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Approximation empirischer Verteilungen

unter Kinsatz elektronischer Rechengeriite

Von Hans Riedwil, Bern
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Zusammenfassung
Is werden bestimmte theoretische Verteilungen — die Normalverteilung, die
F‘:rmn-(Jharlier-Verteilung, die Fdgeworth-Verteilung, die Lognormalverteilung, die
logarithmische Gram-Charlier-Verteilung und die logarithmische lidgeworth-Ver-
teilung — untersucht, die unter sich und zur Standardform der Normalverteilung
einfache Bindungen aufweisen und die sich fiir die Approximation empirischer Ver-

teilungen unter Iiinsatz elektronischer Rechenanlagen eignen.
Ifiir das Schitzen der Parameter werden die Methode der Maximum Likelihood

und die Methode der Momente kurz dargelegt.

Zur Beurteilung der Giite der Approximation sind die heute wichtigsten Mest-
verfahren, wie Chiquadrat-Test, Kolmogoroff-Test, Cramér-von Mises-Smirnow-
Test und Anderson-Darling-Test, mit den daraus hergeleiteten numerischen An-
sibzen susammengestellt.

0 Einleitung

Iiin zufilliges Phinomen lisst sich durch eine Zufallsvariable be-
schreiben, die ihrerseits durch die Hiufigkestsfunktion, die Verteilungs-
funktion, die charakteristische Funktion oder durch die Momente ge-
kennzeichnet werden kann. Beziiglich der letzteren begniigt man sich
meist mit den ersten vier Momenten und leitet daraus die statistischen
Masszahlen Durchschnitt, Streuunyg, Schiefe und Fazess ab.

Sind empirische Verteilungen durch theoretische Verteilungen zu
approximieren, so eignet sich hierzu entweder ein System von Hiufig-
keitsfunktionen, deren allfillige Parameter zu den statistischen Mags-
zahlen eng gebunden sind, oder ein Transformationssystem, das die
Ubertithrung einer beliebigen Hiufigkeitsfunktion in eine bekannte
Héufigkeitstunktion (z. B. Normalverteilung) gestattet.

K. Pearson hat die Differentialgleichung

1 dy a4+ &

y dax byt bya -+ bya?
betrachtet und gezeigt, dass deren Lisungen Hiufigkeitsfunktionen sind.
Die Koeffizienten (a, by, by, by) der Differentialgleichung sind zu den
statistischen Masszahlen Durchschnitt, Streuung, Schiefe und Fxzess
der zugehdrigen Hiufigkeitsfunktion gebunden; bestimmend fir die
analytische 'orm der Kurven sind insbesondere die statistischen Mass-
zahlen Schiefe und Fixzess. In einer Kbene mit der Schiefe als Abszisse
und dem Quadrat des Fxzesses als Ordinate (Graphik 1, Seite 111) Lisst
sich der Geltungsbereich fiir die wichtigsten Typen auf einfache Weise
darstellen.
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Die auftretenden Parameter sind Iunktionen der Koeffizienten
(ct, by, by, by) der oben erwihnten Differentialgleichung. Das System
enthilt unter anderen die Normalverteilung. liine ausfihrliche Dar-

Jx—a| 2™,

stellung der Pearsonschen Verteilungen findet manin dem Standardwerk
von W.P. Elderton [10]1).

N. L. Johnson [19] zeigt, wie eine beliebige empirische Verteilung
in eine Normalverteilung transtormiert werden kann, Nach der Beziehung

€T
z-:y—E—ﬁg( 3 )

mib den Transformationsparametern (y, d, 1, 1) unterscheidet man drei
Transformationssysteme

S;: g(y) = Iny (Lognormalverteilung),
S g(y) = Infy/(1—y)],
Syt g(y) = In[y+yyr1].

1) Zahlen in Klammern [ j beziehen sich auf den Literaturnachweis.
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na
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Die Transtormationsparameter sind wiederum eng gebunden zu den
statistischen Masszahlen. Der Geltungsbereich des S;-Systems fillt mit
dem spiiter zu erorternden Geltungsbereich der Lognormalverteilung
LN (Graphik 2, Seite 112) zusammen und trennt zugleich das S ,-System
(oberhalb der I.N-Kurve, unschratfiert) vom S ,-System (unterhalb der
LN-IKurve).

Fir die Programmierung elektronischer Rechengerite eignen sich
weder die Pearsonschen Verteilungen noch die Transformationssysteme
von Johnson. lirstere bedingen eine Rethe von Unterprogrammen fir
die verschiedenartigen analytischen Ausdriicke der Hiufigkeitsfunk-
flonen, withrend fitr die letzteren das Schiitzen der massgebenden Para-
meter (v, d, u, 4) beschwerlich ausfillt. 19s soll daher im folgenden eine
Auswahl von Verteilungen betrachtet werden, die unter sich und auch
zir Standardform der Normalverteilung einfache Bindungen aufweisen
(Kapitel 8) und sich fiir den Finsatz elektronischer Rechengerite aus-
zelchnen.

Die Normalverterlung (NV) ist durch die beiden Parameter Durch-
schnitt und Streuung eindeutig charakterisiers. Die fundamentale Bo-
doutung lisst sich daraus erkliren, dass die Normalverteilung

= hinfig angenihert in der Natur beobachtet werden kann;

= aly Tolgerung des zentralen Grenzwertsatzes der Wahrscheinlich-

keitsrechnung theoretisch erklirt werden kann und
— als Voraussetzung zur Testtheorie eine einfache und geschlossene
Abhandlung derselben gestattes.

Die Gram-Charbier-Verteilung (GV) und die Fldgeworth-V erteilung
(I7V), deren vier Parameter mit den statistischen Masszahlen Durch-
schnitt, Strevung, Schiefe und Fxzess iibereinstimmen, gestattet ins-
besondere den Iiinfluss der Nichtnormalitit auf die theoretischen Priif-
verfahren zu untersuchen (vergleiche 'T'. Schlipfer [31]) und wird auch
hitufig fiir die Approximation fast normaler Verteilungen verwendet.

Die Lognormalverteslung (LNV) mit zwei Parametern leitet man
aus der Transformation Y = e¥ der normalverteilten urspriinglichen
Zufallsvariablen X ab. J.Aitchison und J.A.C.Brown [1] haben eine
umtassende Darstellung dieser Verteilung gegeben.
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Die logarsthmasche Gram-Charlbier-Verteslung (LGV) und die log-
arithmasche Fldgeworth-Verteslung (LISV) mit vier Parametern sind zur
gewohnlichen Gram-Charlier-Verteilung resp. lidgeworth-Verteilung
in gleicher Weise gebunden wie die Lognormalverteilung zur Normal-
vertellung.

Die Systematik aut Seite 65 ldsst die Bindungen der sechs aus-
gewilhlten Vertellungen unter sich und zur Standardform der Normal-
verteilung erkennen.

Zur Approximabion empirischer Verteilungen hat man eine geeig-
nete theoretische Verteilung auszuwihlen und deren vorkommende
Parameter aus den statistischen Masszahlen der empirischen Verteilung
zu schiitzen. In diesem Zusammenhang dringen sich Kriterien auf, um
ither die Zuverlissigkeit von Schitzwerten (Abschnitt 13) befinden zu
konnen. Fintache Schitzverfahren wie die Methode der Maximum
Likelihood oder die Methode der Momente gestatten das Aufsuchen
von geeigneten Schiltzwerten, die die an sie gestellten Anforderungen
ganz oder teilweise erfiillen.

Um iber die Giite der Anpassung der gewihlten theoretischen
Verteilung an die empirische Verteilung befinden zu konnen, bedient
man sich spezieller Priifverfahren (Abschnitt 14). Grundlage hierzu bil-
den die theoretischen Verteilungen und die daraus abgeleiteten Sicher-
heitsgrenzen. Mit dem Risiko eines 'ehlers erster Art wird man bei Vor-
gabe der Sicherheitsschwelle die Hypothese, die empirische Verteilung
entstamme zufillie der theoretischen Verteilung, dann ablehnen, wenn
die errechnete Testgrosse die entsprechende Sicherheitsgrenze iiber-
schreitet.
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1 Grundsitzliche Erwigungen
11 Theoretische Verteilung
111 Allgemeine Verteilung

Wir betrachten eine eindimensionale stetige Zufallsvariable X mit
der im Intervall (— co, co) integrierbaren Hdufigkeitsfunktion f(z), die
zur Verteilungsfunktion F'(x) und zur charakteristischen Funktion ¢(t)

wie folgt gebunden ist: .
Plx) = ff(u) du; (1.1)
@) = f(:itxf(w) da. (1.2)
Als Iirwartungswert einer stetigen I'unktion ¢(x) definieren wir das
Integral oo
Bly(@)] = [ g(a) f(z) da. (1.3)

Die Hiufigkeitstunktion f(x) ist normiert, d.h. es existiert die
Berziehung

j;‘(m) dat = 1, (1.4)

OO
Fir die theoretische Verteilung der Zufallsvariablen X wollen wir
foleende charakteristischen Grossen definieren:

Nullmoment r-ter Ordnung:

=Bl = [a'f@)de; r=1,2,.... (L.5)

Hauptmoment r-ter Ordnung:

w, = Bl(z—u)"] = f(zLJu{)’/(z) de; *=2,8,.... (1.6)

Die Hauptmomente zweiter big vierter Ordnung, ausgedriickt durch
die Nullmomente erster bis vierter Ordnung, lauten
/ re
LL.) == /,Lz_“l,(ltz
! ¢ ’ ! ¢ 3
o == g — B p; g + 20, (1.7)

’ ! ! » 19 3 ‘4
My = My — 41“[ Ly -+ ()1“’1 My — .;litl .



Kumaulante r-ter Ordnung:

o (it)”
%ty
et T =p); r=12.... (L8

Die vier ersten Kumulanten — ausgedriickt im Nullmoment erster
Ordnung und den Hauptmomenten zweiter bis vierter Ordnung — sind

Xy = /”f{ ’ Ky = Uy, g = lUg, Ky = My — 3!”’3 (1 9)

Standardisierte Kuwmaulante r-ter Ordnung:

DL I, . S (1.10)

Ay = ol Ay = el !
. ? (1.11)
. X,
=" =1, =",
o “y
Ausgezeichnete statistische Masszahlen
Durchschmatt: = puy = », = Ja,f () dx. (1.12)
Zentrabwert ( Medwan): :LH
w, s (L) = ['f(fu,) du = . (1.13)
Hdufrgster Wert: @ f(m,) = Max[f(x)]. (1.14)
Strewung:  6° = puy = #y == f (2 —u)? f(z) dx. (1.15)
Mattlere quadratische Abweichuny:
o= |c*. (1.16)
. . _ T
Variationskoeffizient : V = —. (1.17)
7
— Xy
Schrefe: V= A= (1.18)
o
nj %‘1
Bxzess: Va=A= . (1.19)
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An Stelle der beiden letzten Masszahlen findet man in der Literatur
auch ofters die von K. Pearson eingefithrten Masgse

B a2
B Vi (1.20)

112 Standardisierte Verteilung

Die Zufallsvariable X—u
o]
heisst standardisierte Zufallsvariable. Thre Hiutigkeitsfunktion bezeich-
nen wir mit f(z). Die Verteilungsfunktion und die charakteristische

Funktion lauten

a

F(2) = [ flu) du; (1.21)
) ::‘J";M(z) dz (1.22)

Nudlmoment r-ter Ovdnang :

,u,[ zes )iy
oo (1.23)
‘LJ_r = J Zr f(z) ([2; T = 2, :;) 6w

Heptmoment r-ter Ovdnung :

o =1, w,=p; r=234,.... (1.24)

r 2

Kumaudante erster bis vierter Ordnung:

=0, =1, u5=p5, % =py 3. (1.25)
Standardisverte Kumulante evster bis vierter Ordnung:
}'l o (), }.2 == ] ) 2.3 — %3, /11 =l %41' (] .2())

Ausgezeichnete statistische Masszahlen

Durchschnatt: u = ,u{ — (.

