Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker
Band: 61 (1961)

Artikel: Abschatzung von Reserven mit spieltheoretischen Methoden
Autor: Baumgartner, U.
DOl: https://doi.org/10.5169/seals-966740

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-966740
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Abschéitzung von Reserven

mit spieltheoretischen Methoden?)

Von U. Baumgartner, Bern

Zusammenfassung

Fiir die Berechnung mathematischer Reserven wird ein spieltheoretisches
Modell aufgestellt, dessen praktische Anwendungsméglichkeiten diskutiert werden.
Je ein spezielles Kapitel ist der Schrankenbestimmung mit Hilfe der linearen
Programmierung und der spieltheoretisch optimalen Wahl von Mittelwerten bei
vorgegebenen Schranken gewidmet.

Einleitung

Der relativ junge Wissenszweig der Unternehmensforschung (Oper-
ations Research) 1st bestrebt, mathematische Prinzipien und Methoden
auf Entscheidungssituationen anzuwenden, wie sie in erster Linie in
nilitdrischen und betriebswirtschaftlichen Problemen auftreten. ks
handelt sich i Prinzip darum, unter Beriicksichtigung vorgegebener
Situationen optimale Dispositionen zu treffen. Diese Aufgabe setzt
zweierlel voraus: Einerseits mussen die Probleme in eine mathematisch
erfassbare Form gebracht werden; dies erreicht man durch die Aut-
stellung geeigneter Modelle. Andererseits miissen Verfahren existieren,
die der besonderen Problemlage gerecht werden. Hier sind in erster
Linie die Spieltheorie und die mathematische Programmierung anzu-
fithren. Uber beide Methoden wurde an dieser Stelle schon berichtet
(6, 12]2).

1) Erweiterte Fassung des anlisslich der Jahresversammlung der Vereinigung
schweizerischer Versicherungsmathematiker am 8.Oktober 1960 gehaltenen Refe-
rates.

?) Zahlen in Klammern [ ] verweisen auf das Literaturverzeichnis.
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Die Anwendung der Spieltheorie auf Probleme der Versicherungs-
mathematik wurde von Bierlein [2, 3] und Nolfi [12, 13] angeregt. Sie
stutzt sich auf den von Wald [17] und Blackwell-Gurshick [4] ein-
gefithrten Begriff des statistischen Spiels, des Spiels «gegen die Natur».
Die lineare Programmierung hat durch Benjamin-Bennet [1] in der
aktuariellen Literatur FKingang gefunden.

Dievorliegenden Darlegungen sollen die Anwendungsmdoglichkeiten
dieser Methoden auf das Problem der Reserverechnung diskutieren.
Dies wird nicht zu neuen Methoden fithren, sondern Gelegenheit bieten,
die bestehenden Methoden von einem andern Gesichtspunkt aus zu
interpretieren und die Charakteristiken der spieltheoretischen Betrach-
tungsweise klarzulegen.

Wir gliedern unsere Ausfithrungen wie folgt: Zuerst werden die
zwei Probleme, die Bestimmung eines optimalen Reservewertes und
die Wahl einer optimalen Methode, in ein spieltheoretisches Modell
gekleidet (1). Daran schliesst sich eine praktische Beurteilung der
wesentlichen Merkmale, Kostenfunktion, Information und Strategien-
menge (2). Die beiden andern Kapitel sind Spezialproblemen gewidinet,
der Abschitzung von Reserven mit Hilfe der linearen Programmie-
rung (3) und der spieltheoretischen Bestimmung eines optimalen Mittel-
wertes bel vorgegebenen Schranken (4). Fir die numerischen Beispiele
(3) stellbte mir Herr Dr. K. Stauber, Chefmathematiker der Fortuna
Lebens-Versicherungs- Gesellschaft in Ztrich einen Testbestand zur
Vertiigung, und Herr Prof. W.Nef, Direktor des Instituts fiir Ange-
wandte Mathematik der Universitit Bern gestattete mir in gross-
ziigigem Ausmass die Benutzung der elektronischen Rechenanlage.
Beiden Herren danke ich fiir ihre Unterstiittzung bestens.

Zur Symbolk: Es bedeuten

A=|al Matrix mit den Elementen a,;.
r=(r,...,r,) Spaltenvektor mit den Elementen r,, ..., 7,,
r’ Zellenvektor (transponierter Vektor zu r),
det ;Ai = det :a”‘ Determinante zur Matrix A,

trl Menge mit den Elementen r,

4 min V,

74 max V.
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1 Reserverechnung als spieltheoretisches Problem

11 Methoden approximativer Reserverechnung

Im Sinne einer Darstellung der wesentlichen Grundsétze beschréin-
ken wir uns auf den Spezialfall der Nettoreserve einer gemischten Ver-
sicherung gegen Jahrespridmie, zahlbar wéhrend der Vertragsdauer.

111 Die genaue Reserve

Als Reservefaktor f = V. bezeichnen wir die technische Reserve
fir einen Vertrag mit der Versicherungssumme 1. Er ist abhéingig von
zwei Gruppen von Parametern:
a) Tarifparameter (Zinsfuss 1, Sterblichkeit {ul).
Ihre genauen Werte sind nicht feststellbar und werden ersetzt
durch fiktive Werte, die im allgemeinen fiir einen gegebenen Be-

stand ein fiir allemal fest angenommen werden.

b) Vertragsparameter (Eintrittsalter xz, Vertragsdauer m, bisherige
Laufzeit t oder Kombinationen dieser Werte).
Sie sind fiir jeden Vertrag bestimmbar und unterteilen sich ihrer-
seits in zeitabhéngige und zeitunabhéngige.

Die Menge der Reservefaktoren bildet die Reservefunktion.

Die indivrduelle Reserve eines Vertrages erhalten wir durch Multi-
plikation der Versicherungssumme mit dem entsprechenden Reserve-
faktor, und die Reserve des Bestandes durch Summation iiber alle indi-
viduellen Reserven. Damit lautet die Reserve eines Bestandes:

V:ff(%',{,u};:c,n,t)dS(a:,n,t). (1.1)

Dabei bedeutet S(x,n,t) die Summenverteilung des Bestandes iiber den
drei Vertragsparametern. Will man mehrere Tarife in einem Bestand
vereinigen, wird auch die Summenverteilung von den Tarifparametern
abhéngig; davon sehen wir in der Folge ab. Die Darstellung als Stieltjes-
Integral wurde lediglich der Ubersichtlichkeit halber gewiihlt.

Wihrend die Reservefunktion nach Wahl des Tarifs festbleibt,
verdndert sich die Summenvertellung von Jahr zu Jahr. Die Bestim-
mung der Reserve zerfillt damit in zwel Aufgaben:

a) Ermittlung der Summenverteilung,
b) Auswertung des Integrals (1.1).
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Praktisch besteht a ) in einer Gruppierung nach den drei Parametern
x, n, t und einer anschliessenden Bildung von Subtotalen, b) im Aus-
multiplizieren der Ausdriicke f(x,n,t) s(z,n,f) und anschliessender
dreifacher Summation.

112 Aufspaltung der Reservefunktion, Hilfszahlen

Fine Aufspaltung der Reservefunktion in zeitabhingige und zeit-
unabhingige Komponenten gestattet eine mehrmalige Verwendung von
Teilresultaten.

Zweckmissig 1st eine Darstellung der Form
f — E g]c(t) hk!
k
worin h;, zeitunabhingig ist und ¢, weniger Parameter als f enthilt.
Ordnen wir jedem Vertrag Hilfszahlen der Form hy = s h, zu, kionnen
wir Hilfsverteillungen H, konstruieren, mit welchen (1.1) iibergeht in

V=7 [ gty dH,. 1.2)

worin (1.1) als Spezialfall (h = 1) enthalten ist.

Die Einfuhrung dieser Hilfszahlen reduziert die notwendigen Grup-
pierungen und vereinfacht die Integration (weniger Multiplikationen).

Als Beispiele zitieren wir die Methoden von Karup und Altenburger
[19]. Bei der ersten ersparen wir mit den Hilfszahlen ki, = 1, hy, = P
eine Gruppierung, und bei der zweiten werden zwei Gruppierungen
unterdriickt durch die Verwendung von drei Hilfszahlen hy = 1,
fiy = Fgrs By = (B4 20

xn | ? +n "

113 Approximation der Reservefunktion

Die Ersetzung der Reservefunktion durch eine Néherungsfunktion
hat den Zweck, die Integralbildung (1.1) zu erleichtern und insbe-
sondere die Bildung von Hilfszahlen zu fordern. Sie ist um so eher be-
rechtigt, als ja auch die «genaue» Reservefunktion auf vereinfachten
Annahmen beruht, und die Tarifparameter nicht genau bekannt sind.

Als Approximationsfunktionen werden hauptsichheh Konstanten,
Polynome, Hyperbeln oder Exponentialfunktionen verwendet. Indem
die Genauigkelt normalerweise nur fiir einen beschrinkten Bereich der



entsprechenden Parameter geniigt, ist 1in allgemeinen eine reduzierte
Gruppierung nach diesen Parametern nicht zu umgehen.

Von besonderer Bedeutung sind Approximationen, die eine Re-
serverechnung nach (1.2) so erlauben, dass ¢, von ¢ allein abhidngig
1st [14]. Sie gestatten eine gruppenfreie Reserverechnung, wenn man als
Zettursprung nicht mehr den Versicherungsbeginn jeder einzelnen Police
annimmt, sondern einen fitr den ganzen Bestand geltenden Bezugspunkt.

Zur Erlduterung sollen die folgenden Beispiele dienen:

a) Gerundete Ewntrittsalter: Werden nur noch durch 5 dividierbare
Jintrittsalter zugelassen, bedeutet dies, dass f beziiglich x fiwr je
5 Alter konstant 1st. Damit wird die Zahl der z-Gruppen reduziert.

b) Methode von Trachtenberg [19]: A und d,, werden fiir je 10 Alter
in z quadratisch angesetzt.

¢) F-Methode von Jecklin [8]: f wird hyperbolisch in ¢ angesetzt.
Diese Approximation gentgt fiir ca. 20 Jahre. Damit hat f zwar
nicht die in 112 geforderte Form, liefert aber durch eine weitere
Approximation fir die Reserve einen Ausdruck, der nur noch von
zwel Hilfszahltotalen und dem (einzigen) Gruppierungsmerkmal ¢
abhingt.

d) Skalarmethode von Pittler [14]: Sie beruht auf der Darstellung
(1.2) mit vier Hilfszahlen, wobei die g, Linerarkombinationen von
Iixponentialfunktionen in ¢ und die Hilfszahlen Reservewerte in
4 festen Zeitpunkten darstellen. Diese Methode benotigt keine
Gruppierung und gestattet eine Zusammenfassung von ca. 40 Be-
oinnjahren.

Weitere Beispiele sind die n-Alter-Methode [19], die @- und
@-Methode Jecklins |§] und die Ko-Methode von Meier [11].

114 Vereinfachungen der Summenverteilung

GGruppierungen lassen sich unterdriicken, indem durch Anwendung
des Mittelwertsatzes auf (1.1) resp. (1.2) fiir gewisse Parameter Mittel-
werte elngesetzt werden, z. B.:

V = f(z*,n* 1 fdsﬁi/;g,’fdek.

Die Bestimmung dieser Mittelwerte stutzt sichmeistens auf eine Approxi-
mation der Reservefunktion und geschieht mittels Hilfszahlen.
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Die klassischen Beispiele dafiir sind die Z-Methode Lidstones und
die t-Methode Jecklins [19]. Beide beruhen auf der Approximation
Gy~ a+ be". Im ersten Fall wird mnerhalb jeder (n—t)-Gruppe das
Schlussalter mit den Hilfszahlen ¢*™" bestimmt, im zweiten innerhalb
jeder t-Gruppe das Anfangsalter x mit der Hilfszahl ¢*. Weitere Bei-
spiele sind die Methode von Péttker [15], die n-Methode Jecklins [8]
und die Methode von Insolera [5].

Wihrend diese Methoden annehmen, die Summenverteilung sei
tiber emnem bestimmten Parameter konstant, kann man auch linearen
Verlauf voraussetzen (Trachtenberg [19]) oder eine Normalverteilung
(Givskov).

