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Abschätzung von Reserven

mit spieltheoretischen Methoden1)

Von U. Baumgartner, Bern

Zusammenfassung

Für die Berechnung mathematischer Reserven wird ein spieltheoretisches
Modell aufgestellt, dessen praktische Anwendungsmöglichkeiten diskutiert werden.
Je ein spezielles Kapitel ist der Schrankenbestimmung mit Hilfe der linearen
Programmierung und der spieltheoretisch optimalen Wahl von Mittelwerten bei

vorgegebenen Schranken gewidmet.

Einleitung

Der relativ junge Wissenszweig der Unternehmensforschung (Operations

Besearch) ist bestrebt, mathematische Prinzipien und Methoden
auf Entscheidungssituationen anzuwenden, wie sie in erster Linie in
militärischen und betriebswirtschaftlichen Problemen auftreten. Es
handelt sich im Prinzip darum, unter Berücksichtigung vorgegebener
Situationen optimale Dispositionen zu treffen. Diese Aufgabe setzt
zweierlei voraus : Einerseits müssen die Probleme in eine mathematisch
erfassbare Form gebracht werden; dies erreicht man durch die

Aufstellung geeigneter Modelle. Andererseits müssen Verfahren existieren,
die der besonderen Problemlage gerecht werden. Hier sind in erster
Linie die Spieltheorie und die mathematische Programmierung
anzuführen. Über beide Methoden wurde an dieser Stelle schon berichtet
[6, 12]2).

1) Erweiterte Fassung des anlässlich der Jahresversammlung der Vereinigung
schweizerischer Versicherungsmathematiker am 8. Oktober 19G0 gehaltenen
Referates.

2) Zahlen in Klammern [ ] verweisen auf das Literaturverzeichnis.
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Die Anwendung der Spieltheorie auf Probleme der Versicherungs-

matheinatik wurde von Bierlein [2, 3] und Nolfi [12,13] angeregt. Sie

stützt sich auf den von Wald [17] und Blackwell-Girshick [4]
eingeführten Begriff des statistischen Spiels, des Spiels «gegen die Natur».
Die lineare Programmierung hat durch Benjamin-Bennet [1] in der

aktuariellen Literatur Eingang gefunden.
Die vorliegenden Darlegungen sollen die Anwendungsmöglichkeiten

dieser Methoden auf das Problem der Reserverechnung diskutieren.
Dies wird nicht zu neuen Methoden führen, sondern Gelegenheit bieten,
die bestehenden Methoden von einem andern Gesichtspunkt aus zu

interpretieren und die Charakteristiken der spieltheoretischen
Betrachtungsweise klarzulegen.

Wir gliedern unsere Ausführungen wie folgt: Zuerst werden die

zwei Probleme, die Bestimmung eines optimalen Reservewertes und
die Wahl einer optimalen Methode, in ein spieltheoretisches Modell

gekleidet (1). Daran schliesst sich eine praktische Beurteilung der
wesentlichen Merkmale, Kostenfunktion, Information und Strategienmenge

(2). Die beiden andern Kapitel sind Spezialproblemen gewidmet,
der Abschätzung von Reserven mit Hilfe der linearen Programmierung

(3) und der spieltheoretischen Bestimmung eines optimalen Mittelwertes

bei vorgegebenen Schranken (4). Eür die numerischen Beispiele
(3) stellte mir Herr Dr. K. Stauber, Chefmathematiker der Fortuna
Lebens-Versicherungs-Gesellschaft in Zürich einen Testbestand zur
Verfügung, und Herr Prof. Wr. Nef, Direktor des Instituts für
Angewandte Mathematik der Universität Bern gestattete mir in
grosszügigem Ausmass die Benützung der elektronischen Rechenanlage.
Beiden Herren danke ich für ihre Unterstützung bestens.

Zur Symbolik: Es bedeuten

A Il a,.,11 Matrix mit den Elementen
11 1/ 11 lJ

r (r,, r„) Spaltenvektor mit den Elementen rv rn,

r' Zeilenvektor (transponierter Vektor zu r),
det1 A det1 a,-,-1 Determinante zur Matrix A,

i
1 :

[r} Menge mit den Elementen r,

V min V,

V max V.



— 225 —

1 Reserverechnung als spieltheoretisches Problem

11 Methoden approximativer Reserverechnung

Im Sinne einer Darstellung der wesentlichen Grundsätze beschränken

wir uns auf den Spezialfall der Nettoreserve einer gemischten
Absicherung gegen Jahresprämie, zahlbar während der Vertragsdauer.

111 Die genaue Reserve

Als Reservefaktor f tV^ bezeichnen wir die technische Reserve
für einen Abtrag mit der Absicherungssumme 1. Er ist abhängig von
zwei Gruppen von Parametern:

a) Tarifparameter (Zinsfuss i, Sterblichkeit {,«}).
Ihre genauen AAbte sind nicht feststellbar und werden ersetzt
durch fiktive AAbte, die im allgemeinen für einen gegebenen
Bestand ein für allemal fest angenommen werden.

b) Vertragsparameter (Eintrittsalter x, Vertragsdauer n, bisherige
Laufzeit t oder Kombinationen dieser Werte).
Sie sind für jeden Vertrag bestimmbar und unterteilen sich ihrerseits

in zeitabhängige und zeitunabhängige.
Die Menge der Reservefaktoren bildet die Reservefunktion.

Die individuelle Reserve eines Vertrages erhalten wir durch
Multiplikation der Versicherungssumme mit dem entsprechenden Reservefaktor,

und die Reserve des Bestandes durch Summation über alle
individuellen Reserven. Damit lautet die Reserve eines Bestandes :

V jf(i,\p\;x,n,t) dS(x,n,t). (1.1)

Dabei bedeutet S(x,n,t) die Summenverteilung des Bestandes über den
drei Abtragsparametern. AVill man mehrere Tarife in einem Bestand
vereinigen, wird auch die Summenverteilung von den Tarifparametern
abhängig; davon sehen wir in der Folge ab. Die Darstellung als Stieltjes-
Integral wurde lediglich der Übersichtlichkeit halber gewählt.

Während die Reservefunktion nach AArahl des Tarifs festbleibt,
verändert sich die Summenverteilung von Jahr zu Jahr. Die Bestimmung

der Reserve zerfällt damit in zwei Aufgaben :

a) Ermittlung der Summenverteilung,
b) Auswertung des Integrals (1.1).
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Praktisch besteht a) in einer Gruppierung nach den drei Parametern

x, n, t und einer anschliessenden Bildung von Subtotalen, b) im Aus-

inultiplizieren der Ausdrücke f(x,n,t) s(x,n,t) und anschliessender
dreifacher Summation.

112 Aufspaltung der Reservefunktion, Hilfszahlen

Eine Aufspaltung der Reservefunktion in zeitabhängige und
zeitunabhängige Komponenten gestattet eine mehrmalige Verwendung von
Teilresultaten.

Zweckmässig ist eine Darstellung der Form

/
k

worin hk zeitunabhängig ist und gk weniger Parameter als / enthält.
Ordnen wir jedem Vertrag Hilfszahlen der Form h* s hk zu, können
wir Hilfsverteilungen Hk konstruieren, mit welchen (1.1) übergeht in

v ^fgk(t)dHk, (1.2)

worin (1.1) als Spezialfall (h 1) enthalten ist.

Die Einführung dieser Hilfszahlen reduziert die notwendigen
Gruppierungen und vereinfacht die Integration (weniger Multiplikationen).

Als Beispiele zitieren wir die Methoden von Kamp und Altenburyer
[19]. Bei der ersten ersparen wir mit den Hilfszahlen hl 1, h2 F^
eine Gruppierung, und bei der zweiten werden zwei Gruppierungen
unterdrückt durch die Verwendung von drei Hilfszahlen h1 1,

^2 >
1*3 (IJx +f^) Ar-K-

113 Approximation der Reservefunktion

Die Ersetzung der Reservefunktion durch eine Näherungsfunktion
hat den Zweck, die Integralbildung (1.1) zu erleichtern und
insbesondere die Bildung von Hilfszahlen zu fördern. Sie ist um so eher

berechtigt, als ja auch die «genaue» Reservefunktion auf vereinfachten
Annahmen beruht, und die Tarifparameter nicht genau bekannt sind.

Als Approximationsfunktionen werden hauptsächlich Konstanten,
Polynome, Hyperbeln oder Exponentialfunktionen verwendet. Indem
die Genauigkeit normalerweise nur für einen beschränkten Bereich der
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entsprechenden Parameter genügt, ist im allgemeinen eine reduzierte
Gruppierung nach diesen Parametern nicht zu umgehen.

Von besonderer Bedeutung sind Approximationen, die eine

Reserverechnung nach (1.2) so erlauben, dass glc von t allein abhängig
ist [14]. Sie gestatten eine gruppenfreie Reserverechnung, wenn man als

Zeitursprung nicht mehr den Yersicherungsbeginn jeder einzelnen Police

annimmt, sondern einen fur den ganzen Bestand geltenden Bezugspunkt.

Zur Erläuterung sollen die folgenden Beispiele dienen:

a) Gerundete Eintrittsalter: Werden nur noch durch 5 dividierbare
Eintrittsalter zugelassen, bedeutet dies, dass / bezüglich x für je
5 Alter konstant ist. Damit wird die Zahl der x- Gruppen reduziert.

b) Methode von Trachtenberg [19]: Ax^ und äx-j werden für je 10 Alter
in x quadratisch angesetzt.

c) E-Methode von JecMin [8]: / wird hyperbolisch in t angesetzt.
Diese Approximation genügt fur ca. 20 Jahre. Damit hat / zwar
nicht die in 112 geforderte Form, liefert aber durch eine weitere

Approximation fur die Reserve einen Ausdruck, der nur noch von
zwei Hilfszahltotalen und dem (einzigen) Gruppierungsmerkmal t

abhängt.

d) Skalarmethode von Pöttker [14]: Sie beruht auf der Darstellung
(1.2) mit vier Hilfszahlen, wobei die gk Linerarkombinationen von
Exponentialfunktionen in t und die Hilfszahlen Reservewerte in
4 festen Zeitpunkten darstellen. Diese Methode benötigt keine

Gruppierung und gestattet eine Zusammenfassung von ca. 40

Beginnjahren.

Weitere Beispiele sind die ra-Alter-Methode [19], die 0- und
»^-Methode Jecklins [8] und die Ivo-Methode von Meier [11].

114 Vereinfachungen der Summenverteilung

Gruppierungen lassen sich unterdrucken, indem durch Anwendung
des Mittelwertsatzes auf (1.1) resp. (1.2) fur gewisse Parameter Mittelwerte

eingesetzt werden, z.B.:

V f(x*,n*,f) JdS=^yt jdHk.

Die Bestimmung dieser Mittelwerte stützt sichmeistens auf eine Approximation

der Reservefunktion und geschieht mittels Hilfszahlen.
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Die klassischen Beispiele dafür sind die Z-Methode Lidstones und
die f-Methode Jecklins [19]. Beide beruhen auf der Approximation
äx-\ <=& a + bcx. Im ersten Fall wird innerhalb jeder (n — f)-Gruppe das

Schlussalter mit den Hilfszahlen cxv" bestimmt, im zweiten innerhalb

jeder t-Gruppe das Anfangsalter x mit der Hilfszahl <?. Weitere
Beispiele sind die Methode von Pöttker [15], die «-Methode Jecklins [8]
und die Methode von Insolera [5].

Während diese Methoden annehmen, die Summenverteilung sei

über einem bestimmten Parameter konstant, kann man auch linearen
Verlauf voraussetzen (Trachtenberg [19]) oder eine Normalverteilung
(Givskov).