(

Strewang : 02 = pu, = 1. (1.28
Schaefe: yp = Ay = %3. (
(

lixzess: Vo = Ay = %,
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Wichtig 156 die Tabsache, dass fir die standardisierte Zufalls-
variable 7 der Durchschnitt 0 und die Streuung 1 ausfallen. Schiefe und
lixzess sowohl der urspriinglichen Zufallsvariablon X wie der trans-
formierten standardisiorten Zufallsvariablen 7 sind gleich. Einen aus-
fithrlichen Nachweis dieser Invarianz beziiglich linearer Transforma-
blonen ist in der Dissertation von 'I. Schlipfer [31] zu finden.

12 Empirische Verteilung

Einer wnfassenden Grundgesamtheit, charakterisiert durch die
Héufigkeitsfunktion f(x) der Zufallsvariablen X, werde nach dem Zu-
fallsprinzip eine Stichprobe vom Umfange # entnommen mit den be-
obachteten Stichprobenclementen z,, x,, ..., x,. Die Stichprobe vom
Umtange n der Zufallsvariablen X kann daher aufgefasst werden als »
vonetnander unabhiingige Zufallsvariablen X, X, .../ XN | deren Ver-

n?

betlungen einzeln alle gleich der theoretischen Verteilung sind.
t=] fe) o
Werden die Stichprobenelemente ihrer Grosse nach geordnet

po e < T
LL(U == ‘1/(2) === v e e g 'L('N)’

80 kann die empirische Vertethwngsfunkbion S, (x) wie folgt definiert
werden:
[0 (z< )

k
(@) = (T <T =g ) k=0,1,...,n—1 (1.31)

L (2> 2y);
| ko ot . . )
kurz S (x) — , falls k Stichprobenelemente kleiner oder gleich 2 sind.
"
Fiir die empirische Verteilung der Stichprobe wollen wir folgende
charakteristische Grossen definieren:
Limpurisches Nudlmoment r-ter Ovdnaung:
1 »
~y X
m, = — S} Y S
N =1
Empwrisches Hawptmoment r-ter Ordnung:
1 n
Y

m, =— S (z;,—m)%, r=2,8,.... (1.88)
N
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Zur Schitzung statistischer Masszahlen der Grundgesamtheit ge-
nitgen die empirischen Momente nicht. Insbesondere sollten die Schiit-
zungen zuverlissig!) sein. Um diesem Kriterium Rechnung zu tragen,
werden folgende Frwartungswerte benotigt:

E[m] = p,

_ n—1
E[m,] = - s
n
o n—1)(n—2
E[mg] = ( )2( )-,ug (1.34)
n
, ) B—1) (m?— Sn+49 Sh—1) 2n—-3)
E[m,] = 4 ) ( % ) - Uy + ( : )E ) e
n n
o n—1) —1) (n*—2n 43
E[my] = ( ; ) -y L [ ) ( . ) i
n n

Die zuverlissigen Schitzwerte des ersten Nullmomentes und der zweiten,
dritten und vierten Hauptmomente ergeben sich gemiiss nachstehenden
Ansitzen:

fiy = m,
., n
g = m,
e w1 2
5 " (1.35)
g = eI
(n—1) (n—2)
., n(n®—2n +3) 3n(2n—3) "
B, == My, — My .

4 4 i
‘ (n—1) (n— ) (L—&) (n—1) (n—2) (n—3)
Die Erwartungswerte der entsprechenden Schitzwerte stimmen it
den zu schitzenden Masszahlen der theoretischen Verteilung iiberein.
Nach den Beziehungen (1.35) gewinnt man leicht zuverlissige
Schitzwerte fiir die Kumulanten erster bis vierter Ordnuny.

#, = m,
. n
Hy = —— M,
? n—1 7
A W2 (1.36)
%y = ms
(n—1) (n—)
A ”2 2
iy == : —[(n+1) my—3(n—1) mg].

(n—1) (n— 2) (n— -3)

1) Siehe Ausfithrungen in Abschnitt 131,
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Ausgezerchnete statistische Muasszahlen

i ) 1 n
Duwrchschnatt : = fi; = — 8 B (1.37)
n =1
! 2 A 1 t?' =\2 ¢
Strevung : 5 o=y = - 8 (®;—F)" (1.38)
n-—1 ;=1

Mittlere quadratische Abwerchuny:

s~ | s2, (1.39)
S
Varationskoeffizient : V=-—. (1.40)
z
Schiefe: g = P~ S;j. (1.41)
%
Hxzess: P == Py = S: ; (1.42)

Schiefe und Fxzess nach K. Pearson ergeben sich zu

b= o~ g .

3 ¢
by = py = gy + 3.

Die gewonnenen Ansiitze lassen sich leicht iibertragen auf empi-
rische Verteilungen, deren Stichprobenelemente in m gleiche Klassen
aufgeteilt warden. Die konstante Klassenbreite sei &, die Klassenmitten
bezeichnen wir mit x; (1 = 1,2, ..., m) und die absolute Hiufigkeit
der j-ten Klasse mit w (f=1,9 ....m).

Rohes empirisches Nullmoment r-ter Ordnung:

m

m, = - S npah, r=1,2,.... (1.44)
ni_

Rohes empirvsches Hawptmoment r-ter Ordnung:

_ 1 m
m. — . S ni(a;J.—WL;)r, r =4, 3, —— (1 45)
=y
W.F. Sheppard [32] fithrte eine Korrektur der empirischen Momente
ein, die den systematischen I'ehler, der von der Klassenbildung herriihrs,
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aufhebt. Iiine einfache Herleitung der Korvektur hat P. Lorenz [22]

gegeben. Die korrigierten empirischen Momente lauten:

1 =
my = omy

. ]i:z [ “
My — M, — 1.46
> T (1.46)
My = My
. | Tkt
m, = My——— Mg+ .
2 240

Mit Hilte der Beziehung (1.46) lagsen sich die Kumulanten und die
statistischen Masszahlen (Durchschnitt, Streuung, mittlere quadratische
Abweichung, Schiefe und lxzess) analog den Ansitzen (1.36) bis (1.43)
ausdriicken.

13 Theorie der Schitzwerte
131 Problemstellung, Kriterium

Die theoretische Vertealung sel durch die Hautigkeitsfunktion
flx; 0., 0,, ..., 0) definiert, die zusdtzlich von den s Parametern
0,,0,, ...,0, abhingig ist. Letztere sind meist unbekannt, so dass
sich das Problem aufdringt, diese aus einer Stichprobe vom Umfange
n; &y, Ty, ..., L, 200 bestimmen oder zu schitzen.

Als Schiitzwert bezeichnen wir eine Zufallsvariable , = 0, (z,, ,,

co ), firy = 1,2, ..., s, die den zu schiitzenden Parameter 0, der
theoretischen Vertellung gut wiedergibt. Da fiir den Parameter 0, mei-
stens mehrere Schittzwerte existieren, dringen sich Kriterien auf, die
unter der Menge aller moglichen Schiitzwerte diejenigen auszeichnen,
die dem wahren Wert 0, am néchsten kommen und deren Streuung
minimal ausfills.

1. Kratervum

Iiin Schitzwert 0 heisst zuverlissig (unbiased), wenn dessen Iir-
warbungswert existiert und mit dem Parameter der theoretischen Ver-

teilung tibereinstimmt.
E[f] = 0. (1.47)



2. Kriterium

s sei 0, der Schitzwert einer Stichprobe vom Umfange n. Iiin
1 ‘. A 0 . V.. . oy 3
Schiitzwert § heisst passend (consistent), wenn fiir jedes positive & gilt

lim P(|0,—0| <& = 1. (1.48)

h->co
3. Kriterium
liin Schiitzwert 0 heisst wirksamer als e Schitzwert 07, wenn die
Streuung des ersten kleiner ist als die Streuung des zweiten.

o2 (0) < o*(0"). (1.49)

0 ist oin Schitzwert minimaler Streuung (minimum variance), wenn fir
jeden andern Schétzwert die Streuung grosser oder gleich der Streuung
o2(0) ist. Stellt inshesondere 0 fiir grosse n einen solchen Schitzwert
minimaler Streuung dar, so wird er als wirksam (efficient) bezeichnet.

4. Kriterium
liin Schitzwert 0 heisst erschipfend (sufficient), falls in thim simt-
liche Informationen iiber 6 der theoretischen Verteilung enthalten sind.
Die grundlegenden Gedanken der Theorie der Schéitzwerte stam-
men von R. A, Fisher [ 11]; insbesondere werden die Kriterien 2, 3 und 4
nach ihm als die Fisherschen Kriterien bezeichnet.

132 Schiitzungsverfahren

132.1 Methode der Maximum [akelvhood

Iiin sehr allgemeines Verfahren der Schiitzung von Parametern ist
die von R.A.Visher [13] entwickelte Methode der Maximum Likeli-
hood, die wir im folgenden fiir das Schiitzen von einem oder zwei Para-
metern darlegen.

132.11 Schitzen eines Parameters

Die gemeinsame Verteilung der einzelnen Stichprobengrissen be-
trachtet als Funktion eines einzigen Parameters 0 wird die Likelikood-
funktion

L) = L@®; z, 29, ..., x,) genannt. (1.50)
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Da die Stichprobenelemente X,, X,, ..., X voneinander unabhéingig
1 2 n fe i)
sind, 1dsst sich L(0) wie tolgt berechnen

LO) = f(0; x,) JO; z,) ... [(0; ). (1.51)

Die Methode der Maximum Likelihood liefert als Schiitzwert fir
den Parameter (x <60 < ) diejenicen Werte 0, die die Likelihood-
funktion absolut maximieren.

L) = L(®), firalle« <0< pY). (1.52)
[ixistiert im Intervall « < 0 < f nur ein Wert 0, fiir den

. SL(0)
L) = —55 =0

und ) (1.53)
L") <0,
s0 ist 0 der einzige Maximum Likelihood Schitzwert des Parameters 0.

Da die unktionen L(0) und In L(0) das Maximum an derselben
Stelle haben, wird es oft wesentlich einfacher sein, die letztere zu maxi-
mieren. Existiert im Intervall o << 0 << f nur ein Wert 0, fiir den

5In (0
mmmu:%;)fo

und ) (1.54)
[In LO)]" <0,

s0 ist 0 der einzige Maximum Likelihood Schiitzwert des Parameters 6.

132.12 Schiitzen zweior Parameter

Hiingt die theoretische Hiufigkeitstunktion f(x; 0, 0,) mit o, < 0,
< B, und o, < 0, < B, von zwei Parametern ab, so bemisst sich die
Likelihoodfunktion zu

Ll s 0 = L0, 0.5 B,y B wrn Ty) (1.55)
= f(0,, 0y; x,) f(ﬂp Oy5 %) ... [(6y,0y; z,).