12 Statistische Spiele
121 Der Begriff des statistischen Spiels [4, 17]

Der Begriff des statistischen Spiels wird mit Frfolg dort ange-
wendet, wo Werte zu schitzen sind, die von emem stochastischen
Prozess beeinflusst werden. Iis handelt sich dabel um ein Spiel eines
Schitzers M (Mathematiker) gegen einen hypothetischen Gegenspieler
N (Natur). N wihlt den richtigen Wert V, M einen Schitzwert W,
womit, M einen wirtschaftlichen Schaden A (V, W) erleidet, der umn so
ardsser wird, je schlechter die Schiitzung ist. Diesen Schaden sucht M
moglichst klein zu halten. Nehmen wir an, er bestehe in einer Aus-
zahlung von M an N, und N habe ein Interesse daran, diese Auszahlung
maximal zu machen, so gelangen wir zum Modell eines Zwelpersonen-
Nullsummen-Spiels. Die Menge der reinen Strategien von N besteht in
der Menge der moglichen richtigen Werte V', d.h. einem Stick der
positiven reellen Zahlenachse, wihrend die gemischten Strategien durch
Vertellungsfunktionen iiber den maoglichen Werten dargestellt werden.
Analoges gilt fur die Schitzwerte als Strategien von M. Die Aus-
zahlungstunktion ist eine positive reellwertige Funktion itber der Pro-
duktmenge der Strategienrdume. Falls das Spiel losbar ist, erhalten

. . = s & d > T .
wir fir N einen wahren Wert V7 so, dass min A(V, W) = max und fiu
W
M einen Schitzwert W* so, dass max A(V, W) = min. Nach dem
5
Minimaxtheorem gilt dann die Gleichung

A* — max min 4(V, W) = min max 4 (V,W) = AV, W*. (1.8)

v w W v



— 229 —

Den Ausdruck 4™ nennen wir den Wert des Spiels. Er ist, sofern er
existiert, durch Strategienrdume und Auszahlungsfunktion eindeutig
bestimmt.

Dieses Modell ist eigentlich nur vom Standpunkt von M aus rich-
tig. Der Spieler N hingegen interessiert uns wenig, und wir stellen uns
eigentlich auch nicht vor, dass er eine maximale Auszahlung anstrebt.
Zur Klarstellung diene die folgende risikotheoretische Interpretation.

122 Risikotheoretische Interpretation

Hs sei A (V,W) > 0 der Schaden, den M erleidet, indem er einen
Schitzwert W anstelle des richtigen Wertes V' verwendet. z(V) sei die
Wahrscheinlichkeitsdichte, dass 7 der richtice Wert sei.

Als Ristko m-ter Ordnung tur M bezeichnen wir den Ausdruck
R(W) = | [4(V, W) =(V)aV]n. (1.4

M sucht ein moglichst kleines Risiko und wiihlt daher bei vorgegebenem
. rik . _— 8
n den Wert W™ so, dass (1.4) zu etnem Minimum wird.

Mit n = 1 liefert (1.4) das durchschnittliche Risiko; die Bestim-
mung von W* aus dem durchschnittlichen Risiko wird als Bayessche
Losung bezeichnet [4]. Mit wachsendem n werden die Schitzungen
vorsichtiger, indem der Finfluss der Verteilung 2(V), die im allgemeinen
nur approximativ bekannt ist, abnimmt. n = 2 liefert eine Schitzung
aus dem mittleren Risiko, und fiir den Grenzfall n = co erhalten wir

R_(W*) = min R_(W) = min max 4(V,W). (1.5)

W Wy

Dieser Ausdruck entspricht dem Wert des oben konstruierten Spiels
(1.3) und garantiert einen minimalen Schaden i ungiinstigsten Fall.
Mit W = W™ liefert (1.5) eine obere Schranke fiir den Schaden. Die
Bestimmung optimaler Werte auf Grund des maximalen Schadens
anstelle einer Schadenerwartung 1st fir die spieltheoretische Methode
charakteristisch.

123 Die Wahl von Schiitzverfahren

Damit eine spieltheoretische Schitzung von M brauchbare Resul-
tate liefert, muss M das Verhalten von N méglichst genau analysieren.
Sein Verhalten basiert sonst auf maximalen Schiden, die gar nicht
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auftreten konnen. Durch vermehrten Arbeitsaufwand, der eine zweite
Komponente der Kostenfunktion zur Folge hat, muss sich M Infor-
mationen iiber das Verhalten von N verschaffen. Dies wird durch
folgende Annahme ermoglicht: Es existiert a priori eine Verteilung der
richtigen Werte 77 mit bestimmten, M unbekannten Parametern, anf
Grund welcher N den richtigen Wert V7 mittels eines stochastischen
Prozesses herausgreift. M verschaftt sich Angaben iiber diese Parameter
z.B. durch Experimente (Stichproben, physikalische Experimente usw.).

Das in 121 entwickelte Modell verfeinert sich damit wie folgt:
N wihlt die Parameter w,,m,, ..., ®,, aus denen sich V' mittels eines
stochastischen Prozesses bestimmt. M gewinnt durch ein Experiment
die Information J = J(w,, ...,®,) und beriicksichtigt bei der Wahl

ok - . . s .
von W™ nur noch diejenigen moglichen Werte V = V(w,, ..., o),
fir welche gilt: J(wy, ..., 0,) = J.

Der Informationsgewinnung werden durch ihre Kosten Grenzen
gesetzt; der Verbesserung des Schatzwertes steht der vergrosserte
Arbeitsaufwand gegeniiber. Dem eigentlichen Schitzproblem ist daher
das Problem einer optimalen Methode ubergeordnet: Was fir eine
Methode soll M wihlen, um seinen Schaden, bestehend aus Arbeits-
kosten und wirtschaftlichen Folgen einer falschen Schitzung, minimal
zu halten ?

13 Spieltheoretisches Modell fiir die Reserverechnung

Wir gehen aus von der in 111 besprochenen Darstellung der Reserve
(1.1). Fine Strategie von N besteht in einem Satz @ = (o, ...,®,)
von Parametern, welche die Reservefunktion und die Summenverteilung
bestimmen. Jedem Vektor e ist genaun ein Punkt der positiven reellen
Zahlenachse als wahre Reserve zugeordnet. Damit wird in diesem
speziellen Fall der stochastische Prozess ausgeschaltet.

Fir M ergeben sich gemiss 123 die Probleme des optimalen Schitz-
wertes und der optimalen Methode in folgender Form:

131 Optimaler Schitzwert

Die Strategienmenge von M ist primir die Menge der Schitzwerte
W, eine kontinuierliche oder diskrete Menge von Punkten der positiven
reellen Zahlenachse, je nachdem beliebige Schiitzwerte oder nur ganzeé
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Vielfache einer Werteinheit zugelassen sind. Die Wahl des optimalen
Schitzwertes W™ stiitzt sich auf Experimente, welche jeder Strategie @
von N eine Information.J(m) zuordnen, die selbst aus mehreren Kompo-
nenten bestehen kann. Damit besteht die Wahl eines Schitzwertes im
Prinzip in einer Vorschrift, die jeder Information .J einen Schétzwert
W* zuordnet.

132 Optimale Methoden

Jede Strategie von M ist ein Paar von Methoden G = (gy,¢s).
Die erste Komponente ¢, liefert fiir jedes @ eine Information J(g,,®).
gy ordnet jeder Information J einen Wert W™ der positiven reellen
Zahlenachse zu. Die Schadenfunktion setzt sich aus zwei Komponenten
zusammen, von denen die erste den Arbeitsaufwand beriicksichtigt und
1m allgemeinen nur von der verwendeten Methode abhéingig ist, withrend
die zweite den Schaden aus der Fehlschdtzung beriicksichtigt:

A = AV(g,,g,) + AV, W) = ALG) + AN (w,G).

Schematisch stellt sich der Spielverlauf wie folgt dar:

N: © >V
n
{3}
91 J
M. o > W
6 92
Fig.1

Ohne Beriicksichtigung der Schadenkomponente 4Y(G) erhalten
wir das Problem des optimalen Schiatzwertes (131).

Zur Erlduterung fithren wir noch zwei Beispiele fir Strategien
von M an:

a) Methode von Karup: Informationen liefern die Vergangenheit (Er-
fahrungen tiber Tarifparameter) und Gruppierungen mit Summen-
und Priamientotalen. Die zweite Information erfasst die Summen-
verteillung genau. Schitzfehler werden nur durch Tarifparameter
verursacht. Die Methode g, entspricht der bekannten Formel:

W = NN [ s(z,m)—dgplzm)] mit 2 = z+t, m=mn—t,

2m)|
z m

wobei s das Summentotal einer Gruppe bedeutet und p das zu-
gehorige Pramientotal.
16
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b) F-Methode: Informationen liefern die Erfahrung (Hilfszahlen) und
die Bildung der Hilfszahltotale in ¢-Gruppen. Die Methode g5
besteht in der Formel

wo (¢ und H die Hilfszahltotale bedeuten.

2 Uberlegungen zur praktischen Anwendung

Ein Spiel ist bestimmt durch die Kostenfunktion und die Strate-
gienrdume, die ihrerseits durch Informationen beeinflusst werden. Die
Anwendung eines spieltheoretischen Modells auf einen konkreten Fall
erfordert daher eine Untersuchung dieser charakteristischen Begritfe.
Ifir die Reserve gelten die in 11 getroffenen Kinschrinkungen. Theore-
tische Grundlagen finden sich in den Arbeiten von Wald [17], Blackwell-
Gurshick | 4] und Bierlein [2].

21 Die Kostenfunktion

Die Anwendbarkeit des spieltheoretischen Modells ist hauptsichlich
von der Kostenfunktion abhingig. lhre konkrete Form entscheidet
iber die Losbarkeit des Problems, und von ihrem sinnvollen Ansatz
hingt die Aussagekraft der Losung ab. In der Tat liegen die Schwierig-
keiten der Umsetzung des skizzierten Modells auf einen konkreten Fall
hauptséchlich hier begriindet.

Die Kostenfunktion zerfillt wie erwihnt in die Komponenten fir
den Arbettsaufwand und den Schaden, der durch emen Schatzfehler
verursacht wird.

211 Der Arbeitsaufwand

Die Kosten fiir den Arbeitsaufwand lassen sich relativ einfach
wertmassig fassen. Sie setzen sich zusammen aus einem Teil der Ge-
hilter, den Kosten fiir Maschinenbeanspruchung, Materialverbrauch
usw. Die Beschatfung brauchbarer Unterlagen erfordert indessen neben
einem genauen Studium der einbezogenen Methoden vor allem eine
eingehende Analyse des Versichertenbestandes und der Organisation
des Betriebes. Die Struktur des Versichertenbestandes kann gewisse
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Methoden bevorzugen und andere verbieten. Bei der Betriebsorgani-
sation 18t die optimale Verwendung der verfiigbaren Mittel (Personal,
Maschinen, technische Grundlagen, Statistiken usw.) zu beriicksich-
tigen. Auch die Frage, was fur Arbeiten parallel zur Reserverechnung
ausgefithrt werden kénnen oder miissen, ist von entscheidender Be-
deutung. Derart zeitraubende und entsprechend kostspielige Unter-
suchungen lohnen sich vielleicht in Grossbetrieben. Indem sich anderer-
seits allgemeine Angaben iiber den Arbeitsaufwand nur in geringem
Masgse geben lassen, sind der praktischen Anwendbarkeit des Modells
Grenzen gesetzt: Im allgemeinen werden sich nur Teilprobleme 16sen
lassen, indem verwandte Methoden, deren Unterschied im Arbeits-
aufwand leicht zu uberblicken 1st, in die Untersuchung embezogen
werden.

In diesen Smne wollen wir einige charakteristische Gesichts-
punkte hervorheben. Dabei basieren wir im wesentlichen auf der spe-
ziellen, heute aber vielfach zutreffenden Annahme, eine Lochkarten-
anlage sel vorhanden, nicht aber ein grosseres elektronisches Rechen-
gerit, und beriicksichtigen in erster Linie Methoden, die sich teillweise
automatisch durchfithren lassen.

Wir unterscheiden zwischen a ) periodischen Arbeiten, wie Summen-
bildungen, Multiplikationen mit technischen Werten, die mit Vorteil
automatisch durchgefithrt werden, sobald sie grésseren Umfang an-
hehmen, b) Arbeiten, die einmal fiir jede Police durchzutiithren sind, wie
Hilfszahlbestinmungen, und die im allgemeinen zweckmissig von Hand
erledigt werden, und schliesshich ¢) Arbeiten, die nur einmal fiir den
ganzen Bestand auszufithren sind, wie die Erstellung von Tabellen-
werken, und fir die sich meistens ein Auftrag an ein Rechenzentrum
mit Elektronenrechner lohnt.

