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Approximation empirischer Verteilungen

unter Einsatz elektronischer Rechengeräte

Fori Hans Bern
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Zusammenfassung

Ks werden bestimmte theoretische Verteilungen - die Normalverteilung, die
Gram-Charlier-Verteiluug, die Edgeworth-Verteilung, die Lognormalverteilung, die
logarithmische Gram-Charlier-Verteilung und die logarithmische Edgeworth-Ver-
teilung - untersucht, die unter sich und zur Standardform der Normalverteilung
einfache Bindungen aufweisen und die sich für die Approximation empirischer Ver-
teilungen unter Einsatz elektronischer Rechenanlagen eignen.

Für das Schätzen der Parameter werden die Methode der Maximum Likelihood
und die Methode der Momente kurz dargelegt.

Zur Beurteilung der Güte der Approximation sind die heute wichtigsten Test-
verfahren, wie Chiquadrat-Test, Kolmogoroff-Test, Cramér-von Mises-Smirnow-
Test und Anderson-Darling-Test, mit den daraus hergeleiteten numerischen An-
siitzen zusammengestellt.

0 Einleitung
Ein zufälliges Phänomen lässt sich durch eine Zufallsvariable be-

schreiben, die ihrerseits durch die die

/'Mw/cfion, die c/iara/cfemfisc/u; Z'Vw/i/iow oder durch die Mowierde go-
kennzeichnet worden kann. Bezüglich der letzteren begnügt man sich
meist mit den ersten vier Momenten und leitet daraus die statistischen
Masszahlen Dwc/tsc/miff, SfreMimy, Sc/tie/e und /ïo^esx ab.

Sind empirische Verteilungen durch theoretische Verteilungen zu

approximieren, so eignet sich hierzu entweder ein System von Häufig-
keitsfunktionen, deren allfällige Parameter zu den statistischen Mass-
zahlen eng gebunden sind, oder ein Transformationssystem, das die

Uberführung einer beliebigen Häufigkeitsfunktion in eine bekannte
Häufigkeitsfunktion (z. B. Normalverteilung) gestattet.

K. Pearson hat die Differentialgleichung
1 dy n +

y rfcr fco + &i + ^2 ^
betrachtet und gezeigt, dass deren Lösungen Häufigkeitsfunktionen sind.
Die Koeffizienten («, fc„, fc,, fcg) der Differentialgleichung sind zu den
statistischen Masszahlen Durchschnitt, Streuung, Schiefe und Exzess
der zugehörigen Häufigkeitsfunktion gebunden; bestimmend für die
analytische Form der Kurven sind insbesondere die statistischen Mass-
zahlen Schiefe und Exzess. In einer Ebene mit der Schiefe als Abszisse
und dem Quadrat des Exzesses als Ordinate (Graphik 1, Seite 111) lässt
sich der Geltungsbereich für die wichtigsten Typen auf einfache Weise
darstellen.
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Häufigkeitsfunktion der wichtigsten Typen:

Typ IV: /(,):) (Normalverteilung),
ff [' 2 TT

l m'"» to.',"-

Typl: /(«) ; 7I(Wi+1, wta-h 1)

fij + «g (m^ -h mg) "- ' *
1 1

mi £l-"l <7,2

Typ II: /(:r)

Typ III: /(or)

Typ IV: /'(.r)

1 /'(to+ 1,5)

n I'Vf H (to -I-1)

I F,P I

« D' /'(•/> + 1)
1. -I-

ff 6'(r, rj

/ '

'l'yp V: /(.'•)
/ (p-l)

1 +

.c-'Tr-'/'I

Typ VI: /(.r)
a ïi-'/a 1 '"(il)

(It- '/•> 1) ''(72 I 1)
I ;E ff ['" x

Die auftretenden Parameter sind Punktionen der Koeffizienten
(et, />„, 6p 6.j) der oben erwähnten Differentialgleichung. Das Hystmu
enthält unter anderen die Normalverteilung. Pine ausführliche Dar-

Stellung der Pearsonschen Verteilungen findet man in dem Standardwerk

von W. P.Elderton [10] ').
N.L. Johnson [19] zeigt, wie eine beliebige empirische Verteilung

in eine Normal vorteilung transformiert werden kann. Nach der Beziehung

- — y + 6'/

mit den Transformationsparamotorn (y, 6, /<, d) unterscheidet man drei

Transformationssysteme

/S'f,: //(//) In j/ (Lognormalverteilung),

^';D f/(?l) In [j//(l —J/)],

<V f/(f/) hi[// -|- [/// P 1].

') Zahlen in Klammern [] beziehen sich auf den Literaturnachweis!.



Die Transformationsparameter sind wiederum eng gebunden zu den
statistischen Masszahlen. Der Geltungsbereich des -Systems fällt mit
dem später zu erörternden Geltungsbereich der Lognormalverteilung
LiV (Graphik 2, Seite 112) zusammen und trennt zugleich das S'^-System
(oberhalb der LIV-Kurve, unschraffiert) vom G^-System (unterhalb der
UV- Kurve).

Für die Programmierung elektronischer Rechengeräte eignen sich
weder die Pearsonschen Verteilungen noch die Transformationssysteme
von Johnson. Lest,ere bedingen eine Reihe von Unterprogrammen für
die verschiedenartigen analytischen Ausdrücke der Häufigkeitsfunk-
tionen, während für die letzteren das Schätzen der massgebenden Para-
meter (y, J, /.«, J) beschwerlich ausfällt. Es soll daher im folgenden eine
Auswahl von Verteilungen betrachtet werden, die unter sich und auch
zur Standardforiii der Normalverteilung einfache Bindungen aufweisen
(Kapitel 'S) und sich für den Einsatz elektronischer Rechengeräte aus-
zeichnen.

Die iVm/mtowfet/wM/ (NF) ist durch die beiden Parameter Durch-
schnitt und Streuung eindeutig charakterisiert. Die fundamentale Be-

deutung lässt sich daraus erklären, dass die Normalvorteilung

- häufig angenähert in der Natur beobachtet werden kann;

- als Folgerung des zentralen Grenzwertsatzes der Wahrscheinlich-
keitsrechnung theoretisch erklärt werden kann und

- als Voraussetzung zur Testtheorie eine einfache und geschlossene

Abhandlung derselben gestattet.

Die (/mw-C/i-arZ-ier- Pcrfei/wM/ (G F) und die /tVh/ciaorf/i-Fcrfeifomi/
(A'F), deren vier Parameter mit den statistischen Masszahlen Durch-
schnitt, Streuung, Schliefe und Exzess übereinstimmen, gestattet ins-
besondere den Einfluss der Nichtnormalität auf die theoretischen Prüf-
verfahren zu untersuchen (vergleiche T. Schlüpfer [81 j) und wird auch

häufig für die Approximation fast normaler Verteilungen verwendet.

Die Loi/norwafoer/ci'hmjf (LNF) mit zwei Parametern leitet man
aus der Transformation Y e* der normalverteilten ursprünglichen
Zufallsvariablen A' ab. J.Aitchison und J.A.C.Brown [1] haben eine

umfassende Darstellung dieser Verteilung gegeben.



— 64 -
Die Zogfantf/tmisc/ie GVam-GVweHier-Ferkh/'iingf (LG F) und die for/-

ani/tmisc/i« /'/tA/c-Jtwf/t- FerfeiZwir/ (LEF) mit vier Parametern sind zur
gewöhnlichen Grana-Charlier-Verteilung resp. Edgeworth-Verteilung
in gleicher Weise gebunden wie die Lognormalverteilung zur Normal-
Verteilung.

Die Systematik auf Seite 65 lässt die Bindungen der sechs aus-

gewählten Verteilungen unter sich und zur Standardform der Normal-

Verteilung erkennen.

Zur Approximation empirischer Verteilungen hat man eine geeig-
nete theoretische Verteilung auszuwählen und deren vorkommende
Parameter aus den statistischen Masszahlen der empirischen Verteilung
zu schätzen. In diesem Zusammenhang drängen sich Kriterien auf, um
über die Zuverlässigkeit von Schätzwerten (Abschnitt 18) befinden zu
können. Einfache Schätzverfahren wie die Methode der Maximum
Likelihood oder die Methode der Momente gestatten das Aufsuchen

von geeigneten Schätzwerten, die die an sie gestellten Anforderungen

ganz oder teilweise erfüllen.

Um über die Güte der Anpassung der gewählten theoretischen

Verteilung an die empirische Verteilung befinden zu können, bedient

man sich spezieller Prüfverfahren (Abschnitt 14). Grundlage hierzu bil-
den die theoretischen Verteilungen und die daraus abgeleiteten Sicher-

heitsgrenzen. Mit dem Risiko eines Pohlers erster Art wird man bei Vor-
gäbe der Sicherheitsschwelle die Hypothese, die empirische Verteilung
entstamme zufällig der theoretischen Verteilung, dann ablehnen, wenn
die errechnete Testgrösse die entsprechende Sicherheitsgrenze über-
schreitet.
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/iFerfciZwt(/cw
Zufalls variable Zufallsvariable

Z X Y

Parameter Parameter

/«, ff-, yg «>
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1 Grundsätzliche Erwägungen

11 Theoretische Verteilung

111 Allgemeine Verteilung

Wir betrachten eine eindimensionale stetige Zufallsvariable .Y mit
der im Intervall (—oo, oo) integrierbaren Ha-it/hy/ceits/tm/chow /(.r), die

zur 7erfeikn</s/tmfe<ion Z-'(r) und zur e//«raftfem<iscÄcw /'«Äm y>(<)

wie folgt gebunden ist:
^

E(a:) |/(«)d«; (1.1)
— OO

oo

99(f) I e*'*/(a;) da. (1-2)
— CO

Als /frtrarhirw/swerf einer stetigen Funktion y/(a;) definieren wir das

Integral 00

%/(z)] .V(^) /(-'") (1.3)

Beziehung

Die Häufigkeitsfunktion /(a) ist normiert, d.h. es existiert die

CO

j /(a) da; 1. 1.4)

Für die theoretische Verteilung der Zufallsvariablen .V wollen wir
folgende charakteristischen Grössen definieren:

AhtWmo?«ewf r-fer Ordmm</:
CO

/G ®[aZ] J .F; da:; r 1,2 (1-5)
— OO

//uîtpfntownjwf r-fer Ordmmr/ ;

00

/.«, (a;—/O'I — J /(•'') '' " '^>'1, ••• (t-6)
— OO

Die Hauptmomente zweiter bis vierter Ordnung, ausgedrückt durch
die Nullmomente erster bis vierter Ordnung, lauten

' '2
— /^2 /'l

/<., — /4 — 3/i(,«2 -]- 2/t(® (t .7)

At ,«4 -" 4/G /G + — '1/h'-
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ifMTOwZante r-ter Ordnung:

V «
/>"' ''• '

Ç>(*)î r l,2,.... (1.8)

Die vier ersten Kumulanten - ausgedrückt im Nullmoment erster
Ordnung und den Hauptmomenten zweiter bis vierter Ordnung - sind

*i ~ /*t » "2 ~ 70> *0 ~ 70 > "4 — 7*4 8/0 (1-8)

Standardisierte /uwwdarde r-fer Ordramt/:

'- 1,2, (1.10)
"2

Die ersten vier standardisierten Kumulanten sind

; —
*1 2 *'

=1, Â, -**.
^2 *0

-4Ms<jfc2eic7me<t! statisfisc/te Mama/dew

(1.11)

7lMrc7t.se/miW: /t /«( x, — J x /(x) der. (1.12)
— CO

#cw<raüw)er< fMediarg):

». :%) j/(«)d« " (1.13)
— 00

HäM/ir/sfcr Wert: % : /(«*) — Max [/(;/:) |. (1.14)
00

Streuung/: tr ,«3 «3 J (n- - -/t)"/(•?:) d.c. (1.15)
— 00

Mildere gMcidratisc/ie M/rtocic/tMMg/ :

a — [/ ff'^. (1-16)

Hariatiows/i;oe//i2ient: F= (1-17)
7«

Sc/tie/e: y, 2,, ^ (1-18)

.Exeess: 73 ^4= (1-19)
(7



— GS —

An Stelle der beiden letzten Masszahlen findet man in der Literatur
auch öfters die von K. Pearson eingeführten Masse

ft rf-
0a rahd.

