
Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 61 (1961)

Artikel: Simulation von Intelligenz durch Maschinen

Autor: Leepin, P.

DOI: https://doi.org/10.5169/seals-966730

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-966730
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


- 77 —

Simulation von Intelligenz durch Maschinen

l'on P. Leepin, Arlesheim

Zusammenfassung

Nach einer kurzen Darstellung der prinzipiellen Arbeitsweise elektronischer
Programmgespeicherter Rechenmaschinen wird anhand einiger Beispiele gezeigt,
Wieweit sich heute Intelligenz durch Maschinen simulieren liisst.

Die erfolgreiche Verwendung elektronischer Geräte für Aufgaben
auf den verschiedensten Gebieten führt dazu, dass immer wieder die
Frage gestellt wird, ob diese Maschinen denken können. Sehr häufig
Wlrd eine negative Antwort erteilt, ohne sich mit dem Problem näher
zu befassen. Es ist das Ziel dieser Arbeit zu zeigen, dass die Frage des
Verhältnisses von Mensch und Maschine inbezug auf Denkprozesse
etwas tiefer liegt, als es auf den ersten Anhieb scheint.

Wir müssen uns allerdings vorweg von allen animistischen
Vorsehungen distanzieren, wie sie etwa in dem Ausdruck «Elektronenhirn»
S1ch zeigen. Eine Maschine, die denkähnliche Vorgänge ausführt, stellt
durchaus nichts Geheimnisvolles dar, und das Prinzip ihrer Arbeitsweise
lässt sich von jedem interessierten Laien ohne allzu grossen Aufwand an
geistiger Anstrengung verstehen. Eine Verwandtschaft mit dem menschlichen

Gehirn besteht höchstens in bescheidenem Ausmass. Es darf da
etwa auf die Untersuchungen des grossen Mathematikers Johann von
Neumann hingewiesen werden, der zum Ergebnis gelangte, dass mit
grosser Wahrscheinlichkeit das menschliche Gehirn trotz einiger
Ähnlichkeiten in wesentlichen Punkten anders gebaut ist als jede bisher
konstruierte Maschine. Wenn wir also animistische Vorstellungen im
Zusammenhang mit Maschinen durchaus ablehnen, lässt es sich
allerdings der Anschaulichkeit wegen nicht ganz vermeiden, dass gelegentlich



— 78 -
eine Ausdrucksweise verwendet wird, die in dieser Beziehung nicht ganz
konsequent ist.

Zu der Frage, ob Maschinen denken können, möchten wir im j etzigen
Augenblick nur folgendes bemerken : Eine Antwort lässt sich erst geben,
wenn zwei Vorfragen gelöst sind:

1. Was miisste eine Maschine leisten, damit wir ihr Denkfähigkeit
zuerkennen

2. Wo liegen die Grenzen der Leistungsfähigkeit von Maschinen?

Auf die erste Frage, was unter Denken zu verstehen ist, soll hier
nicht näher eingegangen werden. Wir möchten nur zeigen, dass die
Antwort nicht so einfach zu geben ist, indem wir fragen : Denken wir, wenn
wir zwei ungleichnamige Bruche addieren? Das ist eine Tätigkeit, die
einer Maschine durchaus keine Schwierigkeiten bereitet.

Über die zweite Frage, wo die Grenzen der Möglichkeiten von
Maschinen liegen, ist es im jetzigen Zeitpnkt nicht möglich, eindeutige
Angaben zu machen, die voll befriedigen. Auf alle Fälle ist deutlich
festzuhalten, dass die Behauptung: «Eine Maschine kann nicht denken»
unwissenschaftlich ist, sofern nicht klare Vorstellungen darüber bestehen,

was für geistige Tätigkeiten mit dem Wort «Denken» erfasst werden
sollen und was eine Maschine tatsächlich leisten kann.

Unter diesen Umständen soll die Frage offengelassen werden, ob

Maschinen denken können oder nicht. Für denkähnliche Vorgänge in
Maschinen wird deshalb nachstehend der Ausdruck «Simulation von
Intelligenz »oder «künstliche Intelligenz »gebraucht, in Anlehnung an die
im englischen Sprachgebiet gut eingeführte Wendung «artificial
intelligence».