Folgende Operationstypen kommen hauptsidchlich vor: Addition/
Subtraktion, Multiplikation/Division, Lesen von Tabellen und evtl.
Interpolation. Die Addition/Subtraktion benitigt den geringsten Zeit-
aufwand und ldsst sich gut automasisch durchfithren. Multiplikation
und Division erfordern ein Mehrfaches an Zeit und lassen sich nur
bedingt automatisch durchfithren. Das Ablesen von Tabellen ist relativ
zeitraubend, sobald die Tabellen grésseren Umfang annehmen (2 oder
3 Argumente). Dies gilt noch vermehrt bei den Interpolationen. Beide
Operationen sind im allgemeinen nur auf Elektronenrechnern auto-
Mmatisch durchfahrbar.



. 234 —

Gestiitzt auf diese Uberlegungen folgern wir — vom erwihnten
Standpunkt aus —, dass Gruppierungen relativ unvorteilhaft sind, weil
sie umfangreiche Tabellenwerke und viele Multiplikationen bei den
periodischen Arbeiten erfordern. Die Zahl der Multiplikationen wichst
exponentiell mit der Anzahl der Gruppierungsargumente. Die Gruppie-
rungsarbeit selbst ist von geringer Bedeutung, da sie ja nur fur das
Argument n-t periodisch vorzunehmen ist und eine automatische
Durchfithrung erlaubt. Sie ist aber z.B. bei einem Vergleich der Z- und
t-Methode zu beriicksichtigen. Am geeignetsten fiir den Rechenaufwand
sind gruppierungsfreie Hilfszahlmethoden, die eine einfache Berechnung
der Reserve aus den Hilfszahltotalen erlauben. Die Hilfszahltotale lassen
sich parallel aufsummieren. Der Menge der zu verwendenden Hilfs-
zahlen sind indessen Grenzen gesetzt, z.B. durch die Kapazitit der
Lochkarten. Aus diesem Grunde sind Hilfszahlen von Vorteil, die auch
fiir andere Zwecke verwendbar sind. Hier steht neben der Versicherungs-
summe als trivialer Hilfszahl die Pramie an erster Stelle; sie wird daher
auch in den meisten Methoden verwendet.

212 Der Schaden durch Schiatzfehler

Kin wirtschaftlicher, in Geldwert ausdruckbarer Schaden, der dem
Versicherer durch das Einstellen einer falschen Reserve erwichst, lasst
sich wohl kaum in befriedigender Weise angeben. Dies rithrt wohl
davon her, dass der Versicherungsbetrieb von Natur aus so eingerichtet
18t, dass Schwankungen sich moglichst gering auswirken.

Aus diesem Grunde lisst sich die Einfithrung eines hypothetischen
Schadens vertreten, z. B. in der Form einer verallgemeinerten Fehler-
funktion. Fir ein Beispiel verweisen wir auf 43. Er muss um so griosser
werden, je weiter der Schitzwert vom richtigen Wert entfernt ist, was
uns auf folgende Darstellung fithrt:

J AV, W) [V < W]
A(V, W) = ¢ A5(V) [V =W] (2.1)
A3(]77 '”') I_V > I’I'J )
, o4, 04, 04, 0A,
wober A(V, W) =0, 2 B, —— 31, s, — a0
ov ow ov ow

und meistens auch A, (V,V) = 4, (V) = 45(V, V)
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7Zu diesem Ansatz ist aber zu bemerken, dass der wahre Reserve-
wert im Sinne eines Barwertes der zukiinftigen Verpflichtungen gar
nicht feststellbar ist, da auch nachtrdglich nur Mittelwerte iiber den
Verlauf der Tarifparameter bestimmt werden konnen. Beschrinkt
man sich hingegen auf die klassische Reserveapproximation mit fest
vorgegebenen Tarifparametern, so ist der richtige Reservewert in
diesem Sinne schon zur Zeit der Reserverechnung bestimmt.

213 Gesamtkosten

Die Zusammensetzung der beiden Kostenkomponenten ist trivial,
wenn beide in Geldeinheiten aunsgedrickt werden kénnen. Ist dies nun
aber fiir die zweite Komponente nicht der Fall, so miissen die beiden
Teile vorerst in das richtige Verhiltnis zueinander gebracht werden.
Theoretisch maéglich, praktisch aber nicht zweckmiissig, ist allerdings
die Darstellung durch eine vektorielle Schadenfunktion, deren Mini-
mum auf Grund von Teillordnungsrelationen bestimmt wird.

Da auch die erste Komponente meistens auf vereinfachenden An-
Nahmen beruht, wird mit Vorteil diese so transformiert, dass sie zur
zweiten addiert werden kann. Diese Schematisierungen haben zur Folge,
dass sich nur wenige Methoden zuverlissic miteinander vergleichen
lassen; in erster Linie sind es Methoden mit ungefihr demselben
Arbeitsaufwand odcr Methoden einer eng begrenzten Klasse.

22 Informationen

Je schwicher ein Vergleichskriterium ist, um so wichtiger ist es,
dass nur wenige Elemente verglichen werden miissen. Die Unsicherheit
i der Konstruktion einer Schadenfunktion unterstreicht daher die
Bedeutung der Informationen. Diese geben M Anhaltspunkte iiber das
Verhalten seines Gegners N und verkleinern damit, von M aus, den
Strategienranm von N. Damit wird dermaximale Schaden, den M erleiden
kann, durch Reduktion der Schitzfeliler-Komponente im allgemeinen
verkleinert. Ohne Schaden kann aber meistens auch M seinen Strategien-
raum auf Grund der Informationen verklemnern (siehe 231).

221 Méoglichkeiten der Informationsgewinnung

Wir unterscheiden zwischen einmaligen und periodischen Infor-
Mationen. Die einmaligen bestehen z.B. in festen Annahmen iiber die
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Tarifparameter, welche durch die Erfahrungen geliefert werden, und in
allfillicen Gesetzmissigkeiten im Bestand (Altersgrenzen, bestimmte
Versicherungsdauern usw.). Ihre Gewinnung ist in einer Schiitzmethode
G (vgl. 182) nicht enthalten. G setzt diese Information voraus und wird
zum Teil gestiitzt auf diese ausgewihlt. Periodische Informationen be-
ziehen sich auf zeitlich veriinderliche Angaben, d.h. in erster Linie auf
die Summenverteilung. Sie werden durch die Methoden ¢, ermittelt
und setzen den konkreten Schitzwert W fest.

Die Behandlung der Angaben iiber Tarifparameter als einmalige
Information stiitzt sich auf die klassische Berechnungsinethode der
Reserven, welche es gestattet, die optimale Bestimmung der Rech-
nungsgrundlagen als Spezialproblem abzutrennen. Diese beruht auf
Angaben iiber den bisherigen Verlauf beziiglich Grosse und Trend. Als
Beispiel einer spieltheoretisch optimalen Bestimmung von Sterblich-
keiten erwithnen wir [13]. Indem diese Tarifparameter in Wirklichkel
aber doch zeitlich variabel sind, miussen sie durch periodische Infor-
mationen iiberpriift werden. Eine nachtrigliche Anderung ist allerdings
mit grossem Kostenaufwand verbunden, der nur in Ausnahmefillen,
wenn wirklich grosse Schitzfehler zu erwarten sind, vertretbar ist.

Nach der Abtrennung des Tarifproblems bendtigen wir als Infor-
mation nur noch Angaben iiber die Suminenverteilung und kénnen mit
entsprechendem Aufwand die Reserve beliebig genau ermitteln. Damit
wird die Einfithrung einer symbolischen Schadenfunktion fur den
Schitzfehler gemiiss 212 erleichtert. Neben einer vollstindig kon-
struterten Summenverteilung und alltilligen Hilfsverteillungen, deren
Auswertung gemdss (1.1) resp. (1.2) grossen Aufwand erfordert,
kommen als Information implizite oder explizite Mittelwerte fir die
Parameter in Frage, die wir nach folgenden Prinzipien gewinnen konnen:

a) Stichproben [18]: Die mittleren Parameter der Summenverteilung
bestimmen sich aus den Reserven von Stichproben, deren optimaler
Umfang sich durch Abwigen des Schitzfehlers und der Kosten
ergibt, im Sinne eines Spezialproblems einer optimalen Methoden-
wahl.

b) Momente einer Hilfsverteilung: Durch passende Approximation der
Reservefunktion 1st eine Hilfsverteilung zu konstruieren, aus
deren Momente sich die mittleren Parameter der Summenvertei-
lung implizite in der Form eines mittleren Reservefaktors ergeben.
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Damit ergeben sich Klassen einfach iiberblickbarer Methoden.
Als Beispiel zitieren wir die Untersuchungen Dierleins zur F-
Methode [2].

¢) Mattelwerte mehrerer Hilfsverterlungen: Jedes Hilfszahlentotal ergibt
durch Division mit der totalen Versicherungssumme eine mittlere
Hilfszahl mit impliziten mittleren Parametern, gestiitzt auf welche
sich ein mittlerer Reservefaktor angeben lisst. Diese Methode der
Informationsgewinnung ist die gebrduchhchste.

222 Verarbeitung und Beurteilung der Information

Die Verarbeitung der Information geschieht durch die Methode
95, die auf Grund der Kostenfunktion ausgewihlt wird. Sie ordnet jeder
Information einen konkreten Reservewert W zu, im alleemeinen durch
Bestimmung des mittleren Reservefaktors [, der den gemiiss 221 er-
haltenen mittleren Parametern entspricht. Dabel werden Schitzfehler
verursacht, die nicht durchwegs tberblickbar sind, und die damit
auch das Auswahlprinzip in Frage stellen. Hier sollte nun folgendes
beachtet werden:

Die Beschrinkung der Strategienmenge von N durch Informationen
hat im allgemeinen eine Verkleinerung des Intervalls der zulissigen wah-
ren Reservewerte zur Folge. Jede Information liefert also eine obere
und eine untere Schranke fir den wahren Reservewert. Je enger diese
Schranken liegen, um so kleiner wird die Schadenerwartung fiir M.
M wird daher solche Methoden zur Informationsgewinnung bevor-
zugen, die ihm moglichst enge Schranken fiir den wahren Reservewert
liefern. Dann hat er trotz unsicherer Schadenfunktion eine Garantie,
dass der Schaden in bestimmten Grenzen liegt.

Auf Grund der errechneten Schranken V und V fir den wahren
Reservewert werden wir eine Information auch beurteilen. Wir wiihlen
als Mass den maximalen relativen Fehler, der durch die Wahl des
arithmetischen Mittels der beiden Schranken begangen wird. Dabei
miissen wir uns auf den Niherungswert beziehen, da der richtige Wert
Ja nicht bekannt ist. Wir definieren somit als Standardfehler:

Py
0 = T/}J‘_"Z 4
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23 Strategien

Bevor wir die Folgerungen aus den bisherigen Entwicklungen auf
die Strategienwahl ziehen, sind noch zwel technische Begritfe zu er-
liutern:

231 Qualifizierte Strategien

M kann seine Strategien nach ihrer Leistungstihigkeit wie folgt
aliedern: Fine Strategie (7, heisst besser als eine Strategie (7,, wenn sle
unabhingig von @ kleinere Auszahlungen garantiert, d.h. wenn 4 (e ,(;)
< 4 (w,0,) fir alle @. Eine Strategie G nennen wir eine qualifizierte
Strategie, wenn es keine bessere Strategie gibt (hiochstens gleich gute).
Es lésst sich leicht einsehen, dass es geniigt, wenn M sich auf die An-
wendung qualifizierter Strategien beschrinkt. Indem durch Informatio-
nen die Vergleichbarkeit verschiedener Strategien gefordert wird, wird
damit 1m allcemeinen auch die Zahl der qualifizierten Strategien von
M verkleinert.

Als Beispiel betrachten wir das reine Schitzproblem, das von der
Kostenfunktion absieht. Als Informationen seien die obere und untere
Schranke des moglichen Reservewertes 7 gegeben: V <<V = V.
Qualifizierte Strategien von M sind nur diejenigen Schitzwerte, welche
innerhalb des vorgegebenen Intervalls liegen, d.h. fur welche gilt:

V=W<T.

232 Reine und gemischte Strategien

Reine Strategien liefern einen bestimmten Reservewert resp.
eine bestimmte Methode, wihrend gemischte Strategien Verteilungs-
funktionen iiber einer endlichen oder unendlichen Zahl von reinen
Strategien liefern. Gemischte Strategien sind bei Spielen von Bedeu-
tung, die mehrmals durchgefithrt werden, weil sie das Verhalten eines
Partners seinem Gegner verschleiern kénnen. Hine Losung des Spiels
18t oft nur durch gemischte Strategien moglich.