112 Standardisierte Verteilung

Die Zufallsvariable A' —n
X

er

heisst stotw/ftrdmeffe Ztt/dZfewmMe. Ihre Häufigkeitsfunktion bezeich-

non wir mit /(z). Die Verteilungsfunktion und die charakteristische
Funktion lauten

X(ä') - [/(«)«!«; (1.21)
— CO

CO

<p(<) - |V"7(z)rfe. (1.22)

WkkwictI p-fer Opc/pmmç/:

o,
CX)

: J M /(z) dz; r 2, 8,
(1.2»)

— oo

//««•/pf-mwwsKf r-fer Opcïtww/:

/«2 1. /L /V p — 8, 4 (1.24)

Kwwufcmfe ep.sfer his mepfep Orrfmiwy:

PC, 0, PCj 1, PC;, PC,, /«., öl. (1.25)

iS'to-nrZaPf/mcpfe /iitm-uZonfe mfep his werter Ordwaw/:

A, 0, Ag=l, A., pc.„ A, : pc.,. (1.26)

/t«$ç/eze»c/mefe .sadistische Masszahfew

Dtipc/tsc/miW; ,« /«( — 0- (1.27)

Stemw|.' cr^ ,«2 1 • (1.28)

»S'c/we/e: y, Aß PC3. (1.29)

/irze.s.s: yg E2 A., ?c,,. (1.80)
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Wichtig ist die Tatsache, das» für die standardisierte Zufalls-

variable Z der Durchschnitt 0 und die Streuung 1 ausfallen. Schiefe und
Exzess sowohl der ursprünglichen Zufallsvariablen A' wie der trans-
formierten standardisierten Zufallsvariablen Z sind gleich. Einen aus-
führlichon Nachweis dieser Invarianz bezüglich linearer Transforma-
tionen ist in der Dissertation von T. Schlüpfer [Gl ] zu finden.

12 Empirische Verteilung

Einer umfassenden Grundgesamtheit, charakterisiert durch die

Häufigkeitsfunktion /(;<•) der Zufallsvariablen V, werde nach dem Zu-

Eillsprinzip eine Stichprobe vom Umfange n entnommen mit den he-

obachteten Stichprobenelementen rg, Die >3'he/;pro6<! vom
Umfange « der Zufallsvariablen A' kann daher aufgefasst werden als »
voneinander unabhängige Zufallsvariablen Ap.V,,, A'„, deren Ver-
teilungen einzeln alle gleich der theoretischen Verteilung sind.

Werden die Stichprobenolemente ihrer Grösse nach geordnet

Ho ''(•-) • • • •''(»)'

so kann die m/rtrisc/te Ferteihm(/s/w«/tHo'n, >S'„(;r) wie folgt definiert
werden :

'

0 (x < .r,„)

'\C') ~
^

(•'*(/,) < fc - - 0, 1, .n — 1 (L.'H)

1 (;r > *(„)) ;

/,:

kurz ,S' (x) — falls /t Stichprobenelemente kiemer oder gleich « sind,
n

Für die empirische Verteilung der Stichprobe wollen wir folgende
charakteristische G rossen definieren :

Zi'wpmsc/jes Ahi/Zmowtenf r-fer OrdwuMf/."

1 "
a/,. Si], r= 1,2, (1.32)

« ;=t

/!r'w/nnsc/»p.v f/attpimomertf r-<er Ordmmj/.'

1 "
m, )S (x; —m,)^, r 2, 3, (1.33)

" ; i
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Zur Schätzung statistischer Masszahlen der Grundgesamtheit ge-
trügen die empirischen Momente nicht. Insbesondere sollten die Schät-

znngen zuverlässig') sein. Um diesem Kriterium Rechnung zu tragen,
werden folgende Erwartungswerte benötigt:

E[wi|]

n — 1

(m l) (w — 2)
,'te (1-34)

M

7,ir |
(» !)(«" 8«+8) 8(M —1)(2« -8)

- —
,„3 ."1 !"

„3 .«*
AA AA

(to —1)* (»-1)(»®- -2to + 8) „M"Ul 3
" " /U + 3 /U '

AA AA

Die zuverlässigen Schätzwerte des ersten Nullmomentes und der zweiten,
dritten und vierten Hauptmomente ergeben sich gemäss nachstehenden
Ansätzen : „,

/«( M,

,»2
TA l

/Ao Wo
(w— 1) (« -2)

(1.85)

n (?r -- 2 m + 3) 3 to (2 m - - 3)
/A, — m, Wf
' '' (M-1) (to-2) (to-8) ' (to-1)(to-2)(»--8) *

Die Erwartungswerte der entsprechenden Schätzwerte stimmen mit
den zu schätzenden Masszahlen der theoretischen Verteilung überein.

Nach den Beziehungen (1.85) gewinnt man leicht zuverlässige
Schätzwerte für die AütwmAintero erster Ais inerter Orr/mtw/.

Wj
AA

n., m.,

(1.86)

2
w — 1

•m.,
(to - 1) (to 2)

o
7A

ä i f (to I I »'. — 3 (to — 1) raj)!.*
(to —1) (to —2) (M — 3) ' ' ^ ^

') Siehe Ausführungen in Abschnitt llil.
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4itsjfe2ci!c/me<e s<a/i.s<m7ie Mrm\JuMe7i

1 "
Dwrc/tsc/tm«; :c «j <S'.r,-. (1.87)

« i=.i

1 "
»S'lmtMW/: s® m., S (;Cj -œ)^. (1.88)

« 1 i-i
Mittlere (ptadrafist'/«; .l/nmc'/w»«/:

(1.89)

s
Fanafionsfcoe//me>i<: F _-. (1.40)

iC

•e: //, y, ^ -3 • (1.41)

feœss: ^==73« ' (1.42)

Schiefe und Fxzess nach K. Pearson ergeben sich zu

'h & ^ ffi >

^2 ~ Ai ^ .'/a I 7
(1.48)

Die gewonnenen Ansätze lassen sich leicht übertragen auf empi-
tische Verteilungen, deren Stichprobenelemente in m gleiche Klassen

aufgeteilt wurden. Die konstante Klassenbreite sei /c, die Klassenmitten
bezeichnen wir mit ;c- (?' 1,2, m) und die absolute Häufigkeit
der j'-ten Klasse mit n. 1, 2, m).

Ko/ie.s' empmsc/tes jVwZi-moment r-te-r Ordmt-m/:

1

ra, r= 1,2, (1.44)
m / i

Ko/ifi.s mpimc/ics f/aitpf-mo-mettf r-Zer OnZwitw/:

1

»», - N •«.(»• —w[)', r 2, 3, (1.45)
w j- i

VV. F. Sheppard [321 führte eine Korrektur der empirischen Momente
ein, die den systematischen Fehler, der von der Klassenbildung herrührt,
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aufhebt,. Eine einfache Herleitung der Korrektur hat, P.Lorenz [22 ]

gegeben. Die korrigierten empirischen Momente lauten:

raj —

^,2

«2 «ä- J, (1.4«)

OT;j TO3

Mit Hilfe der Beziehung (1.46) lassen sich die Kumulanten und die

statistischen Masszahlen (Durchschnitt, Streuung, mittlere quadratische
Abweichung, Schiefe und Exzess) analog den Ansätzen l. 66) bis 1.46)
ausdrücken.

13 Theorie der Schätzwerte

131 Problemstellung, Kriterium

Die tfteoretàsc/je KerleÄmr/ sei durch die Häufigkeitsfunktion
/(»; 0,, 0«, ...,0g) definiert, die zusätzlich von den « Parametern

0,, 0g, ...,0g abhängig ist. Letztere sind meist unbekannt, so class

sich das Problem aufdrängt, diese aus einer Stichprobe vom Umfange

«; atj, ;r„, zu bestimmen oder zu schätzen.
Als iS'c/infe'iücrf bezeichnen wir eine Zufallsvariabio ö„ 0,(x,, :r.,,

:j:„), für r 1,2, s, die den zu schätzenden Parameter der
theoretischen Verteilung gut wiedergibt. Da für den Parameter 0„ moi-
stens mehrere Schätzwerte existieren, drängen sich Kriterien auf, die

unter der Menge aller möglichen Schätzwerte diejenigen auszeichnen,
die dem wahren Wert 0„ am nächsten kommen und deren Streuung
minimal ausfällt.

/r _ 7/c*

240

7. JMehwn

Ein Schätzwert Ô heisst mrcr/ü.s'.w/ (unbiased), wenn dessen Er-
wartungswert existiert und mit dem Parameter der theoretischen Ver-

teilung übereinstimmt.
I?[0] 0. (1.47)
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2. /mtermm

Es sei <5„ der Schatzwert einer Stichprobe vom Umfange n. Ein
Schätzwert 0 hoisst -/MMsc/wlf (consistent), wenn für jedes positive e gilt

lim /'• V. 0 < e) 1. (1.48)
»i -> oo

d. Ifnfemtm

Ein Schätzwert (5 heisst «wfcsamer als ein Schätzwert 0', wenn die

Streuung des ersten kleiner ist als die Streuung des zweiten.

<r(0) < <r*(0'). (1.49)

1 ist ein Schätzwert minimaler Streuung (minimum variance), wenn für
jeden andern Schätzwert die Streuung grösser oder gleich der Streuung
tf'^(Ö) ist. Stellt insbesondere ö für grosse w einen solchen Schätzwert
minimaler Streuung dar, so wird er als wirksam (efficient) bezeichnet.

/. Zfnfenwm

Ein Schätzwert 0 heisst ersc/iöp/end (sufficient), falls in ihm sämt-
Helle Informationen über 0 der theoretischen Verteilung enthalten sind.

Die grundlegenden Gedankon der Theorie der Schätzwerte stam-
inen von K. A. Eisher [11]; insbesondere werden die Kriterien 2, 8 und 4

nach ihm als die Fisherschen Kriterien bezeichnet.

132 Schätzungsverfahren

182.1 Methode der Maatimwu /u/ceH/mod

Ein sehr allgemeines Verfahren der Schätzung von Parametern ist
die von K.A.Fisher [13] entwickelte Methode der Maximum Likeli-
hood, die wir im folgenden für das Schätzen von einem oder zwei Para-
meiern darlegen.

132.11 Schätzen eines Parameters

Die gemeinsame Verteilung der einzelnen Stichprobengrössen be-

trachtet als Funktion eines einzigen Parameters 0 wird die Lt/ceK/tood-
/rmfclio»

7j(0) L(ö; ,r,, £„) genannt. (1.50)
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Da die Stichprobenelemente Ä\, A'g, Ä'„ voneinander unabhängig
sind, lässt sich L(0) wie folgt berechnen

L(0) /(0;Xg) /(0;Xg) /(0(1.51)
Die Methode der Maximum Likelihood liefert als Schätzwert für

den Parameter (a 5^ 0 /?) diejenigen Werte 0, die die Likelihood-
funktion absolut maximieren.

