mit A^ strebt gegen eine Konstante.
Es gilt nämlich:

IV(A/!)V"
JV'2iV 2jr. 3.31

Jedes Glied K,„ der Summe 3.29 strebt gegen:

exp
-1
2v M

j/2 üm,(?/2,+r -»2, ,_t) — ('2 ay + 2»^'
1 - (-)'">

+ (.'/21+1 ^W+l) (Z/2.' ®2v)| 3.32

Weil d / c -> 00, werden die Summen über alle w„ von —-oo bis +00
erstreckt.
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Dazu kommt noch die Gleichung

V
WZ, '

2 MS,
exp •

1 (•//,. -^)® I- (.<v -a^-,)*]
2 s„

I

8.33

Durch die Gleichungen 3.26 bis 3.33 bekommen wir:

'im Zl,„. i lim P[ sup |,S^.(r) | < A/2/N] 0(A), 3.34
iV -> CO iV-> CO _£*(£) £ /

wobei :
H

CO 2,'m; 211+1

0(A) 2 H'-» (2w) ""/7
mo...w»=- co j l

exp
1 ^ ('//, — 7/,-t)- G (a>-0*
2 v=i s„

V̂
_J

v 0

-co<ij<co j
i/y —Xj| <A]/ 2

l f

H"'"(</2,+r-®2v+i) ['2 A?m„ — [/'2 lm,(î/2»-%) -I- 2 m® A*

1
d~

~ (I/an H "" •' 2» 1

1) (.'/av ~" ^2v) f / ®2v r 1 d.r, fi.r.j,, (///( c///2,j,

3.35

mit •'0 2/o %,n 1/2,1+1 0-

Berechnen wir das Integral über .-c-, j 1, 2, 2m, und machen
wir einige weitere Umrechnungen mit den geeigneten Substitutionen,
dann bekommen wir:

£»1;
0(A) V (—l)i=o

Wo • • .%= — CO

exp
1

-y
(~2v *2i—l)"

2 s. 3.36
U ; I < A

1 » ((—r«a,.n-*2, + 2Am,)*
2

2v-h l
• • • ^2» »

2n+ t

wobei =^,.1-1 'i- und G (2m)" / / (/,•— /,•_,) *.

;=i
Der Ausdruck in 3.36 ist derselbe wie (25) in [19], womit 3.3

bewiesen ist.



Dasselbe Verfahren können wir anwenden für den einseitigen Test,

nur müssen wir das Zeichen des absoluten Betrags über den ganzen Be-
weis fallen lassen. Die Summen werden in diesem Fall über (i„ —?„) < c

erstreckt und danach die Integrale über (sc) < A genommen. Bei der

Irrfahrt haben wir nur eine einzige Barriere, die entsprechende Wahr-
scheinlichkeit wird :

j _
(%rl-l~V)! (jfer+l Î2») '

— 1 -£ g gy
I- L ?2M ") ' (üv I I Ja» T •

Die Grenzwerte erhalten wir analog, es ergibt sich dann:

limP[7)^< A] V (-1)J»< 3.38
iV->oo wo • •. wn=0

f f 1 A 1 v ((—% + 2Am,y
exp Y ' _^ ^ 0 hl

A

(feg &2„ •

Dieser Ausdruck ist gleich wie der Ausdruck (5) in [19]. Damit ist
auch 3.4 bewiesen.

Wir wollen hier bemerken, dass die Grenzwerte, d.h. 0(A) und
0 '(A) dieselben bleiben, wenn wir für die / eine Schätzung von der
Form :

/)• /y + 0 (TV*) wählen. 3.39

IV. Verteilungen der ein- und zweiseitigen Smirnov-Teste
über einen beliebigen Teil des Intervalls (0,1)

Die Überlegungen, denen wir im vorigen Paragraph gefolgt sind,
können wir hier wieder anwenden, um die Verteilungen der Smirnov-
Tests über einen beliebigen Teil des Variationsbereiches einer Zufalls-
grosse zu bestimmen, wenn die Vf. P(Ü in diesem Teil stetig ist.

