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Some Elementary
Researches in the Mathematies

of Life Insurance

(111)

By Osamu Sumitsuji, Osaka (Japan)

Summary

The author gives further explications to his previous papers dealing with
actuarial studies in the domain of substandard life risks which appeared in Volumes 1,
1959 and 2, 1960. He derives approximation formulae for premiums and mathe-
matical reserves in case of endowment assurances with incresasing and decreasing
extramortality. Several numerical examples show the good degree of approxim-
ation of these formulae.

§ 1. In my earlier paper 1), I showed the following approximation
formula for Premium of Endowment with linear decreasing extra
mortality.
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1) Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker,
Bd. 60, 2.
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or roughly ~ B (Bar—I)-

In the same way, we may have
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Now we assume the new mortality such as
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where k << n (in practice k may be 5 or 10) and f 1s a small constant.

An approximation to AP, is derived as follows:
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In the same way, we may write for ¢ << k
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§ 2. In case of the change of mortality, casily we have
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Carrying (1) and (2) to (6) we have an approximation formule to
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Using (3) and (4) or (5), we have from (6)
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From (9) we see clearly that when { = k, the value of
AVl 1—V,, is in-dependent of ¢.

§ 3. In case of linear increasing extra mortality viz.
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I showed in my earlier paper an approximation
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In the same way, we may write
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Therefore, we may write

(i) for small t,
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Using (10) and (11) or (12), from (6) we have
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In my earlier paper 1), I showed an approximation formula to
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but it is useful only when ¢ is small (t << 3-n).

On the other hand formula (14) 1s useful when ¢ is large, thought it
may be poor when ¢ is small (¢t < 3 n).

1) Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker,
Bd. 69, 2.
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§ 4. I will show some numerical examples.
Mortality Table: Deutsche Sterbetafel 1924/26, Miinner.
Interest: + = 89,; 8 = 1009,.

0 g=[(1+" ")
Dopy = \ e ot
n — 10
r = 30 r — 50
I =2 true value —0.00373 —0.00893
by (7) —0.00361 —0.00916
t—=15 true value —0.00516 —0.018398
by (7) — 0.00500 —0.01373
=28 true value — 0.00285 — 0.00861
by (T) —0.00278 — 0.00863
. ) n—t
(i) Qori = (\1+ . Dot
n =20
t =4 true value —0.00662 —0.01206
by (7) —0.00627 —0.01367
(— 0.01216)*
t =8 true value —0.00967 = (.02937
by (7) —0.00944 —0.02428
(— 0.02312)*
=10 true value —0.01007 —0.02584
by (7) —0.00989 —0.02756
(— 0.02655)*
t =14 true value — 0.00850 — 0.02609
by (7) —0.00839 —0.02704
(— 0.02636)*
t = 18 true value —0.00354 —0.01273
by (7) —0.00851 — 0.01300

(— 0.01277)*
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* The error by (7) is partly due to the use of the approximation
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If we use the true value of A P_ we shall have the value bracked.
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t =2 true value —0.00564 —0.01467

by (8) —0.00550 —0.01441

t=4 true value — 0.00822 — 0.02227

by (8) —0.00828 —0.02234

t =10 true value —0.00607 — 0.01696

by (9) —0.00598 —0.01700

_ , k—t
(IV) qg:th == (1 - 77}[:“& QI+t
k=10 n =20

t=2 true value —0.00502 —0.01186

by (8) —0.00483 —0.01190

t—=4 true value —0.00839 —0.02146

by (8) —0.00814 —0.02164

t—8 true value —0.01082 — 0.08208

by (8) —0.01066 —0.03191

=10 true value —0.01007 —0.03104

by (9) —0.00987 —0.03085

t —14 true value —0.00641 —0.02039

by (9) —0.00632 —0.02029

t =18 true value —0.00231 —0.00771

by (9) —0.00226 —0.00766
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n = 20
i == 80 a0 = 50
t =2 true value 0.00162 0.00732
by (13) 0.00164 0.00789
by (14) 0.00159 0.00545
t =4 true value 0.00267 0.01304
by (13) 0.00274 0.01378
by (14) 0.00263 0.01191
t=28 true value 0.00314 0.01848
by (18) 0.00325 0.01838
by (14) 0.00314 0.01780
t =10 true value 0.00260 0.01754
by (13) 0.00267 0.01697
by (14) 0.00264 0.01691
t =14 true value 0.00040 0.00832
by (14) 0.00043 0.00801
t =18 true value — 0.00117 —0.00373
by (14) —0.00119 —0.00361

Zusammenfassung — Résumé — Riassunto

Verfasser gibt ergiinzende Ausfithrungen zu seiner in den Heften 59,1 und
60, 2 erschienenen Abhandlung zur Technik der erhéhten Risiken in der Lebens-
versicherung. Ils werden Niherungsformeln fiir Primie und Reserve der gemischten
Versicherung bei steigender und bei fallender Ubersterblichkeit hergeleitet. Zahl-
reiche Rechenbeispiele belegen die Giite der angefithrten Approximationen.

L’auteur apporte un complément & ses précédentes études sur la technique des
risques aggravés dans l'assurance vie, étude parues dans les cahiers n° 1, 1959 et
2, 1960. 11 développe ditférentes formules approximatives de primes et deréserves
mathématiques pour les assurances mixtes & surmortalité croissante et décrois-
sante. Plusieurs exemples numériques attestent de la bonne approximation de ces
formules.

L’autore da schiarimenti complementari ai suoi precedenti lavori sulla
tecnica di rischi tarati nell’assicurazione vita, apparsi nei fascicoli 1, 1959 e 2, 1960.
Deduce diverse formole approssimative per premi e riserve matematiche di assicura-
zioni miste con sopramortalitd crescente e decrescente. Numerosi esempi numerici
provano la buone approssimazione di tali formole.
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