1) Nicht unerwithnt bleibe, dass die Likelihoodfunktion ihr absolutes Maxi-
mum an den Randstellen § = « bzw. 0 = f annehmen kann.
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Das Verfahren liefert als Schitzwert tir die beiden Parameter die-
jenigen Wertepaare (f,, f,), an deren Stelle die Likelihoodfunktion ein
absolutes Maximum besitzt. Notwendig und hinreichend sind die Be-
dingungen

L0, .0, aL.(0, .
7( B (01)03) - O, o ( 1777:).1)4 e 0 (1_56)
und 90, 00,
PL %I ¢ R \® 21
— 0, <0 fir 0, =10, 0, =10, (1.57
o0 02 (aolaag_) > g =T T e = Sl

Wiederum wird es meistens einfacher sein, die logarithmische Likeli-
hoodfunktion zu maximieren.

132.2 Methode der Momente

Aufgoegritfen sei der I"all des Schiitzens zweier Parameter. Die ersten
beiden Nullmomente seien Funktionen der zu schiitzenden Parameter
0, und 0,. , ,
= fr (045 05),
po = 1y (01, 0y).

Frsotzt man die linken Seiten durch die empirischen Nullmomente erster
resp. zweiter Ordnung , ,
my = oy (0, 0,) 1.59)
' ' 0 0 ( *
My =2y (0, 0,),
30 ergeben sich die gesuchten Schiitzwerte 0, und 0, durch Auflésen
der Gleichungen (1.59)

0, = 0,(my,my), (1.60)
Oy = Oy (my, my).

14 Giite der Anpassung

In der statistischen Praxis wird es selten der Fall sein, dass die
theoretische Verteilung der Zufallsvariablen, charakterisiert durch ihre
Verteilungstunktion F(z), genau bekannt ist. Vielmehr wird nur eine
Stichprobe z,, 2,, ..., z, der Zufallsvariablen vorliegen, aus der man
eine moglichst gute Approximation Fy(z) der theoretischen Verteilungs-
funktion F(z) zu suchen, resp. bei gegebener Form die diese bestim-
menden Parameter zu schéitzen hat.



Die Hypothese H. i Flg) = Hl6) (1.61)

pritfen, bezeichnen wir als Test der Giibe der Anpassung.

Ist I(x) von vornherein vollstindig bestimmt, sowohl beziiglich
threr analytischen IForm als auch beziiglhich der vorhandenen Para-
meter, so bezeichnet man die Hypothese £ als einfach. Beispielsweise
kann [ (x) aus theoretischen Griinden eine bestinimte Form (Gleich-
verteilung, Normalverteilung mit bekannten Parametern g und ¢?
usw.) aufweisen, oder If(x) kann fritheren Untersuchungen zufolge als
bekannt angesehen werden. Weist dagegen Ir(x) irgendeine Bindung
zur Stichprobe auf, so handelt es sich um etne zusammengesetzte Hypo-
these. Desist dann der Fall, wenn die Parameter der Verteilungsfunlktion
I5(z) aus der Stichprobe selbst geschitzt wurden oder wenn [f(x) aus
der Stichprobe graphisch ermittelt wurde.

141 Chiquadrattest

Das klassische Chiquadratverfahren zur Pritfung der einfachen
o]
Hypothese f{, ist von K. Pearson [29] um die Jahrhundertwende ent-
0 . .
wickelt worden.

Der Definitionsbereich der Zufallsvariablen werde in o sich aus-
schliessende Klassen aufgeteilt. Die j-te Klasse besitze die Klassen-
grenzen und Tioy Die Wahrscheinlichkett ;s dass ein Minzelwert
in die j-te Klasse fillt bei Vorgabe der Verteilungstunktion [9(x), 1st

gleich N :
p; = Flz; ) —F(z), 7=12,...,m, (L.62)
wobei > p; = F(z,,, ) —F(z) = F(oo) —I'(—o0) = 1 ish. (1.63)
i=1

Die beobachtete Anzahl der in die j-te Klasse fallenden Stich-
Die beobachtete Anzahl der in die j-te Klasse fallenden Stict
probenelemente sei b;. Iiir eine Stichprobe vom Uwmfange n gilt
m
1 )
Db =mn. (1.64)
i=1
Die erwartete Anzahl der in die j-te Klasse fallenden Stichproben-
elemente bezeichnen wir mib ¢;. Diese errechnet sich zu

e, =np;, 1=12,...,m (1.65)

und es 1s6



X2 § T /) (theoretischer Ansatz) (1.67)

befolgt firr grosse n und konstanto p; unter Annahme der einfachen
Nullhypothese (1.61) die Chiquadratverteilung mit 2% - (m—1) Frei-

heitsaraden. ‘
g 1 %2 ni—1 0

g (g% m—1) = e (D)t 0= S o

on—1) /2 1_,( m— l)
. 2, (1.68)

Die Anwendbarkeit der Grenzverteilung auf kleine Stichprobenum-
tinge wurde in verschiedenen Arbeiten untersucht; insbesondere sei aut
die neuern Publikationen von W. (. Cochran
W. Wegmiiller| 35 | untersuchte das Grenzverhalten der Chiquadrat-
verteilung fitr n*-»co und gibt die fiir die numerische Anwendung ge-

5, 6] hingewiesen.

elgneten Transformationsansiitzo von R, A. Tisher [14] und 5. B. Wilson
und M. M. Hilferty [37] an.
Ansatz von Fisher:
H o l/zxz — l/ 2k 1, asympt. n.v. [0,1] (1.69)

Ansatz von Wilson-Hilferty

i A , " ¢
TR AT o [ (L5
B 1 , , asympt. n.v. [0,1 1.70
n* ( ‘ / On* symy A I )

On*

Fir die gebriuchlichen Sicherheitsschwellen von 59/, 19/, und
195 sind in den meisten Lehrbiichern der Statistik einschligige Ta-
bellen angegeben, inshesondere fiir eine kleine Zahl von Freiheitsgraden
(Tab.2). Ist die Zahl der T'reiheitsgrade n* nicht tabelliert, so kann der
Sicherheitspunkt nach Pisher fiir grosse n* oder nach Wilson-Hilferty
auch fir kleine n* nach folgenden Ansétzen errechnet werden.

Nach Iisher: Y5 e L2y p I./'s‘Z’n’*‘--—-W]z, (L.71)
Nach Wilson-Hilferty :
) o1/ 2 2\ o
Ap.ue R N | 2yp s + (1 = ‘Jn*') , (1.72)

wobel z,, der entsprechende einseitige Sicherheitspunkt der standardi-
sierten Normalverteilung ist.



Sicherheitspunkte der standardisierten Normalverteilung

Zp bzw. z,p

1% Sicherheitspunkte
Wahrscheinlichkeit
P einseitig zweliseltig
Zp Zp
0,05 1,645 1,960
0,01 2,326 2,576
0,001 3,090 3,291

Fiir die numerische Auswertung lohnt es sich, den theoretischen
Ansatz (1.67) weiter umzuformen.

X2 as QW 77((7)77'7:8)‘)2

\ PIE
S @ abe el
-3 L oo
i €
» b : y
xXe — }1 L, n, mib e; = n[Fz; ) ’“ﬁu(f’?;')] (1.73)
J=1 7

(numerischer Ansatz).

Fine praktische Regel besagt, dass alle e; grosser oder gleich 5 sein
sollten ; man erzwingt dies leicht durch Zusammenfassung benachbarter
Klassen.

Neuere Frkenntnisse fithren dazu, die Klasseneinteilung so vor-
zunehmen, dass die p; = 1/m = konstant zu wéhlen sind mit der Kon-
sequenz, dass die erwarteten Hiufigkeiten e, — n/m austallen. Jetst
vereinfacht sich

ma .
X2 e N b; —mn Y (numerischer Ansatz). (1.74)

|

n Ty

1 M. E.Wise [38] modifiziert den theoretischen Ansatz (1.67) wie folgt

i
j=1 ¢+

n und konstante p; = ~ darstellt. Analog den obigen Betrachtungen lisst sich
m

m (bm ,:)2 )
X2=w { , dereine bessere \pproximation fiir kleine Stichprobenumfiinge
2

X'? in die fiir die numerische Auswertung geeignetere Beziehung

, 2m o
XYl ¥ b;f —mn  iberfithren.
2n -+ m j=1
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H.B.Mann und A. Wald [24] haben fiir grosse Stichprobenumfinge
die optimale Zahl der Klassen m nach dem Ansatz

)

¢ 2

m=a|/ 200 (1.75)

&n

errechnet, der zeigt, dass m nicht nur von der Zahl der Stichproben-
elemente, sondern auch von der Sicherheitsschwelle P abhiingt; 2, ,, ist
der einseitige Sicherheitspunkt der standardisierten Normalverteilung
(Tab. 1%). €. A. Williams [36] tabelliert m fiir die Sicherheitsschwellen
von 5% und 1%, und die Stichprobenumfinge 200(50) 1000(100) 1500,
2000.

142 Kolmogoroff-Test

Die von A.N. Kolmogoroff [21] eingefiithrte verteilungstreio Test-

grosse -

K, = |/n sup |8, () — I(x) | (1.76)

e (theoretischer Ansatz),

hat den wesentlichen Vorteil, auch fiir kleine Stichproben verwendet zu

werden. Zudem eriibrigt sich die Klassenbildung, die beim Chiquadrat-

test zu einem Informationsverlust fithrt. Der Kolmogoroff-Test wird

seimer einfachen Anwendung wegen auch etwa als Kurztest bezeichnet,.

Die theoretische Verteilungsfunktion der Testgrosse I, unter An-

nahme der einfachen Nullhypothese ist fir grosse Stichproben durch
thre Grrenzverteilungsfunktion

z=
k=0

— 18 e
o) = |2 ;3 @ HnRaEe (1.77)

gegeben und wurde von N. Smirnow|[ 34 |fiir die Argumente ¢ = 0,28(0,01)
2,50 (0,05) 8 tabelliert. Das Verhalten der Testgrosse IC, fir kleine
Stichproben analysiert . J. Massey [26]; er zeigh, wie die Verteilungs-
funktion @,(f) bestimmt werden kann. Die Sicherheitspunkte der fiir
die praktische Anwendung geeigneteren numerischen Testgrosse

__ K,
B, e - = max

?

. .
-fﬁ.[f})(:vi)], v=1,2,...,n (1.78)

N
(numerischer Ansatz)
hat H. L. Miller [27] angegeben (Tab.2).
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[iegt eine graphische Skizze oder eine Tabelle der empirischen und
theoretischen Verteilungsfunktion vor, so kann das Maximum meist
visuell lokalisiert werden, was das Testverfahren wesentlich erleichtert.

143 Cramér-von Mises-Smirnow-Test

Unabhiingig voneinander schlugen H. Cramér 7] und R. von Mises

[28] als Mass der Abweichung

co
e == f [S(x) — F(z)]? dax (1.79)

.
vor; m? 1st dabet noch abhingig von der theoretischen Verteilungsfunk-
tion. N.Smirnow [ 33] dageven definierte als verteilungsfreie Testgrisse
W2 = n [[S,(a) - F(@)]dF () (1.80)
o (theoretischer Ansatz).

Die Verteilungstunktion @ (t) der Testgrosse W2 ist fiivn — 1,2, 3 von
AL W. Marshall [ 25| und deren Grenzvertetlung @(f) von I'. W. Anderson
und D. AL Darling | 2] mittels Besselscher Funkftionen angegeben worden.

I'iir die praktische Anwendung des Giibetests geniigt die Kenntnis
der Sicherheitspunkte W3, (Tab.2%) der Grenzverteilung @(t) auch
fir kleine Stichproben.

9

Sicherheitspunkte ') von W2: W5,

2*
Wahrscheinlichkeit Sicherheitspunlt
P Wp,
0,05 0,461
0,01 0,743
0,001 [,168

H Anderson, 'I'. W., and Darling, D. A., Asymptotic theory of certain ““ goodness
of fit” eriteria based on stochastic processes. Ann. Math. Statist. 23 (1952), S.203.