Betrachten wir das geschlossene Intervall (a^,^). Nehmen wir
an, P(a;) sei über diesem Intervall stetig; a^ocg sind folgenderweise zu
bestimmen:

PK) «i,
I'X'Ü «2 • 4.1
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Wir behaupten: T/ieorem 5

lim /'[ sup |/#/2 jStf(a') —T*(a:)' < A] .,j
„

4.2
iV->oo ai<i^^x)<a2 y 1—£

«o 6o

(Fj — 2 £> 2, + 2^)f (27 —2/) 2,2,+ 25) 1

exp ^ ; afe,^ + 2Y(^'r»""
1 ^ \ ^ f? / J W 1

{ (^ + 2 02,22 + 2.2) 1

P.\p< — „ t<2, r/2,,
1 2(1-e«) J

'

wobei re„, (2 —2mAa,)/|/a,(1 —-«2) 4.3
A - ~ 2 m A (1 — a,) / [/ a, I — a,)

a, (1— a„) /ag(l - -a,).

T/teorem ö

lim P[ sup [/w/2(,Sya;)-T^(.i))< A] ,j 4.4
iV-> co ctj <I^(x)<a2 /jTT J/1 —

fto
.2 O „ „ « L *2

exp 2(1-2") J / / I 2(l-wr)
(37-2(?2,23 + 25)] / / f (37 + 2e2,2a + 2|)]

'ffejcfeg-e exp — rfe,^

wobei a„, 6„, u, und 6, wie in 4.3 definiert sind.

Wie vorher erwähnt, ist .S'^(a')— T^(.r) immer von der Form i/W,
wobei i eine ganze Zahl ist. Wir untersuchen dann zuerst die Wahr-
scheinlichkeit

P[ max ISjy(a:) — Tfl(a')j < c/JV] P^a,^) 4.5
a, <; /-V) •- «2

und für die Berechnungen der Grenzwerte als zY->co, lassen wir c gegen
2 [/2.1V streben.

Definieren wir jetzt die Ereignisse +3, B,, Bg, C wie folgt:
sei das Ereignis, dass <S(v(^'r) 4.6

a4j sei das Ereignis, dass 2'j,(«j) Ja/W,

B, sei das Ereignis, dass %/Ah $#(+,) y',/iV,

I?2 sei das Ereignis, dass T^^a) *z/-W, 2'n(^i) ?a/jY,

C sei das Ereignis, dass [>S'^(a:) - -üP^a:)| < c/iV, P(x) « (a,,a.,),
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unter den Bedingungen, dass B,, Bg eingetreten sind. Wir können
dann gleich sehen, dass die gesuchte Wahrscheinlichkeit:

.«2) 2 s /''2. />',. ^. c]. 4.7

V 2 P[4JP[4JP[ßJP[S,]P[C],

weil jedes von diesen Ereignissen von den anderen unabhängig ist. Die
Wahrscheinlichkeiten der Ereignisse zf,- und /!,. können wir nach dem
binomischen Gesetz errechnen. F[C] müssen wir aber nach dem Ver-
fahren in III bestimmen. Es ergibt sich dann ein analoger Ausdruck
wie 8.19. Wir erhalten für folgendes:

(iV!f (1 - -03)^'»-'« (a, —oj) '» >(«jh (-/,

Dvl«l>«2l Ah

d 1

^ '

(jV-h) (N-g C/1-7'1) (À À) (il) (À)

A'
'

(h-h)! (', -B)!
' h + h+ (—)"'('2 —h) • Ai / ''2 +(~)"'('2—h)

2
?2-b'Hc):(

^
- -.7, me

wobei die Summe über Ai —7>j < c, |^ — < c ist 4-8

und d — i'i + (3 — ii—-?2î L*J die grösste ganze Zahl in a:.