12 Statistische Spiele

121 Der Begriff des statistischen Spiels [4, 17]

Der Begriff des statistischen Spiels wird mit Erfolg dort
angewendet, wo Werte zu schätzen sind, die von einem stochastischen
Prozess beeinflusst werden. Es handelt sich dabei um ein Spiel eines

Schätzers M (Mathematiker) gegen einen hypothetischen Gegenspieler
N (Natur). N wählt den richtigen Wert V, M einen Schätzwert IF,
womit M einen wirtschaftlichen Schaden A(V,W) erleidet, der um so

grösser wird, je schlechter die Schätzung ist. Diesen Schaden sucht M
möglichst klein zu halten. Nehmen wir an, er bestehe in einer
Auszahlung von M an N, und X habe ein Interesse daran, diese Auszahlung
maximal zu machen, so gelangen wir zum Modell eines Zweipersonen-
Nullsummen-Spiels. Die Menge der reinen Strategien von N besteht in
der Menge der möglichen richtigen Werte V, d.h. einem Stück der

positiven reellen Zahlenachse, während die gemischten Strategien durch

Verteilungsfunktionen über den möglichen Werten dargestellt werden.

Analoges gilt für die Schätzwerte als Strategien von M. Die Aus-

zahlungsfunktion ist eine positive reellwertige Funktion über der

Produktmenge der Strategienräume. Falls das Spiel lösbar ist, erhalten
wir für A" einen wahren Wert V* so, dass min A(V, W) — max und für

w
M einen Schätzwert IP* so, dass max A (V, TP) min. Nach dem

v

Minimaxtheorem gilt dann die Gleichung

A* max min A (V, IP) min max A (V, IF) A (V*, IF*). (1.3)
v w w v
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Den Ausdruck A* nennen wir den Wert des Spiels. Er ist, sofern er
existiert, durch Strategienräume und Auszahlungsfunktion eindeutig
bestimmt.

Dieses Modell ist eigentlich nur vom Standpunkt von M aus richtig.

Der Spieler N hingegen interessiert uns wenig, und wir stellen uns
eigentlich auch nicht vor, dass er eine maximale Auszahlung anstrebt.
Zur Klarstellung diene die folgende risikotheoretische Interpretation.

122 Risikotheoretische Interpretation

Es sei A (F, IE) > 0 der Schaden, den M erleidet, indem er einen
Schätzwert IF anstelle des richtigen Wertes F verwendet. z(V) sei die

Wahrscheinlichkeitsdichte, dass F der richtige Wert sei.

Als Risiko n-ter Ordnung für M bezeichnen wir den Ausdruck

RJW) [fA(V,W)"Z(V)dV]l. (1.4)

M sucht, ein möglichst kleines Risiko und wählt daher bei vorgegebenem
n den Wert IF* so, dass (1.4) zu einem Minimum wird.

Mit 7i=l liefert (1.4) das durchschnittliche Risiko; die Bestimmung

von W* aus dem durchschnittlichen Risiko wird als Bayessche
Lösung bezeichnet [4]. Mit wachsendem n werden die Schätzungen
vorsichtiger, indem der Einfluss der Verteilung z{V), die im allgemeinen
nur approximativ bekannt ist, abnimmt, n 2 liefert eine Schätzung
aus dem mittleren Risiko, und für den Grenzfall n oo erhalten wir

^oo(W*) mm -^(IF) min max A(V, IF). (1.5)
w \v v

Dieser Ausdruck entspricht dem Wert des oben konstruierten Spiels
(1.8) und garantiert einen minimalen Schaden im ungünstigsten Fall.
Mit IF IF* liefert (1.5) eine obere Schranke für den Schaden. Die
Bestimmung optimaler Werte auf Grund des maximalen Schadens

anstelle einer Schadenerwartung ist für die spieltheoretische Methode
charakteristisch.

123 Die Wahl von Schätzverfahren

Damit eine spieltheoretische Schätzung von M brauchbare Resultate

liefert, muss M das Verhalten von N möglichst genau analysieren.
Sein Verhalten basiert sonst auf maximalen Schäden, die gar nicht



— 23 0 —

auftreten können. Durch vennehrten Arbeitsaufwand, der eine zweite

Komponente der Kostenfunktion zur Folge hat., muss sich M
Informationen über das Verhalten von N verschaffen. Dies wird durch

folgende Annahme ermöglicht : Es existiert a priori eine Verteilung der

richtigen Werte V mit bestimmten, M unbekannten Parametern, auf
Grund welcher N den richtigen Wert V mittels eines stochastischen
Prozesses herausgreift. M verschafft sich Angaben über diese Parameter
z.B. durch Experimente (Stichproben, physikalische Experimente usw.).

Das in 121 entwickelte Modell verfeinert sich damit wie folgt:
N wählt die Parameter a>ltco2, ,<or, aus denen sich V mittels eines

stochastischen Prozesses bestimmt. M gewinnt durch ein Experiment
die Information J J (a>1, (or) und berücksichtigt bei der Wahl

von W* nur noch diejenigen möglichen Werte V V (a>-1, ...,cor)>
für welche gilt : J (coj, cor) J.

Der Informationsgewinnung werden durch ihre Kosten Grenzen

gesetzt; der Verbesserung des Schätzwertes steht der vergrösserte
Arbeitsaufwand gegenüber. Dem eigentlichen Schätzproblem ist daher
das Problem einer optimalen Methode übergeordnet: Was für eine

Methode soll M wählen, um seinen Schaden, bestehend aus Arbeitskosten

und wirtschaftlichen Folgen einer falschen Schätzung, minimal

zu halten

13 Spieltheoretisches Modell für die Reserverechnung

Wir gehen aus von der in 111 besprochenen Darstellung der Reserve

(1.1). Eine Strategie von N besteht in einem Satz to (co1, .,or)
von Parametern, welche die Reservefunktion und die Summenverteilung
bestimmen. Jedem Vektor to ist genau ein Punkt der positiven reellen
Zahlenachse als wahre Reserve zugeordnet. Damit wird in diesem

speziellen Fall der stochastische Prozess ausgeschaltet.
Für M ergeben sich gemäss 123 die Probleme des optimalen Schätzwertes

und der optimalen Methode in folgender Form:

131 Optimaler Schätzwert

Die Strategienmenge von M ist primär die Menge der Schätzwerte
W, eine kontinuierliche oder diskrete Menge von Punkten der positiven
reellen Zahlenachse, je nachdem beliebige Schätzwerte oder nur ganze
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Vielfache einer Werteinheit zugelassen sind. Die Wahl des optimalen
Schätzwertes W* stützt sich auf Experimente, welche jeder Strategie to

von N eine Information J(to) zuordnen, die seihst aus mehreren Komponenten

bestehen kann. Damit besteht die Wahl eines Schätzwertes im
Prinzip in einer Vorschrift, die jeder Information J einen Schätzwert
W* zuordnet.

132 Optimale Methoden

Jede Strategie von M ist ein Paar von Methoden G

Die erste Komponente g1 liefert für jedes to eine Information J(g1,m).
02 ordnet jeder Information J einen Wert W* der positiven reellen
Zahlenachse zu. Die Schadenfunktion setzt sich aus zwei Komponenten
zusammen, von denen die erste den Arbeitsaufwand berücksichtigt und
im allgemeinen nur von der verwendeten Methode abhängig ist, während
die zweite den Schaden aus der Fehlschätzung berücksichtigt:

A A^,g2) + A^(V,W) Ai(G) + AV(m,G).
Schematisch stellt sich der Spielverlauf wie folgt dar:

n

m : o »- w
G 92

Fig.l

Ohne Berücksichtigung der Schadenkomponente A1(G) erhalten
wir das Problem des optimalen Schätzwertes (131).

Zur Erläuterung führen wir noch zwei Beispiele für Strategien
von M an:

a) Methode von Karwp: Informationen liefern die Vergangenheit (Er¬

fahrungen über Tarifparameter) und Gruppierungen mit Suminen-
und Prämientotalen. Die zweite Information erfasst die
Summenverteilung genau. Schätzfehler werden nur durch Tarifparameter
verursacht. Die Methode g2 entspricht der bekannten Formel:

W ^ 2 VA^s(z,m) — ä~'p(z,'tn)~\ mit 3 x + t, m n — t,
z m

wobei s das Summentotal einer Gruppe bedeutet und p das

zugehörige Prämientotal.

lfi
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b) F-Methode: Informationen liefern die Erfahrung (Hilfszahlen) und
die Bildung der Hilfszahltotale in t- Gruppen. Die Methode g2

besteht in der Formel

TT/ v _

V H '

(T

wo G und H die Hilfszahltotale bedeuten.

2 Überlegungen zur praktischen Anwendung

Ein Spiel ist bestimmt durch die Kostenfunktion und die

Strategienräume, die ihrerseits durch Informationen beeinflusst werden. Die

Anwendung eines spieltlieoretischen Modells auf einen konkreten Fall
erfordert daher eine Untersuchung dieser charakteristischen Begriffe.
Für die Beserve gelten die in 11 getroffenen Einschränkungen. Theoretische

Grundlagen finden sich in den Arbeiten von Wald [17], Blackwell-
Girshick [4J und Bierlein [2].

21 Die Kostenfunktion

Die Anwendbarkeit des spieltheoretischen Modells ist hauptsächlich
von der Kostenfunktion abhängig. Ihre konkrete Form entscheidet
über die Lösbarkeit des Problems, und von ihrem sinnvollen Ansatz

hängt die Aussagekraft der Lösung ab. In der Tat liegen die Schwierigkeiten

der Umsetzung des skizzierten Modells auf einen konkreten Fall
hauptsächlich liier begründet.

Die Kostenfunktion zerfällt wie erwähnt in die Komponenten für
den Arbeitsaufwand und den Schaden, der durch einen Schätzfehler
verursacht wird.

211 Der Arbeitsaufwand

Die Kosten für den Arbeitsaufwand lassen sich relativ einfach

wertmässig fassen. Sie setzen sich zusammen aus einem Teil der
Gehälter, den Kosten für Maschinenbeanspruchung, Materialverbrauch
usw. Die Beschaffung brauchbarer Unterlagen erfordert indessen neben
einem genauen Studium der einbezogenen Methoden vor allem eine

eingehende Analyse des Versichertenbestandes und der Organisation
des Betriebes. Die Struktur des Versichertenbestandes kann gewisse
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Methoden bevorzugen und andere verbieten. Bei der Betriebsorganisation

ist die optimale Verwendung der verfügbaren Mittel (Personal,
Maschinen, technische Grundlagen, Statistiken usw.) zu berücksichtigen.

Auch die Frage, was für Arbeiten parallel zur Reserverechnung
ausgeführt werden können oder müssen, ist von entscheidender
Bedeutung. Derart zeitraubende und entsprechend kostspielige
Untersuchungen lohnen sich vielleicht in Grossbetrieben. Indem sich andererseits

allgemeine Angaben über den Arbeitsaufwand nur in geringem
Masse geben lassen, sind der praktischen Anwendbarkeit des Modells
Grenzen gesetzt: Im allgemeinen werden sich nur Teilprobleme lösen
lassen, indem verwandte Methoden, deren Unterschied im
Arbeitsaufwand leicht zu überblicken ist, in die Untersuchung einbezogen
"werden.

In diesem Sinne wollen wir einige charakteristische Gesichtspunkte

hervorheben. Dabei basieren wir im wesentlichen auf der
speziellen, heute aber vielfach zutreffenden Annahme, eine Lochkartenanlage

sei vorhanden, nicht aber ein grösseres elektronisches Rechengerat,

und berücksichtigen in erster Linie Methoden, die sich teilweise
automatisch durchführen lassen.

Wir unterscheiden zwischen a) periodischen Arbeiten, wie
Summenbildungen, Multiplikationen mit technischen Werten, die mit Vorteil
automatisch durchgeführt werden, sobald sie grösseren Umfang
annehmen, b) Arbeiten, die einmal für jede Police durchzuführen sind, wie
Hilfszahlbestinunungen. und die im allgemeinen zweckmässig von Hand
erledigt werden, und schliesslich c) Arbeiten, die nur einmal für den

ganzen Bestand auszuführen sind, wie die Erstellung von Tabellenwerken,

und für die sich meistens ein Auftrag an ein Rechenzentrum
mit Elektronenrechner lohnt.