— 81 —

Fiir die numerische Auswertung ist Ansatz (1.80) wenig geeignet.
Wir suchen daher eine passende Umformung und zerlegen das Stieltjes-
Integral in eine Summe von Integralen entsprechend den geordneten
Stichprobenelementen Ty S T = - = By

Ty 1)

x(p) e
WE — n( / [S.(x) —F(2)]PdF(2) + ) f [S,(x) —F(x)]2dl(x)
j [S.(x) —F(2) P12 )]

S, () wird durch die Definitionsbeziehung (1. .31) substituiert. Die Wahr
scheinlichkeitsintegraltransformation « = I'(x) ergibt alsdann

y) it ) g 2 L
W2 = n! 1 1 du + : f ('n —au | du + j (1-— ’Ll,)zd'll‘],
i "=y i)

wobel w,, die geordneten transformierten Stichprobenelemente einer
Gleichverteilung darstellen. Die bestimmten Riemannschen [ntegrale
der rechten Seite sind alle von der Gestalt

b

LAY zi,-‘)'-’*(} ) k B o L a0
— — ) au == ) () — (D —a?) | (b3 — 3 .
(fn- u>”6 (n, n ) L ( @)

a

So erhalten wir

' : n _
WA [u — ] - [’”'(“)2) *u(zl)] + B ['“?z) . L?”]
1 0.2 9 V) 5 i
+ [4 20—ty ] — [2uy—2ug ] +y [y — 2]
1. )
+ " [(n—1)*a0) —(n—1)2a,, ] —[(n-~1)ug, A(er 1), ]+ [’”’(n o]
1 2 noo
;’:L [’nw_'rrb 'lt’(rl)] ''''' [ ,L lb\)l)] + 3 [u‘(l) *lu(ﬂ‘ ‘{— ]]

Diese Summe lisst sich wie folgt zusammentassen

2 1 'n'w i . n
W2 = L [ ....... (2v—1) g + ’Ib’ll;'(ai)] + g

N =

6
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oder nach quadratischer Frginzung

n, '1 G 1° 1
W - \‘ W,y — - N (g —1 %2
R R i) 2n dn? fl( v

Die Summe der ersten » quadrierten ungeraden Zahlen ist

LA n(4n2—1)
D (21—1)% = - RPN

i=1

Damit vereinfacht sich Wﬁ A

1 ' 2(—1|°2
w2 - \‘ Fy(w 1.81
" 12n t & ( D)= 2n ( )
(numerischer Ansatz),

worln ., durch die urspriingliche Variable I'(x ;) ersetzt wurde

Bedient man sich fiir die numerische Auswertung eines elektro-
nischen Rechengerites, so empfiehlt es sich, Ansatz (1.81) in der Gestalt
n

79 'n‘ 1 1 1 ;
W2 = 3 ol —, 3, @i Bag) + |
te=1 i= t

vorzumerken, eine Bezichung, die sich fiir die Programmierung besser
eignet.
144 Anderson-Darling-Test
Spricht der Cramér-von Mises-Smirnow-Test vorwiegend auf Ab-

weichung in der Nihe des Zentralwertes an, so haben T. W. Anderson

und D.A. Darling [2] die gewichtete Testarisse

— JS, —_— [" L) |- )

W, =mn [, ¥ (ol d1(x) (1.83)
() {1 —I'(2)}

(theoretischer Ansatz)

untersucht und deren Grenzverteilung @() angegeben.

Approximationen der Sicherheitspunkte J§%, | sind fiir kleine Stich-

proben bekannt (Tab.2).
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Wiederum dringt sich fiir praktische Belange eine Umformung des
theoretischen Ansatzes auf. Das Stieltjes-Integral (1.83) zerlogt man
in eine Summe von Integralen entsprechend den n geordneten Stich-
probenelementen

“(1) “(2)
: CoP(x _ T[S, (2) ()]
W2 —n (_‘) dI(x) + [ ) (,)] dIf(x) + ...
- F(x) I(a) [1—(Fa)]
— 5 :L(l)
1—F(x)
+ : di'(z),
()
.’l!(n)
oder mittels S, (z) == i:’ in (24, g, ) und der Wahrscheinlichkeits-
integraltransformation w —= F(x)
) w(2) 1
X T (L /n) —w)? T
we n/ du ![ ((t/m)—u) du ! [ du .
0 w(l-—u u
0 w(p) “'{.n\
Unter Berticksichtigung von
1)
U
du == - In (1 —u
f'l = (1) ( ;l))
0
b
“((k)m) u) "ENE b m—k\2  (1—a
(/) ) du - ( )ln + i)ln ( ) +a-—b
n(l-—u) N a n (1—b)
a
1
Lo { I 1
dw == w,, —Inw,, —
P () (n)
It(”)

n f[

9 1 A . - 5 ]
Wa == —n— > (2¢—1) [In Fy(z,) + In (1—Fy=,_, )] (1.84)

(numerischer Ansatz).
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I'iir den Finsabz eines elektronischen Rechengerites ist die gefun-
dene Relation wenig geeignet, da die Argumente der logarithmischen
Irunktion gegenliufig sind; es dringt sich eine Umgruppierung auf, die

zu folgendem Ansatz fithrt
(1.85)

. i . )
W2 = —n— " Z_I [(22—1) In Fy(z;)) +[2(n—1) +1]In (1—E)(a;(@-,)):| .

t=1

2 Standardisierte Normalverteilung

Da alle 1m folgenden Kapitel ausgewdhlten Verteilungen direkt
oder indirekt mit der standardisierben Normalverteilung in Beziehung
gebracht werden konnen, seien deren wichtigste Figenschatten kurz
zusammengestells.

Hiufigkeitsfunktion: . 1 _3:.
¥ (z) VQ_ e ", —ooCeg<Coo. (2.1)
1
Verteilungsfunktion: L
Fi(z) = 13 j e *du, —oco<<z<oo. (2.2)
/97 2
(‘harakteristische Funktion:
12
e¥(t) = e *. (2.8)

Dass die in Besiehung (2.1) definierte Héiufigkeitsfunktion stan-
dardisiert 1st, belegen nachstehende statistische Masszahlen

Durchschnitt: { @ .
Y= e j ze dz = 0.
V2m
Streuung: [ 2
oF = —— [ 2e Pdz = 1.
/
L’ Qn —CQ

Die charakterigtischen Grossen der standardisierten Normalverteilung
sind entsprechend den Definitionsrelationen (1.21) bis (1.30) herzu-
leiten.
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Null- wnd Hawptmoment r-ter Ordnung:

e 1 2 = 1 z2 )

r = 29:; My = 27(211)" =19 ... (2.4)
’ ’ p! 2"

7:21’+1:#;v+1$#2p+1:03 v =1,92, ....

Kumulante erster bis vierter Ordnung:

x =0, y = wy =0,

=1, g = p,—8u = 0. %)

Standardisierte Kumulante erster bis vierter Ordnung:
A =0, =1, 4=0, 4,=0, (2.6)

Ausgezeichnete statistische Masszahlen

Durchschnatt: u=0. (2.7)
Streuung: o =1 (2.8)
Schuefe: y = 0. (2.9)
Hxzess: ye =0 (2.10)

Ablertungen der standardisierten Normalverteilung

d 1 a& -3 1 s
Ne) = . — e = _(—~1)"e *H/(), (2.11

2 22

dz
y=0,1,2, ...,

wobel H (z) die Hermiteschen Polynome »-ter Ordnung sind.

y(v—1) — v(v—1) (v—2) (v—3)

» —4 —
H(4) = 2" — T RN BT F e (8.12)
Speziell gilt Hole) =1 (2.18)
Hy(z) =2
Hy(2) = 22—1
4(2) = 28 —8z
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Bezuglich der Hermiteschen Polynome seien noch folgende, fitr uns
bedeutungsvolle Figenschaften zitiert:

Orthogonalitit

]C‘OH OHEa -] ET 2. 14)
o g l 0 (Iu, :/: y).

Rekursion

H, J(2)—2H, () +@+1)H) =0, »=0,1,.... (2.15)

Symmetrie H(—z) = (=)'H), »=0,1,.... (2.16)
Ablettung i

() = vl (&), v=12 ... (2.17

In der statistischen Praxis stellt sich immer wieder die Aufgabe,
zu gegebenem Argument z die zugehorige Hiaufighkeibs- oder Verteilungs-
funktion numerisch zu bestimmen. Wohl liegen in vielen Lehrbiichern
oder Tabellenwerken (Tab.1) tabellierte Werte der standardisierten
Normalverteilung vor. Bedient man sich jedoch fir die Auswerbung
eines elektronischen Rechengeriites, so ist es vorteilhaft, im Sinne von
Unterprogrammen itber geeignete Approximationen #u verfiigon. Ins-
besondere mochten wir auf zwei geeignete An&;iihy(\ verwelsen, die von
C.Jr. Hastings [ 18] nach dem Verfahren der Tschebycheffschen Aus-
gleichung gewonnen wurden.

Iar die Hiwfghetsfunktion

—
|
L3
<)
p—t
[N
]

i) = —a * - mit

geniigt die Approximation
et [ b agu + agu® + agu® + agut - oagu® 1oagus]t (2.18)
mit den Koeffizienten

0, 2499 9868 42 @y, — 0, 0001 T156 20
1y — 0, 0312 5758 82 s — 0, 0000 0543 02
1y = 0, 0025 9137 12 g — 0, 0000 0069 06,

Diese Approximation ist mit einem Fehler behaftet, der dem Betrage
nach klemer 1st als 0, 0000 0025.
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I'ar die Berechnung der Verteilungsfunktion I7(z) sel zuniichst an

die beiden Bedingungen

¥ —z) = 1—F¥(z) (2.19)
und
|
N ) mm e | B P dé, 2 >0
( 2 VQH E)’ N
1 g HE L
‘H* = f e dn’ (2.20)
2 Ve
[f'_N l | 90 t — -
e -G [r o] mive =
erinnert. Fs geniigt somit
g #
(D(U) e { G*Ua Cln (2'21)
V7 s

durch den Ansatz
D(v) m L [1+ b+ byv® + byv® - byvt + byv® 4 beo®]™'* (2.22)
mit den Koeffizienten
b, — 0,07052307 84 b, — 0,0001 5201 43
by 0,0422820023 by - 0, 0002 7656 72
by — 0,0092 705272 by — 0, 0000 4306 38

zu approximieren. Der absolute Fehler ist klemer als 0, 0000 003.

3 Ausgewihlte Verteilungen

31 Normalverteilung
311 Definition, Kigenschaften

IFane Zufallsvariable X heisst normalverteilt mit dem Durchschnitt
pe[—o0 < <oco| und der Streuung o*[o® > 0] falls sie durch die
Héufigkeitsfunktion

1 B L (J:-,n‘)"’-
fN(.’IJ;,LL_,O'z) _ LR 3 —oo <l <co, (3.1)
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die Vertetlungsfunktion

T

PO i, 0% = {‘fN(u;,u, o) du, (3.2)
oder die charakteristische Funktion
{2g2
.~ plp— -
M, ot =e 2 (3.8)

gekennzeichnet ist.

Vermittels der Transformation

X
B0
o
goht die allgemeine Haufigkeitsfunktion fY(z;u, 0% in jene fM(z) der
standardisierten Normalverteilung iiber
x—

1
Plasw o) = ), mibz=" 5, (8.4)

und T— l

F¥ax;p,0% = F¥z), mitz= (8.5)

(0]

Folgende charakteristische Grossen seien fiir die Normalvertei-
lung festgehalten (beziiglich der Herleitungen sei auf K.G.Liiond [23]
verwiesen).