Für die Berechnungen der Grenzwerte lassen wir ZV-»-00 und da-
mit : c->Af/2ZV, ïJJV-^aa + j/J |/W jb / W->a, + ,t,-/[/ A' streben. Die
Summen über [ij — Igj < c, und [), — Jal<c werden zu Integralen
über 12/1 — y.jj<[/'2A bzw. Ja^ — a^J < |/2 A, und wir bekommen:

00

limitai, «2) =I^V(-1)"
iV -» 00 m — 00

—00 < £2 < 00 j ~ ^-2 < a y 2

— oo<j/2<;cx> II/i~ 1/2 J <A [/ 2

exp
1

j //(+2/2, (//, - +(//2 - •^)", +."''2

2 } 1— a.j
'

«a — «i ai

j (—)"* (2/2 — 2/i) wi|/2 A— |/ 2 Imfe-ii) + 2m^P

dxidaigdi/idya, 4.9

wobei IV 2ar [/a^ocg—a,) (1 — oig) •

1 -(—)"' 1

+
2

" (?/i—®i) (Z/2— -'2)
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Wonn wir einige geeignete Substitutionen machen, können wir das

Integral über und //., errechnen. Wir bekommen dann für die rechte
Seite der Gleichung 4.9 folgendes:

IC v (_)-» I j exp

- i < s

1 1 ^
^

-)"C C M'»)" n
'2 l -ou

+ +

4.10

(oc., - - a,)
- ; < s

Sei nun:

hj 2m A( 1 - - a.,), s, — (c, -|- 2 m Aa,, 4.11

dann bekommen wir:

limou) IC V
iV -> CO — oo

f f -1
I J 2(«2-«I) 1

1-«, „ oc„i

C, + "

a,
diu, diu, 4.12

wobei das Integral zu erstrecken ist über:

-A -I- (—)""2mA(l — Og) < «g < A + (-)"'2m A(1 -cu),
— A -2m AoC[ < 'H'j < A —2m Acq.

Damit ist 4.2 bewiesen.

Das Smirnov-Theorem bekommt man von 4.0, wenna, 0, a.^ 1-

Analog können wir den einseitigen Test behandeln. In diesem Fall
bekommen wir:

(nsra-og^-v»-.(«,-«,) »l + »2—?1~7 2 ^(X J) ^ 1 ' ^

(^-»i)l (N-g! C-h)! (V -g! (?C (7a)!

(^l 7i) • (''2 7a) '

P/K.«a) u"

1- ' 1, 4.13
Ch — 7a " ' • C'a 71 + <0 •

hier ist die Summe über (», —g < e, (y\ — g <
Wenn N-*oo, erhalten wir:

,,2 /,,, „. \2 1 \2 ,v.2 1 ~21

lim iy~ (aj,cu) IC exp
1 j 7/i + ?7a

_
(?/i - • ®i)* + (?/a " •''a)" ®ï + »21

2 [ l — o<2 cu —

1 — exp j —
(.rj-a-2 —A(/2) (7/i-.'/a-A|'2) j

«2 - «1 J
I.r'j d.r., tïï/j d//o • 4.14
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Nach einigen Umrechnungen ergibt sich:

lim Z-y (a, ,a.>) /v '
exp

1 (»V -«,)- w?|

2 [ a.j ao — ®i
fZ(ü( rZ//^

'a «i

/v '
« exp

1 jlüjj K + w,)- w?

2 I a., *2 —«i
4.15

wobei cij A — 2Asq hj A — 2A (1—a„).

Damit ist auch 4.4 bewiesen.

Auch hier bekommen wir den einseitigen Smirnov-Test als Grenz-

wert, wenn oq 0, c<2 l.

V. Appendix

i) Jode der Funktionen /,(A) und L ' (A) besteht aus Produkten, und
jedes dieser Produkte ist den bekannten Funktionen von Kolmogorov
bzw. Stnirnov gleich. Das ermöglicht uns, die Tabellen von Smirnov [20]
anzuwenden. Dafür brauchen wir nur die gross to Abweichung im Inter-
vall (/gf ,/af, i) durch [N,;,., zu dividieren und die entsprechende Wahr-
scheinlichkeit von den Smirnov-Tabellen abzulesen.

Es ist auch zu bemerken, dass in jedem Intervall (/a,-,/a,- i) die
Sicherheitsschranke für eine gegebene Wahrscheinlichkeit um 1 /(/% ^
schmäler geworden ist, was der Abnahme der Freiheitsgrade beim
%2-Test entspricht.