Folgende Operationstijpen kommen hauptsächlich vor: Addition/
Subtraktion, Multiplikation/Division, Lesen von Tabellen und evtl.
Interpolation. Die Addition/Subtraktion benötigt den geringsten
Zeitaufwand und lässt sich gut, automatisch durchführen. Multiplikation
und Division erfordern ein Mehrfaches an Zeit und lassen sich nur
bedingt automatisch durchfuhren. Das Ablesen von Tabellen ist relativ
zeitraubend, sobald die Tabellen grösseren Umfang annehmen (2 oder
3 Argumente). Dies gilt, noch vermehrt bei den Interpolationen. Beide
Operationen sind im allgemeinen nur auf Elektronenrechnern
automatisch durchfuhrbar.
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Gestützt auf diese Überlegungen folgern wir - vom erwähnten
Standpunkt aus -, dass Gruppierungen relativ unvorteilhaft sind, weil
sie umfangreiche Tabellenwerke und viele Multiplikationen hei den

periodischen Arbeiten erfordern. Die Zahl der Multiplikationen wächst

exponentiell mit der Anzahl der Gruppierungsargumente. Die
Gruppierungsarbeit selbst ist von geringer Bedeutung, da sie ja nur für das

Argument n-t periodisch vorzunehmen ist und eine automatische

Durchführung erlaubt. Sie ist aber z.B. bei einem Vergleich der Z- und

FMethode zu berücksichtigen. Am geeignetsten für den Bechenaufwand
sind gruppierungsfreie Hilfszahlmethoden, die eine einfache Berechnung
der Eeserve aus den Hilfszahltotalen erlauben. DieHilfszahltotale lassen

sich parallel aufsummieren. Der Menge der zu verwendenden
Hilfszahlen sind indessen Grenzen gesetzt, z.B. durch die Kapazität der

Lochkarten. Aus diesem Grunde sind Hilfszahlen von Vorteil, die auch

für andere Zwecke verwendbar sind. Hier steht nebenher Versicherungssumme

als trivialer Hilfszahl die Prämie an erster Stelle ; sie wird daher
auch in den meisten Methoden verwendet.

212 Der Schaden durch Schätzfehler

Ein wirtschaftlicher, in Geldwert ausdrückbarer Schaden, der dem

Versicherer durch das Einstellen einer falschen Beserve erwächst, lässt

sich wohl kaum in befriedigender Weise angeben. Dies rührt wohl

davon her, dass der Versicherungsbetrieb von Natur aus so eingerichtet
ist, dass Schwankungen sich möglichst gering auswirken.

Aus diesem Grunde lässt sich die Einführung eines hypothetischen
Schadens vertreten, z.B. in der Form einer verallgemeinerten
Fehlerfunktion. Für ein Beispiel verweisen wir auf 43. Er muss um so grösser
werden, je weiter der Schätzwert vom richtigen Wert entfernt ist, was

uns auf folgende Darstellung führt :

A(V, IF)

A^V.W) [V<W]
A2(V) [V TF]

AS(V,W) [V > IF],

wobei A(V,W) ^ 0,
cA, 8A1 8A3L< 0, ->0, 3

Sv 8w 8v
>0,

8AS

8w

(2.1)

<0,

und meistens auch M1(F, V) As (V) Aa(V, 1
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Zu diesem Ansatz ist aber zu bemerken, dass der wahre Reservewert

im Sinne eines Barwertes der zukünftigen Verpflichtungen gar
nicht feststellbar ist, da auch nachträglich nur Mittelwerte über den

Verlauf der Tarifparameter bestimmt werden können. Beschränkt
man sich hingegen auf die klassische Reserveapproximation mit fest

vorgegebenen Tarifparametern, so ist der richtige Reservewert in
diesem Sinne schon zur Zeit der Reserverechnung bestimmt.

213 Gesamtkosten

Die Zusammensetzung der beiden Kostenkomponenten ist trivial,
wenn beide in Geldeinheiten ausgedrückt werden können. Ist dies nun
aber für die zweite Komponente nicht der Fall, so müssen die beiden
Teile vorerst in das richtige Verhältnis zueinander gebracht werden.
Theoretisch möglich, praktisch aber nicht zweckmässig, ist allerdings
die Darstellung durch eine vektorielle Schadenfunktion, deren Minimum

auf Grund von Teilordnungsrelationen bestimmt wird.
Da auch die erste Komponente meistens auf vereinfachenden

Annahmen beruht, wird mit A'orteil diese so transformiert, dass sie zur
zweiten addiert werden kann. Diese Schematisierungen haben zur Folge,
dass sich nur wenige Methoden zuverlässig miteinander vergleichen
lassen; in erster Linie sind es Methoden mit ungefähr demselben
Arbeitsaufwand oder "Methoden einer eng begrenzten Klasse.

22 Informationen

Je schwächer ein Vergleichskriterium ist, um so wichtiger ist es,
dass nur wenige Elemente verglichen werden müssen. Die Unsicherheit
m der Konstruktion einer Schadenfunktion unterstreicht daher die
Bedeutung der Informationen. Diese geben M Anhaltspunkte über das
Verhalten seines Gegners N und verkleinern damit, von M aus, den
Strategienraum von N. Damit wird der maximale Schaden, den M erleiden
kann, durch Reduktion der Schätzfehler-Komponente im allgemeinen
verkleinert. Ohne Schaden kann aber meistens auch M seinen Strategienraum

auf Grund der Informationen verkleinern (siehe 231).

221 Möglichkeiten der Informationsgewinnung

Wir unterscheiden zwischen einmaligen und periodischen
Informationen. Die einmaligen bestehen z.B. in festen Annahmen über die
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Tarifparameter, welche durch die Erfahrungen geliefert werden, und in

allfälligen Gesetzmässigkeiten im Bestand (Altersgrenzen, bestimmte

Versicherungsdauern usw.). Ihre Gewinnung ist in einer Schätzmethode
G (vgl. 132) nicht enthalten. G setzt diese Information voraus und wird

zum Teil gestützt auf diese ausgewählt. Periodische Informationen
beziehen sich auf zeitlich veränderliche Angaben, d. h. in erster Linie auf

die Summenverteilung. Sie werden durch die Methoden g1 ermittelt
und setzen den konkreten Schätzwert Ilr fest.

Die Behandlung der Angaben über Tarifparameter als einmalige

Information stützt sich auf die klassische Berechnungsmethode der

Reserven, welche es gestattet, die optimale Bestimmung der

Rechnungsgrundlagen als Spezialproblem abzutrennen. Diese beruht auf

Angaben über den bisherigen Verlauf bezüglich Grösse und Trend. Als

Beispiel einer spieltheoretisch optimalen Bestimmung von Sterblichkeiten

erwähnen wir [13]. Indem diese Tarifparameter in Wirklichkeit
aber doch zeitlich variabel sind, müssen sie durch periodische
Informationen überprüft werden. Eine nachträgliche Änderung ist allerdings
mit grossem Kostenaufwand verbunden, der nur in Ausnahmefällen,

wenn wirklich grosse Schätzfehler zu erwarten sind, vertretbar ist.

Nach der Abtrennung des Tarifproblems benötigen wir als

Information nur noch Angaben über die Summenverteilung und können nut
entsprechendem Aufwand die Reserve beliebig genau ermitteln. Damit
wird die Einführung einer symbolischen Schadenfunktion für den

Schätzfehler gemäss 212 erleichtert. Neben einer vollständig
konstruierten Summenverteilung und allfälligen Hilfsverteilungen, deren

Auswertung gemäss (1.1) resp. (1.2) grossen Aufwand erfordert,
kommen als Information implizite oder explizite Mittelwerte für die

Parameter in Frage, die wir nach folgenden Prinzipien gewinnen können :

a) Stichproben [18J : Die mittleren Parameter der Summenverteilung
bestimmen sich aus den Reserven von Stichproben, deren optimaler
Umfang sich durch Abwägen des Schätzfehlers und der Kosten

ergibt, im Sinne eines Spezialproblems einer optimalen Methodenwahl.

b) Momente einer Hilfsverteilung : Durch passende Approximation der

Reservefunktion ist eine Hilfsverteilung zu konstruieren, aus

deren Momente sich die mittleren Parameter der Summenverteilung

implizite in der Form eines mittleren Reservefaktors ergeben-



Damit ergeben sich Klassen einfach überblickbarer Methoden.
Als Beispiel zitieren wir die Untersuchungen Bierleins zur F-
Methode [2].

c) Mittelwerte mehrerer Hilfsverteilungen: JedesHilfszahlentotal ergibt
durch Division mit der totalen Versicherungssumme eine mittlere
Hilfszahl mit impliziten mittleren Parametern, gestützt auf welche

sich ein mittlerer Reservefaktor angeben lässt. Diese Methode der

Informationsgewinnung ist die gebräuchlichste.

222 Verarbeitung und Beurteilung der Information

Die Verarbeitung der Information geschieht durch die Methode

g2, die auf Grund der Kostenfunktion ausgewählt wird. Sie ordnet jeder
Information einen konkreten Reservewert W zu, im allgemeinen durch
Bestimmung des mittleren Reservefaktors /*, der den gemäss '221

erhaltenen mittleren Parametern entspricht. Dabei werden Schätzfehler
verursacht, die nicht durchwegs überblickbar sind, und die damit
auch das Auswahlprinzip in Krage stellen. Hier sollte nun folgendes
beachtet werden:

Die Beschränkung der Strategienmenge voniVdurch Informationen
hat im allgemeinen eine Verkleinerung des Intervalls der zulässigen wahren

Reservewerte zur Folge. Jede Information liefert also eine obere

und eine untere Schranke für den wahren Reservewert. Je enger diese

Schranken hegen, um so kleiner wird die Schadenerwartung für M.
M wird daher solche Methoden zur Informationsgewinnung
bevorzugen, die ihm möglichst enge Schranken für den wahren Reservewert
liefern. Dann hat er trotz unsicherer Schadenfunktion eine Garantie,
dass der Schaden in bestimmten Grenzen hegt.

Auf Grund der errechneten Schranken V und V für den wahren
Reservewert werden wir eine Information auch beurteilen. Wir wählen
als Mass den maximalen relativen Fehler, der durch die Wahl des

arithmetischen Mittels der beiden Schranken begangen wird. Dabei
müssen wir uns auf den Näherungswert beziehen, da der richtige Wert
ja nicht bekannt ist. Wrir definieren somit als Standardfehler :

F-F
e T/ m (2.2)
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23 Strategien

Bevor wir die Folgerungen aus den bisherigen Entwicklungen auf
die Strategienwahl ziehen, sind noch zwei technische Begriffe zu
erläutern :

231 Qualifizierte Strategien

M kann seine Strategien nach ihrer Leistungsfähigkeit wie folgt
gliedern: Eine Strategie G1 heisst besser als eine Strategie (l2, wenn sie

unabhängig von at kleinere Auszahlungen garantiert, d.h. wenn A(a> ,0^
< A(at,G2) fur alle to. Eine Strategie G nennen wir eine qualifizierte
Strategie, wenn es keine bessere Strategie gibt (höchstens gleich gute).
Es lässt sich leicht einsehen, dass es genügt, wenn M sich auf die
Anwendung qualifizierter Strategien beschränkt. Indem durch Informationen

die Yergleichbarkeit verschiedener Strategien gefördert wird, wird
damit im allgemeinen auch die Zahl der qualifizierten Strategien von
M verkleinert.

Als Beispiel betrachten wir das reine Schätzproblem, das von der

Kostenfunktion absieht. Als Informationen seien die obere und untere
Schranke des möglichen Beservewertes V gegeben: V < I* < V

Qualifizierte Strategien von M sind nur diejenigen Schätzwerte, welche
innerhalb des vorgegebenen Intervalls liegen, d.h. fur welche gilt:
F W < r.

232 Reine und gemischte Strategien

Reine Strategien liefern einen bestimmten Reservewert resp.
eine bestimmte Methode, während gemischte Strategien Verteilungsfunktionen

über einer endlichen oder unendlichen Zahl von reinen

Strategien liefern. Gemischte Strategien sind bei Spielen von Bedeutung,

die mehrmals durchgeführt werden, weil sie das Verhalten eines

Partners seinem Gegner verschleiern können. Eine Lösung des Spiels
ist oft nur durch gemischte Strategien möglich.