Indem die Schitzung einer Reserve ein einmaliges Problem ist, und
eine Verwendung verschiedener Methoden im Verlaufe der Jahre auch
nicht in Frage kommt, sind Spiele mit reinen optimalen Strategien fiir
M anzustreben. Anders liegen die Verhéltnisse bei N. Hier sind gemischte
optimale Strategien sogar erwiinscht, weil N ja kein zielbewusstes
Handeln zugemutet werden kann.
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233 Optimale Strategien

Gestiitzt auf die Darlegungen dieses Kapitels gehen wir zum Auf-
finden einer optimalen Methode zweckméssig wie folgt vor:

Wir betrachten Klassen von Methoden mit ungefihr demselben
Arbeitsaufwand oder mit einem Arbeitsaufwand, der sich leicht iiber-
blicken lisst. Aus diesen wihlen wir diejenigen Methoden aus, die die
engsten Schranken liefern und vergleichen sie anschliessend mit den
optimalen Elementen anderer Klassen. Sehen wir vom Arbeitsaufwand
ab, stellen sich damit fiir eine spieltheoretische Reservebestimmung
zwei Probleme, die Bestimmung von Schranken und die Festlegung
optimaler Mittelwerte bel vorgegebenen Schranken. Zur Losung dieser
Fragen sollen die beiden folgenden Kapitel beitragen.

3 Abschitzungen mit Hilfe der linearen Programmierung

Die Bestimmung von Schranken fiir die Reserve bei vorgegebenen
Hilfszahltotalen lisst sich als Problem der linearen Programmierung
darstellen, indem sowohl Hilfszahlen wie Reserve in der Unbekannten,
der Summenverteillung linear sind. Zur praktischen Reserverechnung
wird sich diese Methode zwar kaum eignen, erfordert sie doch auch mit
einem elektronischen Rechengeriit einen relativ grossen Zeitaufwand,
wenn eine brauchbare Genauigkeit erreicht werden soll. Hingegen wirkt
sie klirend in der Beurteillung der Wirksamkeit von Hilfszahlen. Wir
beschrinken uns auf die Reserve einer ¢-Gruppe gemischter Versiche-
rungen; dies bedeutet gegeniiber den Untersuchungen in [1] und [6]
elne Frweiterung in dem Sinne, als sich die Hilfszahltotale nun iiber 2
freie Parameter erstrecken.

31 Theoretischer Abriss

In diesem Abschnitt stellen wir die Hilfsmittel zusammen, die fiir
das Verstdndnis des folgenden erforderlich sind. Fiir Beweise und nihere
Ausfiithrungen verweisen wir z. B. auf [7, 9, 16].

311 Problemtypen

Eine mogliche Formulierung des Problems der linearen Program-
Iierung lautet:
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Gesucht werden n nichtnegative Variable, die ein System von m
linearen Gleichungen erfiillen und eine lineare Funktion (Zielfunktion)
mazymaeren.

d.h. 2 = _\: 6; f; = max  resp. z = ¢y = max, (3.1a)
j

Illitl E CL” y?- — b‘i Ay = b, (3.].1))
]

y; = 0 y =0, (3.1¢)

wobeli 1 =1,2,...,m;1=1,2,...,m; m<n.

Verschiedene verwandte Probleme lassen sich auf dieses System wie
folet zurtckfithren:
(o)

a) Die Zielfunktion soll minimiert werden: z = min ist dquivalent
mit — 2z = max. Durch Umkehren der Vorzeichen der ¢; erhalten
wir wiederum das System (3.1).

b) An die Stelle von Gleichungen (3.1b) treten Ungleichungen: Un-
gleichungen lassen sich durch die Einfuhrung einer neuen positiven

Unbekannten (Schlupfvariable) in Gleichungen tibertithren:
Bl Bl \ I
> Gy Yy = b; = ,\_. @i Ui + Yupi = by,

]
.

j j
e 2. > = ‘ = —
,\_ i Y; = by —~ _Z Wij Yi—Ynri = b;,
j j

mit ¢ .. =0,

n+1
¢) Binzelne oder alle Unbekannten konnen positie oder negativ sein:
Jede Unbekannte mit freitem Vorzeichen ldsst sich als Differenz
zweler positiver Unbekannten darstellen.

312 Sitze iiber Losungen

Als zulissige Losung bezeichnen wir einen Vektor y, der die Be-
dingungen (3.1b) und (3.1¢) erfillt, als Basislisung eine zulissige
Losung mit hochstens m positiven Komponenten, wobei m die Anzahl
der Gleichungen (3.1b) bedeutet. Diese positiven Komponenten der
Losung nennen wir Buasisvartablen. Ist ihre Zahl kleiner als m, heisst
die Liosung degeneriert.

Die Menge der zulissigen Losungen ist konvex, d.h. mit x und y
ist auch ihre konvexe Kombination ax + (1—o)y[0 << o =< 1] eine
zuldssige Losung. Die Eckpunkte der konvexen Menge, d.h. Punkte,
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die sich nicht als konvexe Kombination zweler anderer darstellen lassen,
sind identisch mit den Basislosungen. Das Extremum der Zielfunktion
wird immer in einem Hckpunkt, d.h. durch eine Basislésung angenom-
men. Ist die optimale Lésung nicht eindeutig, d. h. wird das Iixtremum
durch mehrere Basislosungen angenommen, so existieren co viele Lio-
sungen, indem jede konvexe Kombination von optimalen Basislosungen
auch optimal ist. Daraus folgt:

a) Falls zulissige Losungen existieren, d.h. falls das System (3.1b/c)
keinen Widerspruch aufweist, existiert eine optimale Losung. Sie
kann nichtendlich sein, wenn die Menge der zuléissigen Losungen
nicht beschriankt 1st.

b) Zur vollstindigen Losung des Problems genugt es, alle optimalen
Basislosungen zu suchen.

313 Lésungsmethoden

Die gebréduchlichste Losungsmethode st die Simplexmethode von
Dantzrg, die in einer systematischen Untersuchung aller Basislosungen
besteht. Sie geht aus von einer Basislosung und tauscht schrittweise
eine Basisvariable durch eine neue aus in der Weise, dass

a) die Zielfunktion verbessert wird,
b) keine Variable negativ wird.

Die erste Bedingung bestimnmt die neue Basisvariable, die zweite
die aus der Basis ausscheidende Variable. Fiir die konkrete Auswertung
dieses Prinzips existieren verschiedene Algorithmen, auf die hier nicht
eingegangen werden muss. liinfache Beispiele lassen sich auch graphisch
losen (vgl. [1, 6]). Diese Methode eignet sich aber in erster Linie fir
Uberschlagsrechnungen.

314 Geometrische Interpretation

Wir beschrinken uns dazu auf das System (3.1). Fir die auf-
gefithrten Varianten ist die Interpretation sinngemiss zu modifizieren.
Nach (3.1¢) liegen die zulissigen Liosungen im n-dimensionalen positiven
Hyperoktanten. Jede Gleichung (3.1b) bestimmt eine (n—1)-dimen-
sionale Ebene. Die Menge der zuldssigen Liosungen 1st somit der Durch-
schnitt von m Hyperebenen mit dem positiven Hyperoktanten, also
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ein (n—m)-dimensionales konvexes Polyeder. Die Zielfunktion liefert
eine Schar paralleler Hyperebenen, von denen diejenige gesucht wird,
welche noch mindestens einen Punkt mit dem Polyeder der zulissigen
Loésungen gemeinsam hat und den grossten Scharparameter autweist.
Im allgemeinen wird die extremale Ebene das Polyeder in einem Eck-
punkt berithren; falls aber eine Kante oder eine Fliche des Polyeders
zur Zielfunktion parallel verlduft, erhalten wir co viele Bertihrungs-
punkte und somit co viele Losungen.

315 Das Dualproblem

Zu jedem linearen Programm existiert ein duales, welches dasselbe
Iixtremum liefert. Wir unterscheiden dabel zwischen dem symme-
trischen und dem unsymmetrischen Dualproblem:

a) Symmetrisches Dualproblem:

Priméarproblem Dualproblem
¢’y — max b’w — min
Ay < b Aw = c
y =20 W=
b) Unsymmetrisches Dualproblem:
Primérproblem Dualproblem
¢’y = max b’w — min
Ay =b Aw=c
y="=0

Das unsymmetrische Dualproblem unterscheidet sich also vom sym-
metrischen durch das Auftreten von Gleichungen im Primirproblem
und das freie Vorzeichen der dualen Variabeln. Die beiden Probleme
lassen sich mit Hilfe der Transformationsregeln in 311 ineinander iiber-
fithren, wenn man beachtet, dass die Gleichung Ay = b aus zwei Un-
gleichungen Ay < b und Ay = b entsteht. Im @brigen ist es natiirlich
bedeutungslos, welches der beiden Probleme als priméres resp. duales
bezeichnet wird. Auf dem zentralen Satz uber das Dualproblem,
wonach die Extrema von Primir- und Dualproblem sich gleich sind,
beruht die Verwandtschaft der linearen Programmierung mit der Spiel-
theorie.
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Die Betrachtung des Dualproblems ist bei vielen Problemen des-
halb von Bedeutung, weil die dualen Variabeln oft eine ganz konkrete
Deutung zulassen. Daneben bietet die Transformation auf das Dual-
problem gelegentlich auch technische Vorteile, indem die Losbarkeit
auf elektronischen Rechenanlagen von gewissen Kapazititsbedingungen
abhéiingig ist.

32 Anwendung auf die Schitzung von Reserven
321 Problemstellung

Die Reserve einer t-Gruppe gemischter Versicherungen bestimmt
. "1 . _ .
sich zu V = -'\’-LJ}(?' Y;» wenn wir mit f; = f(z,t,n) = ,V;; die Reserve-
]
faktoren und mit y, = s(z,t,n) die Versicherungssumme fiir eine

bestimmte Parameterkombination bezeichnen. Uber die Summenver-
teilung S(xz,n,f) sollen als Information lediglich die Hilfszahltotale
H, = > hy, (i=1,...,m) vorliegen. Gesucht sind die Schranken

)

V und T]7 , innerhalb derer der Reservewert V' liegen muss. Wir haben
daher die beiden Summenverteilungen zu bestimmen, welche mit den
gegebenen Hilfszahltotalen vertrdglich sind und extremale Reserven
ergeben; d.h. wir bestimmen y; (j =1, ..., n) so, dass

a) Mazximale Reserve b) Mimimale Reserve
V — 2]‘? y; = max Z = Efj y; = min
7 /)
E iy Yy = H Zhij y, =H; (3.2
7 7
y; =0 Yy =0

Dabei erstreckt sich die Summation von j =1, ..., n iiber alle
moglichen Kombinationen von z und .

Falls siimtliche Hilfszahlen positiv sind, was im allgemeinen der
Fall ist, und wir in der Folge voraussetzen wollen, sind sidmtliche
Koetfizienten des Systems (8.2) positiv; sowohl Zielfunktion wie Bedin-
gungsgleichungen stellen (n— 1)-dimensionale Hyperebenen mit posi-
tiven Achsenabschnitten dar. Da die rechten Seiten der Bedingungen,
H., auf einer konkreten, uns unbekannten Losung basieren, ist die
Vertriglichkeit des Systems garantiert; indem siamtliche Koeffizienten
positiv sind, sind die Extrema endlich.
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322 Die Beurteilung einzelner Gleichungen

Als Information tiber die Summenverteilung, d.h. die Variabeln y;,
liege lediglich ein Hilfszahlentotal vor, z. B. die totale Versicherungs-
summe der ganzen t-Gruppe oder das Primientotal.

Die Systeme (3.2) reduzieren sich damit auf

V = E;f; i; = max V= Efj y; = min
j j
i ]
Uy =0 y; = 0

Entsprechend den Ausfithrungen in 312 wird das Optimum durch
eine Bagislosung angenommen, die dadurch entsteht, dass eine ein-

zige Variable von null verschieden angenommen wird. Mit y; = -
bestimmen sich damit die Kxtrema wie folgt:

V7 — fl H, mit 2 = 1K f 5
h;{ h}‘ i }L,

o= f‘iH, mit f’—i = 1min -f"

- hﬂ h“ P ;

Massgebend fiir die Giite einer einzelnen Gleichung 1st damit die

Variationsbreite des Koeffizienten }{? . Der Standardfehler (2.2) be-
]

i 1,

stimmt sich zu

h, h,
Q —

fft e f;t

hy ~ h,

und ist von H unabhingig, d.h. dergelbe firr jede konkrete Summen-

verteilung.
Die erhaltene Lésung wollen wir noch geometrisch interpretieren:
y ; U, ’ . :
Dazu transformieren wir: y; = fj , worit (3.3) tibergeht in
;
V= Naqp == P oess N, &= fif 9 4.
V= > u; = max V= >uw,=min (3.4a)
] ]
h. I
Ny = N ! = 3 .4
215 w; = H il w; = H (3.4b)
7 1

By == 0 u; =0
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f
hf
dar, (3.4a) emne Hyperebene mit unter sich gleichen Achsenabschnitten,
deren extreme Lagen so gesucht werden, dass sie mit der Iibene (3.4Db)
1m positiven Hyperoktanten noch gemeinsame Punkte aufweist, und
dass ihr Scharparameter maximal resp. minimal gemacht wird. Die
extremalen Berthrungspunkte der beiden Ebenen sind offenbar die
Achsenpunkte der Ebene (3.4b) mit dem grossten resp. kleinsten Ab-
stand vom Ursprung.

