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The Variation Problem

in Case of the Linear Decreasing Rate of Interest

By Osamu Sumitsuji, Osaka ( Japan)

Summary

In this paper, the author gives approximation formulas for premiums and
mathematical reserves of endowment assurances with linear decreasing rate of
interest, in connection with the well-known variation problem. Also he shows the
relation between the mathematical reserve of endowment assurance with de-
creasing rate of interest and that with increasing additive extra mortality.

Zusammenfassung

In Anlehnung an frithere Arbeiten befasst sich der Autor mit der Herleitung
von approximativen Formeln fiir Primie und Deckungskapital der gemischten
Versicherung im Falle eines linear sinkenden Zinsfusses. Fr weist auch auf den
Zusammenhang zwischen den Reserven einer solchen Versicherung hin, wenn einer-
seits von einem sinkenden Zinsfuss, anderseits von einer steigenden additiven Uber-
sterblichkeit ausgegangen wird.

Résumé

En g’appuyant sur des travaux antérieurs, l'auteur établit des formules
approximatives en vue du calcul de la prime et de la réserve mathématique d'une
assurance mixte fondée sur un taux d’intérét linéairement décroissant. Certaines
analogies sont également mises en évidence, pour cette forme d’assurance, entre
les réserves mathématiques résultant, d’'une part, de I'application d’un taux d’in-
térét décroissant et, d’autre part, de la prise en considération d'une surmortalité
croissante.

Riassunto

Fondandosi su lavori precedenti, I'autore si preoccupa di dedurre formule
approssimative per il calcolo del premio e della riserva matematica dell’assicura-
zione mista, nel caso di un tasso d'interesse decrescente in modo lineare. Hgli
accenna anche ai rapporti tra le riserve matematiche di una tale assicurazione,
supposto, da una parte, un tasso d’'interesse decrescente e, dall’altra, una maggior
mortalita crescente.
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(for the case where3) n and z are not large).

1) Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker,

Bd. 59 and Bd. 60.
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%) We assume 10 < n < 30 in this paper. Moreover in this case we take

(4 + gam) < 1.5 and ngy) < 0.5.
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Using (2) we have for the case where n and z are not large
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d) In case of linear increasing extra mortality such as
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1) We assume in this case n(i+ ¢) 2 1.5 and ngy) = 0.5.

2) The better approximation is as follows:
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§ 2. Now we assume the rates of interest such as
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Carrying (4) to the right hand side of this equation, we have
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The approximation to D is obtained as follows:

(i) For the case where x and » are not large. From (8), using the
approximation (5), we have
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On the other hand, we may write
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Using these approximations, we may have
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From (10) we have, for the case where n1 < 1 and ng;; < +

3
D~ 0.4.

Fxamples:
n = 30 & == g0
C.8.0. (41) Table, 21459, JPME Table, 8149%,
30 501 = 0.0063 30 50| = 0.010
the true value of D = 0.401 D = 0.417
by (10) = 0.407 by (10) = 0.431
(1) For the case where z is large. Carrying (6) into the formula (8),
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Examples:

n = 30 z = b0 n = 20 = b
C.8.0. Table, 2149,  J*M& 3140/ JPME) | g1/ 0/

Iso39) = 0.0215  g5535 = 0.029 G50 301 = 0.026

the true value of D = 0.491 0.557 0.456
by (11) = 0.482 0.549 0.469
by (10) = 0.448 0.494 0.440

§ 8. As to the premium reserve we have
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when n and z are not large.

1) The better approximation is as follows:
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Consequently, from the fundamental relation of
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It is worth while to notice that from (7) and (13) we have, when
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This interesting relation is also obtained ag follows: Clearly we have
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1) When n ~ 10, the formulas (13) and (138”) may be slightly modified.
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And when n1 < 1 and ng,;; < § we see easily that
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§ 4. The formula (8) is suitable for the case where 4" is small.
When ¢’ 1s not small the following modified formula i3 better.
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