/,(0) )> L(0), für alle a <1 0 <j /H). (1.52)

Existiert im Intervall «^0^/1 nur ein Wert 0, für den

c5L(0)
L (0)

^
0^ ' (30

und (1.53)
7,"(0) < 0,

so ist 0 der einzige Maximum Likelihood Schätzwert des Parameters 0.

Da die Punktionen /,(0) und In L(0) das Maximum an derselben

Stelle haben, wird es oft wesentlich einfacher sein, die letztere zu maxi-
mieren. Existiert im Intervall -/ 0 <j ,1 nur ein Wert 0, für den

(3 In 7,(0)
(In 7/(0)1'

^ ' 0
^ ^ (50

und (1.54)
[In 7,(0)]" <0,

so ist 0 der einzige Maximum Likelihood Schätzwert des Parameters 0.

132.12 Schätzen z we ier Paramo ter

Hängt die theoretische Häufigkeitsfunktion /(m ; 0j, 0g) mit ag ^ 0g

^ /?i und ctg ^ 02 ^ /lg von zwei Parametern ab, so bemisst sich die

Likelihoodfunktion zu

L(0p 0g) L(0j, 0g! ïp ij, xj (1.55)

/(0(, 02 ; Xj) /(0,, 0g; a-g) /(0g, 0g; xj.

') Nicht unerwähnt bleibe, class die Likelihoodfunktion ihr absolutes Maxi-
mum an den Randstellen 0 a bzw. 0 /J annehmen kann.
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Das Verfahren liefert als Schätzwert für die beiden Parameter die-
jonigen Wertepaare (tfj, ^), an deren Stelle die Likelihoodfunktion ein
absolutes Maximum besitzt. Notwendig und hinreichend sind die He-

dingungen
0L(0,,0„) 0L(0i,ÖJ'

0, - -
'

0 1.56)
und

0»L / 0*L \* „ -
» — >0, < 0 für 0i 0i, 0, 0„. 1.57

00f 002 \ 001003 / ' 002 * '2 2 v /

Wiederum wird es meistens einfacher sein, die logarithmische Likeli-
hoodfunktion zu maximieren.

1112.2 Merode der Momente

Aufgegriffen sei der Fall des Schätzens zweier Parameter. Die ersten
beiden Nullmomente seien Funktionen der zu schätzenden Parameter
0i und 0,.

/h /h Ci > "2) > /I ko-.

Ersetzt man die linken Seiten durch die empirischen Nullmomerite erster

resp. zweiter Ordnung
% ^ 7h (Ol, 02),

^ ggx
W2^,MÔ(0i,02)>

so ergeben sich die gesuchten Schätzwerte 0, und 0.^ durch Auflösen
der Gleichungen (1.59) „ „

01 0i(»ii,TOj),
02 02 (m{, mâ).

14 Güte der Anpassung

In der statistischen Praxis wird es selten der Fall sein, dass die
theoretische Verteilung der Zufallsvariablen, charakterisiert durch ihre
Verteilungsfunktion F(a:), genau bekannt ist. Vielmehr wird nur eine

Stichprobe a'j, > 3;,, der Zufallsvariablen vorliegen, aus der man
eine möglichst gute Approximation F^a:) der theoretischen Verteilungs-
funktion F^a) zu suchen, resp. bei gegebener Form die diese bestim-
menden Parameter zu schätzen hat.
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Die Hypothese //„ : F(.r) Tô(:r) (l.(il)
prüfen, bezeichnen wir als Test der Güte der Anpassung.

Ist I'o(;c) von vornherein vollständig bestimmt, sowohl bezüglich
ihrer analytischen Horm als auch bezüglich der vorhandenen Para-

meter, so bezeichnet man die Hypothese //„als rm/ne/i. Beispielsweise
kann /'„(r) aus theoretischen Gründen eine bestimmte Form (Gleich-
Verteilung, Xormalverteilung mit bekannten Parametern /« und er
usw.) aufweisen, oder i'(,(.r) kann früheren Untersuchungen zufolge als

bekannt angesehen werden. Weist dagegen /',',(•<•) irgendeine Bindung
zur Stichprobe auf, so handelt es sich um eine ÄMsam-mew/esefefo Hypo-
these. Dies ist dann der Fall, wenn die Parameter der Verteilungsfunktion

aus der Stichprobe selbst geschätzt wurden oder wenn /'(,(.r) aus
der Stichprobe graphisch ermittelt wurde.

141 Chiquadrattcst

Das klassische Ohiquadratverfahren zur Prüfung der einfachen

Hypothese //„ ist von K.Pearson [29") um die Jahrhundertwende ont-
wickelt worden.

Der Definitionsbereich der Zufalls varia bien werde in m sich aus-
schliessondo Klassen aufgeteilt. Die y'-te Klasse besitze die Klassen-

grenzen und an Die Wahrscheinlichkeit dass ein Kiuzelwert,

in die y-te Klasse fällt bei Vorgabe der Verteilungsfunktion /''(«), ist

gleich
/>/ "'(ho) -'''(h). r iGd •/«, (1.6-2)

in

wobei V,,. F(iEi) F(oo) —F(—oo) 1 ist. (1.66)
i

Die beobachtete Anzahl der in die y'-te Klasse fallenden Stich-
probenelemonto sei Für eine Stichprobe vom Umfange » gilt

m

Vft, =«. (1.64)
i=i

Die erwartete Anzahl der in die y'-to Klasse fallenden Stichproben-
elemente bezeichnen wir mit c-. Diese errechnet sich zu

e. nyq-, y 1, 2, m (1.65)
und es ist

Ve,.=n. (1.66)
i
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Die von K.Pearson eingeführte 'l'estgrösse

A'- (V (theoretischer Ansatz) (1 .07)V

befolgt, für grosse w und konstante p. unter Annahme der einfachen
Nullhypothese (1.61) die Chiquadrabverteilung mit «.* (w 1) Frei-
heitsgraden.

i "r'-i
t/(r;m 1)

2(ih~L)/2 yij
m I

2

(f) 0 ^ CO

(1.68)

Die Anwendbarkeit, der Grenzverteilung auf kleine Stichprobenuni-
fange wurde in verschiedenen Arbeiten untersucht; insbesondere sei auf
die neuern Publikationen von W. G. Cochran |5, 6| hingewiesen.

W. Wegmüller | 861 untersuchte das Grenzverhalten der Chiquadrat-
Verteilung für n*->oo und gibt die für die numerische Anwendung ge-
eigneten Transformationsansätze von E. A. Fisher 114 ] und F,. B. Wilson
and M.M. Hilferty |87] an.

Ansatz von Fisher:

ä |/ 2y- - - |/ 2 M* — 1

Ansatz von Wilson-Hilferty :

asympt. n.v. [0,1] (1.69)

r 2

9 m*

/ ^

9 m*
asympt. n.v. [0,1] (1 .70)

Für die gebräuchlichen Sichorheitsschwellen von 5%> 1% und
H'/on sind in den meisten Lehrbüchern der Statistik einschlägige Ta-
bellen angegeben, insbesondere für eine kleine Zahl von Freiheitsgraden
(Tab.2). Ist die Zahl der Freiheitsgrade n* nicht tabelliert, so kann der
Sicherheitspunkt nach Fisher für grosse «* oder nach Wilson-Hilferty
auch für kleine •«* nach folgenden Ansätzen errechnet werden.

Nach Fisher: y],

Nach Wilson-Hilferty :

Z/>,„. ^ '«*

j [-2/' + 1/2«* IJü

^2P

' 2

9»*
1

2

9 M*

(1.71)

(1.72)

wobei der entsprechende einseitige Sicherheitspunkt der standardi-
sierten Nonnalverteilung ist.
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Sicherheitspunkte der standardisierten NormalVerteilung

Äp bzw. «2p

1*
Wahrscheinlichkeit

P

Sicherheitspunkte

einseitig
*2P

zweiseitig
2 p

0,05 1,645 1,960

0,01 2,326 2,576
0,001 3,090 3,291

Für die numerische Auswertung lohnt es sich, den theoretischen
Ansatz (1.67) weiter umzuformen.

X2 V
rni c,-

- «-»,«, "?
/ <7

/F

2 g' — » > i
i) ^(*#)] t • 73)

' (numerisclier Ansatz).

Eine praktische Regel besagt, dass alle e grösser oder gleich 5 sein

sollten; man erzwingt dies leicht durch Zusammenfassung benachbarter
Klassen.

Neuere Erkenntnisse führen dazu, die Klasseneinteilung so vor-
zunehmen, dass die p. 1 /m konstant zu wählen sind mit der Kon-

sequenz, dass die erwarteten Häufigkeiten e - «/m ausfallen. Jetzt
vereinfacht sich

X) /A L) (numerischer Ansatz). (1.74)
/n "

*) M.E. Wise [38] modifiziert den theoretischen Ansatz (1.67) wie folgt
m (6 g,)2

.V'2 v ' dereine bessere Approximation für kleitie Stichprobenumfänge
t "b

2 X

m und konstante «,• darstellt. Analog den obigen Betrachtungen lässt sich
m

X'2 in die für die numerische Auswertung geeignetere Beziehung

3 »t
X'2 - v 6? — » überführen.

2w [tn '
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H. B. Mann und A. Wald [24 ] haben für grosse Stichprobenumfänge

die optimale Zahl der Klassen m nach dem Ansatz

/2(w—I)**
w 4 /

g (1.75)
/ ^2P

errechnet, der zeigt, dass r/t nicht nur von der Zahl der Stichproben-
elemente, sondern auch von der Sicherheitsschwelle P abhängt; ^ ist
der einseitige Sicherheitspunkt der standardisierten Normalverteilung
(Tab. 1*). O.A.Williams [86] tabelliert m für die Sicherheitsschwellen
von 5% und 1% und die Stichprobenumfänge 200(50) 1000(100) 1500,
2000.

142 Kolmogoroff-Test

Die von A. N. Kolmogoroff [21] eingeführte verteilungsfreie Test-
grosse

|/?i sup jS„(as)—J<»| (1.76)
— oo < $ <c oo

(theoretischer Ansatz),

hat den wesentlichen Vorteil, auch für kleine Stichproben verwendet zu
werden. Zudem erübrigt sich die Klassenbildung, die beim Chiquadrat-
test zu einem Informationsverlust führt. Der Kolmogoroff-Test wird
seiner einfachen Anwendung wegen auch etwa als Kurztest bezeichnet.

Die theoretische Verteilungsfunktion der Testgrösse iv„ unter An-
nähme der einfachen Nullhypothese ist für grosse Stichproben durch
ihre Grenzverteilungsfunktion

1 oo

0(f) |/2:r
'

(1.77)
I A 0

gegeben und wurde von N. Smirnow[84 ] für die Argumente f 0,28 (0,01)
2,50(0,05)8 tabelliert. Das Verhalten der 'Testgrösse AC„ für kleine
Stichproben analysiert F. J.Massey [26]; er zeigt, wie die Verteilungs-
funkt,ion 0„(<) bestimmt werden kann. Die Sicherheitspunkte der für
die praktische Anwendung geeigneteren numerischen Testgrösse

7) 1.2,....// (1.78)

(numerischer Ansatz)
hat H.L.Miller [27] angegeben (Tab.2).
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Liegt eine graphische Skizze oder eine Tabelle der empirischen und
theoretischen Verteilungsfunktion vor, so kann das Maximum meist
visuell lokalisiert werden, was das Testverfahren wesentlich erleichtert.