Indem die Schätzung einer Reserve ein einmaliges Problem ist, und
eine Verwendung verschiedener Methoden im Verlaufe der Jahre auch
nicht in Frage kommt, sind Spiele mit reinen optimalen Strategien für
M anzustreben. Anders liegen die Verhältnisse bei N. Hier sind gemischte
optimale Strategien sogar erwünscht, weil N ja kein zielbewusstes
Handeln zugemutet werden kann.
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233 Optimale Strategien

Gestützt auf die Darlegungen dieses Kapitels gehen wir zum
Auffinden einer optimalen Methode zweckmässig wie folgt vor :

Wir betrachten Klassen von Methoden mit ungefähr demselben

Arbeitsaufwand oder mit einem Arbeitsaufwand, der sich leicht
überblicken lässt. Aus diesen wählen wir diejenigen Methoden aus, die die

engsten Schranken liefern und vergleichen sie anschliessend mit den

optimalen Elementen anderer Klassen. Sehen wir vom Arbeitsaufwand
ab, stellen sich damit für eine spiel theoretische Reservebestimmung
zwei Probleme, die Bestimmung von Schranken und die Festlegung
optimaler Mittelwerte bei vorgegebenen Schranken. Zur Lösung dieser

Fragen sollen die beiden folgenden Kapitel beitragen.

3 Abschätzungen mit Hilfe der linearen Programmierung

Die Bestimmung von Schranken für die Reserve bei vorgegebenen
Hilfszahltotalen lässt sich als Problem der linearen Programmierung
darstellen, indem sowohl Hilfszahlen wie Reserve in der Unbekannten,
der Summenverteilung linear sind. Zur praktischen Reserverechnung
wird sich diese Methode zwar kaum eignen, erfordert sie doch auch mit
einem elektronischen Rechengerät einen relativ grossen Zeitaufwand,
wenn eine brauchbare Genauigkeit erreicht werden soll. Hiugegen wirkt
sie klärend in der Beurteilung der Wirksamkeit von Hilfszahlen. Wir
beschränken uns auf die Reserve einer t-Gruppe gemischter Versicherungen;

dies bedeutet gegenüber den Untersuchungen in [1] und [6]
eine Erweiterung in dem Sinne, als sich die Hilfszahltotale nun über 2

freie Parameter erstrecken.

31 Theoretischer Abriss

In diesem Abschnitt stellen wir die Hilfsmittel zusammen, die für
das Verständnis des folgenden erforderlich sind. Für Beweise und nähere
Ausführungen verweisen wir z.B. auf [7, 9, 16].

311 Problemtypen

Eine mögliche Formulierung des Problems der linearen Programmierung

lautet :
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Gesucht werden n nichtnegative Variable, die ein System von m

linearen Gleichungen erfüllen und eine lineare Funktion Zielfunhtion)
maximieren.

d.h. z ^ Cj ijj max resp. z — c' y max, (0.1a)
i

mit V 2/,- Ay b, (3.1b)
1

Dj ^0 y (U 0, (3.1c)

wobei % 1, 2, m-, j 1, 2, m < n.

Verschiedene verwandte Probleme lassen sich auf dieses System wie

folgt zurückführen:

a) Die Zielfunktion soll minimiert werden: 2 min ist äquivalent
mit —z max. Durch Umkehren der Vorzeichen der c - erhalten
wir wiederum das System (3.1).

b) An die Stelle von Gleichungen (3.1b) treten Ungleichungen:
Ungleichungen lassen sich durch die Einfuhrung einer neuen positiven
Unbekannten (Schlupfvariable) in Gleichungen überführen:

ZI aü Vi ^ bi — Z «.* 'Ji + IJn si bi »

i i

Z ao V) ^bi-~ Z — bi '
j 1

mit C»T» 0-

c) Einzelne oder alle Unbekannten können positiv oder negativ sein:
Jede Unbekannte mit freiem Vorzeichen lässt sich als Differenz
zweier positiver Unbekannten darstellen.

312 Sätze über Lösungen

Als zulässige Limmg bezeichnen wir einen Vektor y, der die

Bedingungen (3.1b) und (3.1c) erfüllt, als Basislösung eine zulässige

Lösung mit höchstens m positiven Komponenten, wobei m die Anzahl
der Gleichungen (3.1b) bedeutet. Diese positiven Komponenten der

Lösung nennen wir Basisvariablen. Ist ihre Zahl kleiner als m, heisst

die Lösung degeneriert.
Die Menge der zulässigen Lösungen ist konvex, d.h. mit x und y

ist auch ihre konvexe Kombination ax+(l—a) y [0 A a A 1] eine

zulässige Lösung. Die Eckpunkte der konvexen Menge, d.h. Punkte,
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die sich nicht als konvexe Kombination zweier anderer darstellen lassen,
sind identisch mit den Basislösungen. Das Extremum der Zielfunktion
wird immer in einem Eckpunkt, d.h. durch eine Basislösung angenommen.

Ist die optimale Lösung nicht eindeutig, d.h. wird das Extremum
durch mehrere Basislösungen angenommen, so existieren oo viele

Lösungen, indem jede konvexe Kombination von optimalen Basislösungen
auch optimal ist. Daraus folgt :

a) Falls zulässige Lösungen existieren, d.h. falls das System (3.lb/c)
keinen Widerspruch aufweist, existiert eine optimale Lösung. Sie

kann nichtendlich sein, wenn die Menge der zulässigen Lösungen
nicht beschränkt ist.

b) Zur vollständigen Lösung des Problems genügt es, alle optimalen
Basislösungen zu suchen.

313 Lösungsmethoden

Die gebräuchlichste Lösungsmethode ist die Simplexmethode von
Dantzig, die in einer systematischen Untersuchung aller Basislösungen
besteht. Sie geht aus von einer Basislösung und tauscht schrittweise
eine Basisvariable durch eine neue aus in der Weise, dass

a) die Zielfunktion verbessert wird,

b) keine Variable negativ wird.

Die erste Bedingung bestimmt die neue Basisvariable, die zweite
die aus der Basis ausscheidende Variable. Für die konkrete Auswertung
dieses Prinzips existieren verschiedene Algorithmen, auf die hier nicht
eingegangen werden muss. Einfache Beispiele lassen sich auch graphisch
lösen (vgl. [1, 6]). Diese Methode eignet sich aber in erster Linie für
Überschlagsrechnungen.

314 Geometrische Interpretation

Wir beschränken uns dazu auf das System (3.1). Für die
aufgeführten Varianten ist die Interpretation sinngemäss zu modifizieren.
Nach (3.1 c) liegen die zulässigen Lösungen im m-dimensionalen positiven
Hyperoktanten. Jede Gleichung (3.1b) bestimmt eine (n — l)-dimen-
sionale Ebene. Die Menge der zulässigen Lösungen ist somit der
Durchschnitt von m Hyperebenen mit dem positiven Hyperoktanten, also
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ein (n— m)-dimensionales konvexes Polyeder. Die Zielfunktion liefert
eine Schar paralleler Hyperebenen, von denen diejenige gesucht wird,
welche noch mindestens einen Punkt mit dem Polyeder der zulässigen

Lösungen gemeinsam hat und den grössten Scharparanieter aufweist.
Im allgemeinen wird die extremale Ebene das Polyeder in einem
Eckpunkt berühren; falls aber eine Kante oder eine Fläche des Polyeders
zur Zielfunktion parallel verläuft, erhalten wir co viele Berührungspunkte

und somit oo viele Lösungen.

315 Das Dualproblem

Zu jedem linearen Programm existiert ein duales, welches dasselbe

Extremum liefert. Wir unterscheiden dabei zwischen dem
symmetrischen und dem unsymmetrischen Dualproblem:

a) Symmetrisches Ihtalproblem

Primärproblem

c' y max

Ay b

y > 0

h) Unsymmetrisches Dualprobl

Primärproblem
c' y max

Ay b

Y ^ 0

Das unsymmetrische Dualproblem unterscheidet sich also vom
symmetrischen durch das Auftreten von Gleichungen im Primärproblem
und das freie Vorzeichen der dualen Variabein. Die beiden Probleme
lassen sich mit Hilfe der Transformationsregeln in 311 ineinander
überführen, wenn man beachtet, dass die Gleichung Ay b aus zwei
Ungleichungen A y 5? b und Ay i> b entsteht. Im übrigen ist es natürlich
bedeutungslos, welches der beiden Probleme als primäres resp. duales
bezeichnet wird. Auf dem zentralen Satz über das Dualproblem,
wonach die Extrema von Primär- und Dualproblem sich gleich sind,
beruht die Verwandtschaft der linearen Programmierung mit der
Spieltheorie.

Dualproblem

b' w min

A 'w c

w i> 0

Dualproblem

b' w min

Äw > c
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Die Betrachtung des Dualproblems ist bei vielen Problemen
deshalb von Bedeutung, weil die dualen Yariabeln oft eine ganz konkrete
Deutung zulassen. Daneben bietet die Transformation auf das

Dualproblem gelegentlich auch technische Vorteile, indem die Lösbarkeit
auf elektronischen Bechenanlagen von gewissen Kapazitätsbedingungen
abhängig ist.

32 Anwendung auf die Schätzung von Reserven

321 Problemstellung

Die Reserve einer t- Gruppe gemischter Versicherungen bestimmt
sich zu V tjj, wenn wir mit fj f(x,t,n) tV.^ die Reserve-

faktoren und mit '(/• s(x,t,n) die Versicherungssumme für eine
bestimmte Parameterkombination bezeichnen. Über die Summenverteilung

S(x,n,t) sollen als Information lediglich die Hilfszahltotale
Hi htj ijj (i 1, m) vorliegen. Gesucht sind die Schranken

i_

V und V, innerhalb derer der Reservewert V liegen muss. Wir haben
daher die beiden Summenverteilungen zu bestimmen, welche mit den

gegebenen Hilfszahltotalen verträglich sind und extremale Reserven
ergeben; d.h. wir bestimmen (j 1, n) so, dass

a) Maximale Reserve b) Minimale Reserve

V 2 fj lJi max E 2 E Vi min

2 hij Vi Hi 2 hii Vi Hi (3 2)

Vi ^ 0 Vi ^ 0

Dabei erstreckt sich die Summation von j 1, n über alle

möglichen Kombinationen von x und n.
Falls sämtliche Hilfszahlen positiv sind, was im allgemeinen der

Fall ist, und wir in der Folge voraussetzen wollen, sind sämtliche
Koeffizienten des Systems (3-2) positiv; sowohl Zielfunktion wie
Bedingungsgleichungen stellen (n—l)-dhnensionale Hyperebenen mit
positiven Achsenabschnitten dar. Da die rechten Seiten der Bedingungen,
Ht, auf einer konkreten, uns unbekannten Lösung basieren, ist die

Verträglichkeit des Systems garantiert; indem sämtliche Koeffizienten
positiv sind, sind die Extrema endlich.
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322 Die Beurteilung einzelner Gleichungen

Als Information über die Summenverteilung, d.h. die Variabein y-,
liege lediglich ein Hilfszahlentotal vor, z.B. die totale Versicherungssumme

der ganzen f-Gruppe oder das Prämientotal.

Die Systeme (3.2) reduzieren sich damit auf

^ ^ fi Vi max Ii 2h fj Vi min

Vj ^ 0 Vi ^ 0

Entsprechend den Ausführungen in 312 wird das Optimum durch
eine Basislösung angenommen, die dadurch entsteht, dass eine

einzige Variable von null verschieden angenommen wird. Vit y-
bestimmen sich damit die Extrema wie folgt:

H
h;

V
fx

H, mit
fx

max

Y "'-H,- K
mit

K

fi
h
fi

Massgebend für die Güte einer einzelnen Gleichung ist damit die

Variationsbreite des Koeffizienten ^ Der Standardfehler (2.2)
bestimmt sich zu

1

fx f ji
h, h„
fx
h,

f,<

h."k "/t
und ist von H unabhängig, d.h. derselbe für jede konkrete
Summenverteilung.