Vorerst ist es notwendig, sich kurz mit der prinzipiellen Arbeitsweise

von Maschinen zu befassen, die in der Lage sind, Intelligenz zu simulieren.
Wir beschränken uns dabei auf die heute im Vordergrund stehende

Kategorie der elektronischen progranmigespeicherten digitalen
Bechenautomaten. «Digital» bedeutet in diesem Zusammenhang, dass die zu
verarbeitenden Angaben - seien es nun Zahlen oder Buchstaben oder
andere Symbole - in der Maschine durch das Vorhandensein oder
Nichtvorhandensein physikalischer Grössen in geeigneter Kombination
verschlüsselt wird. Den Gegensatz zu digitalen Geräten bilden die analogen,
welche ziffernmäßige Angaben stetig auf physikalische Grössen abbilden,

sodass Zahlen nicht ziffernweise, sondern als Ganzes erfasst werden.



— 79 —

Der Ausdruck «programmgespeichert» weist daraufhin, dass die
Befehlsfolge für die Lösung einer Aufgabe durch die Maschine, eben das

«Programm», in der Maschine selber gespeichert ist, in einem Speicher,
der sowohl Ausgangsgrössen, Resultate als auch die Befehle enthält.
Pie einzelnen Speicherstellen sind fortlaufend numeriert.

Primär sind die programmgespeicherten digitalen Rechenauto-
autonraten in der Lage, gewisse einfache Grundfunktionen durchzufuhren,

etwa eine Angabe aus einem Ort des Speichers an einen zweiten
Ort zu bringen oder zwei Zahlen miteinander zu multiplizieren usw. Ein
Befehl niuss die Nummer der Speicherstelle tragen, an welcher die
Maschine die zu verarbeitenden Grössen findet. Soweit deckt sich die
Arbeitsweise der Maschine mit der \7orstellung einer starren Abwicklung

eines festgelegten Arbeitsganges vollständig. Eine wesentliche
Erweiterung bringen nun die bedingten Sprungbefehle. Diese erlauben
es, bei Vorliegen bestimmter Umstände die Befehlsfolge zu durchbrechen
ünd einen andern Programmteil durchzufuhren. Ein derartiger bedingter

Sprung könnte z.B. erfolgen, wenn eine bestimmte Grösse negativ
!st. Dadurch wird es möglich, in Abhängigkeit von Ausgangsgrössen und
Resultaten die Verarbeitung anzupassen und zwar auf praktisch beliebig
komplexe Weise, da derartige Sprungbefehle beliebig häufig nacheinander

durchgeführt werden können. Insbesondere ist es oft zweckmässig,
eme Reihe von Instruktionen mehrfach durchlaufen zu lassen ; das gilt
vor allem für die Lösung vieler mathematischer Aufgaben.

Obwohl die bedingten Sprungbefehle eine reichere Strukturierung
der Arbeitsvorgänge erlauben, ergibt sich wieder eine Arbeitsweise, die
auf einer höheren Stufe vollständig determiniert ist und der Vorstellung
eiües starren Ablaufes entspricht.

Es zeigt sich aber, dass dieses Modell viel leistungsfähiger ist als es

auf den ersten Blick aussieht und zwar deshalb, weil die Speicher für die
Befehle und fur die Ausgangsgrössen, Zwischenergebnisse und Resultate
Prinzipiell nicht voneinander verschieden sind. Diese Tatsache wirkt
verwirrend. Es stellt sich die Frage, wie denn die Maschine Befehle von
Baten unterscheiden kann. Die Antwort lautet, dass der Inhalt einer
^Peicherstelle es den meisten derartigen Maschinen nicht erlaubt, fest-
zustellen, ob es sich um Angaben oder Befehle handelt. Normalerweise
folgen sich die Befehle sequentiell im Speicher. Ausnahmen treten nur
^ei Sprungbefehlen auf.



— 80 —

Diese Eigenschaft, class Daten und Befehle prinzipiell nicht
unterscheidbar sind, macht es möglich, in der Maschine einen Befehl zuerst
zu bilden und an eine Stelle zu bringen, wo er dann später durchgeführt
wird. Diese am Anfang etwas schwer verständliche Eigenschaft erlaubt
es der Maschine, in einem gewissen Sinne sich selber Befehle aufzubauen.
Diese Ausdrucksweise kann aber zu einem Missverständnis Anlass bieten.
Die Befehle, welche einen durchzuführenden Befehl erst aufbauen, sind

vom Ersteller der Instruktionsreihe gebildet worden, Die in Verfolgung
dieser Befehle durch die Maschine konstruierten Befehle sind also
indirekt doch wieder vom Menschen vorausbestimmt.