143 Gramer-von Mises-Smirnow-Test

Unabhängig voneinander schlugen El. Cramer 17 | und II. von Mises

['281 a,Is Mass der Abweichung

oo

<"'• ' (1.79)
— oo

vor; n»- ist dabei noch abhängig von der theoretischen Verteilungsfunk-
tion. N. Smirnow [33] dagegen definierte als verteilungsfreie Testgrösse

^ «J'[,S» /<'(;r)]M//<'(.r) (1.80)

(theoretischer Ansatz).

Die Verteilungsfunktion 0„(f) der Testgrösse 11';; ist für # l, '2, 3 von
A. W. Marshall [25 | und deren (Irenzverteilung 0(f) von T.W. Anderson
und I). A. Darling 121 mittels Hesselscher Funktionen angegeben worden.

Für die praktische Anwendung dos (lütetests genügt die Kenntnis
der Sicherhoitspimkto H'p.„ (Tab. 2*) der (IrunzVerteilung 0(f) auch

für kleine Stichproben.

Sicherheitspunkte') von 1U[ : IL),

2*
Wahrscheinlichkeit Sicherheitspunkt

p 0'/',...

0,05 0,41)1

0,01 0,743

0,001 1,108

') Anderson, 'I'. \V.. and Darling, I). A., Asymptotic theory of certain "goodness
of fit" criteria based on stochastic processes. Ann. Math. Statist. g:i (1952), S.'iOd.
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Für die numerische Auswertung ist Ansatz (1.80) wenig geeignet.
Wir suchen daher eine passende Umformung und zerlegen das Stieltjes-
Integral in eine Summe von Integralen entsprechend den geordneten
Stichprobenelementen ') < X(„)

| Un V-K)
I^, n f [>S'„(a;)—F(x)]W(x) + 2 J [S„(x)-F(x)]W(x)—'''(ri +

=(»)

S'„(;r) wird durch die Definitionsbeziehung (1.31) substituiert. I)io Wahr-
scheinlichkeitsintegraltransformation m i«'(x) ergibt alsdann

("(1) n-l "("J ü > \2 | >

IFf, n| | n-dn+V | / — rZn + J(l—w)®(/m|,
ô "°°'"(>)

'
"(»)

^

wobei die geordneten transformierten Stichprobenelemente einer

Gleichverteilung darstellen. Die bestimmten Biemannschen Integrale
der rechten Seite sind alle von der Gestalt

6

j a j da. I (fr—-a) —
'

(fr"-«-) -l- (fr®—«®).
/ \w / \w/ rt 3

rt

So erhalten wir

~ i, [^(2)—'"(!)] ~ ['"(2) ~"U)] +
q

["'(2) "o)]
n

1

+
n

[I«;,,) 4r«j2)] --[2m^3) 2wp)] b [«(.,)

l %
+

„ [(n-lf«(„)-(n-l)'«(„-i)]~[(«-IX)-(» -l)<-t)] + q [<)-«(..-!)]
/fr O

1

+ - ["-«"«(»)] - [«-««(»)] +
3 K) -<) + 1 ]

Diese Summe liisst sich wie folgt zusammenfassen

1

" S [ - (2 * -1) «to + » »;>] +»H ö
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oder nach quadratischer Ergänzung

PF?
»

I

' V
3 n

2-i -I *

2«

1 "
V (2Î 1)2.

DG jW/ '

Die Summe der ersten w quadrierten ungeraden Zahlen ist

(2-1-1)2
" w(4«2- -J)V t9.v_1\2 '

i l

Damit vereinfacht sich PF? zu

n;i +v12« r~i

2 i -1
2«

(numerischer Ansatz),

(1.81)

worin durch die ursprüngliche Variable /''(x^) ersetzt wurde.

Bedient man sich für die numerische Auswertung eines elektro-
nischen Rechengerätes, so empfiehlt es sich, Ansatz 1.81) in der lestait

(1.82)
n q M

*£ 1 % i= 1
3

vorzumerken, eine Beziehung, die sich für die Programmierung besser

eignet.

144 Anderson-Darling-Test

Spricht der Cratnér-von Mises-Smirnow-Test vorwiegend auf Ab-
weichung in der Nähe des Zentrahvertes an, so haben T.W.Anderson
und D.A. Darling 121 die gewichtete Test,grosse

Pf;
J /-Tr){l T'(.r)}

(1.83)

(theoretischer Ansatz)

untersucht und deren Grenzverteilung $(<) angegeben.

Approximationen der Sicherheitspunkte If'*), „sind für kloine Stich-
proben bekannt (Tab. 2).
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Wiederum drängt sich für praktische Belange eine Umformung des

theoretischen Ansatzes auf. Das Stieltjes-Integral (1.83) zerlegt man
in eine Summe von Integralen entsprechend den » geordneten Stich-
probenelementen

*(,)

.y!/ \ r Dw-?'(«)?

Ai)

f 1 - F(.r)

''(«)

oder mittels N„(.r) in (ir,^, a:^.,,] und der Wahrscheinüchkeits-

integraltransformation m F(:r)

«(,) 11(2) 1

1/.H».„l iJ« + f«''") "'".(«I... : fj l VI j vt(l — m) / M

Ii(|) «00

Unter Berücksichtigung von

"(i)

1 —w
d« ''hi)' In (1 M(,j)

0

6

f VA',„!> m» "Vi.. I.
vt(l -vt) \ vt

'
a \ » ' (1 — b)

1

I «
mt -. M(„) — In vt(„j 1

"(")

folgt nach passender Umformung

^ - « - *2 (2i- I [In F„(*„.,) + In (1 „))] (t • 84)
/i j l

(numerischer Ansatz).
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Für eleu Einsatz eines elektronischen Rechengerätes ist die getan-
dene Relation wenig geeignet, da die Argumente der logarithmischen
Funktion gegenläufig sind; es drängt sich eine Umgruppierung auf, die

zu folgendem Ansatz führt
(1.85)

kF" — n —
' (J] [(2i—1) InFo(a;«)) + [2(n —i) +1] In (1 —^o(®«)))])

•

w U'=i I

2 Standardisierte Normalverteilung

Da alle im folgenden Kapitel ausgewählten Verteilungen direkt
oder indirekt mit der standardisierten Normalverteilung in Beziehung
gebracht werden können, seien deren wichtigste Eigenschaften kurz
zusammengestellt.

Häufigkeitsfunktion: I

/"(«) -e ' — oo<a< 00. (2.1)

Verteilungsfunktion: ^ «2

FN2) - [e "rk, — oo<«<oo. (2.2)
1"^ -i

Charakteristische Funktion :

,,*(«) =e~*. (2.8)

Dass die in Beziehung (2.1) definierte Häufigkeitsfunktion stau-
dardisiert ist, belegen nachstehende statistische Masszahlen

Durchschnitt:
^ =o ^

« I 2e
®

efe 0.
J,

Streuung:
cr'^ —=

K2ti
I F- e

* efe l.

Die charakteristischen Grössen der standardisierten Normalverteilung
sind entsprechend den Definitionsrelationen (1.21) bis (1.30) herzu-

leiten.
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NwZZ- wrtcZ iïaMpimomeni r-ter Ordnung;

r 1 : /«J 0

(2r)
r 2r: ^ 5 r 1, 2, (2.4)

T 2 1> + 1 ^jv+l /^2v-f-1 V 1, 2,

ffwrntt/anfe erster iris werter Ordwwif/:

«1 0, *3 /<;, 0,

1
> ^4 /^4 /^2 0 •

•S'temdanZmerfe lûtwmtemte erster iris werter Oretewtnc/:

Aj 0, A, 1, Ag 0, Â, 0. (2.6)

rlMSf/e^eic/iwefe steteis<ise/te Mass^a/tie-»

DwrcTiscimiii:

SireîtMW«/:

Scteie/e :

-Ëxeess:

4i>Zei<î«i</e?i fier standardisierten NorwiafoerfeiiMn<7

d" 1 r?" 1

<*•">

r 0, 1, 2,

wobei iî„(2) die Henniteschen Polynome r-ter Ordnung sind.

r(r — 1) r(r — 1) (r — 2) (r — 3)
#,(*) *'

2.1! + 2^! * + ••••

Speziell gilt #„(2) ^ (2.13)

^(2) «

H,(s) =«8-1
ffg(«) 2<<-32

Hg(«) ««—6 a® + 3

ffg(«) «8—10«» + 152

#e(2) 28-152'» + 452^-15

/t 0. (2.7)

ff8 1 (2.8)

7i 0- (2.9)

7a 0. (2.10)
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Bezüglich der Hermiteschen Polynome seien noch folgende, für uns

bedeutungsvolle Eigenschaften zitiert :

Orthogonalität
r (Im r)

I /(,)d, ; (2.14)

Rekursion

W„:->(ä') 1- (v +1) fi„(2) 0, v 0, 1, (2.15)

Sy«'' (2.1t!)

Ableitung d
/!„(.;) -rr 1.2 (2.17)

«2

In der statistischen Praxis stellt sich initiier wieder die Aufgabe,
zu gegebenem Argument s die zugehörige I laufigkeits- oder Verteilungs-
Funktion numerisch zu bestimmen. Wold liegen in vielen Lehrbüchern
oder Tabellenwerken (Tab.l) tabellierte Worte der standardisierten
Normalverteilung vor. Bedient man sich jedoch für die Auswertung
eines elektronischen Rechengerätes, so ist es vorteilhaft, im Sinne von
Unterprogrammen über geeignete Approximationen zu verfügen. Ins-
besondere möchten wir auf zwei geeignete Ansätze verweisen, die von
C. Jr. Hastings [ 181 nach dem Verfahren der Tschebychoffschon Aus-

gleichung gewonnen wurden.

Für die / ///'«/ b//,:r P.s/««fcho m

i - ; i _/ U) : e " c ", mit //
2TT ['2TT 2

genügt die Approximation

e " «b! [1 I- rtgM |. ft,ir + «jtt® + «4«'' T rtgit® I- (2. IH)

mit den Koeffizienten

r<[ : 0, 2499 9868 42 : 0, 0001 7156 20

m, 0, 0812 5758 82 u, : 0, 0000 0548 02

«3 0, 0025 9187 12 0,0000 0069 06.

Diese Approximation ist mit einem Fehler behaftet, der dem Betrage
nach kleiner ist als 0, 0000 0025.



Für die Berechnung der Verteilungsfunktion /<'(,?) sei zunächst an
die beiden Bedingungen

und
1- -/<">) (2.19)

F» :

^

+ ,l
2 |/2jr 5

2 £2

| e
* cüf, 2" )> 0

*/y;
1 +

TT

(2.20)

/''^(z) | [1 -I 0(«)], mit r --

erinnert. Es genügt somit

0(e) e (2.21)

durch den Ansatz

0(c) I. [1 4- hg!; -l- M" + 4- /v»® + 'v"]"'® (2.22)

mit den Koeffizienten

hi 0, 0705 2307 84 =-- 0, 0001 5201 43

/>a 0, 0422 8201 23 E, 0, 0002 7656 72

f>3 =-- 0, 0092 7052 72 /)„ 0, 0000 4306 38

zu approximieren. Der absolute Fehler ist kleiner als 0,0000 003.