(3.4b) stellt eine Hyperebene mit den Achsenabschnitten H

323 Kombination mehrerer Gleichungen

Jede neue, von den iibrigen unabhingige Gleichung verkleinert
das Maximum und vergrossert das Minimum, indem der Raum der zu-
lissigen Liosungen durch jede Gleichung um eine Dimension verkleinert
wird. Somit liefert jede neue Hilfszahl brauchbare Informationen, sofern
ste von den tibrigen linear unabhiingig ist.

Zur Untersuchung der Losungen transformieren wir das System (3.2)
wie folgt: Wir fithren eine zusitzliche Unbekannte y,, , em, welche
dem Wert der Zielfunktion entspricht. Die neue Zielfunktion enthilt
dann nur noch eine Variable und die Bedingungsgleichungen vermehren
sich um die Bestimmungsgleichung far y,,,. Wir erhalten somit:

Y1 — extr. resp. Ynt1 = extr.

:f:l yj__ynvl = O Ky - k (35)
j
E hiyy =H
j
wobet v+ =1, ...,m; 7=1....,n. Die Matrix K entsteht aus der
Matrix “h”H durch Anfigen einer Zeile (f;, ...,f,) und einer Spalte
(=150 5055 0 wod k= {0sHy; «s05d,):

79

Die Extremallosung hat die Form: (y, , v, -+, ¥3,,0, ..., 0, 4, ).
Als Basismatriz bezeichnen wir die quadratische Matrix K;, bestehend
aus den zu den Basisvariabeln gehorenden Spalten von K. Der Losungs-
vektor bestimmt sich dann zu

y, = K;'k. (3.6)

Die ersten m Komponenten davon ergeben die gesuchten Basis-
variabeln der Summenverteilung, und die letzte das Extremum.
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Unter Beriicksichtigung der Berechnungsregel fur die Elemente
einer inversen Matrix ergeben sich die Unbekannten der Summen-
verteillung zu

Mluo.”m_1
det ghul - H1 e hum |
I . & e | (? — 1, , WZ/)
h . H i 0
Yj = ——— miy ttc Tmt _Lmlm ‘ (.3,_‘,&)
7 ( )mT3 det hM ‘ \
und das Extremum
fy vonlyy O |
dist hul v o s Byt Al 1
‘h TS H |
Yni1 = - e e 3.7b
It = Bt = gy | 8.70

Dasselbe ergibt sich aus (3.5) durch Anwendung der Cramerschen
Regel.

Bestimmend fur die Giite eines Hilfszahlsystems ist daher die
Variationsbreite des Ausdrucks (3.7b), wobei alle Kombinationen von

h;;!| zu beriicksichtigen sind, die positive Werte

m der n Spalten von |h,,

far die Variabeln ergeben. Es sind deren maximal (:;;) ;

Relativ einfach tiberblickbar sind die Verhiltnisse noch i Fall
n = 2, d.h. wenn zwei Hilfszahltotale vorliegen:

Zur Vereinfachung setzen wir

hy; = a;, hy —b;, H — A, H,— B.

j? ] ]

Das Maximum werde durch die Basisvariabeln y. und y, angenommen,
das Minimum durch y, und y,. Nach (3.7b) erhalten wir fiir das
Maximum
[f f/l 0 \
det \(,EE a, 4 |
A(fibs—f:by) + B(fea,—f a)
(a,lb —b,a.)

=i
|

\a,e&,w



oder ,f%,_ji fsf_]iai
b. a a
S o ) % £ . 7?777 }_
s F— +B N (3.8a)
b, b a.  a,
und analog
° f,”,_,f";‘_ ,fﬂ“,,_,f’f,
b b
y_a 2 %o p %W % (3.8b)
s a a, b b
_r_H B
b, b# a, a,

Die Koeffizienten von 4 und B kénnen positiv oder negativ sein. Sie
entsprechen den dualen Variabeln (siehe 326).

324 Zur Wahl von Hilfszahlen

Fuar die Wahl wirksamer Hilfszahlen sind die Darlegungen in 322
;
h;
aufweisen. So kann man sich z. B. anhand einer Graphik (1g.2), oder
durch numerische Beispiele (Tab.1) leicht tiberzeugen, dass P, eine
relativ gute Hilfszahl 1st, ¢® hingegen eine relativ schlechte.
Aus (3.7b) lidsst sich folgern, dass bei der Kombination mehrerer

Hilfszahlen die Abschétzung um so besser wird, je besser die einzelnen

zustiandig: Der Quotient soll eine moglichst kleine Variationsbreite

Hilfszahlen abschétzen. Die Verbesserung durch Hinzuziehen einer

]
hk;i
zweler Gleichungen eine kleine Variationsbreite aufweisen, weil dann
beide Gleichungen ungefihr dieselbe Information liefern.

Bei der Wahl eines Hilfszahlsystems ist zu beachten, dass dasselbe
System fiir alle Parameter ¢ gute Abschitzungen geben sollte. Indem
die Reservefaktoren f; sich mit der Zeit verdndern, die Hilfszahlen
aber nicht, verindern sich auch die Variationsbreiten der entsprechen-
den Quotienten.

Ein giinstiges Hilfszahlsystem ist daher z. B. ein System mit
hy = zinnﬁ- Dieses liefert fiir ¢ = ¢, eine genaue Reserve und fiir die
tibrigen ¢ hinreichend enge Schranken, wenn die Intervalle fir ¢, nicht
zu gross gewihlt werden. Dabel muss fiir ¢; > n der Reservefaktor

neuen Gleichung ist hingegen relativ gering, wenn die Quotienten -

extrapoliert werden, damit in den Quotienten -’ keine Sprungstelle

h
! 17
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auftritt, welche die Variationsbreite vergrossern wiirde. Fiir die Extra-
polation gilt die Formel:

x+n:t-n
Equ‘:lJ'_ . B B (t>n)
a:m\ t—n'zxn
13¥xm
1

|20 30
X
,LQ
©
‘BQ
n,“’
\’9
n
10 P‘xm 1/100. cX
1 1
A /
/ /
)20 30 0 50 30 40 500 ,
X
» A
8

SN

Fig.2

325 Numerische Beispiele

Zur Tlustration unserer Darlegungen wurden einige numerische
Beispiele auf Grund eines konkreten Testbestandes durchgerechnet.
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Die Berechnungen basieren auf einer Gruppe von 239 Policen, die sich
auf 90 (z,n)-Kombinationen aufteilen, und deren bisher verflogsene
Laufzeit t 13 Jahre betrigt. Sie weisen eine totale Versicherungssumme
von Fr.1465144 auf. Gestiitzt auf die Sterbetafel SM 1948/53 mit
1 = 0,025 ergibt sich eine wahre Reserve von Fr. 608 123.

Fur die Auswertungen mit Hilfe der linearen Programmierung
wurden sédmtliche (xz,n)-Kombinationen bertcksichtigt, weleche den

Bedingungen geniigen:

20 < = < 50, 15

IA

n =40, z+mn < T70.
Dies ergab Systeme mit 596 Variabeln.

Die Berechnungen erfolgten in Vielfachen von Fr. 1000; die ein-
zugebenden Daten mussten aut 5 signifikante Stellen gerundet werden.

Tabelle 1 gibt eine Ubersicht iiber die Wirksamkeit einzelner Hilfs-
zahlentotale. Als Hilfszahlen wurden IFunktionen von z und n ver-
wendet, die bet bekannten Reserveverfahren zur Anwendung gelangen,
oder die in anderem Zusammenhang in der Versicherungsmathematik
von Bedeutung sind. Neben den beiden Schranken 7 und V fithren
wir ihr arithmetisches Mittel ¥* (jein 1000.—), den Standardfehler 0
nach (2.2) und den relativen Fehler

VE—V
C=——, (V = 608,12) (3.9)
V
auf. Fir die Bruttoprdmie haben wir die in Vorlesungen verwendete
Formel R X 0,04 _‘_00007
n;mt\ - 0,95 n | 195; s VA

und fiir den Makehamparameter ¢ den Wert 1,098 5303 verwendet, der
aus der noch nicht publizierten Dissertation von K. Stricker («Die
Methode der Momente als analytisches Ausgleichsverfahren») stammt.

Die Abschitzung durch eine Kombination mehrerer Hilfszahlen
Ulustriert Tabelle 2. Dabei wurden nur noch die gebriauchlichsten Hilfs-
zahlen beriicksichtigt. Wie erwartet liefert das Hilfszahlsystem der
Skalarmethode die besten Schranken. Es bietet auch die beste Gewiihr,
fir andere t-Gruppen gute Schranken zu liefern. Recht gute Resultate
ergeben aber auch die Kombinationen der ¢-Methode, indemn sich die
Hiltszahlen P, und ¢* gut erginzen.

n |
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Tabelle 1: Abschitzungen mat 1 Hrlfszahltotal fiir t = 13

Hilfszahl Schranken Mittel il H(jlat-ive
% % v P fehler IFehler

‘ = 1000 100 o
1 1234,54 832,79 783,66 57,55 28,87
qu’| 643,06 522,03 582,54 10,39 —4,21
T o] 672,77 539,34 606,06 11,01 —0,34
g 9649,11 104,64 | 4876,88 97,85 701,96
c* 3303,86 134,93 | 1719,40 92,15 182,74
me i 1992,96 96,59 | 1044,75 90,75 71,80
B 1996,88 258,79 | 1127,84 77,05 85,46
TN 1567,05 377,58 972,32 61,17 59,89
" 920,06 460,12 690,09 33,32 13,48
5Vm‘ 616,80 581,74 599,27 2,93 —1,46
10V ) 615,27 598,27 606,77 1,40 —0,22
15Vz}ﬂ 615,13 599,94 607,54 1,25 —0,10
25Vw| 655,17 485,91 570,54 14,83 —6,18
35V ] 758,01 207,23 482,62 57,06 | —20,64

Tabelle 2: Abschdtzungen mit m Hilfszahlen fiir t = 13

m i % v V* 1000 | 1000
2| 1, By 622,68 | 541,01 581,84 | 7,02 | —4,32
1, sV 614,19 | 583,74 | 598,96| 2,54 |—1,51
1, 15Vam 613,70 602,93 | 608,32| 0,89 0,03
Bsis 8 609,62 | 602,84 | 606,23 0,56 | —0,31
311, Py 15V 609,24 | 605,52 607,38| 0,31 |—0,12
1y Poer, 611,55 | 598,62 | 605,08 1,07 |—0,50
1, By Byt 616,43 | 594,77| 605,60 1,79 | —0,41
41 1. B sV 15V 608,57 | 607,73 | 608,15] 0,07 0,00
1, Bz, Papt” 611,18| 601,95 | 606,56 | 0,76 | —0,26
5Vxﬁl,l5Vx,;[,25VI;,35Vm7 608,44 | 607,73| 608,08| 0,06 | —0,01




326 Das duale Problem

7Zu dem in (3.2) formulierten Primérproblem lauten die dualen
Fassungen:

V= > H,w; = min V = > H,w, = max
i ; (3.10)
Eh’ijwi = th‘jw«; =1
3 v

mit ¢t =1, ...,m;7 =1, ..., n. Alle Variabeln kénnen positiv oder
negativ sein.

Bei der Bestimmung der oberen Schranke ¥ geht es also darum,
die Reservefaktoren f; so durch Linearkombinationen der Hilfszahlen
h;; darzustellen, dass immer zu grosse Werte entstehen, aber gleich-
zeitig ein aus mittleren Hilfszahlen errechneter mittlerer Reservefaktor
minimal wird. Mit andern Worten: Man sucht den kleinsten der zu
grossen Reservewerte. Fine analoge Interpretation gilt fiir die Bestim-
mung der untern Schranke V.