Die erhaltene Lösung wollen wir noch geometrisch interpretieren:

Dazu transformieren wir: y. fi
V V

i
hsV
fi

max

H

> 0

womit (3.3) ubergeht in

V — "V v- min (3.4a)

V h;
M, Hr fi

" '

U; > ü

(3.4 b)



(3.4b) stellt eine Hyperebene mit den Aclisenabschnitten H
i

dar, (3.4a) eine Hyperebene mit unter sich gleichen Achsenabschnitten,
deren extreme Lagen so gesucht werden, dass sie mit der Ebene (3.4b)
im positiven Hyperoktanten noch gemeinsame Punkte aufweist, und
dass ihr Scharparameter maximal resp. minimal gemacht wird. Die

extremalen Berührungspunkte der beiden Ebenen sind offenbar die

Achsenpunkte der Ebene (3.4b) mit dem grössten resp. kleinsten
Abstand vom Ursprung.

323 Kombination mehrerer Gleichungen

Jede neue, von den übrigen unabhängige Gleichung verkleinert
das Maximum und vergrössert das Minimum, indem der Kaum der
zulässigen Lösungen durch jede Gleichung um eine Dimension verkleinert
wird. Somit liefert jede neue Hilfszahl brauchbare Informationen, sofern
sie von den übrigen linear unabhängig ist.

Zur Untersuchung der Lösungen transformieren wir das System (3.2)
wie folgt: Wir führen eine zusätzliche Unbekannte ynhl ein, welche
dem Wert der Zielfunktion entspricht. Die neue Zielfunktion enthält
dann nur noch eine Variable und die Bedingungsgleichungen vennehren
sich um die Bestimmungsgleichung für yn+l. Wir erhalten somit:

ijn+1 extr. resp. yn^t extr.

2/,—= 0 KY k (3.5)

1

wobei % 1, m; j 1. n. Die Matrix K entsteht aus der
Matrix \\hij\\ durch Anfügen einer Zeile (f1, ...,/„) und einer Spalte
(—1,0, 0), und k (0, Hlt Hn).

Die Extremallösung hat die Form: (yh, y}^, yXm, 0, 0, ynVX).

Als Basismatrix bezeichnen wir die quadratische Matrix K-, bestehend
aus den zu den Basisvariabein gehörenden Spalten von K. Der Lösungsvektor

bestimmt sich dann zu

Vi K*k- M
Die ersten m Komponenten davon ergeben die gesuchten Basisvaria

beln der Sunnnenverteilung, und die letzte das Extremum.
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Unter Berücksichtigung der Berechnungsregel für die Elemente

r inversen

Verteilung zu

einer inversen Matrix ergeben sich die Unbekannten der Sunimen-

\fh
det !Äu« H1 hu 0

Vxj

und das Extremum

in/., * * ^
h

(-l)'"+3det W

det

{j 1, ..m)
(3.7 a)

Vn+l y*m + i

fh fä-m 0

frlÜ! • 'hXm

frmA) •
}>

mAm

(_l)»-3det h.x
I

(3.7 b)

Dasselbe ergibt sich aus (3.5) durch Anwendung der Cramerschen

Kegel.

Bestimmend für die Güte eines Hilfszahlsystems ist daher die

Variationsbreite des Ausdrucks (3.7b), wobei alle Kombinationen von
m der n Spalten von ]| zu berücksichtigen sind, die positive Werte

/ 71/

für die Variabein ergeben. Es sind deren maximal

Relativ einfach überblickbar sind die Verhältnisse noch im Fall
n 2, d.h. wenn zwei Hilfszahltotale vorliegen:

Zur Vereinfachung setzen wir

h, > ^2) — fr;
> — A B.

Das Maximum werde durch die Basisvariabein ys und yx angenommen,
das Minimum durch y und yv. Nach (3.7b) erhalten wir für das

Maximum

[/« h 0

V

det Ot ax A
I bç bx B

— det «f «2

fr« frj
(axbt — bxas)



oder

und analog

V=A : : +B <M»)
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fx n ft _
fx

w h
4 V B at ax

ax bt h
h b7 ae ax

fv /, fß
_ u

bv b„ aV

-+ B ß V

a b lV f* ß V

K aß av

V A *' " + B / - / (3.8b)

Die Koeffizienten von A und B können positiv oder negativ sein. Sie

entsprechen den dualen Variabein (siehe 326).

324 Zur Wahl von Hilfszahlen

Für die Wahl wirksamer Hilfszahlen sind die Darlegungen in 322

zuständig: Der Quotient soll eine möglichst kleine Variationsbreite
i

aufweisen. So kann man sich z.B. anhand einer Graphik (Fig.2), oder
durch numerische Beispiele (Tab.l) leicht überzeugen, dass eine

relativ gute Hilfszahl ist, <f hingegen eine relativ schlechte.
Aus (3.7b) lässt sich folgern, dass bei der Kombination mehrerer

Hilfszahlen die Abschätzung um so besser wird, je besser die einzelnen
Hilfszahlen abschätzen. Die Verbesserung durch Hinzuziehen einer

h;j
neuen Gleichung ist hingegen relativ gering, wenn die Quotienten —

kj
zweier Gleichungen eine kleine Variationsbreite aufweisen, weil dann
beide Gleichungen ungefähr dieselbe Information liefern.

Bei der Wahl eines Hilfszahlsystems ist zu beachten, dass dasselbe

System für alle Parameter t gute Abschätzungen geben sollte. Indem
die Keservefaktoren / sich mit der Zeit verändern, die Hilfszahlen
aber nicht, verändern sich auch die Variationsbreiten der entsprechenden

Quotienten.
Ein günstiges Hilfszahlsystem ist daher z. B. ein System mit

hi t.Vxn Dieses liefert für t ti eine genaue Reserve und fur die

übrigen t hinreichend enge Schranken, wenn die Intervalle für Q nicht
zu gross gewählt werden. Dabei muss fur ti > n der Reservefaktor

extrapoliert werden, damit in den Quotienten ^ keine Sprungstelle
j 17
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auftritt, welche die Variationsbreite vergrössern würde. Für die

Extrapolation gilt die Formel :

,V 1 + 01, (t>ri).1 x" ' ci - E^xn | i-nJ^x+n

13Vxn1

325 Numerische Beispiele

Zur Illustration unserer Darlegungen wurden einige numerische

Beispiele auf Grund eines konkreten Testhestandes durchgerechnet.
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Die Berechnungen basieren auf einer Gruppe von 239 Policen, die sich
auf 90 (x,n)-Kombinationen aufteilen, und deren bisher verflossene
Laufzeit 113 Jahre beträgt. Sie weisen eine totale Versicherungssumme
von Fr. 1465144 auf. Gestützt auf die Sterbetafel SM 1948/53 mit
i 0,025 ergibt sich eine wahre Reserve von Fr. 608123.

Für die Auswertungen mit Hilfe der linearen Programmierung
wurden sämtliche (x,w)-Kombinationen berücksichtigt, welche den

Bedingungen genügen :

20 ;£ x <i 50, 15 ;£ n <L 40, x + n ^ 70.

Dies ergab Systeme mit 596 Variabein.

Die Berechnungen erfolgten in Vielfachen von Fr. 1000; die
einzugebenden Daten mussten auf 5 signifikante Stellen gerundet werden.

Tabelle 1 gibt eine Übersicht über die Wirksamkeit einzelner Hilfs-
zahlentotale. Als Plilfszahlen wurden Funktionen von x und n
verwendet, die bei bekannten Keserveverfahren zur Anwendung gelangen,
oder die in anderem Zusammenhang in der Versicherungsmathematik
von Bedeutung sind. Neben den beiden Schranken F und V führen
wir ihr arithmetisches Mittel V* (je in 1000.—), den Standardfehler q
nach (2.2) und den relativen Fehler

V*—V
a= —y—> (F= 608,12) (3.9)

auf. Für die Bruttoprämie haben wir die in Vorlesungen verwendete
Formel

[t, °.°4
ücn] 8—:— + 0,002

ü

1,1
lxn\ - 0>95

und für den Makehamparameter c den Wert 1,098 5303 verwendet, der

aus der noch nicht publizierten Dissertation von E.Stricker («Die
Methode der Momente als analytisches Ausgleichsverfahren») stammt.

Die Abschätzung durch eine Kombination mehrerer Hilfszahlen
illustriert Tabelle 2. Dabei wurden nur noch die gebräuchlichsten
Hilfszahlen berücksichtigt. Wie erwartet liefert das Hilfszahlsystem der
Skalarmethode die besten Schranken. Es bietet auch die beste Gewähr,
für andere f-Gruppen gute Schranken zu liefern. Recht gute Resultate
ergeben aber auch die Kombinationen der f-Methode, indem sich die
Hilfszahlen P^, und <? gut ergänzen.
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Tabelle 1: Abschätzungen mit 1 Hilfszahltotal für t — 13

Hilfszahl Schranken Mittel
StandardRelative

hz V V y* fehler Fehler
% 100 o 100(7

i 1234,54 332,79 783,66 57,53 28,87
P -rxn | 643,06 522,03 582,54 10,39 — 4,21

^x« | 672,77 539,34 606,06 11,01 — 0,34

cxt" 9649,11 104,64 4876,88 97,85 701,96
cx 3303,86 134,93 1719,40 92,15 182,74
P-cx1 xn 0 1992,96 96,59 1044,75 90,75 71,80

(txii\ 1996,88 258,79 1127,84 77,05 85,46
vxen 1567,05 377,58 972,32 61,17 59,89
v" 920,06 460,12 690,09 33,32 13,48

-V
o xn\ 616,80 581,74 599,27 2,93 — 1,46

wVml 615,27 598,27 606,77 1,40 -0,22
V -15 xn |

615,13 599,94 607,54 1,25 — 0,10

25 Hr«
[

655,17 485,91 570,54 14,83 -6,18
35^x«

|
758,01 207,23 482,62 57,06 — 20,64

Tabelle 2: Abschätzungen mit m Hilfszahlen für t 13

m V V T"* 100 o 100(7

2 1 P-1 > zxn\ 622,68 541,01 581,84 7,02 -4,32
1 V -x ' 5 xn] 614,19 583,74 598,96 2,54 — 1,51

i y..1 > 15 K
xn 613,70 602,93 608,32 0,89 0,03

P- Vxn > 15 xnI 609,62 602,84 606,23 0,56 — 0,31

3 1 P- V-±> x xn | > 15 xn 609,24 605,52 607,38 0,31 — 0,12
1 P - Cx1 > ± xn > 0 611,55 598,62 605,08 1,07 -0,50
1 P P CX
x> x xn I ' xn u 616,43 594,77 605,60 1,79 — 0,41

4 ^
xn |> 5^xn > 15^xn| 608,57 607,73 608,15 0,07 0,00

1 p rx p _ „X
1 » 1 xn | ' 0 ' •ri7i | 0 611,18 601,95 606,56 0,76 — 0,26

5^xnl> 15^xnj> 25^xn,> 35^xn 608,44 607,73 608,08 0,06 — 0,01



326 Das duale Problem

Zu dem in (3.2) formulierten Primärproblem lauten die dualen

Passungen :

mit i 1, .,m;j 1, n. Alle \7ariabeln können positiv oder

negativ sein.

Bei der Bestimmung der oberen Schranke V geht es also darum,
die Beservefaktoren / so durch Linearkombinationen der Hilfszahlen
7i;- darzustellen, dass immer zu grosse Werte entstehen, aber gleichzeitig

ein aus mittleren Hilfszahlen errechneter mittlerer Beservefaktor
minimal wird. Mit andern Worten: Man sucht den kleinsten der zu

grossen Beservewerte. Eine analoge Interpretation gilt für die Bestimmung

der untern Schranke F.
Zwischen den beiden Formulierungen des Problems besteht ein

prinzipieller Unterschied in der Bedeutung der zulässigen Lösungen. Im
Primärproblein (3.2) liefern die zulässigen Lösungen Beservewerte, die

nicht ausserhalb der Schranken V und V liegen können; im
Dualproblem (3.10) hingegen liefern sie Werte, die nicht innerhalb der
Schranken liegen. Die nicht zulässigen Lösungen aber können in beiden
Problemen sowohl Werte innerhalb wie auch ausserhalb der Schranken

ergeben.
Zur Lösung des Dualproblems gelten ebenfalls die in 31

dargestellten Prinzipien. Zusätzlich beachten wir aber, dass eine optimale
Lösung m der n Ungleichungen zu Gleichungen machen muss, da sämtliche

Koeffizienten positiv sind. Diese m Delationen wollen wir
Basisrelationen nennen. Aus diesem Grunde können wir von einer
Transformation des Ungleichungssystem in ein Gleichungssystem absehen.