3 Ausgewählte Verteilungen

31 Normalverteilung

311 Definition, Eigenschaften

Eine Zufallsvariable A heisst nonnalverteilt mit dem Durchschnitt
/<[—oo </<<oo| und der Streuung <r*[o*> 0J falls sie durch die

Häufigkeitsfunktion
1 ' r ">*

/'V;/«, a-) — e
'' " - co < r < oo, (3.1)

u |/ 2?r



die Verteilungsfunktion
X

Z''^(,x ; /t, o -) | /^(it ; /t, or-) dit, (3.2)
-co

oder die charakteristische Funktion
<2o2

çF(Z; /«, er-) e
^ (3-3)

gekennzeichnet ist.

Vermittels der Transformation

z _
(7

geht die allgemeine Häufigkeitsfunktion /"(®; /t, <F) in jene /"(,?) der
standardisierten Normalverteilung über

ct^) -/"(«), mit 2 -, (3.4)
(T er

und ^ — tt
JF*(«), mit 2 ' (3.5)

CT

Folgende charakteristische Grössen seien für die Normalvertei-
lung festgehalten (bezüglich der Herleitungen sei auf K.G.Lüönd [23]
verwiesen).

jVitZ/wtomfiwZ r-Zer Ordmmt/:

[f]
S

FJaitpZraomertZ r-Zer Ordwttwt/:

«' V -, — r 1, 2, (3.6)" i^o 2 2! (r—2A)
' ^ '

r 2r: ^ r 1, 2,

(3.7)

(2r) '

r! 2''

r 2v +1 : i«2v+i 0, r 1, 2,

Tfiw/titZrmZe r-Zer Ordmtrw/:

Xj ,tt, x, <F, x, 0, r 3, 4, (3.8)

SfartdardmerZe JfwtwtZanZe ersZer few werter Ordwwtg:

^ ^,^ 1, ^ 0, ^ 0. (3.9)
er
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^wsr/emc/meZe sZaZtsZisc/ie MasszaZden

DwcZtscZm-iZZ: ^
/« J 2)/^(a;; /.<, a'") d.r /<• (3.10)

— CO

ZeraZraZwerZ:
o\ i /q i-nat, /«: /' (/«;/«, o~) g. (3-11)

d/aw/h/ster IPerZ:

/« ^ f (/<; /o <^) ^ax [A®; *"> ^)]• (3 12)

»S'Zrewitwg:
CO

<ü ^ J <ü- (3.13)
— oo

^ ^3 0. (3.14)

y, A, 0. (3.15)

Mit den Beziehungen (3.10) und (3.13) ist nachträglich der Nachweis
erbracht, dass die beiden auftretenden Parameter (^m cr^) tatsächlich
mit dein Durchschnitt und der Streuung der Normalverteilung über-
einstimmen.

Das Verschwinden von Schiefe (3.14) und Exzess (3.15) stellt ein
weiteres Charakteristikum der NormalVerteilung dar. Übertragen auf
die (y?, y.j)-Ebene von Graphik 2 (Seite 112) schränkt sich demnach
der GeZZitri(7s&creicZi der Normalverteilung auf den Punkt

ri y? o,
(3.16)

^2 0 ein.

312 Schätzen der Parameter

312.1 MeZkode der Maitmum Z/i/ceZtkood

Will man die beiden Parameter und er- aus einer Stichprobe
schätzen, so muss vorerst die Likelihoodfunktion nach (1.55) bestimmt
werden „

ÜM 17/G«. *';*,),
•i= 1
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Die Struktur der Likelihoodfunktion lässt bereits erkennen, dass die

logarithmische Likelihoodfunktion

In L(/«,cd) - In (2jrtr2) - - ,S (ai;—^2 2 er ;=i
leichter zu maximieren ist. Aus (1.5(3)

S In L 1 "

- # (K-/-0
c'/« CT" I 1

a In L
-h ,S' (an -mV 0,

du- 2<r», ''
ergeben sich die Maximum Likelihood Schätzwerte zu

1
c,

/.« S m,
H; =1

1 "
S (a;

« i i

(13.18)

Diese Schätzwerte erfüllen zunächst die Fisherschen Kriterien. Sollen

erstere gleichzeitig noch zuverlässig sein •• die Erwartungswerte der

geschätzten Grössen haben in diesem Fall mit den zu schätzenden l'ara-
modern übereinzustimmen -, so bedingt dies lediglich eine Modifikation
der zweiten Bestinimungsgleichung.

1 "

/« iS' ;K; :t,

„ (3-19)
<V -i^=.sA

« - -1 ;=i

Durchschnitt und Streuung der empirischen Verteilung verbürgen
zuverlässige Schätzwerte der beiden zu schätzenden Parameter
der Normal Verteilung.

312.2 Methode der Momente

Als Ausgangsbeziehung bedienen wir uns der Nullmomente erster
und zweiter Ordnung

"i ---- /«,

,"m ' /r -1- m.
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und ersetzen die linken Seiten durch die entsprechenden empirischen
Momente

^ ^,
/ '2,2Wg ^ /i f er •

Durch Auflösen der beiden Gleichungen findet man

/« m, äi,
(3-20)

u" — mg — Wj mg,

un vorliegenden Fall stimmen die gefundenen Schätzwerte mit den
Maximum-Likelihood-Schätzwerten überein. Wiederum können zu-
verlässige Schätzwerte gemäss Beziehung (8.19) aufgefunden und mit
dem Durchschnitt sowie der Streuung der empirischen Verteilung iden-
Infiziert werden.

313 Güte der Anpassung

Soll lediglich abgeklärt werden, ob die Approximation einer ein-
pirischen Verteilung mittels einer Normalverteilungskurve mit den
Parametern (/,«,ct-) zulässig ist, so kann dies ohne weiteres mit den im
Abschnitt 14 dargelegten Tests für die einfache Hypothese (I.Öl) he-

werkstolligt werden. Möchte man indessen darüber befinden, ob die
Stichprobe überhaupt der Klasse der Normalverteilungen entstamme,
«o hat man die zusammengesetzte Hypothese

i?o : Z'*V ;,«, o--) /''SVœ, V") (3.21)

zu prüfen, wo an Stelle der theoretischen Parameter (/<,tF) deren
Schätzwerte eingehen. Zur Beurteilung dieses Normalitätstestes
greifen wir im folgenden die gebräuchlichsten Verfahren auf.

Die nunmehrige Bindung der postulierten Verteilungsfunktion
zu den Stichprobendaten bedingt zwangsläufig eine Modifikation der
Verteilung der Testgrössen. Wohl bleiben gegenüber dem Prüfen der
einfachen Hypothese die Verfahren dieselben; unterschiedlich dagegen
fallen die massgebenden Sicherheitspunkte aus.

813.1 C7ri<ptadraMesf

Sind die Parameter der Normalverteilung /,« und ff- mittels der
Methode der Maximum Likelihood geschätzt worden, so befolgt nach
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R.A.Fisher [12] die Grösse

»i (7;.—cF
X*(N) Y - ' ' (8.22) (1.67)

i e#

(theoretischer Ansatz)

die Chiqnadratverteilung mit m* (m—-1) — 2 m —8 Freiheits-
graden. Gegenüber dem Ansatz (1.68) liegt die Modifikation darin be-

gründet, dass jetzt die Zahl der Freiheitsgrade um die Anzahl s der zu
schätzenden Parameter - im vorliegenden Fall s 2 - reduziert wird.

Für die numerische Durchführung dos Testes gelten die in Ab-
schnitt 141 dargelegten Vereinfachungen (1.73) oder (1.74) sinngemäss.

313.2 A'o/wof/oro//- Test

Wie M. Kac, J.Kiefer und .J. Wolfowitz [201 zeigen, ist bei An-
nähme einer Normalverteilung die Kolmogoroffsche Testgrösse

K„(N) ]/w sup |S„(®)-J^(®;^,ff«)| (3.23)
— oo < co

(theoretischer Ansatz)

von den Parametern und (F unabhängig. Zudem gelang es den Ver-
fassern vermöge einer Monte-Carlo-Simulation, die Sicherheitspunkte
für « 25 und « 100 (Tab.2) zu approximieren. Im Vergleich zur
einfachen Hypothese sind die entsprechenden Sicherheitspunkte für
die zusammengesetzte Hypothese kleiner, was auf die Tatsache zu-
rückzuführen ist, dass die postulierte Verteilungsfunktion if zur
Stichprobe gebunden ist.

Für praktische Belange eignet sich der Ansatz

_ U
A'»(N) |/n max | if(aq ; ä, F) ;

1 1,2,..., « (8.24)
: M

(numerischer Ansatz).

313.3 Cramer-row Mises->S'wirnow)- Test

Für den in Abschnitt 143 dargelegten Test haben M.Kac, J.Kiefer
und J. Wolfowitz [20] die spezifische parameterfreie Testgrösse

oo

F^(jV) J[S],(a;)--F^:r;/i,^)]Rn^'(.r;,«,o-2) (3.25)

(theoretischer Ansatz)
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untersacht and mittels der Monte-Carlo-Methode einige für die prak-
tusche Anwendung wertvolle Sicherheitspunkte tabelliert (Tab.'2).

Für die numerische Auswertung sind die Ansätze (1.81) und (1.82)
nach wie vor gültig, sofern darin die Werte der allgemeinen Verteilung«-
Funktion 2'ö(^to) durch jene der speziellen I'|f (.'£(;) ; **) ersetzt werden.
Auch hier fallen die Sicherheitspunkte wesentlich kleiner aus als bei der
früher dargelegten einfachen Hypothese (vergleiche Tab. 2*).

818.4 2'e.st der .Sc/tie/e wjmZ des Exzesses

Sowohl Schiefe y^ als auch Exzess y.^ der Normalverteilung sind
Null. Um demnach die Abweichung einer empirischen Verteilung von
einer Normalverteilung zu prüfen, können wir nach H.A.Fisher [15]
Schiefe r/^ und Exzess ^ rechnen und mittels deren Streuungen var((/j)
und var(</2) testen, ob diese bloss zufällig von Null verschieden sind
uder nicht. 1st entweder Schiefe oder Exzess oder sind beide wesentlich
l'on N ull verschieden, so schliessen wir auf eine signifikante Abweichung
der empirischen Verteilung von der NormalVerteilung.

Hie Testgrössen

91-%i)
1/ \-ar(f/i)

asympt. n.v. [0,1],

flp —T?((7O)
äo

' asympt. n.v. [0,1]

(3.26)

'

var(</,>)
(theoretische Ansätze)

sind für r/rosse «STic/iproNnt asymptotisch normalverteilt mit dem Durch-
schnitt 0 und der Streuung 1.

Für die numerische Auswertung lassen sich die Ansätze (8.26)
weiter vereinfachen. Nach FI. Cramer [8] gelten für normalverteilte
Nrundgesamtheiten nachstehende Beziehungen :

*%) A3 0

#(1/2) ^3 "

6n(w — 1) 6
varuy,) •- ^(n — 2) (w -I-1) (n -I- 8) «

24w(-«— 1)- 24^ (w —3) (w — 2) (n + 8) ('« + 5) n
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so class sich unsere Testansätze wie folgt vereinfachen:

«i ,'/i 1/ asympt. n.v. [0,1],

^2 — 17 2
24

asympt. n.v. [0,1 ]

(3.27)

(numerische Ansätze).

Darin berechnen sich die beiden ausschlaggebenden Masszahlen </i und

r/2 nach den Ansätzen (L.41) und (.1.42)

£/i £3/2

l/a ">

«2

unter Berücksichtigung der Bindungen der Kumulanten (1.36) zu den

Hauptmomenten.
Für die Handhabung des «-Tests selbst sind die zweiseitigen Sicher-

heitspunkte cy, (Tab. 1*) verbindlich. Dabei darf nicht ausser acht ge-
lassen werden, class die Gültigkeit des Verfahrens an grosse Stichproben
gebunden ist.