Hier geben wir ein einfaches Beispiel, das die oben erwähnten
Eigenschaften erklärt. In diesem Beispiel hat es nur eine einzige Sprung-
stelle, die ganz beim Rand (« 0) liegt.

Während einer Periode von 16 Jahren wurden die wöchentlichen
Maxima der Abflussmengen der Baye de Montreux (Schweiz) registriert.
Unter den 832 beobachteten Werten gab es 246 Werte gleich Null. Für
diese Beobachtungen wurde folgende Verteilungsfunktion vorgeschlagen :

P(X 0) =/,
F(x) =/+(!-/) F(Z/), x >0, i.l

wobei /<'(//) die Normalverteilung ist und y (log x — log 6)/d.



Für /, & und d ergab sich:

/ 0,296, log & 5,2426, d 1,692.

Für den einseitigen Test war die gross te Abweichung 0,0649, was einer

Wahrscheinlichkeit P+, nach Theorem 2, von 0,057 entspricht. Bei

dem zweiseitigen Test beträgt die grüsste Abweichung 0,086, für welche

P 0,092 nach Theorem 1 ist.

Zum Vergleich bringen wir hier die entsprechende Wahrscheinlich-
keiten 7"' und /'nach den Theoremen 1 und 2 in [19] (was Theoremen
5 und 6 mit og — / und cc, 1 dieser Arbeit entspricht). Es ergeben
sich in diesem Fall:

P'- =0,122, P 0,218.

Dieses Beispiel verdanke ich der Abteilung für Hydrologie und (IIa-
ziologie VAWE an der FTH.

ii) Es ist schon bekannt, dass die Abweichungen kein homogenes
Gewicht über dem ganzen Intervall (0,1) haben. Zum Beispiel ist be-

kannt, dass

/q't-VvpE] .M -<),

wobei A',y(0 V^(iS)y(1) f), d.h. die Streuung ist maximal bei <

Anderseits wurde bewiesen (Corr. 2 in [8]), dass die grüsste Abweichung
eher bei Ab,., als bei Ab eintreten wird.

Die Theoreme 5 und 6 kann man dann gebrauchen, um strengere
Teste zu konstruieren, indem man sie auf das Intervall anwendet, wo
die Abweichung stärker ist.
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Zusammenfassung

Der Autor leitet rlie Verteilung von Kolmogorovs Testgrösse für unstetige
Verteilungsfunktionen her, falls die Werte an den Sprungstollen derselben geschätzt
worden sind. Anschliessend wird der Zweistichproben-Test von Smirnov auf dis-

kontinuierliche Verteilungsfunktionen übertragen sowie die Verteilung dieser Mass-

zahl für ein endliches Intervall (—co <. aq < aq < |- co) angegeben. In allen
Fällen gelangen sowohl einseitige wie zweiseitige Fragestellungen der Teste zur
Besprechung.

Résumé

Dans le présent travail, la distribution des critères de Kolmogorov est calculée

pour les distributions discontinues, quand les valeurs des sauts sont estimées. La
distribution des critères à deux échantillons de Smirnov est aussi obtenue pour le

cas des distributions discontinues. En outre, la distribution des critères de Sinir-
nov est indiquée dans l'intervalle (— co < aq <; ic,< + °°). Dans chaque cas, l'an-
tour étudie les tests unilatéraux ainsi que les tests bilatéraux.

Summary

The distribution of the Kolmogorov's criteria is obtained for discontinuous
distributions if the values of the jumps are estimated. The distribution of the

Smirnov's two-samples criteria is also got for discontinuous distributions. Lastly, the
distribut ion of the Smirnov's criteria over a finite interval (— co < aq< aq < + co)

is given. In all the cases, both the one-sided and the two-sided tests are treated.

Riassunto

L'autore deduce la distribuzione del criterio di Kolmogorov per distribuzioni
discontinue, riel caso di valori estimati ai salti. E pure applicato il criterio di
Smirnov a saggio doppio, per distribuzioni discontinue. Inoltre, la distribuzione
del criterio di Smirnov è espressa nell'intervallo limitato (— »-> < aq< + <»).

In ogni caso si perviene a trattare un quesito unilaterale che bilaterale dei tests.
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