In dieser Möglichkeit, Maschinenbefehle durch die Maschine in
einem bestimmten Sinne selber erzeugen zu lassen, liegt die entscheidende
Wurzel für die grosse Flexibilität der programmgespeicherten Bechen-
maschinen. Hier liegt auch der eigentliche Grund dafür, dass heute die
Grenzen der Leistungsfähigkeit der Maschinen nicht anzugeben sind.
Der Mensch steht hier wohl zum ersten Mal vor der Tatsache, dass er eine

Maschine konstruiert hat, von der er zwar weiss, wie sie aufgebaut ist,
und dass sie bestimmte Aufgaben lösen kann. Er weiss aber nicht, wie
weit die Leistungsfähigkeit der Maschine über das Erwartete und
Geplante hinausgeht. Das Nichtüberblickbare liegt hier nicht etwa in
der Geschwindigkeit, die auch in diesem Falle keine Hexerei darstellt,
sondern in der Idee der Programmspeicherung, die es erlaubt, die
Maschine gewissermassen auf sich selber anzuwenden, eine Art Bekursion
höherer Ordnung durchzuführen.

Die Erzeugung des Programms durch die Maschine selber soll an
einem einfachen Beispiele noch etwas klarer gemacht werden. Die
Befehle für die Maschine sind in einer verschlüsselten Form aufzustellen.
Die Schlüssel sind je nach Maschinentyp schwerer oder leichter zu merken.

Auf alle Fälle wäre es viel bequemer, wenn der Auftrag für die
Maschine in der Umgangssprache formuliert werden könnte, oder wenigstens

in einer Kunstsprache, die dieser nahe steht. Dieses Problem ist
heute grundsätzlich gelöst. Zum Beispiel kann als Programm geschrieben
werden : Gewicht durch Volumen ergibt spezifisches Gewicht. Ein einmal
erstelltes besonderes Programm erlaubt es dann, aus der für uns
verständlichen Fassung das eigentliche Maschinenprogramm herzustellen
und dann auszuführen. Der Maschine muss natürlich irgendwie mitgeteilt
werden, was das Gewicht und das Volumen für sie bedeuten. Sie muss
wissen, an welchen Speicherstellen sie das Gewicht und das Volumen



— 81 —

findet. Diese Mitteilung braucht sie aber nur ein fur allemal. Sie
«erinnert sieb» dann gewissermassen immer, wo sie diese Grössen finden
kann. Fur das Ergebnis, das spezifische Gewicht hingegen, ist es nicht
notwendig, der Maschine eine Mitteilung zu machen. Das Übersetzungsprogramm

ist so aufgebaut, dass es für alle Namen, z.D. also Gewicht,
spezifisches Gewicht, eine Liste fuhrt mit der Nummer der entsprechenden

Speicherstelle. Wenn im Programm, das in der Kunstsprache
geschrieben ist, ein Name auftritt, sucht das Übersetzungsprogramm in
der Liste, wo die entsprechende Information gespeichert ist. Findet das

Übersetzungsprogramm in der Liste den Namen nicht, z.D. das spezifische

Gewicht als Resultat, so ordnet es dem Namen den nächsten freien
Speicherplatz zu und fügt Namen und Speichernummer der Liste bei.
Üas erlaubt später auch die errechneten Ergebnisse mit ihrem Namen
anzurufen anstatt mit der Speichernummer. Der Mensch, der das
Programm erstellt, weiss nicht, wo das spezifische Gewicht gespeichert ist,
er hat aber der Maschine ein Zuordnungsschema mitgeteilt, auf Grund
dessen sie deterministisch diese Aufgabe lost. - Nachdem die Maschine
lri einem längeren Prozess die Umwandlung des Lefehls aus der
Kunstsprache in die Verschlüsselung der Maschine durchgeführt hat,
kann sie nun die eigentliche Rechnung, Gewicht durch 'Volumen,
friedigen.

Die Umwandlung aus einer uns leichter verständlichen Sprache in
den Code der Maschine kann als Übersetzung aus einer Sprache in eine
andere aufgefasst werden. Im Prinzip kann die Maschine also übersetzen.
Ufe Übersetzung bezieht sich aber hier auf Kunstsprachen, die viel
Weniger reich an Ausdrucksmöglichkeiten sind als naturliche Sprachen.