Für fcfcwic ,SWtpro6CT»«w/wM/c haben F.S. Pearson und I LO.Hart-
ley [30] für Schiefe ;/, und Fxzess c/g genaue Sicherheitspunkte H lp
und fr'2,, „ berechnet und tabolliert (Tab. 2).

Eine empirische Verteilung ist signifikant schief, falls </, dem Be-

trage nach grösser ist als der entsprechende Sicherheitspunkt Bip,,.
Der Exzess der empirischen Verteilung ist signifikant von Null

verschieden, falls der errechnete Wert von r/g kleiner als die untere resp.
grösser als die obere Sicherheitsgrenze G'2p_„ ist. Da die Sicherheits-

punkte des Exzesses für Stichproben vom Umfange kleiner als 200

nicht angegeben werden konnten, führte ILC. Geary | I6| eine neue
Masszahl des Exzesses ein

n

S j ay — « |

7=1

« »V (ay - -«)*'
7 1

(3.28)

(numerischer Ansatz),

definiert als Quotient der durchschnittlichen Abweichung zur mitt-
leren quadratischen Abweichung. Der Erwartungswert und die Sicher-
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heitspunkte /l,, „ der l'estgrösse a konnten auch für kleine Stichproben
angegeben werden. Dabei ist der ermittelte Wert « signifikant von sei-

nein Erwartungswert verschieden, falls dieser kleiner als die untere
resp. grösser als die obere Sicherheitsgrenze /I„ (Tab. 2) ist, und die

Hypothese - die Stichprobe entstamme einer Normalverteilung - ist
abzulehnen.

Für die Interpretation der Signifikanz von Schiefe und/oder Ex-
zess beachte man die folgenden grundsätzlichen Abweichungen von der

Normalverteilung:

r/a <0: platvkurtisch, flach

r/a > 0: leptokurtisch,
überhöht, straff

(/i > 0: linkssteil

;/i < 0: rechtssteil

32 Gram-Charlier-Vertcilung

321 Definition, Eigenschaften

Weicht eine Verteilung /(«) nicht zu stark von der Normalver-
teilung ab, so lässt, sich diese durch eine Keihe darstellen, deren Glieder
eine enge Bindung zur Normalverteilung aufweisen. Nach J. P. Gram
[1.7 ] und C. V. L.Charlier [4] betrachten wir die formale Entwicklung
der Häufigkeitsfunktion /(.;) einer standardisierten Zufallsvariablen

/W-Svf.-W <»•*»
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mit den Entwicklunsskoeffizienten

c, (-1)" (3.30)

Die ersten fünf Koeffizienten lauten

c'o — lj 0, <?2 0, ^3 — y^, y2-

Vernachlässigt man in der Gram-Charlier-Reihe die Ableitungen
höherer als 4-ter Ordnung, so wird die abgebrochene Reihenentwicklung
als Gram-C/mrfer-Ferteifewr/ bezeichnet, deren wichtigste Eigenschaften
im folgenden erwähnt seien.

Eine Zufallsvariable X sei Gram-Charlier-verteilt mit dem Durch-

schnitt,«[— co </( < co |, der Streuung cr-[<r > 0|, der Schiefe y^ und
dem Exzess y.^, falls sie charakterisiert ist durch die Häufigkeitsfunktion

1 / £— \

/"(r;,«, er-, y,, yg)
1

—- e

ff [/2a:
H-* ff,(* * //„3! 'V «r / 4! '

— co X' <C 00

die Verteilungsfunktion

; F » ffS ri. 72) / /''('» ; F >
ff"> r i - 72) ^

a:-/< \

ff /
(3.31)

(3.32)

oder die charakteristische Funktion

99 '(«;/<, ff-, yi,ya) e
i / -

1-gÎ (-X<)«+ ^ (-iffi)« (3.33)

Zwischen der Grain-Charlier- Verteilung und der Standardform der

Normalverteilung bestellen die Beziehungen

00 71,72) T(2)
c;

1 + * //,(.) + £ ff,(*) (3.34)

mit 2
as—/«

und

F"(.o,u,ffA 71,72) F"(*) /» #,<*)+ w (3.35)

mit 2
er



Ahtiimomeni erster OrflîwwM/:
oo

/«( J a; /"(a;) d® /t.
— oo

«awpimomewf r-ter Orabmng:

5Î>: ^2»
(2r)!o®'

r!2" l + r(r —1)
8!

(2v + l)!ff®'+^ 7i
(v —1)!2^'

"
8! 'r 2y + l:^i

Insbesondere sind

/<., ff®, /«a yi ff®, ,«4 (72 + 3) od.

-Krtmutemte erster ins werter Ordmm#

/«, «o ff-, «3 7i ff®, *4 7a ff''

Standardisierte Jâwmteinte erster ins werter Ord/ra?«/:

(3.36)

y 1, 2,

(3.37)

y — 1,2,

/£

a
Ao 1, A3 — 7J, A4 — 72,

-4its(/e,jeic7mefe stototsc/ie Massza/iZew

-ZlwcÄsclmiM: /t /s( ^t.

»S'<re«w«/: ff® ,«2 ff®.

»S'c/rte/e:

ADvcess :

7i A3

7a A4

7i-

7a-

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Die in Ansatz (3.31) der Gram-Charlier-Verteilung auftretenden
•Parameter (/.t,ff®,71,72) stimmen mit den ausgezeichneten statistischen
Masszahlen Durchschnitt, Streuung, Schiefe und Exzess überein.

Aus der Forderung, dio Häufigkeitsfunktion /®(®) der Gram-
Charlier-Vorteilung sei positiv définit und falle eingipflig aus, lässt sich
die für Schiefe und Exzess bestehende wechselseitige Bindung auf-
suchen. D. E. Barton und K.E.Dennis [3] haben den massgebenden
Geftwiiys&emc/j ermittelt, den wir in der Graphik 2 (Seite 112) wieder-
geben.
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322 Schätzen der Parameter

Für die Methode der Maximum Likelihood kann die Likelihood-
funktion wohl formal angegeben werden, doch lässt sie sieh nicht auf
eine einfache Weise weiterverarbeiten.

Die Methode der Momente liefert als Schätzwerte für die Parameter

/t, o-, und y» die empirischen nicht zuverlässigen statistischen Mass-

zahlen Durchschnitt, Streuung, Schiefe und Exzess. Bessere Schätzwerte
erhält man dann, wenn die empirischen Plauptmomente durch die zu-
verlässigen Schätzwerte (1.35) derselben ersetzt werden und diese in
die entsprechenden Bindungen (1.38), (1.41) und (1.42) einsetzt.

/t ;i;, d-2 s-, yi f/j, y.> f/a (3.44)

323 Güte der Anpassung

Da die theoretische Verteilung der Testgrössen für die zusammen-

gesetzte Hypothese

/f«: f'^L/i.ffVyiAï) Z'^(a:;»,s2,(/pf/a) (3.45)

nicht bekannt ist - insbesondere ist der Chiquadrattost nur dann an-
wendbar, falls die vorkommenden Parameter nach der Maximum-
Likelihood-Methode geschätzt werden können, was im vorliegenden
Fall nicht möglich ist -, drängt, sich zwangsläufig das Testen der ein-
fachen Hypothese

//„: /*'(•'') .1, tr'- s*, y[ - : ;/„ y, ;/,) (3.46)

auf. Mittels dieser Probloinlage wird nunmehr geprüft, ob sich die ein-
pirische Verteilung durch eine spezifische Gram-Charlier-Verteilung
approximieren lässt; hierzu sind die in den Abschnitten 141 bis 144

behandelten Testverfahren verbindlich.

33 Edgeworth-Verteilung

331 Definition, Eigenschaften

Eine leichte modifizierte Reihenentwicklung der Häufigkeitsfunk-

(3.47)tion /(y) schlug F.Y.Edgeworth [9] vor.

/(a) /<»
1

1 +
j/n 3

y, 1

m V 4̂
//,(*) + ^ //«(*)) +

72



Eine explizite Herleitung dieser Edgeworth-Beihe findet sich
bei Ï. Schlüpfer [31] oder H. Crainér [8]. Bricht man die Reihe mit
den Gliedern von der Ordnung ab, so entsteht eine Edgeworth-
Verteilung.

Eine Zufallsvariable X heisst Edgeworth-verteilt mit dem Durch-
schnitt //,[— oo < /i < oo], der Streuung <r*[<T* > 0], der Schiefe y^ und
dem Exzess y.,, wenn diese gekennzeichnet ist durch die Häufigkeits-
funktion

/"'(a;; /f, ff", yj, /a)

8! 4!

œ—/<\ y
I- " //,

72 '

- oo < a; < oo,
die Verteilungsfunktion

«

CT

(3.48)

F® (a; ; yj, y^) j /® («; /«, ff-, y^ yg) cfe (3 49)

oder die charakteristische Funktion

<?®(<;^,^,yi,ya) e
Zi

*~3! 41 H^)'' +
72

(3.50)

6

Auch die Edgeworth-Verteilung kann in Beziehung gebracht werden
mit der Standardform der Normalverteilung.

/*(s;/i,o*,yi,ya) f(«)
(X

mit 2 — (3.51)
(7

F ''(a; ; /<, ff*, y^, y,) F*(2) —f(2) g[^) + ^(2)+*^)4! 72

//
mit 2 (3.52)

o-

JV'itWmomewf erster Ordnww/:

/<] I a;/®(a:) da; /t. (3.53)
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f/crapimomcMf r-fcr Ordrmwt; :

(2r)!o*'
r 2 a»: 7<2v

r 2*
1 +

r/ (r— 1)

3

r 2v -hl : /«2K+1
(2r + 1) a'"'*' ''' yj

(r —1)!2^' 3!

Die ersten 3 Hauptmomente sind

ya (V — 2) y 1

2 3

1-2

1,2,

(3.54)

/«a /H ytV> ,«4 (y2 + 3)o4.

Da das Nuihnoment erster Ordnung und die .Hauptmomente zweiter,
dritter und vierter Ordnung der Edgeworth-Yerteilung mit jenen der

Oram-Charlier-Verteilung (3.36) und (3.37) übereinstimmen, trifft dies

auch für die Kumulanten und standardisierten Kumulanten erster bis
vierter Ordnung zu.

/hisj/ecerDmeO statistische MO«IÄ»
Dwcltsc/mift: ,« E= /.(. (3.55)

Sfrewww/: cG ,«2 (A (3.56)

Sc/tie/e: yt ^ yt- (3.57)

Kcrzes.s : ya 1t ya. (3.58)

Erneut stimmen bei der Edge worth-Verteilung die Parameter
(/«, a-, yp ya) mit den statistischen Masszahlen Durchschnitt, Streuung,
Schiefe und Exzess überein. Analog zur Gram-Charlier-Verteilung sind
auch Schiefe y^ und Exzess y^ wechselseitig gebunden; wobei allerdings
der Gkdhmcysiiereiclt unterschiedlich ausfällt. Diesbezüglich sei auf das

von D.E.Barton und K.E.Dennis [3] ermittelte und in Graphik 2

(Seite 112) dargestellte Gebiet der (y'j, y^-Ebeno verwiesen.

332 Schätzen der Parameter, Güte der Anpassung

Für die Edgeworth-Yerteilung gelten die früher für dio Gram-

Charlier-Verteilung in den Abschnitten 322 und 323 gemachten Über-

legungen sinngemäss.