Nullmoment r-ter Ordnung:
] r! 2 r-22
PN g w19 (8.6
e = oi—an © " (8.6)

Hawptmoment r-ter Ordnung:

27)!
r = Qp: /sz:-( ﬁ)vcrz", r= 1,9 ...,
vz (3.7)
r=2v+1: pp, .4 =0, gre=s 1 e s e
Kumulante r-ter Ordnung:
=n, Hy=20°, x=0, r=323,4,.... (3.8)

Standardisierte Kumulante erster bis vierter Ordnung:

b= dp=i, A=0, § =0 (3.9)
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dusgezeichnete statistische Masszahlen

Durchschnatt: co
p=wy = [ofNeip oY da = p. (3.10)

Zientralwert: x, = P¥usp, o) = L. (8.11)
Hifigster Wert:

y = s [N, 0%) = Max [[¥(z; g, 0%)]. (3.12)
Strewung:

=gy = [ oip o) de =t (319
Schiefe: y = Ay = 0. (3.14)
Exzess: g = Ay = 0, (3.15)

Mit den Beziehungen (3.10) und (3.13) 1st nachtriglich der Nachweis
erbracht, dass die beiden auftretenden Parameter (1, 0% tatsichlich
mit dem Durchschnitt und der Streuung der Normalverteilung iiber-

einstimmen.
Das Verschwinden von Schiefe (3.14) und Exzess (3.15) stellt ein

weiteres (Charakteristikum der Normalverteilung dar. Ubertragen aut
die (p?,9,)-Tibene von Graphik 2 (Seite 112) schrinkt sich demnach
der Geltungsbereich der Normalverteilung auf den Punks

= 2 pr— O,
Vi =N . (3.16)
yy = 0 eln.

312 Schitzen der Parameter

812.1 Methode der Maximum ILakelthood

Will man die beiden Parameter x# und o® aus einer Stichprobe
Schéitzen, so muss vorerst die Likelihoodfunktion nach (1.55) bestimmt

werden

LwﬂxﬁMﬂmL

| S Y T S,
L, 0?) = ( -»--><’t 202 iil( e g (3.17)
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Die Struktur der Likelihoodfunktion lidsst bereits erkennen, dass die
logarithmische likelihoodfunktion

n L ¥
j 2y 2 J (7 2
In L(w,0%) = — 5 In (27 o?) — 53 S (2, —u)
40" j=1
leichter zu maximieren ist. Aus (1.56)
dInl, L
L=, S(e—p) =0,
oL 0 i=1
dIn L n 1 :, ( R
—— - + & (e—p)¥ =
do® 2¢2  2¢%,;-, ' ' ’

ergeben sich die Maximum Likelihood Schitzwerte zu

n
=== 9% =,
o=

(3.18)

1 n

A 3 fons 72

g° =— n_ifl(lbi .L) .
Diese Schiitzwerte erfilllen zunichst die Fisherschen Kriterien. Sollen
erstere gleichzeitig noch zuverlissig sein — die Frwartungswerte der
geschiitzten Grossen haben in diesem Fall mit den zu schatzenden Para-
metern tibereinzustimmen —, so bedingt dies lediglich eine Modifikation
der zweiten Bestimmungsgleichung.

l n
A = f . —
Jh o= - i By &,

UTES|

(3.19)
‘[ n

42 — S [y F)? = 8%

n—1 ;-

Durchsehnitt und Streuung der empirischen Verteilung verbirgen
zuverlissige Schittzwerte der beiden zu schiatzenden Parameter (u,0?%)
der Normalverteilung.

312.2 Methode der Momente

Als Ausgangsbeziehung bedienen wir ung der Nullmomente erster
und zwetter Ordnung
} !
by =2 s

r__ .2
fhy =

2

+a’,
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und ersetzen die linken Seiten durch die entsprechenden empirischen
Momente

/
m, =,

' 2, 2
My R -+ 0.

Durch Auflésen der beiden (leichungen findet man

A ! -
i=m =z,

DY
A2 ! 9 (3-20)
6 = Myg—m" = My,

im vorliegenden Ifall stimmen die gefundenen Schitzwerte mit den
Maximum-Likelihood-Schiitzwerten iiberein. Wiederum kénnen zu-
verlissige Schiitzworte gemiiss Beziehung (3.19) aufgefunden und mit
dem Durchschnitt sowie der Streuung der empirischen Verteilung iden-

bifiziert werden.
313 Giite der Anpassung

Soll lediglich abgeklirt werden, ob die Approximation einer em-
pirischen Verteilung mittels einer Normalverteilungskurve mit den
Parametern (10, 6% zuliissig ist, so kann dies ohne weiteres mit den im
Abschnitt 14 dargelegten Tests tir die einfache Hypothese (1.61) be-
werkstelligt werden. Mochte man indessen daritber befinden, ob die
Stichprobe itberhaupt der Klasse der Normalverteilungen entstamme,
30 hat man die zusammengesetzte Hypothese

Hy: Nz, 0%) = F(a; %, %) (3.21)

zu prifen, wo an Stelle der theoretischen Parameter (u,o0?) deren
Schiibzworte (%, %) eingehen. Zur Beurteilung dieses Normalititstestes
greifen wir im folgenden die gebriuchlichsten Verfahren auf.

Die nunmehrige Bindung der postulierten Verteilungsfunktion F¥
zu den Stichprobendaten bedingt zwangsliufig eine Modifikation der
Verteilung der Testgrissen. Wohl bleiben gegeniiber dem Prifen der
einfachen Hypothese die Verfahren dieselben; unterschiedlich dagegen
fallen die massgebenden Sicherheitspunkte aus.

313.1 Chiquadrattest

Sind die Parameter der Normalverteilung ¢« und o® mittels der
Methode der Maximum Likelihood geschiitzt worden, so befolgt nach



R. A Fisher [12] die Grdsse

X3(N) = (3.22) — (1.67)

(theoretischer Ansatz)

die Chiquadratverteilung mit n* = (m—1) —2 = m —3 I'reiheits-
graden. Gegeniiber dem Ansatz (1.68) liegt die Modifikation darin be-
griindet, dass jetzt die Zahl der Freiheitsgrade um die Anzahl s der zu
schiitzenden Parameter — im vorliegenden Ifall s = 2 — reduziert wird.

Fir die numerische Durchfithrung des Testes gelten die in Ab-
schnitt 141 dargelegten Vereinfachungen (1.73) oder (1.74) sinngemiss.

313.2 Kolmogoroff-Test
Wie M. Kae, J. Kiefer und J. Wolfowitz [20] zeigen, ist bei An-
nahme einer Normalverteilung die Kolmogoroffsche Testgrosse

K,N) — /n sup |8,(2) —FNasp, 09

— 00 <L I < 00

(3.23)

(theoretischer Ansatz)
von den Parametern u und ¢* unabhiingig. Zudem gelang es den Ver-
fassern vermoge einer Monte-Carlo-Simulation, die Sicherheitspunkte
fiir m = 25 und n = 100 (Tab.2) zu approximieren. Im Vergleich zur
einfachen Hypothese sind die entsprechenden Sicherheitspunkte fir
die zusammengesetzte Hypothese kleiner, was auf die Tatsache zu-
riickzufithren ist, dass die postulierte Verteilungsfunktion Y zur
Stichprobe gebunden ist.

Far praktische Belange eignet sich der Ansatz
. e K N ‘
K,(N) = |/n max ‘—;;«Fg"(a;i; g8, 1=12...,n (3.24)
\ i '
(numerischer Ansatz).

313.3 Cramér-von Mises-Smarnow-Test
I'iir den in Abschnitt 143 dargelegten Test haben M. Kac, J. Kiefer
und J.Wolfowitz [20] die spezifische parameterfreie Testgrosse
WE(N) = n f [S.(2) — F¥x; p, o) P dFN(; e, 0% (3.25)

(theoretischer Ansatz)
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untersacht und mittels der Monte-Carlo-Methode einige fiir die prak-
tischo Anwendung wertvolle Sicherheitspunlkte tabelliert (Tab.?2).

Fiir die numerische Auswertung sind die Anséitze (1.81) und (1.82)
nach wie vor giilbig, sofern darin die Werte der allgemeinen Verteilungs-
tunktion Ly(x,,) durch jene der speziellen Iy¥(z,; &, 5%) ersetat werden.
Auch hier fallen die Sicherheitspunkte wesentlich kleiner aus als bei der
frither dargelegten einfachen Hypothese (vergleiche Tab.2%).

313.4 Test der Schiefe und des INxzesses

Sowohl Schiefe y, als auch lixzess p, der Normalverteilung sind
Null. Um demnach die Abweichung einer empirischen V erteilung von
einer Normalverteilung zu priifen, konnen wir nach R.A. Fisher [15]
Schiefe gy und Ixzess ¢, rechnen und mittels deren Streuungen var(y,)
und var(y,) testen, ob diese bloss zufillig von Null verschieden sind
oder nicht. [st entweder Schiefe oder Fixzess oder sind beide wesentlich
von Null verschieden, so schliessen wir auf eine signifikante Abweichung
der empirischen Verteilung von der Normalverteilung.

Die Testgrossen

— B
: gf (gl)r, asymptb. n.v. [0,1],
| var(gy)

)
[ var(ge)

g =
(3.26)
2y = asympt. n.v. [0,1]

(theoretische Ansitze)
sind fiir grosse Stichproben asymptotisch normalverteilt mit dem Durch-
schnitt 0 und der Streuung 1.

Fir die numerische Auswertung lassen sich die Ansitze (3.26)
weiter vereinfachen. Nach H. Cramér [8] gelten fiir normalverteilte
1 . .

Grundgesamtheiten nachstehende Boziehungen:

Big) — 3 — 0
Bi(gy) = 23 = 0

. 6n(n-—1) b
var (!]1) - (n __2) (’n- ol 1) (n -+ 3) ~ 7
24m (n—1)* 24

) = S e ) D)
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so dass sich unsere Testansitze wie folgt vereinfachen:

n L
2 = e asympt. n.v. [0,1],
)
_ (3.27)
n .
= e[/ o, asympt. n.v. [0,1]

(numerische Ansitze).
Darin berechnen sich die beiden ausschlaggebenden Masszahlen ¢, und
gy nach den Ansitzen (1.41) und (1.42)

A

%3
= a3 ¢
: ~3/2

X

A

}Ctl
.(]2 = AQ 2
"o

unter Berticksichtigung der Bindungen der Kumulanten (1.86) zu den
Hauptmomenten.

RS s = - : s it J 3 # b R A

Fiar die Handhabung des z-Tests selbst sind die zweiseiticen Sicher-
hettspunkte z, (Tab.1*) verbindlich. Dabei darf nicht ausser acht ge-

F
lassen werden, dass die Giilltigkelt des Verfahrens an orosse Stichproben
o] o I

gebunden 1st.

Bar kleine Stichprobenwmfinge haben 5. S. Pearson und H. O. Hart-
ley [30] fir Schiefe ¢, und Kxzess ¢, genaue Sicherheitspunkte (71,
und (G2, , berechnet und tabelliert (Tab.2).

Bine empirische Verteilung ist signifikant schief, falls ¢, dem Be-
trage nach grosser ist als der entsprechende Sicherheitspunkt (71, .