Wir erhalten damit für die Lösung

V min V N1 H w= max
i (3.10)

^ fj ff

det

W;
det Ha

wobei angenommen wird, Alt Â2, Am seien die Nummern der
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Basisrelationen, und H- bestehe aus den m zu den Basisrelationen

gehörigen Zeilen von H' —
Für das Extremum entsteht damit der Ausdruck

h hmh
det

1

\vi TT
Z — ix .• ~ ~~

~ det Ha

den wir auch aus (3.7b) durch Entwicklung nach der letzten Spalte
erhalten.

Es lässt sich zeigen, class die Nummern der Basisvariabein im

Primärproblem und der Basisrelationen im Dualproblem dieselben sind.

Spezialisiert auf den Fall n 2 erhalten wir mit den in 323
verwendeten Bezeichnungen die Ausdrücke (3.8).

33 Beziehungen
zu den klassischen Verfahren der Reserverechnung

331 Darstellung der Reserve durch Hilfszahltotale

Aus der dualen Darstellung (3.10) ist ersichtlich, dass die Schranken

der Reserve um so enger liegen müssen, je besser sich die Reservefaktoren

als Funktionen von x und n durch Linearkombinationen der

Hilfszahlen darstellen lassen. Dazu eignen sich z. B. Systeme mit
Hilfszahlen Pxn |

und cx (f-Methode) oder t Vm^ (Skalarmethode). Falls die

Reservefaktoren darstellbar sind als

f{x,n,t) ^gk(t)hk(x,ri),
k

wobei gk von t allein abhängig ist, fallen die beiden Schranken

zusammen, wenn wir die Hilfszahlen hk verwenden. Über die Möglichkeiten
dieser Darstellung gibt [14] Aufschluss.

Wir stellen uns daher die Aufgabe, im Sinne eines Approximationsproblems

die optimale Kombination vorgegebener Hilfszahlen zu
bestimmen. Dazu wählen wir die Approximation nach Tschebyscheff, deren

Prinzip unsern Überlegungen besser angepasst ist. Die Verwandtschaft
der Tschebyscheff-Approximation mit der linearen Programmierung [1 t>J

gestattet uns, die Daten für die Schrankenbestimmung auch für die

Approximation zu verwenden.
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332 Approximation der Reservefaktoren

Wenn wir im Bedingungssystem von (3.10) die Ungleichungen
durch Gleichungen ersetzen, entsteht ein überbestimmtes System, das

durch Ausgleichung zu lösen ist. Aus den dadurch erhaltenen Yariabeln

wi können wir einen mittleren Reservewert W* berechnen zu

W* ^HiWi.
I

Wollen wir nach Tschebyseheff ausgleichen, verlangen wir, dass das

maximale absolute Residuum minimal werde. Es gilt also

hi-wi + ^j f., mit max min.

Daraus folgt das System | min

!=£/, (8.11)
l

l

also ein lineares Programm mit 2 n Gleichungen und m + 1 Unbekannten,

wovon deren m im Vorzeichen frei sind (u>;) und die letzte (f)
automatisch positiv wird. Fassen wir (3.11) als Dualproblem auf, so

lautet das zugehörige Primärproblem

— max

0 (i 1, m)
i (3.12)
V?J.+ VM. 1

i

yj,ui ;> 0.

Es enthält doppelt so viele Unbekannten wie das Schrankenproblem

und ist wie folgt zu interpretieren: Gesucht werden zwei
Summenvert eilungen mit gleichen Hilfszahltotalen und möglichst grosser
Reservedifferenz. Die Bedingung, dass die Variablen zusammen die
Summe 1 ergeben, bedeutet eine Normierung.

Die so erhaltene normierte maximale Reservedifferenz ist gleich
der dualen Variabein |, dem maximalen Residuum der Ausgleichung.
Bezeichnen wir mit S die totale Versicherungssumme, so ist offenbar
IS die maximale Abweichung der wahren Reserve vom Mittelwert W*.
2 |S ist die maximale Schrankendifferenz, die sich ergibt, wenn wir
nur die Grundlagen zu Rate ziehen.
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Wie Tabelle 3 für einige Beispiele belegt, ist die durch Ausgleichung
bestimmte Schrankendifferenz ungefähr das Dreifache der nach 32

errechneten. Dies ist verständlich, da in (3.12) ja nicht verlangt wird,
dass die beiden entsprechenden Hilfszahltotale einen bestimmten Wert
annehmen, sondern nur, dass sie sich gleich sind. Auf die Werte W*
verzichten wir, das sie durchwegs schlecht sind; dies rührt von der

Problemstellung her.

Mit diesen Angaben ist ersichtlich, dass schon aus den Grundlagen
allein wesentliche Anhaltspunkte über die Güte der Hilfszalilen
gewonnen werden können, dass die konkreten Werte der Hilfszahltotale
aber doch einen beträchtlichen Beitrag zur Information liefern.

Tabelle 3: Variationsbreiten nach ITschebyscheff für t 13

S 1465,14

Plilfszahlen

^ij
i

nach (;i. 11)
2 IS V—V

nach (;1.2)

^xn\ 0,0645 189,00 81,67

h P„ <? 0,0106 31,06 12,93

IP- V -> xn\> lby xn\ 0,00409 11,98 3,72

y y y _ y5 xn > 15 xn ' 25 Hm ' 35 xn j
0,000654 1,92 0,71

333 Beurteilung von Reserverechnungsverfahren

Durch Betrachtung der Schranken V und V lassen sich die
klassischen Approximationsverfahren nur zum Teil beurteilen. Die
Schrankendifferenz gibt uns Auskunft über die Zweckmässigkeit der verwendeten

Hilfszahlen, aber keine Garantie, dass der errechnete Reservewert
auch wirklich innerhalb der Schranken liegt.

Wie in 326 erwähnt wurde, liegen zulässige Lösungen des Primär-
problems (3.2) sicher innerhalb der Schranken und zulässige Lösungen
des Dualproblems (3.10) sicher ausserhalb. Daher liegt ein gefundener
Reservewert sicher innerhalb der Schranken, wenn er durch eine

zulässige Lösung des Primärproblems erhalten werden kann, und sicher
ausserhalb der Schranken, wenn eine zulässige Lösung des Dualprobleins
mit demselben Reservewert existiert. Ob der gefundene Reservewert
dann wirklich auf einer zulässigen Lösung basierte oder nicht, ist ohne

Bedeutung.
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4 Bestimmung eines optimalen Mittelwertes
bei vorgegebenen Schranken

41 Darstellung als Spiel über dem Einheitsquadrat

Wir betrachten das reine Schätzproblem zwischen N und M. Die

Menge der reinen Strategien von N sei die durch Schranken V und V

begrenzte Menge der richtigen Reservewerte. Als reine Strategien von M
seien beliebige reelle Schätzwerte W zugelassen. Erleidet M durch die

Wahl von W den Schaden A(V,W) )> 0, so wird er seine optimale
Strategie so wählen, dass

A* A(V*, W*) min max A{V, W).
W V

Dabei kann er sich gemäss 281 auf Schätzwerte beschränken, für welche

gllt : v <; w <: v.
Setzen wir y oc F + (1 — oc) F F + a (7— F),

_ _ - (4.1)
W ßV+ (1-/3)7 V+ß{V~V),

wobei A(V,W) übergeht in A(a.,ß), so bestehen die Mengen der
reinen Strategien für beide Gegner aus Punkten des Einheitsintervalls
0 <) a,/? A) 1, und unser Schätzproblem reduziert sich auf ein Spiel über
dem Einheitsquadrat, dessen Eigenschaften nur noch von der Struktur
der Auszahlungsfunktion abhängig sind. Nach allgemeinen Sätzen der

Spieltheorie existieren bei diesen Spielen sowohl Wert wie optimale
Strategien, sofern A(x,ß) in beiden Variabein stetig ist. Diese optimalen
Strategien werden im allgemeinen gemischte Strategien sein, d. h.

Verteilungsfunktionen über dem Einheitsintervall.
Die Schadenfunktion ist durch (2.1) gegeben. Dabei sind zwei

Typen von besonderer Bedeutung:

a) Lineare Schadenfunktion:

Sie besteht aus zwei Ebenen, die sich über der Diagonalen des

Einheitsquadrats schneiden (Fig. 8). In diesem Fall lässt sich das Spiel auf
ein endliches Spiel mit je zwei reinen Strategien zurückführen (vgl. 42).

b) Konvexe Auszahlungsfunktion:

Unter einer konvexen Auszahlungsfunktion versteht man im all-
82A

gemeinen eine in ß konvexe Funktion, d.h. - - - ^ 0 [9]. Sie liefert
8ß2
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eine reine optimale Strategie für M. Ist die Funktion gleichzeitig konkav

in a, so existiert ein Sattelpunkt, d.h. beide Spieler besitzen reine

optimale Strategien. Ist A(oi,ß) hingegen in beiden Yariabeln konvex,
besteht die optimale Strategie für N in einer geeigneten Mischung der
Extremalwerte a 0 und a 1. Eine solche Funktion wird in Fig. 4

dargestellt und in 46 verwendet.

Für die praktische Lösung von Spielen, wie sie in den folgenden
Abschnitten durchgeführt werden soll, ist es oft vorteilhaft, auf die
Transformation (4.1) zu verzichten, weil so die Auszahlungsfunktion
in der Regel einfacher ist.

42 Schätzwerte bei linearer Auszahlungsfunktion

In ihrer allgemeinsten Form ist die lineare Auszahlungsfunktion
durch folgende vier Punkte bestimmt (Fig. 6):

A(V,V) B1, A(V,V) C1, A(V,V) B2, A(V,V) C2,

wobei Ci A: (i,j 1, 2).

Damit lautet die Schadenfunktion

A(V, W) _
1

t/ [(B.-Bß V + (B1V-B2V)'] (F TO'
V—V

1

V—V [(Cx-Bß F-(L1~B2) W + (B,V— B2F)] (F > TO »
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oder zusammengefasst

A(V,W) (4.2)
1

{max[—(C2—B2) F + (Cg-B,) TF, (C^BJ F-(CX-Bg) TF] + (B.V-B.V)}.

Der "Wert des Spiels ist

inin max A(V, TF) i— {Ä + (BtF— B2V),
w v V — V —

'lit A min max max [- (C2-ß2) V + (Cg-B^ TF, (C^BJ V- (C^-Ba) TF].

421 Lösung als konvexes Spiel

Lineare Auszahlungsfunktionen sind Grenzfälle der konvexen.
Damit lassen sieh auch die Lösungsverfahren der konvexen Spiele hier
anwenden [9].

Wir bilden vorerst für jedes TF das Maximum von Ä bezüglich V
und erhalten damit die obere Enveloppe der Auszahlungen von M
an N. Das Minimum dieser Enveloppe ist gleich dem Wert des Spiels
und liefert die optimale reine Strategie für M.

À min max max [-(C2-D2) V+ (C2-B1)W, (C^Bj) V-(C1-B2)W~\
w v

mmm^\-{C2-B2)V+ {C^-B^W, (C^-B^ F-^-BgJTF].
w

Das Minimum wird erreicht durch

~ (G2 — B2) F + (G2 — -Bi) W (C1 — Bj) F— (C1 — B2) TF,

Woraus
TI. TT.* (Gj—Bi) F— (C2 — B2) V
W TF* — — ?L- (4.3)

(C1 + F2)-(B1+B2)
1 J

Damit wird
(G2— Bx) (G1 — Bj) V — (Ct — B2) (G^BJF

(C1 + Cg) — (B1 + Bg)

und
,* A ,Tr T17,

GjCa — B1B2
A min max A(V, TF)

w v (Gi + Gg) — (7?! + B2)

Die optimale Strategie für N ist eine Linearkombination aus F und
F, da für jedes TF das Maximum von A durch F oder F erreicht wird.
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Durch ein geeignetes Mischungsverfahren sorgt N dafür, dass M keine

kleinere Auszahlung erzielen kann, auch wenn er das Mischungsverhältnis

kennt.