34 Lognormalverteilung

341 Definition, Eigenschaften

Eine Zufallsvariabio Yheisst lognormalverteilt mit den Parametern
a [— oo < a < oo | und /E [/E> 0], wenn sie charakterisiert ist durch
die Häufigkeitsfunktion

- - e ^ " 7 y>0 (3.59)
Pf-Lr ?/

oder durch die Verteilungsfunktion

J/

_F(y ; «, /E) [ /(m ; a, /E) dt/.. (3.60)
— OO

Da die charakteristische Funktion der Lognormalverteilung elementar
nicht darstellbar ist, wird davon abgesehen, a, /E) in die Defi-
nitionsbeziehung einzuschliessen.

Ist V eino normalverteilte Zufallsvariable, so ist Y e* eine log-
normalvorteilte Zufallsvariable. Die Transformation a: In y führt die
Lognormalverteilung in eine NormalVerteilung über

/^(y;a,/E) /^(a; ; a, /E), mit a; Inj/, (3.61)

mit dem Durchschnitt /( a und der Streuung er /E.

In // a
Die Transformation 2 - gestattet, die Lognormalvertei-

/

lung direkt mit der Standardform der Normalverteilung in Beziehung
zu setzen.

/''"(y; a,/?")---=mit, 2
^ "

(3.62)
P P

und In î/ — a
I<^(y;a,/E) mit 2 (3.63)

P

Sind die Nullmomente funktional bestimmt, so lassen sich alle übrigen
charakteristischen Grössen gemäss (1.7) bis (1.19) leicht herleiten.

NwZZmowenf r-fcr Ordmmy :

Nach (1.5) ist ^
Er / z/7"7/; «. 7')
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vormöge der Transformation 2/ e* wird
CO

,"r «,/!-) d.:c,

(3.64)
__ „ra|-il'2/î2i"r — ®

f/twtjdwio/ncwfc zweiter 6/s werter Ord-mt-wry :

Setzen wir im folgenden der einfachen Darstellung wegen für
£ > 1 und für e*'"W so sind

/<2 /«®(g— 1) (3.65)

/<3 —l)®(e + 2)

/', /'he lr (e* + 2e® + 8e® —8).

/Vuwmtemten erster /r/s werter Ordrnt«*/:

,w (3.66)

*2 /«^(g 1)

«3 /^(g —1)2 (e + 2)

/(e —1)2 [gi + 2 «3 + 3 g®- 6].

Stewidanfoterte fCuwmtemte» erster fris werter Ordmmr/:

Ai (e—I)"* (3.67)

d;. 1

Xj (g — 1) - (e + 2)

A,j e' + 2 s® + 3 e® — 6.

4'«s(/emcAwete sted/s/isc/te Mas.SÄ'n/i/en

7>wre7isc/imW: /< /«( e"''^'. (3.68)

Xew/ra/werte :c, e":F^(e"; a,/3®) ---- J (3.69)

ifem/nyster JVerf:

e«-"' : /''V** ^ « - /**) Max [/'% ; «, /Î®)]. (3.70)

Der Vergleich der drei Lageparameter a^, und,« gibt Aufschluss über

die Schiefe der Verteilung. Für die LognormalVerteilung gilt die Relation

a^ < a^ < ,M;

d. h. die Lognormalverteilung ist eine linkssteile Vorteilung.



^ (/' —1). (3.71)

Sc/we/e: yj X, (e — 1)' (e -I- 2) > 0, (linkssteil). (3.72)

EMzess; yo A., + 2e®+ 3e^—6 >0, (leptokurtisch). (3.73)

Aas der kritischen Beurteilung der ausgezeichneten statistischen
Masszahlen folgert man, dass bei der Lognormalverteilung Schiefe y^
und Exzess yj in einem bestimmten Verhältnis zueinander stehen.
Letzteres lässt sich in der (y'f, y.J-Ebene als Kurve deuten mit der
Parameterdarstellung

y» (e-l)(ß+2)*,
(3.74)

ya e* + 2e* + 3e*—6.

Diese in Graphik 2 (Seite 112) vorgemerkte Bindung zwischen Schiefe
und Exzess ist ein Charakteristikum für den Gefftmysherac/i der Log-
normalverteilung.

342 Schätzen der Parameter

342.1 Met/tode der 7/i/ceWtood

Sollen die beiden Parameter a und /P aus Stichprobendaten ge-
schätzt werden, so sucht man zunächst nach (1.55) die Likelihood-
funktion

L(a,/P) /77(a,/P;?G)

<*•*>

Beidseitig logarithmiert ergibt

w " 1 "
In L(a, /P) — In (2rc/P) — S In y - — <S (In y,. — a)*.

^ i — 1 P i l

Die Auflösung des Gleichungssystems

5 InL 1 »

1 «2
^ (Inj/i-a) 0,

2a

2 In L rt 1 "
— - + »S (In y a)- 0,

2/p 2/3* '2/P (=i
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führt zu den Maximuin-Likelihood-Schätzwerten

1 "

a o m?/ -,

i -
/?« s

M i=1
1» .'/i

«i=i

(3.76)

Die Schätzwerte sind zuvorlässig mit minimaler Streuung, wenn wir
den zweiten Ausdruck leicht modifizieren.

1 "
a Sin//;,

«hl

S
n —1 ; i

In ?/<

1 " ^

S In 2/i

(3.77)

Der Vergleich dieser Schätzwerte mit der früher hergeleiteten Re-
lation (3.19) lässt erkennen, dass a und /D leicht zu schätzen sind. Die

ursprünglichen Stichprobenelemente y,- werden logarithmisch trans-
formiert ap In j/., deren Durchschnitt » und Streuung s®(») errechnet
und mit den zu schätzenden Parameter a und /P identifiziert.

342.2 Mef/tot/e t/er Momew/e

Die beiden ersten Nullmomente sind gemäss (3.64)

Al e •

,4

Ersetzt man die linken Seiten durch die empirischen Nullmomente

m.

m.

e

e

/)!
~

2'

2a h 2/52

so führt die Auflösung auf die Schätzwerte

a 2 In — i In «4,

2 In + In «4.

Diese weichen von den Maximum-Likelihood-Schätzwerten ab.

(3.78)
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343 Güte der Anpassung

Soll über die Güte der Approximation mittels einer Lognormal-
Verteilungskurve mit den Parametern (a,/P) befunden werden, so ist die
einfache Hypothese mit den in 14 dargelegten Testverfahren sinnvoll.

Soll zusätzlich darüber befunden werden, ob die empirische Vor-
teilung der Klasse der Lognormalverteilungen entstamme, so ist die

zusammengesetzte Hypothese

Ho : ;<*,/?»)= Ff(?/ ; «,f (3.79)

zu prüfen. Die Wahl der spezifischen Verteilungsfunktion Ff modifi-
ziert insbesondere die Sicherheitspunkte der gebräuchlichen Testver-
fahren. Für die Lognormalverteilung ist die theoretische Verteilung der
in 14 aufgeführten Testgrössen heute nur für den Chiquadrattest be-
kannt. Behelfsmässig bedient man sich gewisser Transformationstests,
die auf der logarithmischen Bindung der Lognormalverteilung zur Nor-
malverteilung beruhen.

343.1 CFigtmdrattesf

Sind die Parameter der Lognormalverteilung (a,/F) mittels der
Methode der Maximum Likelihood geschätzt worden, so befolgt nach
R.A.Fisher [12] dio Testgrösse

m f5 g 2

Ä'2(LN) 2 - (3-80) (1.67)
i 1

(theoretischer Ansatz)

die Chiquadratverteilung mit n* (ra—1) — 2 m—3 Freiheitsgraden;
die Zahl der Freiheitsgrade erniedrigt sich um die Anzahl der zu schät-
zenden Parameter.

Für die Durchführung des Tests finden die numerischen Ansätze
(1.73) oder (1.74) Anwendung.

343.2 Traros/ormaiiowsfesfo

Die Transformation In p; führt die lognormalverteilten Stich-
probenelemente in normalverteilte über. Wir testen die zusammen-
gesetzte Hypothese nach einem der im Abschnitt 313 dargelegten Ver-
fahren. Wird die Hypothese der Normalität (3.21) abgelehnt, so lehnen
wir ebenfalls die Hypothese der Lognormalität (3.79) ab.
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35 Logarithmische Gram-Charlier-Verteilung

351 Definition, Eigenschaften

Eine Zufallsvariable Y heisst logarithmisch Gram-Charlier-verteilt
mit den Parametern a[— oo <a<oo], //-|/G>0j, ry und 7/3, wenn
deren PTäufigkeitsfunktion zu

1 / Inf/—a\2 • 1 x

^îi / In 7/—a \ /Inj/—a
/(?/;«, A*. Vi-Va)

1 1

1+ 'f/33! ' A

0 < 1/

AI' 2?r y

oder deren Verteilungsfunktion zu

/'"•"(y; a, A', Vf Va) I «> A^' Vt- Va) dw

- ;
A

(8.81)

(8.82)

gegeben ist.

Vermöge der Transformation ;t: In y geht die logarithmische
Clram-Charlier-Verteilung über in die gewöhnliche Gram-Charlier-
Verteilung.

/"''(y;«, A", Vf Va) «^/"(^;a.A''. Vf Va)- «lit » Int/. (8.83)

hi y —a
Eine weitere Transformation 2 — bindet die logarithmische

A

Gram-Charlier-Verteilung direkt zur Standardform der Normalvortei-
lung.

/'"(//: «,A*> Vi-Va) b " */»A
1 + /4(0) -1- J 77,(0)

mit 0
In 1/—- a

(3.84)

lG'"(y;a,AG Vf Va) *>) - A*) ^ 77/1 ^ If l \7/,(0) + 7/.,(0)
3! 4!

mit 0
In y - a

JVw/Zmometif r-fer Orcîmtwy
A

(3.85)

/G J 2/7"A//)7/
0

oder unter Verwendung der Transformation y E
00

y) J e7"(7^-
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Der Vergleich mit der charakteristischen Funktion der gewöhn-
liehen Gram-Charlier-Verteilung

r/V(i) | ß'''*f'(a:) <2a;

lässt erkennen, dass die gesuchten unmittelbar aus der Beziehung
(3.33) hergeleitet werden können unter Beachtung folgender Substitu-
tionen tf :=r, /( - a, cG /?-, ^ und

r2/?2
T/- //n

1,2,.... (3.80)/«, e

Da die Hauptmomente, Kuinulanten und statistischen Masszahlen
sich nicht übersichtlich darstellen lassen, verzichten wir darauf, diese

explizite aufzuführen. Vermerkt sei aber, dass sich sämtliche vorer-
wähnten Grössen mittels einer elektronischen Bechenanlage auf Grund
der Definitionsbeziehungen (1.7) bis (1.19) ohne weiteres für beliebige
Parameterkombinationen aus den Nullmomenten bestimmen lassen.

352 Schätzen der Parameter

Sollen die Parameter (a,/F,?/i>%) aus empirischen Daten ;/• go-
schätzt werden, so sind diese vorgängig logarithmisch zu transformieren

Int/;. Für die transformierte Stichprobe ermittelt man alsdann
nach Beziehung (3.44) die statistischen Masszahlen ,«(&'.;), d%f;), ^(xj
und ^(x,); welche die gesuchten Schätzwerte bilden.