Der Fxzess der empirischen Verteilung 1st signifikant von Null
verschieden, falls der errechnete Wert von g, kleiner als die untere resp.
grosser als die obere Sicherheitsgrenze (12, , ist. Da die Sicherheits-
punkte des Exzesses finr Stichproben vom Umfange kleiner als 200
nicht angegeben werden konunten, fithrte R.C.Geary [16] eine neue
Masszahl des Fixzesses ein .
e ¢
@ == = e (3.28)

1 if s 72 |2

n S (x,—I)
- i=1

(numerischer Ansatz),

defintert als Quotient der durchsehnittlichen Abweichung zur mitt-
eren quadratischen Abwelchung, Der rwartungswert und die Sicher-
1 quadratischen Al hung. Der It tung b und die Sicl
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heitspunkte 4 p.n der Testgrosse @ konnten auch fir kleine Stichproben
angegeben werden. Dabei ist der ermittelte Wert a signifikant von sei-
nem lirwartungswert verschieden, falls dieser klemer als die untere
resp. grosser als die obere Sicherheitsgrenze A, , (Tab.2) ist, und die
Hypothese — die Stichprobe entstamme einer Normalverteilung — ist
abzulehnen.

Fiir die Interpretation der Signifikanz von Schiefe und/oder Iix-
zess beachte man die folgenden grundsitzlichen Abweichungen von der
Normalverteilung :

¢, > 0: linkssteil ¢y > 0: leptokurtisch,
tuberhoht, straff

N

71 < 0: rechissteil ¢s < 0: platykurtisch, flach

32 Gram-Charlier-Verteilung
321 Definition, Eigenschaften

Weicht eine Verteilung f(z) nicht zu stark von der Normalver-
teilung ab, so lisst sich diese durch eine Reihe darstellen, deren Glieder
eine enge Bindung zur Normalverteilung aufweisen. Nach J. P. Gram
[ 17] und €. V. L.Charlier [4] betrachten wir die formale Entwicklung
der Hiufigkeitsfunktion f(z) einer standardisierten Zufallsvariablon
7 X—pu

° fly = > ) (3.29)
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mit den Entwicklungskoeffizienten

v

¢, = (—1) fH [2) M2) dz. (3.30)

—CO

Die ersten fiinf Koeffizienten lauten
Cn — 1, Gl — (), 02 = (), 63 = —J}jl’ 64 == yz.

Vernachléssigt man in der Gram-Charlier-Reihe die Ableitungen
hoherer als 4-ter Ordnung, so wird die abgebrochene Reihenentwicklung
als Gram-Charlier-Verteilung bezeichnet, deren wichtigste Kigenschaften
nn folgenden erwihnt seien.

Line Zufallsvariable X sei Gram-Charlier-verteilt mit dem Durch-
schnibt u[— co <y << oo, der Streuung ¢*[0* > 0], der Schiefe y, und
dem Fixzess y,, falls sie charakterisiert ist durch die Hiufigkeitsfunktion

j = 1 Y1 .. [X—p Ve [ x—p\
[ilasu, o2 py, p) = et li Y H3< >+ 4! H“( )

b

0|2 o G
— o0 < & < 00 (3.31)
die Verteilungsfunktion
T
Fe(x; 1, 0% py, p9) = j'fﬁ(’“i#: 0, y1, Ye) du (3.82)
oder die charakteristische I'unktion
! {202 ’}/ ')/'2
4 2 VT 1 ' B . 5
e p, 0%y, ve) =€ P gy (o) L (aat)? (3.33)

Zwischen der Gram-Charlier-Verteilung und der Standardform der
Normalverteilung bestehen die Beziehungen

/ 9 1 1 ’y ] y‘ q
flimetyord = —F@ L 1@+ 1 H@], (.59
mit 2z = o
und a
ol Ah ! ’y y‘ O 9K
(o3, 0% v, ) = 1Y) —190) | 11 Hole) + T2 Ho(a) |, (8.35)
fB*il‘G



= [2f(a2) da — u. (3.36)
Hawptmoment v-ter Ovdnang:
29) 6™ | s
= 2y s = (' y)’ e 1+7’(’V—‘1) 2 y =12 ...,
’ p! QY 3!
- (3.37)
Qv+ D)o™' N
r o= 2'1)—|"1.‘L62p+1 = - (v_dl)lgi""‘l- - 3’, Vo= 1, 2, Tir
Insbesondere sind
fy = 0%  u3 =y 0% g = (yp+3)ch
Kumulante erster bis vierter Ordnung
}f] == /l" %2 S ()'2, %3 = '})103, M‘l- = yzadc (3.38)
Standardisierte Kumulante erster bis vierter Ordnunyg:
) a
Ay = i Ay =1, =y, A=y (3.39)
Ausgezeichnete statistische Masszahlen
Duwrchschnatt: = = (3.40)
Streuung: 0% = pty = 0% (3.41)
Schaefe: v = Ay = . (3.42)
lxzess: Yo = Ay = Ya- (3.43)

Die in Ansatz (3.31) der Gram-Charlier-Verteilung auftretenden
Parameter (1, 0% y,, p,) stimmen mit den ausgezeichneten statistischen
Masszahlen Durchschnitt, Streuung, Schiefe und Fxzess iiberein.

Aus der Iorderung, die Hiufigkeitsfunktion [%(z) der Gram-
Charlier-Verteilung sei positiv definit und falle eingipflig aus, lisst sich
die fiir Schiete und Iixzess bestehende wechselseitige Bindung auf-
suchen. D. I%. Barton und K. Ii. Dennis [3] haben den massgebenden
Ueltungsbereich ermittelt, den wir in der Graphik 2 (Seite 112) wieder-
geben,

-1
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322 Schiitzen der Parameter

I'ir die Methode der Maximum Likelihood kann die Likelihood-
funktion wohl formal angegeben werden, doch ligst sie sich nicht auf
eine einfache Weise wetterverarbeiten.

Die Methode der Momente liefert als Schitzwerte fiir die Parameter
w, o=, v, und p, die empirischen nicht zuverlissigen statistischen Mags-
zahlen Durchschnitt, Streuung, Schiefe und Fixzess. Bessere Schitzwerbe
erhilt man dann, wenn die empirischen Hauptmomente durch die zu-
verldssigen Schitzwerte (1.35) derselben ersetzt werden und diese in
die entsprechenden Bindungen (1.38), (1.41) und (1.42) einsetzt.

SR A2 @2 g N — QD A/
=% “=8 3= MHG=0 (3.44)

323 Giite der Anpassung

Da die theoretische Verteilung der Testgrossen fiir die zusammen-
gesetzte Hypothese

Hy: (x5 p, 6% py, ve) = (@ &, 5% 9y, ga) (3.45)

nicht bekannt 18t — insbesondere st der Chiquadrattest nur dann an-
wendbar, falls die vorkommenden Parameter nach der Maximum-
Likelihood-Methode geschiitzt werden konnen, was im vorliegenden
Fall nicht moglich ist -, dringt sich zwangsliufig das Testen der ein-
fachen Hypothese

Hy: Fz) = F(z; 0 = &, 06 = 5% yy = g1, Y2 = ga)  (8.46)

auf. Mittels dieser Problemlage wird nunmehr gepriift, ob sich die em-
pirische Verteilung durch eine spezifische Gram-Charlier-Verteilung
approximieren ligst; hierzu sind die in den Abschnitten 141 bis 144
behandelten Testverfahren verbindlich.

33 Edgeworth-Verteilung
331 Definition, Figenschaften
liine leichte modifizierte Rethenentwicklung der Hiaufigkeitsfunk-

tion f(z) schlug I". Y. idgeworth [9] vor. (3.47)

r 1 vy 1/ y3 \
i N N/ E - l, e ] 2 s\ o 1. F
o) = 1 |1+ e Hy(?) -+ n([_“ He) + 1) Hﬁ(z)> o
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Fine explizite Herleitung dieser Idgeworth-Reihe findet sich
bei T. Schlipfer [81] oder H. Cramér [8]. Bricht man die Reihe mit
den Gliedern von der Ordnung n™' ab, so entsteht eine Fdgeworth-
Verteilung.

Eine Zufallsvariable X heisst Kdgeworth-verteilt mit dem Durch-
schnitt [ — oo <y < co], der Streuung ¢*[o® > 0], der Schiefe y, und
dem Fxzess y,, wenn diese gekennzeichnet ist durch die Hiufigkeits-
tunktion

fm(m; #, 0%, Yis Vo) =

V=S (5, v, (B Ve gy (2 Y, [T
¢ '1 i 1,13( - >+ 4!1&14( >} 7.2.1116( )

arre 3! o v
—00 < I << oo, (3.48)
die Verteilungsfunkstion
x
B (s 1, 0% py, va) = [ 1700 10, 0% 1, ) du (3.49)
oder die charakteristische Funktion (3.50)
it 1202 y 7 2 .
Pty — ¢ (1=t ot P oy T (ot

31 n 79

Auch die Idgeworth-Verteilung kann in Beziehung gebracht werden
mit der Standardform der Normalverteilung.

¥0! o 1 N '_ Y1 Vs 4 y% :
(@ 0%y p) = 1Y) [T+ D H) + 2 ) + )]
o 3! 4! 72
it 2= (8.5
mit 2=——". (8.5
. )
nlo ) nl ; y . y‘ }}3 .
P93 1, oy ) = B 176) | ) + T ) 4 T )|
mit 2 = xﬁ'u. (3.52)
a
Nullmoment erster Ordnung:
o= [ @) ds = p. (8.53)

— 00
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Hawptmoment r-ter Ordnunyg:

(2v)! 02_" | 2 v/ (vﬁ_l)_
p12V | 3

ye | (P—2) ¥l

2 3
R P (3.54)

o= Gy, =

' 2v + 1)1 ™!
r=2v+liyy, = ( ) ] == 18 sese

(v—1)12~ g1’
Die ersten 3 Hauptmomente sind
1“:'2 = 027 |"’L3 = yl GB’ lu‘l = (y2 + 3) 04

Da das Nuilmoment erster Ordnung und die Hauptmomente zweiter,
dritter und vierter Ordnung der Edgeworth-Verteilung mit jenen der
Gram-Charlier-Verteilung (3.86) und (3.37) itbereinstimmen, trifft dies
auch fir die Kumulanten und standardisierten Kumulanten erster bis
vierter Ordnung zu.

Ausgezerchnete statistische Masszahlen

Durchschmitt: p= o= p (3.55)
Strewung: 0% = Uy = g% (3.506)
Schiefe: Y= Ay = Yy (3.57)
Exzess: Vo = Ay = Vs, (3.58)

Erneut stimmen bei der Fdgeworth-Verteillung die Parameter
{1, 6%, v,, vo) mit den statistischen Masszahlen Durchschnitt, Streuung,
Schiefe und Iixzess iiberein. Analog zur Gram-Charlier-Verteilung sind
auch Schiefe y, und Ixzess v, wechselseitig gebunden; wobei allerdings
der (leltungsberewch unterschiedlich austillt. Diesbesiiglich sei auf das
von D.E.Barton und K.H.Dennis [3] ermittelte und in Graphik 2
(Seite 112) dargestellte Gebiet der (yF, y,)-Iibene verwiesen.

332 Schitzen der Parameter, Giite der Anpassung

Fir die Edgeworth-Verteilung gelten die frither fiir die Gram-
Charlier-Verteilung in den Abschnitten 322 und 823 gemachten Uber-
legungen sinngemdss.
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34 Lognormalverteilung

341 Definition, Eigenschaften
Bine Zutallsvariable Y heisst lognormalverteilt mit den Parametern
@ [—oco <a<oo|und p%[p2> 0], wenn sie charakterisiert ist durch
die Hiufigkeitsfunktion '

1 1 1 ﬁ'l Iny—cy?
5y o f7) : (757)

S it il Bl >0 (3.59
Blan v Y (3.59)
oder durch die Verteilungsfunkstion
y
TSNy o, B2) = j X ; o, B2 du. (3.60)

Da die charakteristische Funktion der Lognormalverteilung elementar
nicht darstellbar ist, wird davon abgesehen, " (y;«, %) in die Defi-
nitionsbeziehung einzuschliessen.