Zwischen den beiden Formulierungen des Problems besteht ein
prinzipieller Unterschied in der Bedeutung der zuldssigen Losungen. Im
Priméarproblem (3.2) liefern die zuldssigen Liosungen Reservewerte, die
nicht ausserhalb der Schranken 7 und ¥ liegen konnen; im Dual-
problem (3.10) hingegen liefern sie Werte, die nicht innerhalb der
Schranken liegen. Die nicht zuldssigen Liosungen aber kénnen in beiden
Problemen sowohl Werte innerhalb wie auch ausserhalb der Schranken
ergeben.

Zur Losung des Dualproblems gelten ebenfalls die in 31 dar-
gestellten Prinzipien. Zusitzlich beachten wir aber, dass eine optimale
Losung m der n Ungleichungen zu Gleichungen machen muss, da sémt-
liche Koeffizienten positiv sind. Diese m Relationen wollen wir Basis-
relationen nennen. Aus diesem Grunde kénnen wir von einer Trans-
formation des Ungleichungssystem in ein Gleichungssystem absehen.
Wir erhalten damit fiir die Liosung

;hlil S f)'l o oo hﬂl/‘-l
det

Bt =55 Tty =% = Py, |
w; = e,
det H,;

wobei angenommen wird, A;, 4y, ..., 4, selen die Nummern der

m
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Basisrelationen, und H, bestehe aus den m zu den Basisrelationen
gehorigen Zeilen von H' = Hhﬂ\
I'ir das Extremum entsteht damit der Ausdruck

sy sniny o=ty |
deti s + « v w5 o5 ¢ 5 5 |
h f hoo
6 W 2 Py 20 mdy
== \ Hi . s e
3 det H,

den wir auch aus (3.7b) durch Entwicklung nach der letzten Spalte
erhalten.
Es lisst sich zeigen, dass die Nummern der Basisvariabeln im
Primérproblem und der Basisrelationen im Dualproblem dieselben sind.
Spezialisiert auf den Fall » = 2 erhalten wir mit den 1n 323 ver-
wendeten Bezeichnungen die Ausdriicke (3.8).

33 Beziehungen
zu den klassischen Verfahren der Reserverechnung

331 Darstellung der Reserve durch Hilfszahltotale

Aus der dualen Darstellung (3.10) 1st ersichtlich, dass die Sehran-
ken der Reserve um so enger liegen miissen, je besser sich die Reserve-
faktoren als Funktionen von z und n durch Linearkombinationen der
Hilfszahlen darstellen lassen. Dazu eignen sich z. B. Systeme mit Hilfs-
zahlen P, und ¢® (t-Methode) oder , .V, (Skalarmethode). Falls die

Reservefaktoren darstellbar sind als
o) = > 6,0 hfe,m) ;
5
wobei ¢, von t allein abhingig ist, fallen die beiden Schranken zu-
sammen, wenn wir die Hilfszahlen iy, verwenden. Uber die Moglichkeiten
dieser Darstellung gibt [14] Aufschluss.

Wir stellen uns daher die Aufgabe, im Sinne eines Approximations-
problems die optimale Kombination vorgegebener Hilfszahlen zu be-
stimmen. Dazu wihlen wir die Approximation nach T'schebyscheff, deren
Prinzip unsern Uberlegungen besser angepasst ist. Die Verwandtschaft
der Tschebyscheff-Approximation mit der linearen Programmierung|16]
gestattet uns, die Daten fir die Schrankenbestimmung auch fir die
Approximation zu verwenden.
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332 Approximation der Reservefaktoren

Wenn wir im Bedingungssystem von (3.10) die Ungleichungen
durch Gleichungen ersetzen, entsteht ein iberbestimmtes System, das
durch Ausgleichung zu l6sen 1st. Aus den dadurch erhaltenen Variabeln
w,; kénnen wir einen mittleren Reservewert W™ berechnen zu

S
W” = 2> Hw;.
]
Wollen wir nach Tschebyscheff auscleichen, verlangen wir, dass das
maximale absolute Residuum minimal werde. Es gilt also

E hijw,+& = f;, mit max ;Ejf == .
)
Daraus folgt das System & = min
- _

(A

Eh‘ijwi + & 2 fyu

%
also ein lineares Programm mit 2n Gleichungen und m + 1 Unbekann-
ten, wovon deren m 1m Vorzeichen frei sind (w;) und die letzte (&)
automatisch positiv wird. Fassen wir (3.11) als Dualproblem auf, so
lautet das zugehorige Priméarproblem

Efj(y?-—uj) = MK

j
E ha;‘(?/g’—“j)

=0 = ds om0
j (3.12)
DY+ zu?. ==
j j
Z)'j:ui ; [z

Es enthiilt doppelt so viele Unbekannten wie das Schranken-
problem und ist wie folgt zu interpretieren: Gesucht werden zwei
Summenverteilungen mit gleichen Hilfszahltotalen und moglichst grosser
Reservedifferenz. Die Bedingung, dass die Variablen zusammen die
Summe 1 ergeben, bedeutet eine Normierung.

Die so erhaltene normierte maximale Reservedifferenz ist gleich
der dualen Variabeln &, dem maximalen Residuum der Ausgleichung.
Bezeichnen wir mit S die totale Versicherungssumime, so ist offenbar
&S die maximale Abweichung der wahren Reserve vom Mittelwert W,
2£8 ist die maximale Schrankendifferenz, die sich ergibt, wenn wir

nur die Grundlagen zu Rate ziehen.
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Wie Tabelle 3 fiir einige Beispiele belegt, 1st die durch Ausgleichung
bestimmte Schrankendifferenz ungefihr das Dreifache der nach 32 er-
rechneten. Dies ist verstindlich, da in (3.12) ja nicht verlangt wird,
dass die beiden entsprechenden Hilfszahltotale einen bestimmten Wert
annehmen, sondern nur, dass sie sich gleich sind. Auf die Werte w*
verzichten wir, das sie durchwegs schlecht sind; dies rithrt von der
Problemstellung her.

Mit diesen Angaben ist ersichtlich, dass schon aus den Grundlagen
allein wesentliche Anhaltspunkte tiber die Giite der Hilfszahlen ge-
wonnen werden konnen, dass die konkreten Werte der Hilfszahltotale
aber doch einen betrichtlichen Beitrag zur Information liefern.

Tabelle 3: Variationsbreiten nach Tschebyscheff fiir t = 13

S = 1465,14
Hilfszahlen & 9ES V—V
hij nach (3.11) - nach (3.2)
1 P_m'l 0,0645 189,00 81,67
L, By, & 0,0106 31,06 12,93
1, me, 151'/;”—[ 0,00409 11,98 3,72
5V s 15anf’ 25Vm7|, 35le 0,000654 1,92 0,71

333 Beurteilung von Reserverechnungsverfahren

Durch Betrachtung der Schranken 7 und V7 lassen sich die klas-
sischen Approximationsverfahren nur zum Teil beurteilen. Die Schran-
kendifferenz gibt uns Auskunft tiber die Zweckmissigkeit der verwen-
deten Hilfszahlen, aber keine Garantie, dass der errechnete Reservewert
auch wirklich innerhalb der Schranken liegt.

Wie i 326 erwiihnt wurde, liegen zuldssige Liosungen des Primar-
problems (3.2) sicher innerhalb der Schranken und zulédssige Lisungen
des Dualproblems (3.10) sicher ausserhalb. Daher liegt ein gefundener
Reservewert sicher innerhalb der Schranken, wenn er durch eine zu-
lissige Losung des Primérproblems erhalten werden kann, und sicher
ausserhalb der Schranken, wenn eine zulissige Liosung des Dualproblems
mit demselben Reservewert existiert. Ob der gefundene Reservewert
dann wirklich aut emner zuléssigen Losung basierte oder nicht, 1st ohne
Bedeutung.
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4 Bestimmung eines optimalen Mittelwertes
bei vorgegebenen Schranken

41 Darstellung als Spiel iiber dem Einheitsquadrat

Wir betrachten das reine Schitzproblem zwischen N und M. Die
Menge der reinen Strategien von N sei die durch Schranken V und V
begrenzte Menge der richtigen Reservewerte. Als reine Strategien von M
seien beliebige reelle Schatzwerte W zugelassen. Erleidet M durch die
Wahl von W den Schaden A(V, W) = 0, so wird er seine optimale
Strategie so wihlen, dass

A* = A(V*, W*) = min max A(V, W).
WV
Dabei kann er sich gemiss 231 auf Schatzwerte beschrianken, fiir welche

gilt: V=wg<7.
Setzen wir V=0aV+(1—a) V=V+ O‘(I—/_Z) ’
W=pV+(1—pV=V+pT—V),

wobel A(V, W) ubergeht in A(x,f), so bestehen die Mengen der rei-
nen Strategien fur beide Gegner aus Punkten des Einheitsintervalls
0 < «,f < 1, und unser Schitzproblem reduziert sich auf ein Spiel iiber
dem Einheitsquadrat, dessen Higenschaften nur noch von der Struktur
der Auszahlungsfunktion abhiéngig sind. Nach allgemeinen Sitzen der
Spieltheorie existieren bei diesen Spielen sowohl Wert wie optimale
Strategien, sofern A («,f) in beiden Variabeln stetig ist. Diese optimalen
Strategien werden 1m allgemeinen gemischte Strategien sein, d.h.
Verteilungsfunktionen iitber dem Kinheitsintervall.

Die Schadenfunktion ist durch (2.1) gegeben. Dabei sind zwei
Typen von besonderer Bedeutung:

(4.1)

a) Laneare Schadenfunktion:

Sie besteht aus zwei Ebenen, die sich tber der Diagonalen des Ein-
heitsquadrats schneiden (Fig.3). In diesem Fall ldsst sich das Spiel auf
ein endliches Spiel mit je zwei reinen Strategien zuriickfithren (vgl. 42).

b) Konvexe Auszahlungsfunktion:

Unter einer konvexen Auszahlungsfunktion versteht man im all-
2
gemeinen eine in f konvexe Funktion, d.h. — ~ = 0[9]. Sie liefert

op?
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eine reine optimale Strategie fir M. Ist die Funktion gleichzeitig kon-
kav in ¢, so existiert ein Sattelpunkt, d.h. beide Spieler besitzen reine
optimale Strategien. Ist 4(x,f) hingegen in beiden Variabeln konvex,
besteht die optimale Strategie fiir N in einer geeigneten Mischung der
Extremalwerte o = 0 und « = 1. Fine solche Funktion wird in Fig.4
dargestellt und in 43 verwendet.

AA A
€2
Cyq |
B v, Y
¥ w p
- B2
; -
v Fig. 3 o< Fig. 4
Fir die praktische Lisung von Spielen, wie sie in den folgenden
Abschnitten durchgefithrt werden soll, 1st es oft vorteilhaft, auf die
Transformation (4.1) zu verzichten, weil so die Auszahlungsfunktion
in der Regel einfacher ist.
42 Schitzwerte bei linearer Auszahlungsfunktion
In ihrer allgemeinsten Form ist die lineare Auszahlungsfunktion
durch folgende vier Punkte bestimmt (Fig.3):
AWV, V) = By, AW, V) = C;, A(V,V) = B,, A(K,T_/') = O,
wobei C; = B; (1,7 =1, 2).
Damit lautet die Schadenfunktion
1 _ -
Vo [-(Co—Bp) V+(Co—B) W+ (B, V-B, V)] (V< W)
1 - ;
AV, W) = A [(By—DBy) V+ (B, V—-B,V)] V=W)
1 _ .
Vv [(Ci—B) V—=(C,— By) W+ (B, V—-B,V)] V=W



oder zusammengefasst

feme (4.2)
A !
P (max[=(Co=Ba) Vot (Co=B) W, (C1=By) V—(Cy—By) W]+ (B,V = By)).
Der Wert des Spiels ist
1

min max A(V, W) = — {J 23 (BlTj—BzV} ,
WV V-V -
Mt 4 = min max max [ (Co—By) V + (Co—B) W, (C;—By) V—(C,— By) W].

WV
421 Losung als konvexes Spiel

Lineare Auszahlungsfunktionen sind Grenzfille der konvexen.
Damit lassen sich auch die Losungsverfahren der konvexen Spiele hier
anwenden |9].

Wir bilden vorerst fiir jedes W das Maximum von A beziiglich V
und erhalten damit die obere Enveloppe der Auszahlungen von M
an N. Das Minimum dieser Enveloppe ist gleich dem Wert des Spiels
und liefert die optimale reine Strategie fiir M.