<%») F'OG)

/Hl/,) <Hv)

^a(*/i) raW-

353 Güte der Anpassung

Analog zu den Erwägungen bei der gewöhnlichen Gram-Charlier-
Verteilung ist hier nur das Testen der einfachen Hypothese

"o : i%) Fo® (2/J « «. ^ H »h bi. Vi) (3.38)

sinnvoll.
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36 Logarithmische Edgeworth-Verteilung

361 Definition, Eigenschaften

Die Zufallsvariable Y heisst logarithmisch Edgeworth-verteilt mit
den Parametern a [— oo < a < oo ], /E [ > 01, und % » worm diese

durch die Häufigkeitsfunktion

i 1-11 P

'"Vi -
3! ®\ /? / 4! 'I /I / 72 ®\ /i

0 < 1/ < °° (3 • 89)

oder durch die Verteilungsfunktion
!/

7'"''''(y ; « > /^> 7i. 7a) I ; «> /'"> 7i > 7a) ^ (3• 90)
— CO

charakterisiert ist.

Die Transformation » In y führt die logarithmische Edgeworth-
Verteilung in die gewöhnliche Edgeworth-Verteilung über.

/^(y;a,/D,?/i,y,) a,/>'v7i, 7a) > mit .x In y. (3.91)

Zur Standardform der Normalverteilung liisst sich /^(y) vermöge der

In ?/ — a
Transformation «

' in Beziehung setzen,
d

/ "/(*) 1 + 7/3(2) -1 ^ 77,(2) + ^ 77,(2)
3! 4! 72

In 1/ — a
mit 2 - — (3.92)

7^(y;«,(E,y,,%) =.F^(2)-f(2) ^-77,(2) + ^773(2)4-^77,(2)

In y — a
nut 2 (3.93)

/î
^ '
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Ahdlmowcoil r-ter OcZwimy/:

Aus
J j/' /"''(yy) dy J e"/*(a;) dœ

oo oo

0 — CO

und der charakteristischen Funktion der gewöhnlichen Edgeworth-

direkt ablesen, falls die Substitutionen il r, /« a, u-
y, und ^ Î/2 berücksichtigt werden.

Ehr das Aufsuchen der Hauptmoinente, Kumulanten und sta-
tistischen Masszahlen sei erneut auf die Grundbeziehungen (1.7) bis

(1.19) verwiesen, die die Bindungen zu den Nullniomenten für be-

liebige Paramoterkombinationen (a, /F, %) gewährleisten.

362 Schätzen der Parameter, Güte der Anpassung

Verteilung (3.50) oo

qrj^f) | e''*/^(a;) da;

lässt sich die Relation

2

l + |fr^+4j W + (3-94)

Für die logarithmische Edgeworth-Verteilung gelten die früher für
die logarithmische Gram-Charlier-Verteilung in den Abschnitten 852

und 353 gemachten Überlegungen sinngemäss.
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4 Einsatz elektronischer Rechengeräte

Die im Kapitel 3 behandelten Verteilungen sind durchwegs geeignet
für den Einsatz elektronischer ßechenanlagen. Wenden wir uns dem-
nach in aller Kürze der Programmierung zu; auf eine Wiedergabe der
bisher ausgearbeiteten (Iroblösung wird an dieser Stelle verzichtet').

Das Hauptprogramm, das aus einer Reihe von Unterprogrammen
besteht, gestattet eine Verarbeitung von Häufigkeitsreihen einerseits
oder von Einzelwerten, die in geordneter Folge vorliegen, andererseits. In
einem ersten Arbeitsgang werden die charakteristischen Grössen derer»-

pimc/iew Fertei/ww/ ermittelt. Mittels der Schiefe und des Exzesses kann
auf Grund des Geltungsbereiches (Graphik 2, Seite 112) ein erster Ent-
scheid über die Wahl der </teoreh.sc/jen Ferfct/w«/gefällt werden. Der zweite

Arbeitsgang bestimmt in einer ersten Stufe die Parameter der gewählten
theoretischen Verteilung. Mit diesen lassen sich in der folgenden 2. und
3. Stufe für die Klassenmitten oder für die Einzelwerte als Argument die

Werte der Häufigkeitsfunktion und der Verteilungsfunktion errechnen.
Da die Parameter der logarithmischen Verteilungen nicht identisch sind
mit den statistischen Masszahlen, müssen diese charakteristischen Gros-

sen auf einer weiteren Stufe gesondert ermittelt werden. Auf der letzten
Stufe werden die Masszahlen bereitgestellt, um über die Güte der An-

passung der gewählten theoretischen Verteilung befinden zu können;
es betrifft dies für die Häufigkeitsreihen die Chiquadrat-Testgrösso und
für die Einzelwerte die Cramér-von Mises-Smirnow-Testgrösse.

Eine Iteration gestattet das mehrmalige Durchlaufen des zweiten
Arbeitsganges. Es können für eine bestimmte Paramoterkombination
mehrere theoretische Verteilungen errechnet und auf deren Güte hin
getestet werden.

Auf eine Besonderheit sei noch hingewiesen. Die Normalverkeilung
resp. Lognormal Verteilung lässt sich als Gram-Charlier- resp. logarith-
mische Gram-Charlier-Verteilung auffassen mit der speziellen Setzung

yi 0 und y^ 0 resp. ^ ü und ^ 0. Diese Spezialisierung ist
unmittelbar zu Beginn des zweiten Arbeitsganges zu treffen.

i) Das Programm in einer allgemein verwendbaren L'rogrammierungssprache
ist in Bearbeitung und stellt später zur Verfügung.
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5 Anhang
6Vap7w/c i

Pearsrm - FerteiZMwryen

G'e/hmf/sfcereic/ie
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Grap/w/c S

Cram- CAarKcr - 7e?'felZw»(/ew und JM(/eworf/t - FerfeiZww/en

Gefem(/sfcereic/te



ToM/ierfc JFer/e der ^or»witoer<ei/îtn</
ï'ahel/e J

Tabellenwerke

~ |/S " F"(«) ]>'(«) d„

(1)

Pislier, P./l., and
Ya(es,/<'. : Statistical
Tables for Bio-
logical, Agricultural
and Medical Be-
search, London 1957

AVdionoi /lareait 0/
Ptandarc/s : Tables
of Probability
Functions, Vol. If,
Washington 1948

Oieen, /). Statis-
tical 'l'ailles.
Massachusetts 1902

Pearson, /v.: 'fables for
Statisticians and
Biometricians.
Port I and 2.

Cambridge 1930

Pearson, K.P., and
Harflej/, /d.O..' Bio-
metrika Tables for
Statisticians. Vol. 1,

Cambridge 1954

(2)

/(z): 4 Dezimalen
2 -= 0(0,01) 3(0,1)
3,9

/(z): 15 Dezimalen
2 =0(0,0001)1(0,001)
8,285
7 Stellen
2 (1(0,1)10

/(z): (1 Dezimalen
2 0(0,01)3,99

/(z): 7 Dezimalen
2 0(0,01)4,5
10 Dezimalen
z 4,5(0,01)6

(3)

P(z): 6 Dezimalen
2 0(0,01)3,99

P(z): 7 Dezimalen
2 0(0,01)4,5
10 Dezimalen
z 4,5(0,01)6

8
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Tafreffierfc PFerte fie?- Äc/ter/teifsjmw/tfe awsr/eiMtteZter 'M/össw "

Testgrösse

Sicherheit.8-
schwelle

P

Stichproben-
umfang Literatur

(I) (2) (3) (4)

CVuVptncZraf

Z=. (F. G.:
m* - 1(1)30)

0,05; 0,01; 0,001 /Mieter, .I..' Statistische Me-
thoden. Birkhäuser Verlag,
Basel (1960), 8.4(14.

Jfoîmor/oro//

//„/pn
0,20 ; 0,10; 0,05;

0,02; 0,01

1(1)100, «. MiHer, //. 'liable of per-
centage points of Kolmo-

gorov statistics. J. Amer.
Statist. Ass. 51 (1956),
S. 118-115.

A'„(iV) 0,05; 0,01 25, 100 Jf«c, M., Jfie/er,./., and Wol-
/owitz, J.: On tests of nor-
mality and other tests of
goodness of fit based on
distance methods. Ann.
Math. Statist. 26 (1955),
S.210.

Cra»»f'r-i'Oït Mises-
Swimow

0,05; 0,01 25, 100 jfïac, M., A'te/er, J., and IFoZ-

/owite,Ann. Math. Sta-
tist. 26 (1955).

/Unterson-DarZinr/

m
0,10; 0,05; 0,01 1(1)8, °° Leieis, P. .4. ML: Distribution

of the Anderson-Darling
statistic. Ann. Math. Sta-
tist. 32 (1961), S. 1124.

Scfeie/e

ffi

0,10; 0,05; 0,01 25(5)50(10)
100(25)200

(50)1000(200)
2000(500)5000

Pearson, Jo'. S., and Hnrl/ej/,
//. O.; Biometrika tables
for statisticians. Vol. I.
Cambridge University
Press (1958), S. 183/184.

Eizess

»2

0,05; 0,01 200(50)1000
(200)2000
(500)5000

Pearson, E. >S'., and JJrtrfteî/,
H.O.: Vol. I (1958).

a 0,05; 0,01 11(5)51(10)
101(100)1001

Pearson, E. S., and J/arZZei/,

/AO.: Vol. I (1958).
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Résumé

L'auteur étudie cert aines distributions théoriques-loi normale, Oram-Charlier,
Edgeworth, normale logarithmique, (iram-Charlier logarithmique, Edgeworth log-
arithrniquo - qui présentent entre elles et avec la loi normale réduite des relations
simples et se prêtent à l'ajustement de distributions expérimentales à l'aide de calou-
lateurs éloctroniques.

lia méthode du maximum de vraisemblance et la, méthode des moments appli-
quées à l'estimation des paramètres sont brièvement exposées.

Enfin, les principaux critères d'appréciation de la validité de l'ajustement -
test- du x", de Kolmogoroff, de Crainér-v. Mises-Smirnoff et de Anderson-Darling-
sont présentés avec les bases numériques qui en sont dérivées.

Summary

The author deals with certain frequency curves, namely the Normal distribution,
the iram-Charlier distribution, the Edgeworth distribution, the Lognormal distribu-
tion, the Logarithmic (iram-Charlier distribution, and the Logarithmic Edgeworth
distribution. He shows their relation between each other and also to the Normal
standard distribution and explains how they are qualified for the approximation of
empirical distributions with the help of electronic computers.

Eor the estimation of parameters the methods of Maximum likelihood and of
Moments are briefly dealt with.

h'or the goodness of fit the author describes the most important tests at present
in use, as the Chi-squared test, the Kolmogorov test, the Cramér-von Mises-Smirnov
test, and the Anderson-Darling tost, lie explains especially the most adapted
formulas for the solution of numerical problems derived from these tests.

Riassunto

L'autore analizza qualche distribuzioni teoretiohe - la distribuzione normale,
la distribuzione (Iram-Charlier, la distribuzione Edgeworth, la distribuzione normale
logaritmica, la distribuzione logaritmica (Iram-Charlier, la distribuzione logaritmica
Edgeworth - che hanno speciali relazioni tra di loro e con la distribuzione normale
standardizzata, e che sono adatti per l'approssimazione delle distribuzioni empiriche
col aiuto di calcolatrici eletroniche.

Per »timoré i parametri vengono esposti il metodo della massima verosimiglianza
e il metodo dei momenti.

Per giudicare la hontà dell'adattamento vengono compilati gli oggi importants
criteri come il criterio del x®, il criterio di Kolmogoroff, il oriterio di Cramér-von Mises-
Smirnoff, il criterio di Anderson-Darling con la formula numeriea derivata.
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