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Zu den Bernoullizahlen nach Norlund und Adrian

Von Ivan Paasche, Miinchen

Zusammenfassung

Der Verfasser gibt einige Hinweise zur Darstellung der Bernoullizahlen.

1. Die oszillierend stark ansteigenden Bernoullizahlen nach Nor-
lund mit der symbolischen Binomialentwicklung

B,— (—1—B", =2=0,1,2,8,...
B,=1,—%,1,0,...

(man setze nach der Entwicklung iiberall B" = B,) sind in der folgen-
den Formel merkwiirdigerweise mit den monoton schwach sinkenden

1
Stammbriichen 4, = , n=2~0,1,2, ... vertauschbar:
n+1
n n
0 — (44 B — (O)AnBO—{— +<n)A0B,n, n—1,23, .... (1)

Der Beweis von (1) ergibt sich aus der bekannten Formel
— —1

n—1 )
-1)"B, = %f(l"‘l F 2T dp = | Y (ﬁl)”(n) B,y dp
0

p=0 Y4

durch Austithrung der Integration. — Aus (1) folgt eine Determinanten-
darstellung der B, durch die A, (oder der 4, durch die B,):

B,=D,(4,, ..., 4), A,=D,By, ...,B), n=123,....

Die D, sind vollstdndige homogene Polynome ihrer n 4+ 1 Argumente
mit ganzrationalen Koeffizienten, z.B.

|4, 4, | B, B, |
B, =— 4,24, A, Ay = —|B, 2B, B,l.

A, 84,84, B, 8B, 8B,
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2. Die Bernoullizahlen nach Adrian (Mitteilungen der Vereinigung
schweizerischer Versicherungsmathematiker 89[1959], 8.199-206) haben
B, = 0 statt des obigen B, = —, stimmen aber sonst vollstandig
mit denen nach Nérlund iiberein. Die schone, bequeme Formel (1)
muss bei Adrian lauten

n
0=(4+B"—_4,, n=128, ...

Auch hier zeigt sich wieder der Vorteil der Norlundschen Bezeichnung.
Vgl. im iibrigen die Rezension 91853 im Zentralblatt fiir Mathematik
iiber die genannte Arbeit von Adrian.

3. Im Falle 4, = n+ 1 statt nebst B, = 1 ergeben sich

n-+1
aus (1) ganze Zahlen B,, By, By, By, ... =1,—2,5,—16, ... der
Bigenschaft B, = (—1)"—nbB,_, statt (—1—B)"

4. Die jahrhundertelange Unsicherheit in der Bezeichnungsweise
der Bernoullizahlen beruht letztlich auf dem Fehlen eines Eigenvektors
=+ 0 der Pascalmatrix: die kritische Koordinate + B; verhindert,
dass die Folge der Bernoullizahlen Higenvektor der Pascalmatrix ist.
Iir diesen Mangel wird man jedoch reichlich entschédigt durch das
Bestehen z.B. der folgenden Identitdten, darin der binomische Satz
und eine Partialbruchzerlegung:

1 B, a"u, 2 z(z+0)" By Vu, (e+1)° (3971
11 B, a'u, , ' —z(z+1)" —B, bu, ; (+1)' CTH?
121 B, d®u, , & z2(z+2)7 | = B, Vu,. ., (2-+1)* (1371

P —z(z+38) — B, b, 5 (2+1)* (597

Die B, sind hier die Bernoullizahlen, die u, irgendwelche Zahlen der
Kigenschatt u, +aw, ; = bu, ,, z. B. die Fibonaccizahlen (bei ihnen
st a =b=wu,+1=wu,=1). Zu den obigen Identititen gesellt sich
noch, mit ¢ = z2(1—=2)7,

1111. 2 £ 1 11131, 1111,
123 . 2 - i | 123. 123.
18 . 2 =1 & |, 121 13. = 13.

. 2t g 1331 1. |
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und eine unabsehbare Itille weiterer Formeln, z. B. mit der Stirling-
matrix 1. Art zugleich als Lanksfaktor und Produkt:

1 1 1
-1 1 11 1

2-3 1 ‘ 121 = -1 1
—6 11-6 1 18381 2-8 1

..... -6 11-6 1

Durch Inversion erhélt man hieraus die Stirlingmatrix 2. Art zugleich
als Rechtsfaktor und Produkt:

1 1 1

-1 1 11 1

1-2 1 131 = 11

-1 3-3 1 1761 131
..... 1761

Alle aufgefithrten Identitédten stellen Verallgemeinerungen des
Begriffs Eigenvektor dar.

Résumé

L’auteur donne quelques indications quant & la représentation des nombres
de Bernoulli.

Summary

~

Some hints for the representation of the Bernoulli-numbers are given by the
author.

Riassunto

L’autore da alcune indicazioni relative alla rappresentazione dei numeri di
Bernoulli.
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