4 = min max max [~ (Co—By) V + (Co-B) W, (C,—B)) V—(Cy—By) W]
WV

= min max [-(Cy— By) V4 (Co— B) W, (Cy-B,) V- (C,-By) W1
W

Das Minimum wird erreicht durch

—(Co—By) V+ (Cp—B) W = (C,—By) V—(C,—By) W,

woraus Ci—B)V—(C—By)V
W — Ur* — ( 1 1) ( 2 2)77'. (43)
(01 + 02) - (Bl+ Bz)

Damit wird .
i (Ca=By) (C1=B)V—(C1=By) (Co—BY T

(Cy + Cy) — (B, + By)

A* = min max A(V,W) = - GG h,
woov ’ (O1+ Cy) = (B + By)

und

_ Die optimale Strategie fiir N ist eine Linearkombination aus ¥ und
V, da fiir jedes W das Maximum von 4 durch V oder V erreicht wird.
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Durch ein geeignetes Mischungsverfahren sorgt N dafur, dass M keine
kleinere Auszahlung erzielen kann, auch wenn er das Mischungs-
verhdltnis kennt.

Verwendet N die Mischung oV 4 (1—a) V, so wird, da V=W = V,
4= o (Cy—Dy) V-« (C1=By) W—(1—a) (Cy— By) Z‘P‘ (1—a) (C;—B) W,
— 0‘[(01_81)7‘1“ (Co—By) I_T]_ (Cy—By) _T/_'_W [“ (C1+Co—B1—By) _(02»31)]‘

o ist so zu withlen, dass der Wert des Spiels unabhiingig von der Wahl
von W erreicht wird, d.h. so, dass der Koeffizient von W verschwindet.
Damit wird
Cy— DB C,— D,
o == —— = : 1—a = -
(C1+ Cy) — (By+ By) (C1+ Co) — (B + By)

Mit diesem Verfahren haben wir allerdings nicht alle Strategien von M
erhalten, indem dieser bei linearer Auszahlungsfunktion auch gemischte
optimale Strategien besitzt. Da A(V, W) linear ist, gilt

A[V, W+ (1 —B)Wy] = BAV, W) + (1—B) A(V,W,). (4.4)

M kann das Optimun daher mit einer geeigneten Mischung von zwel

beliebigen reinen Strategien W, und W, erreichen, sofern W, =< W* < W,
. Tk P,

mit W™ nach (4.3).

422 Lésung als diskretes Spiel

Wegen (4.4) spielt es fiir die Auszahlung von M an N keine Rolle,
ob ein Spieler einen Mittelwert aus den Extremalwerten V' und V
withlt, oder ob er die Ixtremwerte im entsprechenden Verhiltnis
mischt. Deshalb nehmen wir nun an, jeder Spieler besitze nur zwel
reine Strategien ¥ und ¥, womit wir ein diskretes Spiel mit der Aus-
zahlungsmatrix

N:
. K 7
M: ”E B G
V By B,

erhalten, dessen Liosung wir aus Fig.5a und 5b ablesen konnen (vgl.

z. B. [10)).



Sie lautet

fiir N: = = R g = =

(Cy+ Cy) — (By+ By’

T Bt 0B
ar M: - —— ; G S .
1—p Cy— B, (Cy+ Cy) — (B + By)
AA LA
C2 2

| |
| |
By ! B I
i B 1 B
1A 4 LA 2
. |
: 1
< (V-V) (- eNV-Y) B(V-V) (1-p(v-v)
- : T >~V : 7 oW
¥ Optimale Strategie fir N v v Optimale Strategie fir M v
Fig. 5a Fig. 5b

N wiihlt ¥ und V im Verhiltnis o:1—o und M im Verhiiltnis :1-—8
Der Wert des Spiels 1st wiederum gegeben durch

C,Cy— B, B,
(Cy+ By) — (B + By)

*__

423 Spezialfille

a ) Nimmt man an, M erleide bei richtiger Schiitzung keinen Schaden,
o gilt B, = B, = 0, womit a:1—a = (,:C; und 8:1—8 = C,:C,.
C, C,

Der Wert des Spiels betriigt dann > .

01 .3 02
b) Ist das Spiel symmetrisch, so gilt ¢, = Cy=C, B, = By, =B
und damit «:1—a = f:1—f = 1:1. In diesem Fall wihlt M das

arithmetisehe Mittel zwischen den beiden Schranken oder zwei dazu
symmetrische Werte mit gleicher Héufigkeit, und N beide Schranken

: : : 5 & ; B0 C
mit gleicher Hiufigkeit. Das Spiel hat den Wert g TesP. talls

B =1
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43 Separierbare Spiele

Fin Spiel heisst separierbar, wenn die Auszahlungsfunktion folgende

Gestalt hat: AW, W) =3 Sag (V) s00). (4.5)
T

Ist insbesondere r,(V) = V' und s;(W) = W/, so handelt es sich umn die

Unterklasse der Polynomspiele.

Separierbare Spiele lassen sich auf endliche Spiele zuriickfithren,
indem N emen Vektor r= (r;,...,r,) und M emen Vektor s so
suchen, dass bei gegebener Auszahlungsmatrix A = a,;| gilt:

max min r’' As = min max r’ As.
roos s or
Dabei gehéren r und s nicht, wie ber den Matrixspielen, eilnem Simplex
an, sondern einer bestimmten konvexen Menge, die als konvexe Hulle
der Raumkurve r; = r,(V) resp. s; = s,(WW) gegeben ist.

Zur Losung praktischer Beispiele eignet sich fur separierbare
Spiele mn erster Linie die I'vepunktmethode. Thre Anwendung ist um so
einfacher, je kleiner die Dimensionen der Strategienrdume sind.

431 Die Fixpunktmethode [9]

Iis sei B = |r} die Strategienmenge von N und S = [s} die Strate-
gienmenge von M. U sel die Abbildung von I in S mit s(r) = min r’ As,
und 71" die Abbildung von S in R mit r(s) = maxr' As. s

.

Die zusammengesetzte Abbildung T'U ist eine Abbildung von I in
sich, analog U7 eine Abbildung von S in sich. Die Fixpunkte von TU
i R sind die optimalen Strategien von N, die Fixpunkte von UT in S
die optimalen Strategien fiir M. Die Existenz von IFixpunkten 1st
aquivalent mit der Existenz von optimalen Strategien.

Mit Hilfe dieser Methode betrachten wir im folgenden Spiele, deren
Auszahlungsfunktion eine verallgemeinerte Fehlerfunktion bedeutet

und die Form hat

AV, W)y =V"V-WwpR k=...,-2-1,01,2 ...).
Dabei sind die folgenden Fille zu unterscheiden:
k=—m (n=3) =0
k= —2 b=w [([w=1).

T s
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432 Auszahlungsfunktion 4 = (V— W)?

Das Spiel mit der Auszahlungsfunktion A(V, W) = V2-2V W + 2
1st dquivalent mit einem Spiel mit der Auszahlungstunktion A4(r,s) =
Ty — 27,8, + g, dessen Strategienriume Parabelsegmente darstellen; die
reinen Strategien bilden den Parabelbogen

Py == I resp. gy = W
ry == p2 8y = WA
vSrv <V V=w<7V,

l

die gemischten Strategien bilden sdmtliche konvexen Kombinationen
der reinen Strategien (Fig.6a und 6b). Die Linien gleicher Auszahlung
sind fur jeden Spieler Geraden in seinem Diagramm, deren Steigung
durch die Strategie des Gegners bestimmt wird.

™ S

g L P e R S~ R S

(R EEEEE

Fig. 6a Fig. 6b

Wir betrachten zuerst die Abbildung U von R nach S. Jeder
Punkt des Parabelsegments R wird in einen Punkt des Parabelastes
von S abgebildet, da das Minimum von A durch grosse s, und kleine s,
erreicht wird. Wiithlt N die Strategie r, so haben die Geraden gleicher
Auszahlung in S die Steigung 27, und die minimale Auszahlung wird
auf der Tangente an den Parabelast erreicht, welche diesen im Punkt
(s;,85) = (ry,7) berithrt. Damit werden alle Punkte von R mit der
gleichen Abszisse r; in denselben Parabelpunkt von S mit der Abszisse

8; = r; abgebildet.



Iar die Abbildung 7" von S nach R gilt: Bei gegebenem s erreicht
N eine maximale Auszahlung durch kleine r; und grosse r,, also auf
Punkten der das Segment abschliessenden Sehne, deren Steigung
V 4+ V betrigt. Die Steicung der Geraden gleicher Auszahlung in I
ist 2s,; damit werden alle Punkte von S mit s, < L(V+7V) auf den
Punkt (V,7?2) in R abgebildet, und S-Punkte mit s, >_1, (V+7V) auf
den R-Punkt (V,72). Punkte mit s, — 1 (V+7) schliesslich werden
auf die ganze Sehne abgebildet. a

Fixpunkt in R ist daher der Sehnenpunkt mit r, = L (V+7)

=

und in S der Parabelpunkt mit s, = 1 (V" + 7). Dies bedeutet, dass M
als optimale reine Strategie das arithmetische Mittel der beiden Schran-
ken verwendet, wihrend N eine gemischte optimale Strategie besitzt,
die in einer Mischung der beiden Ixtremalwerte 1im Verhdltnis 1:1
besteht. Der Wert des Spiels betrigt

4 =1 T—1e,

V—W)?
433 Auszahlungsfunktion v
172
AV Wy =V —2W + - ;
v, W) -

A(r,s) = r,—2s; + 755,.

Der Strategienraum £ ist ein Hyperbelsecment, aufeespannt durch
o ) o te] b te)

A
1
7'2 — _Fr s

der Strategienraum S ein Parabelsegment, erzeugt durch
8 = W,
So = I,.'V'z‘

o

Als Fixpunkte kommen in S Parabelpunkte, in B Sehnenpunkte n
Frage, die der Gleichung geniigen
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2
In S haben die Geraden gleicher Auszahlung die Steigung — und damit

?‘
werden die Sehnenpunkte (r;,7,) in den Parabelpunkt ?
1 vV .
§=—= == abgebildet.
2 B 3 : , , —1 —1
In R haben die Linien gleicher Auszahlung die Steigung —— = —
55 55

—1
fiir Parabelpunkte von S, withrend die Steigung der Sehne T betrigt.

S-Punkte mit s, = |/ V7 werden daher auf die ganze Sehne von R
abgebildet.

Fixpunkte existieren damit in S auf der Parabel firr s, = | V¥V
und in R aut der Sehne fir ry =V +V—)VV.

M Dbesitzt daher emne reine optimale Strategie im geometrischen
Mittel der beiden Schranken, wihrend N die beiden Extremalwerte
V und V im Verhiiltnis o :1—o mischen muss mit
V—yVv

V—v
Der Wert des Spiels betrigt

4=V —yTr

VW2
434 Auszahlungsfunktion ( . )
=
QW W
AV Wy =1——+

A(r,s) = 1—2r;8 + 758,

Der Strategienraum E ist ein Parabelsegment, erzeugt durch

1
Tl = "V_,

1
T2 == VE.
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Fixpunkte liegen in S auf dem Parabelbogen, in R auf der Sehne
! V+V)r,—1]
T = —= r,—1].
2 yv - 1
Sehnenpunkte (r;,7,) werden in S in den Berithrungspunkt der Tan-
, : 2r ; ;
gente mit der Steigung — - abgebildet, d.h. in den Punkt
e
n Vv ,
=== 5 55 = i
Parabelpunkte aus S werden in R auf die ganze Sehne abgebildet, wenn

28, ) K+T_”

81

= ey
5 A v

: o . . 21V ;
Fixpunkt in S ist damit der Parabelpunkt mit s, = — _ undin B
4 V+F
der Sehnenpunkt mit -

2 o (1—o)
Tl =] e + - =5
PV V v
woraus %
ot == Z+ T7

Die optimale Strategie fiir M ist damit das harmonische Mittel aus
den Schranken, wahrend N die lxtremalwerte 1 Verhaltnis V:Z
mischt. Der Wert des Spiels betrigt

435 Auszahlungsfunktion V*(V— W)32, (n = 1)
AV, W) = V2oV + VT"Wwe,
A(r,s) = r3—2r;8;, + 115;.

Wihrend der Strategienraum S derselbe ist wie in den fritheren
Beispielen, 18t R nun dreidimensional, ndmlich die konvexe Hulle der

Kurve
— VR’

,'.2 _— Vn+1,

i n+2
Py =z PP,
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Das Spiel bleibt konvex beziiglich W, so dass Fixpunkte in S auf
dem Parabelast liegen und M eine reine optimale Strategie besitzt.
Hingegen ist 4 bezuglich V' nicht mehr durchwegs konvex, so dass die
optimalen Strategien von N nicht mehr durchwegs Mischungen der
Extreme sind.

a) Wir betrachten vorerst die Abbildung von R nach S: Alle
Punkte in R mit r, = ¢r; werden in den Parabelpunkt s; = ¢, s, = ¢®
abgebildet.

b) Fuar die Abbildung von S nach R muss die Funktion

f(V) = V22V Hiw 4+ Vw2
untersucht werden. Bei vorgegebenem W ist das Maximum iiber dem
Intervall V==V < V" festzulegen. (V) besitzt ein relatives Minimum
bei 7'—= W (neben dem Trivialfall 7" = 0) und ein relatives Maximum
n _
bei V = : W. Emn relatives Maximum 1st ferner f(V) und, falls
n+ 2
n

¥ N W, auch {(V).