Auf dem Gebiete der Übersetzung naturlicher Sprachen wird
heute sehr viel gearbeitet. Es durften zur Zeit einige 100 Forscher ihre
Arbeitszeit vollständig dieser Frage widmen. Es zeigt sich, dass für
Natürliche Sprachen das Problem viel schwieriger ist. Viele Hindernisse
Werden sich wegräumen lassen. Auf diesem Gebiet wird jedoch der
Wünsch noch lange uberlegen bleiben, da in vielen Fällen beim
Übersetzen das Verständnis des Textes eine Voraussetzung bildet.

Trotz dieser grundlegenden Schwierigkeit ist jedoch zu erwarten,
dass in absehbarer Zeit die Übersetzung technischer Schriften durch
Maschinen häufig angewendet wird - allerdings wird es sich um Uber-

Atzungen mittlerer Qualität handeln. Der damit erreichte Stand scheint
hoch. Wahrscheinlich wird es aber schwer fallen, ihn in kurzer Zeit

6



— 82 -
wesentlich zu verbessern. Auf alle Fälle wird der Mensch hier höchstens
einmal von der Maschine eingeholt, während er auf andern Gebieten

von ihr übertroffen werden kann.
Unser Beispiel der Übersetzung von Kunstsprachen zeigt uns aber

auch etwas anderes, nämlich, dass die programmgespeicherten elektronischen

Rechenmaschinen nicht nur rechnen können, sondern ganz
allgemein in der Lage sind, Zeichen nach Regeln zu verarbeiten, Symbole
zu manipulieren. Der Ausdruck «Rechenmaschinen» erweist sich je
länger je mehr als zu eng. Es zeigt sich, dass der zwar immer noch
bedeutende Anteil an numerischen Arbeiten auf diesen Geräten abnimmt,
hingegen die nicht-numerischen Anwendungen an Bedeutung gewinnen.
Es ist z.B. falsch, anzunehmen, dass nur das Gebiet der numerischen
Mathematik von diesen Maschinen erfasst wird. Sogar für Forschungsaufgaben

auf dem Gebiet der reinen Mathematik werden sie zum
mindesten Hilfsfunktionen übernehmen können. Es drängt sich deshalb
auch eine andere Bezeichnung als Rechenmaschinen für die von uns hier
betrachteten Geräte auf. Besser wäre z.B. der Ausdruck
«Datenverarbeitungsanlage», der jedoch sprachlich nicht ganz befriedigt. Es gibt
wohl keine gute und knappe Übersetzung des Ausdrucks «data processing».

Wir wollen deshalb weiterhin den zu engen Ausdruck
«Rechenmaschine» beibehalten.

In einem gewissen Sinne ist die Erkenntnis von der über das rein
Rechnerische hinausgehenden Kraft der elektronischen Geräte für
denjenigen, der ihren logischen Aufbau kennt, nicht fernliegend. Die
Maschinen arbeiten ja so, dass elektronische Zeichen Grundverknüpfungen

der Logik, z.B. «und», «oder», «nicht», unterworfen werden. Aus
diesen Grundverknüpfungen können unter anderem Rechenoperationen
konstruiert werden. Primäre Funktionen bilden aber die logischen
Grundbeziehungen. Es ist deshalb auch in einem gewissen Grade
naheliegend, dass die Untersuchungen der Logistiker für die Forschung auf
diesem Gebiete von besonderer Bedeutung geworden sind. Für den

Logistiker ist sogar die Frage nach den Grenzen der Fähigkeiten
programmgespeicherter Rechengeräte im Prinzp vollständig geklärt. Alle
diese Geräte sind grundsätzlich äquivalent der von Turing schon 1936

betrachteten Modellmaschine, die in der Lage ist, alles zu berechnen,
was überhaupt sich berechnen lässt. Dass Grenzen bestehen, welche es

nicht erlauben, alle Probleme in einem Kalkül zu lösen, haben die

Untersuchungen von Gödel, Church und anderen gezeigt. Die Grenzen der



— 83 —

Entscheidbarkeit von Problemen im Rahmen einer Logik gelten ganz
natürlich auch für die elektronischen Rechenmaschinen.