Verwendet N die Mischung aF+ (1 — a) F, so wird, da F 5g W V,

Ä W — (1 — a) (C2-B2)F+ (1-«) (C2—Bl) W,

«[(C1-B1)7+(Ca-Ba)Q-(Ca-Ba)F-T7[«(C1 + Ca-B1-B2)-(B2-5i)]

a ist so zu wählen, dass der "Wert des Spiels unabhängig von der Wahl

von W erreicht wird, d.h. so, dass der Koeffizient von W verschwindet.
Damit wird

C2-Bi Cx-B2
"

(Cx + c2) - (B1 -I- B2)
'

(Fx + C2) - (Bx + B2)
'

Mit diesem Verfahren haben wir allerdings nicht alle Strategien von ili
erhalten, indem dieser bei linearer Auszahlungsfunktion auch gemischte
optimale Strategien besitzt. Da A(V,W) linear ist, gilt

A[V,ßW1+(l-ß)W2-] ßA(V,W1) + (l-ß)A(V,W2). (4.4)

M kann das Optimum daher mit einer geeigneten Mischung von zwei

beliebigen reinen Strategien W1 und W2 erreichen, sofern W1 < W* V W2

mit W* nach (4.13).

422 Lösung als diskretes Spiel

Wegen (4.4) spielt es für die Auszahlung von M an N keine Rolle,
ob ein Spieler einen Mittelwert aus den Extremalwerten F und F
wählt, oder ob er die Extremwerte im entsprechenden Verhältnis
mischt. Deshalb nehmen wir nun an, jeder Spieler besitze nur zwei
reine Strategien F und F, womit wir ein diskretes Spiel mit der

Auszahlungsmatrix

F
M:

F

erhalten, dessen Lösung wir aus Fig. 5 a und 5 b ablesen können (vgl-
z.B. [10]).

F V

Bi Cr

c2
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Sie lautet

a C2 — Bx
für AD r ji '1—a C1—xi2

ß C1-B1furM: i - (72-B/

A

C2 Cl

Bl
b2

A

o<(V-V) O-oO(V-V)
V Optimale Strategie für N

Fig. 5q

c2-bx
{Cx + C2)-(Bx + B2)

'

ÇWh
(Ci + Ca) — (7?! + Sa)

'

A

Cl — C2

Bl B2
A

B(V-V) 0 -PKV-V)

Y Optimale Strategie für M

Fig. 5b

N wählt V und F im Verhältnis «:1 — a. und M im Verhältnis ß:l—ß
Der Wert des Spiels ist wiederum gegeben durch

Ci @2 B1B2

(Cx + B2) — (Bj + B2)

423 Spezialfälle

a Nimmt man an, Vf erleide bei richtiger Schätzung keinen Schaden,

so gilt B1 B2 0, womit a : 1 — a C2:C1 und ß:l — ß CX:C2.

CXC2
Der Wert des Spiels beträgt dann -- -

Lx + C2

b) Ist das Spiel symmetrisch, so gilt Cx C2= C, Bx= B2= B
und damit a:l— a /?:l—ß=l:l. In diesem Fall wählt M das

arithmetische Mittel zwischen den beiden Schranken oder zwei dazu

symmetrische Werte mit gleicher Häufigkeit, und N beide Schranken

B+C C
mit gleicher Häufigkeit. Das Spiel hat den Wert resp. falls
-r-.

2i À
5 0.
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43 Separierbare Spiele

Ein Spiel lieisst separierbar, wenn die Auszahlungsfunktion folgende

Ist insbesondere r;(F) V und s-(W) IF', so handelt es sich um die

Unterklasse der Polynomspiele.
Separierbare Spiele lassen sich auf endliche Spiele zurückführen,

indem N einen Vektor r (r1; ...,rm) und M einen Vektor s so

suchen, class bei gegebener Auszahlungsmatrix A ctUj gilt:

Dabei gehören r und s nicht, wie bei den Matrixspielen, einem Simplex
an, sondern einer bestimmten konvexen Menge, die als konvexe Hülle
der Raumkurve rt(F) resp. s- -s,-(lF) gegeben ist.

Zur Lösung praktischer Beispiele eignet sich für separierbare
Spiele in erster Linie die Fixpunktmethode. Ihre Anwendung ist um so

einfacher, je kleiner die Dimensionen der Strategienräume sind.

Es sei R |r| die Strategienmenge von V7 und S |sj die Strate-
gienmenge von M. U sei die Abbildung von R in S mit s(r) min r' As,
und T die Abbildung von S in R, mit r(s) max r' As. *

r
Die zusammengesetzte Abbildung TU ist eine Abbildung von R in

sich, analog TJT eine Abbildung von A in sich. Die Eixpunkte von TU
in R sind die optimalen Strategien von V, die Fixpunkte von ÜT in S

die optimalen Strategien für dl. Die Existenz von Fixpunkten ist

äquivalent mit der Existenz von optimalen Strategien.
Mit Hilfe dieser Methode betrachten wir im folgenden Spiele, deren

Auszahlungsfunktion eine verallgemeinerte Fehlerfunktion bedeutet
und die Form hat

Gestalt hat:
A(V,W) ^fl..ri(F)S).(lI). (4.5)

max min r'As min max r' As.

431 Die Fixpunktmethode [9]

k —n
k —2
k —l

(n ;> 3) k 0

Ii n (n ^ 1).
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432 Auszahlungsfunktion A (F— TV)2

Das Spiel mit der Auszahlungsfunktion A V, TD) V2 — 2 V W + TD2

ist äquivalent mit einem Spiel mit der Auszahlungsfunktion A(r,s)
r2— 2r1s1 + s2, dessen Strategienräume Parabelsegmente darstellen; die

reinen Strategien bilden den Parabelbogen

jq V resp. Sj TV

r2 V2 s2
W2

V V ^ V F <) TP <; V,

die gemischten Strategien bilden sämtliche konvexen Kombinationen
der reinen Strategien (Fig. 6 a und 6 b). Die Linien gleicher Auszahlung
sind für jeden Spieler Geraden in seinem Diagramm, deren Steigung
durch die Strategie des Gegners bestimmt wird.

V v
Fi g 6a

V V

Fig 6 b

Wir betrachten zuerst die Abbildung U von Ii nach »SY. Jeder
Punkt des Parabelsegments Ii wird in einen Punkt des Parabelastes

von S abgebildet, da das Minimum von A durch grosse und kleine s2

erreicht wird. Wählt N die Strategie r, so haben die Geraden gleicher
Auszahlung in S die Steigung 2/q, und die minimale Auszahlung wird
auf der Tangente an den Parabelast erreicht, welche diesen im Punkt
(si,s2) (G>ri) berührt. Damit werden alle Punkte von Ii mit der

gleichen Abszisse rq in denselben Parabelpunkt von S mit der Abszisse

M i\ abgebildet.
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Für die Abbildung T von S nach Ii gilt: Bei gegebenem s erreicht
A7 eine maximale Auszahlung durch kleine und grosse r2, also auf
Punkten der das Segment abschliessenden Sehne, deren Steigung
F + V beträgt. Die Steigung der Geraden gleicher Auszahlung in B
ist 2s1;- damit werden alle Punkte von S mit Sj < 7 (V+V) auf den

Punkt (V, V2) in R abgebildet, und S'-Punkte mit s1 > 7 (F + F) auf
den iü-Punkt (V, V2). Punkte mit s1 -}2(V+V) schliesslich werden
auf die ganze Sehne abgebildet.

Fixpunkt in Ii ist daher der Sehnenpunkt mit i\ (V + F)
und in S der Parabelpunkt mit s, l (V+V). Dies bedeutet, dass M
als optimale reine Strategie das arithmetische Mittel der beiden Schranken

verwendet, während N eine gemischte optimale Strategie besitzt,
die in einer Mischung der beiden Fxtremalwerte im Verhältnis 1 : 1

besteht. Der Wert des Spiels beträgt

A J(F—F)F

(V-Wf433 Auszahlungsfimktion
V

TP
A(V, W) F-21F+

A(r,s) r1 — '2s1 + r2,s2.

Der Strategienraum Ii ist ein Hyperbelsegment, aufgespannt durch

D - F,
1

r* F '

der Strategienraum S ein Parabelsegment, erzeugt durch

Sj W,

s2 TP2.

Als Fixpunkte kommen in S Parabelpunkte, in R Sehnenpunkte in

Frage, die der Gleichung genügen

u r1 (rj-F-7).FF - '
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2
In S haben die Geraden gleicher Auszahlung die Steigung — und damit

r2
werden die Sehnenpunkte (r1,r2) in den Parabelpunkt

1 FF
s, — ——= abgebildet.1

r2 V+V-rx

In R haben die Linien gleicher Auszahlung die Steigung —5—
S2 Sj

für Parabelpunkte von S, während die Steigung der Sehne - • beträgt.

-S-Punkte mit y/Vy werden daher auf die ganze Sehne von R

abgebildet.

Fixpunkte existieren damit in S auf der Parabel für Sj [/FF
und in R auf der Sehne für rx V+V—[/FF-

M besitzt daher eine reine optimale Strategie im geometrischen
Mittel der beiden Schranken, während N die beiden Extremalwerte
F und F im Verhältnis a:l—a mischen muss mit

V-fVT
a —=—=V — V

Der Wert des Spiels beträgt

A (^-[/F)2.

(V— IF, a

434 Auszahlungsfunktion [ V /

2 w W2
A(V,W) l—v- + -vt,

A(r,s) 1 — 2 r1s1 + r2s2.

Der Strategienraum R ist ein Parabelsegment, erzeugt durch

1

fl= V'
1

r2 *

F2

18



— 264 —

Fixpunkte liegen in S auf dem Parabelbogen, in B auf der Sehne

Sehnenpunkte (>\,r2) werden in S in den Berührungspunkt der Tan-
*) y

gen te mit der Steigung abgebildet, d.h. in den Punkt
*2

rxFF
S-1

% S.y 5« •1 (F+FK-1 2 1

Parabelpunkte aus S werden in R auf die ganze Sehne abgebildet, wenn

2 .+ 2 F + F

«2 «x ~yy
~ 2 FF

Fixpunkt in S ist damit der Parabelpunkt mit sx 7~ und in B
der Sehnenpunkt mit —

r i
a (1—a)

1 F+F FF '

woraus y
a F+F '

Die optimale Strategie für M ist damit das harmonische Mittel aus
den Schranken, während AT die Extremalwerte im Verhältnis F : F
mischt. Der Wert des Spiels beträgt

A-(i-n\V+V I

435 Auszahlungsfunktion Vn(V—W7)2, (n 1)

A(V, W) Fn+2 — 2 Vn+1 W + F" W-,
A(r>s) r3~ 2r2Sl + DV

Während der Strategienraum S derselbe ist wie in den früheren
Beispielen, ist B nun dreidimensional, nämlich die konvexe Hülle der

Kurve TT„
D V",

r2 F"+t,

r3 F"+2.
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Das Spiel bleibt konvex bezüglich W, so dass Fixpunkte in S auf
dem Parabelast hegen und M eine reine optimale Strategie besitzt.
Hingegen ist A bezüglich F nicht mehr durchwegs konvex, so dass die

optimalen Strategien von N nicht mehr durchwegs Mischungen der
Extreme sind.

a) Wir betrachten vorerst die Abbildung von R nach S : Alle
Punkte in R mit r2 o\ werden in den Parabelpunkt s1 c, s2 c2

abgebildet.

b) Für die Abbildung von S nach R muss die Funktion

f(V) Vn+2 — 2 Vn+1 W + V" W2

untersucht werden. Bei vorgegebenem W ist das Maximum über dem
Intervall F <1 V V festzulegen. f(V) besitzt ein relatives Minimum
bei V W (neben dem Trivialfall V 0) und ein relatives Maximum

n —bei V — TI. Ein relatives Maximum ist ferner f(V) und, falls
n + 2

V >
71

W, auch f(V).~ n + 2 —

n __
c) Wir betrachten den Fall F< — W und vergleichen f(V)

' n \ n + 2 b n J

mit / W Setzen wir ihre Differenz null, so bestimmt sich
Wi + 2 /

das kritische W aus

/( " w)-f(V) Wnh*(
U )-2Wn+2(-n \ + Wn+2(-n

\ w + 2 / \n + 2 / \ n + 2 / \ w + 2 /
_7»+2 2F"+1 IF — V"W2 0.

n + 2 _ / n \Wir setzen W - r>V 0 < ri < und erhalten
n \ n + 2 /

(n + 2)2 n[n + 2) n2
rj+ -n2 +

g
^7—

4
=0.