Tst X eine normalverteilte Zufallsvariable, so ist Y = ¢% ¢ine log-
normalverteilte Zufallsvariable. Die Transformation x = In y fithrt die
Lognormalverteilung in eine Normalverteilung iiber

Ny, p8) = M50, 89, mitb @ =y, (3.61)
mit dem Durchsehnitt g = « und der Streuung o% = g2

Iny—e _
Die Transformation z = —————— gestattet, die Lognormalvertei-

lung direkt mit der Standardform der Normalverteilung in Bezichung

Zu setzen.

1 | _ In o
[Mys o, f2) = ;;j;e"“"ﬂz P, mib o= 0% (3.9

und i 4 —
PNy;a, ) = 1), it & = 525 (3,68

Sind die Nullmomente funktional bestinunt, so lassen sich alle iibrigen
charakteristischen Grossen gemiss (1.7) bis (1.19) leicht herleiten.

Nullmoment r-ter Ordrnunyg :

Nach (1.5) ist co
= [y I"™Nys e, ) dy;

0
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vermoge der Transformation y = e wird

co

s, = I‘e”’fN(:v;a,ﬁz) dx,

i (3.

' - Ly282
GrotI%rﬁ .

ty =
Hawptmomente zweiter bis vierter Ordnung:

Setzen wir im folgenden der einfachen Dargtellung wegen
2 0 .. .lpa .
e = ¢>1 und fiir *"* — 4, s0 sind

ty = pi(e—1) (3.

py = pe—1)% (e +2)
Py = ute—1)% (e* + 263+ 362—3).

Kumulanten erster bis vierter Ordnung:

2y o= l (:
vy = 1)

o = pi(e—1)2 (6 +9)

1y = utle—1)2[e* + 2%+ 3e2—6].

Standardisierte Kumulanten erster bis vierter Ordnung:

A = (e—1)7t (3
g = 1

Ay = (e—1)" (e +2)

Ay = et +263+362—6.

Ausgezeschnete statistische Masszahlen

Durchschnatt: o=y == ¢t (3.
Zentralwert: %, == "1 F¥(e*a,f%) = L. (3

Hufrgster Wert:

:Bh

— %P NP o BB = Max [f*My; o, 9)]. (3.

64)

fiir

65)

.66)

67)

3.68)
.69)

70)

Der Vergleich der drei Liageparameter x,, z, und x gibt Aufschluss itber
die Schiefe der Verteilung. I'iir die Lognormalverteilung gilt die Relation

$h<mz<ru’;

d.h. die Lognormalverteilung ist eine linkssteile Verteilung.



— 103 —

Strewung: 0 = p, = @ (P —1). (3.71)
Schiefe: yi= Ay = (e—1) (e +2) > 0, (linkssteil). (3.72)
Llazess: yy — Ay — &4+ 26% +862—6 >0, (leptokurtisch). (3.73)
Aus der kritischen Beurteilung der ausgezeichneten statistischen
Masszahlen folgert man, dass bei der Lognormalverteilung Schicfe y,

und lixzess y, in einem bestimmten Verhdltnis zueinander stehen.
Letateres Lisst sich in der (37, y,)-Ibene als Kurve deuten mit der

P arameterdarstellung
Yi=(e—1) (e +2)%

‘ 3.74
')/2_—_-544—283—{—383——-6. ( )

Diese in Graphik 2 (Seite 112) vorgemerkte Bindung zwischen Schiefe
und Fxzess ist ein Charakteristikum fiir den Geltungsbereich der Log-
normalverteilung.

342 Schiitzen der Parameter

349.1 Methode der Maxymum akelthood

Sollen die beiden Parameter o« und £% aus Stichprobendaten ge-
schiitzt werden, so sucht man zunichst nach (1.55) die Likelihood-

funktion
H fle, %5 y,)

1 n n 1 .
( T, el pa
Bl2m ) \isi v,

Beidseitig logarithmiert crgibt
n

1
111L(a,32):m ln(EZnﬁz)#blnyb T S (In i, — a)?.

=1 = i=1

Die Auflosung des Gleichungssystems

Jln L, 1 »
= S (In y."—“a) == Or

do B% 4t

dln L n

1
8ﬁ2 :—‘2,6’2 + 2‘84 S(lnyn_a‘) :Oa
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fithrt zu den Maximum-Likelihood-Schitzwerten

1 n
a=-— Shy,
=1
, (3.76)
i 1 = n 1e
pr= - S |lny;— - Sy,
M=t | i=1

Die Schitzwerte sind zuverldssig mit minimaler Streuung, wenn wir
den zweiten Ausdruck leicht modifizieren.

12
&= — 3oy,
M i=1
(3.77)

) 1 f 1 n
f = - . 8 Iln y;— Slny;
W—1 =i | e

1=

Der Vergleich dieser Schiitzwerte mit der frither hergeleiteten Re-
lation (3.19) lisst erkennen, dass « und % leicht zu schiitzen sind. Die
urspriinglichen Stichprobenelemente 7, werden logarithmisch trans-
formiert z; = In y,, deren Durchschnitt & und Streuung s*(x) errechnet
und mit den zu schitzenden Parameter « und 2 identifiziert.

8342.2 Methode der Momente

Die beiden ersten Nullmomentoe sind gemiss (3. 64)

2
i o+ 'z-
!161 = € B
T 2a4-2p2
fo = € x

Ersetzt man die linken Seiten durch die empirischen Nullmomente

so fithrt die Auflosung auf die Schitzwerte

¢ = 2lnm;— L Inm,,
I ! (8’78)
B2 = 2Ilnm, + Inm,.

Diese weichen von den Maximum-Likelihood-Schatzwerten ab.
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343 Giite der Anpassung

Soll itber die Gite der Approximation mittels einer Lognormal-
verteilungskurve mit den Parametern (o, #2) befunden werden, so ist die
einfache Hypothese mit den in 14 dargelegten Testverfahren sinnvoll.

Soll zusitzlich dariiber bofunden werden, ob die empirische Ver-
teilung der Klasse der Lognormalverteilungen entstamme, so ist die
zusammengesetzte Hypothese

Hy: F"™¥y; a, 3 = Fiy; 4, f?) (3.79)
zu priifen. Die Wahl der spezifischen Verteilungsfunktion ¥ modifi-
ziert insbesondere die Sicherheitspunkte der gebriuchlichen Testver-
fahren. I'iir die Liognormalverteilung ist die theoretische Verteilung der
In 14 aufgefithrten Testgrossen heute nur fiir den Chiquadrattest be-
kannt. Behelfsmissig bedient man sich gewisser Transformationstests,
dio auf der logarithmischen Bindung der Lognormalverteilung zur Nor-
malverteilung beruhen.

343.1 Chiquadrattest

Sind die Parameter der Lognormalverteilung («, #2) mittels der
Methode der Maximum Likelihood geschiitzt worden, so befolgt nach
R. A.Tisher [12] die Testgrosse

XLN) = 3}~ (3.80) = (1.67)

(theoretischer Ansatz)

die Chiquadratverteilung mit n* = (m-—1) —2 == m—38 Freiheitsgraden;
die Zahl der Freiheitsgrade erniedrigt sich um die Anzahl der zu schiit-
zenden Parameter.

Far die Durchfithrung des Tests finden die numerischen Angiitze

(1.73) oder (1.74) Anwendung.

348.2 Transformationstests

Die Transformation x, = In y, fithrt die lognormalverteilten Stich-
probenelemente in normalverteilte iiber. Wir testen die zusammen-
gesetzte Hypothese nach einem der im Abschnitt 818 dargelegten Ver-
fahren. Wird die Hypothese der Normalitéiit (3.21) abgelehnt, so lehnen
wir ebenfalls die Hypothese der Lognormalitiit (3.79) ab.
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35 Logarithmische Gram-Charlier-Verteilung
351 Definition, Figenschaften

Iiine Zufallsvariable Y heisst logarithmisch Gram-Charlier-verteilt
mit den Parametern o[—co <a <<cof, i2[f* > 0], 5, und 5,, wenn
deren Hiufigkeitsfunktion zu

. 1 1 g Iny—ecy 2
Foys e, B2 my,me) = e “( B )

p 4! p
0 <<y < oo, (3.81)

v

oder deren Verteilungsfunktion zu
v

Yy 0, B2y, M) = [ [ s o, B2y, my) du (3.82)

— 00

gegeben ist.
Vermoge der Transformation z = Iny geht die logarithmische
o O te)
Gram-Charlier-Verteilung iiber in die cewohnliche Gram-Charlier-
te] O

Verteilung.
LGt P —x (O 2 ., N1t o . 3
[y o B m,ne) = e[ (20, B2 n, M), mib 2 = Iny. (3.83)
o , . _ Iny—a . _ ) ,
Fine weitere Transformation z = bindet die logarithmische

Gram-Charlier- thmlunﬁ direkt zur Standardform der Normalvertei-

lung. | i
[y ) = e o) [1 gy Hal@) - Ha(2)
‘ Iny —a
mit 2 = —- : (3.84)
p
FrLG(y, - 2 . N }1 T/ N2 e '
(s Bmm) = 1) — P6) | [ ) + ) H)|,
: Iny—«
mit 2z = g (3.85)
Nullmoment r-ter Ordnaung N
= [y 1"t dy
0

oder unter Verwendung der Transformation y = ¢”

@, = j e [%(z) dux.

, Iny—al 7, A g
14 Z: ng( ki “) B 1'-_[4( By

)_

b



— 107 —

Der Vergleich mit der charakteristischen Funktion der gewdhn-
lichen Gram-Charlier-Verteilung
=
() = J e f9(2) du
_do
lisst erkennen, dass die gesuchten u. unmittelbar aus der Beziehung
(3.33) hergeleitet werden kénnen unter Beachtung folgender Substitu-
tionen 4t — », po=a, o2 = B% yy=—n und y,=n,:

N2

1+ eyt L OO r =12 (3.80)

Da die Hauptmomente, Kumulanten und statistischen Masszahlen
sich nicht iibersichtlich darstellen lassen, verzichten wir darauf, diese
oxplizite aufzufithren. Vermerkt sei aber, dass sich simtliche vorer-
wihnten Grossen mittels einer oloktronischen Rechenanlage auf Grund
der Definitionsbeziohungen (1.7) bis (1.19) ohne weiteres fiir beliebige
Parameterkombinationen aus den Nullmomenten bestimmen lassen.

352 Schiitzen der Parameter

Sollen die Parameter («, % #,, 1) aus empirischen Daten 1, go-
schiitzt werden, so sind diese vorgiingig logarithmisch zu transformieren
T, = Iny,. I'tir die transformierte Stichprobe ermittelt man alsdann
hach Beziehung (3.44) die statistischon Masszahlen (), 6%(z;), $,(z,)
und §,(z,); welche die gesuchten Schitzwerte bilden.