¢) Wir betrachten den Fall V < "W und vergleichen (V)
- n+2

: n o : ; ;
mit f( g W). Setzen wir ihre Differenz null, so bestimmt sich
N+ 2

das kritische W aus
f( o | W\) _f(7) = W ( e )ni;WnM < "o >n—i;:1wn+2 <n>n
n+2 n+ 2 n-+2 n 4+ 2
PR Py TR — .

) n+2 N
Wir setzen W = —— ¥V (O =n = —-+-2) und erhalten

n n
(n + 2)2 n{n -+ 2) n2
n+2 2
S 4 T A S ||
K g o 174

Eine Doppellésung dieser Gleichung ist 7 = 1. Nach einer Division mit
(n—1)% ergibt sich
n2

7’]n+277n_1+377n_-2+ .. +tn/}7._74: —_— 0, (4.6)

Y sei die (einzige) positive reelle Wurzel dieser Gleichung.



Es gilt dann f( n

) Wv’) = f{V) wenn W=

n
Unter der Bedingung, dass V' << W erhalten wir damit folgende

Abbildung von S nach B: " +2
’ n+ 2 n
tir W > '*ffJV auf den Punkt V= W,
n n -+ 2

. n+2 -
fir W< —— yV: auf den Punkt V =V,
n

) n+2 o . 4
fir W = yV: auf die Verbindungsgerade dieser zwei Punkte.

L noo - L L

Daber 18t V << o W fir V < yV, womit wir die Gultigkeitsgrenze
JRaE- n 13 —

erhalten.

n :
d) Fir den zweiten Fall V' = 5 W vergleichen wir f(V) nut
—E T il

f(V) und erhalten fiir den kritischen Wert

VnT1 Vn +1 V V VV” Vn
P V”

W = — W,. (4.7)

Damit erhalten wir folgende Abbildung:

fir W > W,: auf den Punkt V,
fir W < W,: auf den Punkt 7,
fir W = W,: aut die Verbindungsgerade der zwer Punkte.

Zur Abgrenzung der Giiltigkeit fiir diesen Fall setzen wir
" : = 1e e
V—- W, = 0 und erhalten mit V = 1V die Gleichung
n r 2 n

AMh—mad 2 +nid? —m+2)A+n = 0.

Diese lisst sich auf die Form (4.6) bringen, wenn man von den Trivial-

lésungen |4 = 1 absieht, und hat somit die Lésung 2 = y. Also gilt fir
W =W,
V=- W wemn V Z=yV,

n kZ.

womit die Abgrenzung verifiziert ist.
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e) Wir gelangen damit zur Konstruktion der Fixpunkte:

1.Fall: V= yV:

prtl _Knﬁ}wl__ (1’7_2) I/I_/nzn

W* =W, = -
V?L_Zn
Die Projektion der Sehne zwischen V und 7 auf die ry-Ebene lautet:
T_/'n+1 . V-n+1 Vn Vn B
'r2 — i B (V—Z) .

7?%1 - Vﬁ — 11— v _?n

. T . .
Diese Punkte werden abgebildet auf s, — —> und somit erhalten wir
in R einen Fixpunkt mit "1

?“-H_Kn 1 I_/HZH(I—/—Z) 1 B 7’1+1—Eﬂ+1“(7—Z) Vﬁﬁ" B VV
v”_K” T T - Vn_Zn - 1

WT??!”_ ‘V'ni

R . Vn 'Vn_Vn
dh =T =P+ (1—x)V" mit o= VVH'_'“T?”—

Durch Hinsetzen erhalten wir den Wert des Spiels zu

T 1)
A=TPVF—vy i r

= (T‘/ﬂ_zn)g
2. Fall: V= yV:

2 _
W — n —yV.
n

Die Sehne zwischen V und yV (projiziert auf die r,-Ebene) gehorcht
der Gleichung

1—g*t _ 1—9 _
Py = — —‘-j-T L i A
1—y 1—9"
. ) _ . To n+2 _
Den Fixpunkt in R erhalten wir mit PR yV, woraus, unter
4 n

Beriicksichtigung, dass y (4.6) erfiillt, folgt:
2y tLY” _ _
r, — — = Vn—l- 1— Vel
1 n—(n+2)y « (L—a)
mit (’TL ke 4) y’flf‘l —n yn
o —

A=) =2 y]
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Der Wert des Spiels 1st gegeben durch
— nt2 0
A = pr+e (1—— — 7/)

n

Wir beachten, dass im 2.Fall der Wert von V keine Rolle mehr spielt.
1. Spezwalfall: n = 1:

AV, W) = V(V—W)3,
n
n+2
Yy = 4
W, =T+V—|7V.
Falls V= 1V, so ist W = W, optimale Strategie fiir M, und eine Mi-
schung der E\tremal‘n erte Vund Vim Verhiiltnis (l VvV — V) (T/__LTZV)

2

optimal fir N. Der Wert des Spiels betriigt 7V (J/7— |V )"

Falls V < LV, so ist W = 1V optimal fiir M, und eine Mischung
der Werte V7 und |7 im Verhdltnis 1:2 optimal fiir N. Der Wert
73
des Spiels betragt .
T

2. Spezialfall: n = 2:

AV, W) = V2V —-W)?,

n 1
nt+2 %
y=J2 -1,
V2L e
e
Vv

Falls V = (I/ 2 — 1) V, so ist W =W, optimal fix M, und eine
Mischung von 7 und V im Verhiiltnis 7: 7 optimal fiir N. Der Wert des

Spiels betrigt V272 ( P— V)
v+ 4

Falls V < (]/5— 1) V, so 18t W = 2(1 Q—I)T/ optimal far M und
eine Mischung von ¥ und ([/2 —1) ¥ im Verhiiltnis (l 2 —1):1 opti-
mal fir N. Der Wert des Spiels ist 7% (]/2 —1)".
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436 Auszahlungsfunktion V=(V — W)2, (n = 3)

a) An Stelle der Funktion f(V) ist nun
g(V) = V0 oW -t 2
zu diskutieren, die ein Minimum fir V = W und ein Maximum fiir

Ve = 5 W autweist. Fin relatives Minimum aber dem vorgegebenen
n—
. . . n o
Intervall nimmt sie ferner an in V und, falls —— W >V, in V.
i ——

b) Im Falle " = W <V erhalten wir das kritische W aus der
Gleichung e

n—2

; (\ : i’ , W) _g(V) = W2 { (”nfg> 9 (%;2 )nj: (” ;: 2 )n}

. ‘K—(nf2) 4 22—(7@-1) W _ T_/—‘n sz - 0

und mit m = n—2 sowie W = ——— = transformiert sich diese auf

(4.6) mit der Losung v. m+2
Somit ergibt sich die Abbildung

-
fur W < . —: auf den Punkt W,
m+2 y n—32
Vv
fir W > = : auf den Punkt ¥,
m+2 y -
. m C e ,
fiir W = ——— — : auf die Verbindungsgerade der beiden Punkte.
m+2 y
Dabei ist V = "W wem V<yV.

7n—2

¢) Im Fall - nz W =V bestimmt sich der kritische W-Wert
n—"

aus der Gleichung ¢(V) = g(V) zu

YT @y + (F—V) |7y

(4.8)



— 270 —

und damit lautet die Abbildung

fir W > W,: auf den Punkt V,
fir W < W,: auf den Punkt V,

fir W = W, auf die Verbindungsgerade der zwei Punkte.

n _ _
Dabei st 5 Wy =V wenn V = yV.
n—2 =

d) Wir konstruieren daher die Fixpunkte wie folgt:

1L.Fall: V= yV:

Fixpunkt in S:

YV -y B
e =, = L0 =T+ PN 77"
Fr— L
Fixpunkte in R liegen auf der Sehne
VV(V”‘1 L) V-V
Yo — — .
2 V Vn 1+ Vn 'Vn
' Ts " 2
Die Setzung -~ = W, ergibt
1
B 1 o - l—a
r = I/i.—:/”—.V"" - T’?n T_:/n )
womit V" lT/”V"‘

o4

R —
Der Wert des Spiels betrigt

= () UP 7Y

2. Fall: V < yV:

Fixpunkt in S:

Fixpunkte in R liegen auf der Sehne

Viy™—1) v l—y)
Fg==" no o1 T n—1/,n *
gl iyt —1)



r n—
Aus = = —— T folot
(2 ny -
29" 1 o (1—a)y"
Tl (%—2) —n y Vn Vn z/n
wornit Y [ry—(m—4)]

[ —2) —ny] (1—y)
Wert: des Spiels: p 1 [ny— (n—2) r

= WTZ”“QW , y -

437 Zusammenstellung

Mit Ausnahme der drei Entartungsfille n = 0, —1, —2, ist das
Verhiltnis zwischen unterer und oberer Schranke fiir die optimalen
Strategien massgebend. Ist es kleiner als ¥, so sind sowohl die opti-
malen Strategien, wie auch der Wert des Spiels nur von der einen
Schranke abhingig. Die kritische Grosse y bestimmt sich aus einer
algebraischen Gleichung und ist dieselbe fiir n» und —(n+ 2). Sie
wichst mit wachsendem Betrag von m. Ihre ersten Werte lauten:

n —(n+92) Y

1 —3 0,250
2 —4 0,414
3 —5 0,521
4 = 0,596
5 == 0,651

Ist das Verhiltnis zwischen Minimum und Maximum grosser als ,
zu welchen Féllen wir auch die dre1 Entartungsfille rechnen koénnen,
besteht die optimale Strategie von M in einem verallgemeinerten
Mittelwert der beiden Schranken, wihrend N die Extremalwerte in
einem bestimmten Verhéltnis mischt, wie dies bei konvexen Spielen
allgemein der Fall ist. Die fur die Praxis am bedeutsamsten Fille sind
die drei Entartungsfille n = 0, —1, —2:
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a) n = 0: Auszahlung gleich dem Quadrat des absoluten Fehlers,
optimaler Mittelwert: Arithmetisches Mittel;

b) n = —1: Auszahlung gleich Produkt aus relativem und absolutem
Fehler,
optimaler Mittelwert: Geometrisches Mittel:

¢) n = —2: Auszahlung gleich dem Quadrat des relativen Fehlers,
optimaler Mittelwert: Harmonisches Mittel.

Damit erhalten wir eine spieltheoretische Deutung dieser Mittel-
werte. Ferner ist zu beachten, dass die Mittelwerte fur gleichen Betrag
von n symmetrisch zum arithmetischen Mittel liegen.

Wenn diese Uberlegungen vom theoretischen Standpunkt aus
interessante Zusammenhinge aufdecken, so ist die praktische Verwend-
barkeit doch beschrinkt, da unserem Problem bekanntlich folgende
Tatsachen zugrunde liegen:

1. Die Auszahlungsfunktion ist symbolisch.

2. Die Mittelwerte werden so bestimmt, dass das maximale Risiko
minimal wird.

3. Wir nehmen an, N koénne jede Strategie mit gleicher Berechtigung
verwenden, d.h. die beiden Schranken seien wirklich die einzige
Information, die M besitzt.

Damit wird wiederum die Bedeutung einer guten Abschitzung
unterstrichen.
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Résumé

L’auteur présente un modeéle basé sur la théorie des jeux pour le calcul des
réserves mathématiques et en examine les possibilités d’application pratique. Un
chapitre spécial est consacré a la détermination des limites & l'aide de la pro-
grammation linéaire et un autre au choix optimum des valeurs moyennes qui ré-
pondent a la théorie des jeux, pour des limites préétablies.

Summary

For the calculation of mathematical reserves the author gives a model, based
on the theory of games, and discusses the possibilities of practical application. He
devotes a special chapter to the determination of limits with the aid of linear pro-
gramming and another to the optimal choice of mean values within given limits

by use of the theory of games.

Riassunto

L’autore presenta un modello dedotto dalla teoria dei giuochi per il calcolo
di riserve matematiche e ne esamina le possibilita d’applicazione pratica. Egli de-
dica un capitolo speciale sia alla determinazione dei limiti con I'aiuto della pro-
grammazione lineare, sia alla scelta ottima, nel senso della teoria dei giuochi, di
valori medi con limiti preseritti.
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