Eine Doppellösung dieser Gleichung ist »7 1. Nach einer Division mit
(rj — l)2 ergibt sich

rf + + 3rjn~2 + ...+nrj— - 0. (4.6)

y sei die (einzige) positive reelle Wurzel dieser Gleichung.
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Es silt dann / n \ _ n + 2 _f "loTF Wenn Tr5- ^\ ft + 2 / ft

n
Unter der Bedingung, dass F ^ - TF erhalten wir damit folgende

— 71 | 2
Abbildung von S nach B:

für W > auf den Punkt V - W,
n n + 2

für W < ^- yV: auf den Punkt V V,
n

n + 2 —für W — yV: auf die Verbindungsgerade dieser zwei Punkte.
n

n —
Dabei ist V <( W für V yV, womit wir die Gültigkeitsgrenze

— n + 2 —
erhalten.

n
ä) Für den zweiten Fall V (+ W vergleichen wir f(V) mit

— n + 2 —

/(F) und erhalten für den kritischen Wert

77»+1 _ ]/« hl _ /Ü7—Fl \/yn vn
W=

1 - PF,. (4.7)
F"_Fn 1 ^

Damit erhalten wir folgende Abbildung:

für W > Wy. auf den Punkt V,

für W < Wy. auf den Punkt V,

für W Wy. auf die Verbindungsgerade der zwei Punkte.

Zur Abgrenzung der Gültigkeit für diesen Fall setzen wir
n —

V — Wx 0 und erhalten mit V X V die Gleichung
— n + 2 —

r+1— nX*~ +nA*—{n + 2)A + n 0.

Diese lässt sich auf die Form (4.6) bringen, wenn man von den

Triviallösungen
' X 1 absieht, und hat somit die Lösung A y. Also gilt für

W W,1 n —
V +: - W wenn V i> y V,
— n + 2 —

womit die Abgrenzung verifiziert ist.
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e) Wir gelangen damit zur Konstruktion der Fixpunkte :

I.Fall: F^ yV:

W* W,
7«+i_7"+i_ (V—V) \!vnV%

y yn

Die Projektion der Sehne zwischen V und V auf die r3-Ebene lautet:

yn-rl J7«+t yn yn _
r2 —_ — r, —=.——— (V— V).* yn yn 1 yn yn \ >

T
Diese Punkte werden abgebildet auf s± — - und somit erhalten wir

Tin Ii einen Fixpunkt mit 1

|/n+i_7„4-i yny»(y_y) j yn+i _yn+i (V—V) J/F"F"
yn_yn yn _ yn

~ ~ fn_yn ~~ ^1 >

,/—— - 1/F" V"—V
d.h. r, yvnvn aF" + (1 —<x)F" mit « -' - - -1 r

1 \ / yn yn

Durch Einsetzen erhalten wir den Wert des Spiels zu

(Wn— \'Vn?
A Vn V" (V—V)2 - _ -—

v

2. Fall: V < yV:
1

* n + 2 _W* - yV.
n

Die Sehne zwischen V und yV (projiziert auf die r3-Ebene) gehorcht
der Gleichung

1 — y S/ 1 — y „t7n+ir2 Fr, /Ff1 -yn 1-7/ J

r2 n + 2 _Den Fixpunkt in R erhalten wir mit —yV, woraus, unter

Berücksichtigung, dass y (4.6) erfüllt, folgt:

2 nviyn
ri a F" + (1 a) / F"

n — (n + 2) y

mit (w + 4) /-1 — n /
(1 — /) [n—(n + 2) y]
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Der Wert des Spiels ist gegeben durch

A F"+2(l-n--2 y).
\ n '

Wir beachten, dass im 2. Fall der Wert von F keine Eolle mehr spielt.

1. Spezialfall: n 1:

A{V,W) F(F-IF)2,
n

_ l
n + 2 3 '

y l>

W1 V+V— \'VV
Falls V ^ \ V, so ist W W1 optimale Strategie für M, und eine

Mischung der Extremalwerte Fund Fim Verhältnis ([/FF—V) : (V—J'FF)

optimal für N. Der Wert des Spiels beträgt FF([/f—\'Vf.
Falls V <1 \V, so ist W fV optimal für M, und eine Mischung
der Werte F und \ V im Verhältnis 1 : 2 optimal für N. Der Wert

F3
des Spiels beträgt -^ ö 16

2. Spezialfall: n 2:

A(v, w) f2(f—wy,

-n- =±
n + 2 s '

<j F-i,
w1 v:+v-\

1 F + 7

Falls F 2s ([/ 2—l) F, so ist W W1 optimal für M, und eine

Mischung von F und F im Verhältnis F : F optimal für N. Der Wert des

/F—F\2
Spiels beträgt F2F2 | --J.

Falls V <1 (J/2—l)"F, so ist W 2 (J/2—l) F optimal für M und

eine Mischung von F und (J2 —l) V im Verhältnis (J/2 — l) : 1 optimal

für N. Der Wert des Spiels ist F4(J/2 —1)'.
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436 Auszahlungsfunktioii V~"(V—W)2, (n 25 3)

a) An Stelle der Funktion /(F) ist nun

g(v) F"m—2 w v~(n~1} + w2 r~"

zu diskutieren, die ein Minimum für V W und ein Maximum für
n

V — W aufweist. Ein relatives Minimum über dem vorgegebenen
n — 2

n — —
Intervall nimmt sie ferner an in F und, falls — W > F, in F.

- n — 2

n -b) Im Falle — IF <1 F erhalten wir das kritische IF aus der

Gleichung
n ^

i n \ i i(n— 2 V 2 (n — ^\n'1 / n — 2\")
"(»-2 r |( + „ )}

_y-(»-2) _|_ 2F~(_1) IF — F^IF2 0

mVund mit m n — 2 sowie IF — transformiert sich diese auf

(4.6) mit der Lösung y.
m + 2 rj

Somit ergibt sich die Abbildung

mV n
für IF < - : auf den Punkt IF,

m + 2 y n—2

m F
für IF > —~ : auf den Punkt F,

m + 2 y ~

7ï% ~V

für IF - : auf die Yerbindungsgerade der beiden Punkte.
m + 2 y

Yi
Dabei ist F + IF wenn F <i yV.

n — 2 ~

c) Im Fall -- IF 25 F bestimmt sich der kritische IF-Wert
n — 2

aus der Gleichung g(V) g(V) zu

FF (F"_1 — V""1) + (F—F) \ VnVn
IF IF, — =V1 4.8)" 2 yn yn v 1
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und damit lautet die Abbildung

für W > W2: auf den Punkt F,

für W < W2 : auf den Punkt V,

für W W2: auf die Verbindungsgerade der zwei Punkte.

n - -Dabei ist W2 S: F wenn F S: yV.
n — 0 -

d) Wir konstruieren daher die Fixpunkte wie folgt:

1. Fall: FS: yV:

Fixpunkt in S:
VV(V"-1 — Fn_1) + (V—V) V" VW W2 -=— ; V

=_2 y« y»

Fixpunkte in R liegen auf der Sehne

VV(V"~l— F""1) V—V
y — — _ y _1_

_
—

2 yn yn 1 1

'yn yn
>

r2
Die Setzung TF2 ergibt

ri
1 a 1 — a

J/yn yn yn yn

womit y» ]/F"Fn
a — — — —

yn _ yn
Der Wert des Spiels beträgt

A (l'F" -fE") •

2. Fall: V ^ t/7:

Fixpunkt in S: n—2
W* F.

ny -
Fixpunkte in R liegen auf der Sehne

7(^-1) t/1"1 (1 y)
72 '

yn— 1
n F""1 (?/" —1)
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r9 n— 2
Aus — V folgt

ny

ri
2 yn

womit

1 a (1-a),/
1 (n'—2)—ny~Vn V" Vn

_ yn[ny—(n — 4)]

[(„_2)— ny](l — y")
'

Wert des Spiels:
A

yn
ny— (n — 2)

ny

437 Zusammenstellung

Mit Ausnahme der drei Entartungsfälle n 0, —1,—2, ist das

Verhältnis zwischen unterer und oberer Schranke für die optimalen
Strategien massgebend. Ist es kleiner als y, so sind sowohl die
optimalen Strategien, wie auch der Wert des Spiels nur von der einen
Schranke abhängig. Die kritische Grösse y bestimmt sich aus einer

algebraischen Gleichung und ist dieselbe für n und — (n 4- 2). Sie

wächst mit wachsendem Betrag von n. Ihre ersten Werte lauten:

n — (n + 2) y

i — 3 0,250
2 —4 0,414
3 —5 0,521
4 — 6 0,596
5 —7 0,651

Ist das Verhältnis zwischen Minimum und Maximum grösser als y,
zu welchen Fällen wir auch die drei Entartungsfälle rechnen können,
besteht die optimale Strategie von M in einem verallgemeinerten
Mittelwert der beiden Schranken, während N die Extremalwerte in
einem bestimmten Verhältnis mischt, wie dies bei konvexen Spielen

allgemein der Fall ist. Die für die Praxis am bedeutsamsten Fälle sind

die drei Entartungsfälle n 0, —1, —2:
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a) n 0 : Auszahlung gleich dem Quadrat des absoluten Fehlers,

optimaler Mittelwert: Arithmetisches Mittel;

b) n —1 : Auszahlung gleich Produkt aus relativem und absolutem
Fehler,
optimaler Mittelwert: Geometrisches Mittel;

c) n —2: Auszahlung gleich dem Quadrat des relativen Fehlers,

optimaler Mittelwert: Harmonisches Mittel.

Damit erhalten wir eine spieltheoretische Deutung dieser Mittelwerte.

Ferner ist zu beachten, dass die Mittelwerte fur gleichen Betrag
von n symmetrisch zum arithmetischen Mittel hegen.

Wenn diese Überlegungen vom theoretischen Standpunkt aus

interessante Zusammenhänge aufdecken, so ist die praktische Verwendbarkeit

doch beschränkt, da unserem Problem bekanntlich folgende
Tatsachen zugrunde liegen :

1. Die Auszahlungsfunktion ist symbolisch.

2. Die Mittelwerte werden so bestimmt, dass das maximale Risiko
minimal wird.

13. Wir nehmen an, N könne jede Strategie mit gleicher Berechtigung
verwenden, d.h. die beiden Schranken seien wirklich die einzige

Information, die M besitzt.

Damit wird wiederum die Bedeutung einer guten Abschätzung
unterstrichen.
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Résumé

L'auteur présente un modèle basé sur la théorie des jeux pour le calcul des
réserves mathématiques et en examine les possibilités d'application pratique. Un
chapitre spécial est consacré à la détermination des limites à l'aide de la
programmation linéaire et un autre au choix optimum des valeurs moyennes qui
répondent à la théorie des jeux, pour des limites préétablies.

Summary

For the calculation of mathematical reserves the author gives a model, based

on the theory of games, and discusses the possibilities of practical application. He
devotes a special chapter to the determination of limits with the aid of linear
programming and another to the optimal choice of mean values within given limits
by use of the theory of games.

Riassunto

L'autore présenta im modello dedotto dalla teoria dei giuochi per il calcolo
di riserve matematiche e ne esamina le possibilité d'applicazione pratica. Egli cle-

dica im capitolo speciale sia alia determinazione dei limiti con 1'aiuto della pro-
grammazione lineare, sia alia scelta ottima, nel senso della teoria dei giuochi, di
valori medi con limiti prescritti.


	Abschätzung von Reserven mit spieltheoretischen Methoden