Aiy,) = 6%(x,) ’ |

A A mit x, = Iny, 3.87
My = Pi(z) Y ( )
oY) = Pal;) -

353 Giite der Anpassung

Analog zu den Frwigungen bei der gewdéhnlichen Gram-Charlier-
Verteilung ist hier nur das Testen der einfachen Hypothese

Hy: F(y) = F3%  (y;e =4, 2 = F% n =1, na =17y  (3.89)

sinnvoll,
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36 Logarithmische Edgeworth-Verteilung
361 Definition, Kigenschaften

Die Zufallsvariable Y heisst logarithmisch Fdgeworth-verteilt mib
den Parametern o[— co <<a << co|, 2% > 0], 5, und #7,, wenn diese
durch die Haufigkeitsfunktion

1 1 _1_('“]]/.’"1')2
LE ;o 2, , No) = - e 2 g/
Py o 8% 15 1) Blom

2

. ]. -+ ?71 fI3 f hlyku a’v) + ?72 Iiz]( ]n’lj-ﬂ’,) + ?71’}[6 7]"‘”' ,’/ AOC‘>
- 8l B P N T N 8

0<y<<co (3.89)

b

oder durch die Verteilungsfunktion

v
F"“(y; %, B2 Ny, ) = j B (s o, B2, Ny> M) A1 (3.90)

Ladlee]

charakterisiert ist.

Die Transformation @ = In y fithrt die logarithmische Iidgeworth-
Verteilung in die gewohnliche Fdgeworth-Verteilung tiber.

P (s, B2 my ) — € (s o, B0, ), it @ — Ing. (3.91)

Zur Standardform der Normalverteilung lisst sich f““(y) vermége der

Iny—«o

Transformation z = in Beziehung setzen.

PRy o, B2, m ) — L s ™) 1M+ ™a (&) + g @)
Y30, PN Mg '*‘B ~ gy Tha 79, 6 ’
Iny—e

(3.92)

mib 2z =
und

: 2
™ Ny E
- Hy(2) + 4!-H3(z) f 72H5(z)| ;

B8y, B2 my,me) = FY2) — fYz) 31

Iny—a

mit z = (3.93)



— 109 —

Nullmoment r-ter Ordnung:

Aus = , .
= [y ) dy = [ e [(a) da
o —o

und der charakteristischen Funktion der gewchnlichen Edgeworth-

Vorteilung (3.50) oo
) = [ f7(a) de

lisst sich die Relation

r2p2 2
r ot 9 i 771_ ‘w3 772 1 ?71 . 0\6
i, = e 71 + 31 (*B)® + 4l (rf) + 79 (rp) (3.94)
direkt ablesen, falls die Substitutionen 1t =r, uw = «, o2 = 2,

Y1=n, und y, = n, beriicksichtigt werden.

Fiir das Aufsuchen der Hauptmomente, Kumulanten und sta-
tistischen Masszahlen sei erneut auf die Grundbeziehungen (1.7) bis
(1.19) verwiesen, dio die Bindungen zu den Nullmomenten fiir be-
liehige Parameterkombinationen (e, 82, 9y, n,) gewilhrleisten.

302 Schitzen der Parameter, Giite der Anpassung

T'iir die logarithmische Edgeworth-Verteilung gelten die frither fiir
die logarithmische Gram-Charlier-Verteilung in den Abschnitten 352
und 353 gemachten Uberlegungen sinngemiss.



4 Kinsatz elektronischer Rechengeréte

Dieim Kapitel 3 behandelten Verteilungen sind durchwegs geeignet
fiir den Finsatz elektronischer Rechenanlagen. Wenden wir ung dem-
nach i aller Kivze der Programmierung zu; auf eine Wiedergabe der
bisher ausgearbeiteten (iroblosung wird an dieser Stelle verzichtet ).

Das Hauptprogramm, das aus einer Rethe von Unterprogrammen
besteht, gestattet eine Verarbeitung von Haufigkeitsreihen einerseits
oder von iinzelwerten, die in geordneter Folge vorliegen, andererseits. In
einem ersten Arbeitsgang werden die charakteristischen Grossen der em-
purischen Verterlung ermittelt. Mittels der Schiefe und des Iixzesses kann
auf Grund des Geltungsbereiches (Graphik 2, Seite 112) ein erster nt-
scheid itber die Wahlder theoretischen Verteslung getillt werden. Der zweite
Arbeitsgang bestimmt in einer ersten Stufe die Parameter der gewéahlten
theoretischen Verteillung. Mit diesen lassen sich in der folgenden 2. und
3. Stufe fiir die Klagsenmitten oder fiir die Finzelwerte als Argument die
Werte der Haufigkeitsfunktion und der Verteilungsfunktion errechnen.
Da die Parameter der logarithmischen Verteilungen nicht identisch sind
mit den statistischen Masszahlen, miassen diese charakteristischen Gros-
sen aul einer weiteren Stufe gesondert ermibtelt werden. Auf der letzten
Stufe werden diec Masszahlen bereitgestellt, wm tiber die Giite der An-
passung der gewihlten theoretischen Verteillung befinden zu kénnen;
es betrifft dies fiir die Haufigkeitsreihen die Chiquadrat-Testgrosse und
fir die Einzelwerte die Cramér-von Mises-Smirnow-"Testgrosse.

Iine Tteration gestattet das mehrmalige Durchlaufen des zweiten
Arbeitsganges. s konnen fir eine bestimmte Parameterkombination
mehrere theoretische Verteillungen errechnet und auf deren Giite hin
getestet werden.

Auf eine Besonderheit sei noch hingewiesen. Die Normalverteilung
resp. Liognormalverteilung lisst sich als Gram-Charlier- resp. logarith-
mische Gram-Charlier-Verteilung auffassen mit der speziellen Setzung
y, = 0 und y, = 0 resp. 5, = 0 und #n, = 0. Diese Spezialisierung ist
unmittelbar zu Beginn des zweiten Arbeitsganges zu treffen.

1y Das Programm in einer allgemein verwendbaren Programmierungssprache
ist in Bearbeitung und steht spiter zur Verfiigung.
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5 Anhang
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Graphik 2

Gram-Charlier-Verteslungen wnd Lidgeworth-V erteilungen

Geltungsbereiche
2
Y1
2 /
/
/
@
Vd
Vi
/
/
i
(i)
/
/
L r,
()
/
/
/ \
X
\
.
™
& )
\
of
0 1 2 3



115 -

Tabelle 1

Tabellierte Werte der Normalverterlung

[

Tabellenwerke

@) =

[/‘Zﬂ

4

e — [ ) du

q
W\ 72

\

(1)

Fisher, R. 4., and
Yates, I, : Statistical
Tables for Bio-
logical, Agricultural
and Medical Re-
search, London 1957

National Bureaw of
Standards: Tabley
of Probability
[functions, Vol. 11,
Washington 1948

Owen, D. B.: Statis-
tical Tables.
Massachusetts 1962

Pearson, I{.: Tables for
Statisticians and
Biometricians.

Part 1 and 2.
Cambridge 1930

Pearson, I5.S., and
Hartley, H.0.: Bio-
metrika Tables for
Statisticians, Vol.1,
Cambridge 1954

f(2):

f(2):

f(2):

. 15 Dezimalen

(2)

4 Dezimalen
z = (0,01) 3(0,1)
3,9

2 - 0(0,0001)1(0,001)
8,285

7 Stellen

z = 6(0,1)10

6 Dezimalen
2 = 0(0,01)3,99

7 Dezimalen

z == 0(0,01)4,5
10 Dezimalen
z = 4,5(0,01)6

I'(z): 6 Dezimalen
2z = 0(0,01)3,99

F(z): 7 Dezimalen
2 = 0(0,01)4,5
10 Dezimalen
2z = 4,5(0,01)6
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Tabellierte Werte der Sicherheitspunkte ausgewdihlter Testqrossen Teb-2

Sicherheits- Stichproben-
Testgrosse schwelle umftang Literatur
P n
) (2) (3) (4)
Chiquadrat 0,05;0,01; 0,001 Tander, A.: Statistische Me-
L (F. G thoden. Birkhiiuser Verlag,
n* = 1(1)30) Basel (1960), S.464.
Kolmogoroff 0,20; 0,10; 0,05; 1(1)100, e Miller, . I..: Table of per-
Kylyn 0,02; 0,01 centage points of IKolmo-
gorov statistics. J. Amer.
Statist. Ass. 51 (1956),
8.118-115.
I, (N) 0,05; 0,01 25, 100 Kae, M., Kiefer, J., and Wol-

Cramér-von Mises-

Smarnow
S
W

Anderson-Darling
.
Wi

Schiefe
iy

Irzess
4,

a

0,05; 0,01

0,10; 0,05; 0,01

0,10: 0,05; 0,01

0,05; 0,01

0,05; 0,01

95, 100

1(1)8, oo

925(5)50(10)

100(25)200
(50)1000(200)
2000(500)5000

200(50)1000
(2002000
(500)3000

LL(3)51(10)
101(100)1001

fowitz, J.: On tests of nor-
mality and other tests of
goodnesy of fit based on
distance methods. Ann.
Math. Statist. 26 (1955),
S.210.

Kae, M., Kiefer, J., and Wol-
foivitz, J.: Ann. Math. Sta-
tist. 26 (1955).

Lewrs, P, A.W.: Distribution
of the Anderson-Darling
statistic. Ann, Math. Sta-
tist. 32 (1961), S.1124.

Pearson, I4.S., and Hartley,
H.O.: Biometrika tables
for statisticians, Vol. I
Cambridge University
Press (1958), S.183/184.

Pearson, It. S., and Hurtley,
H.O.: Vol. T (1958).

Pearson, I, S., and Hartley,
H.0.: Vol. T (1958).
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Résumé

[auteur étudie certaines distributions théoriques —loi normale, Gram-Charlier,
Edgeworth, normale logarithmique, Gram-Charlier logarithmicue, Kdgeworth log-
arithmique - qui présentent entre elles et avec la loi normale réduite des relations
simples el se prétent A lajustement de distributions expérimentales i aide de caleu-
lateurs électroniques,

La méthode du maximum de vraisemblance et la méthode des moments appli-
quees & U'estimation des parametres sont briévement exposées.

infin, les principaux critéres d’appréciation de la validité de Uajustement —
test du x2, de Kolmogoroff, de Cramér-v. Mises-Smirnoff et de Anderson-Darling-
sont présentés avee les bases numériques qui en sont dérivées.

Summary

"I'he author deals with certain frequency curves, namely the Normal distribution,
the Giram-Charlier distribution, the idgeworth distribution, the Lognormal distribu-
tion, the Logarithmic Gram-Charlier distribution, and the Logarithmic Isdgeworth
distribution. IHe shows their relation between each other and also to the Normal
standard distribution and explains how they are qualified for the approximation of
empirical distributions with the help of electronic computers.

[lor the estimation of parameters the methods of Maximum likelihood and of
Moments are briefly dealt with.

Ior the goodness of fit the author describes the most important tests at present
in use, as the Chi-squared test, the I<olmogorov test, the Cramér-von Mises-Smirnov
test, and the Anderson-Darling test. He explains especially the most adapted
formulas for the solution of numerical problems derived from these tests.

Riassunto

[’autore analizza qualche distribuzioni teoretiche — la distribuzione normale,
la distribuzione Grram-Charlier, la distribuzione Edgeworth, la distribuzione normale
logaritmica, la distribuzione logaritmica (iram-Charlier, la distribuzione logaritmica
Edgeworth — che hanno speciali relazioni tra di loro e con la distribuzione normale
standardizzata, e che sono adatti per 'approssimazione delle distribuzioni empiriche
col aiuto di calcolatrici eletroniche.

Perstimare i parametri vengono espostiilmetodo della massima verosimiglianza
e 1l metodo dei momenti.

Per giudicare la bonta dell’adattamento vengono compilati gli oggi importanti
criteri come il eriterio del ¥2, il criterio di Kolmogoroff, il criterio di Cramér-von Mises-
Smirnoft, il criterio di Anderson-Darling con la formula numerica derivata.
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