So wichtig und wertvoll diese Ergebnisse in vieler Beziehung auch
sind, geben sie uns doch keine Antwort auf die uns hier interessierende
Erage, ob Maschinen in der Lage sind, Aufgaben zu lösen, die Intelligenz
voraussetzen. Wir wollen deshalb nun einige Beispiele näher betrachten.

Das wohl bekannteste Beispiel von Simulation von Intelligenz
stellen die künstlichen Tiere dar, die sich ihren Weg zum Ziel in einem
Labyrinth suchen. AVenn sie ihn durch systematisches Suchen gefunden
Laben, durchlaufen sie das nächste Mal den AVeg direkt. Sie erinnern sich
gewissermassen. Sie haben scheinbar etwas gelernt. Das erste Beispiel
für ein derartiges Modell stammt von Shannon aus dem Jahre 1950. Eine
A erbesserung besteht darin, dass die künstlichen Tiere auf nachträgliche
Änderungen des Labyrinths «zweckmässig» reagieren, d.h. sie suchen
von dem Augenblick, an dem sie eine Änderung feststellen, wieder einen
A\eg zum Ziel, wobei sie notfalls zum Ausgang zurückkehren. So ver-
Llüffend das Verhalten dieser künstlichen Tiere auch aussieht, die
praktische Realisation stellt keine allzu grossen Anforderungen. Es ist nur
notwendig, einen systematischen Suchprozess aufzubauen, ausserdem
den AATeg zu speichern, der beschritten wird, dafür zu sorgen, dass nicht
mehrfach der gleiche AVeg durchlaufen wird und nach Erreichen des
Ziels vom Suchprogramm auf das direkte Durchlaufprogramm
umzuschalten. Für den Fall, dass das Labyrinth nachträglich verändert wird,
üiuss im Durchlaufprogramm die Möglichkeit der Rückkehr in das Such-

Programm gegeben sein. Der ganze Vorgang setzt natürlich eine

geeignete Arerbindung zwischen einem Rechengerät und der physikalischen
Realisation des künstlichen Tieres voraus. Das Beispiel zeigt deutlich,
dass es möglich ist, eine Maschine so zu programmieren, dass sie ein
A orgehen, das sich nicht bewährt, nicht mehr durchführt und umgekehrt
ein Amrgehen beibehält, das Erfolg hat. Soweit Lernen also nur aus dem
Anpassen an gemachte Erfahrungen besteht, kann es einer Maschine
Leigebracht werden, doch soll darauf hier nicht näher eingegangen
werden.

Das nächste Beispiel stammt aus der Geometrie. Es gibt heute schon
mehrere Programme, die in der Lage sind, Aufgaben der elementaren
Geometrie zu lösen und Lehrsätze herzuleiten, die einem durchschnittlichen

Maturanden zum mindesten gewisse Schwierigkeiten machen
würden.



— 84 —

Eine geometrische Figur wird in einein elektronischen Rechenautomaten

durch eine abstrakte Verschlüsselung festgehalten, auf die hier
nicht näher eingegangen werden soll. Weiter sind die Verarbeitungsregeln

und die Axiome der Geometrie ebenfalls im Programm zu
berücksichtigen. Ausserdem erweist es sich häufig als zweckmässig, Hilfslinien
oder ganze Hilfsfiguren zu betrachten. Auch diese Möglichkeit ist in
derartigen Programmen eingebaut.

Hie Basiswinkel in einem gleichschenkligen Dreieck sind bekanntlich

einander gleich. Minsky hat von seinem Programm einen Beweis für
diesen Satz erhalten, der sehr einfach ist. Normalerweise wird der Beweis

geführt durch Ziehen der Flohe von der Spitze und Nachweis, dass die
beiden Teil-Dreiecke kongruent sind. Die elektronische Maschine löst
die Aufgabe so, dass sie ausser dem Dreieck ABC das Dreieck A'B'C"
betrachtet, das aus dem ersten durch eine Drehung aus der Ebene
entsteht. Die beiden Dreiecke stimmen in drei Seiten überein, sind also

kongruent. Daraus folgt, dass die Basiswinkel gleich sind.

.1 A'

In diesem Falle hat die Maschine einen Beweis gefunden, der dem

Hersteller des Programms nicht bekannt war. Sie hat ihn also in einer

Beziehung übertroffen.
Als weiteres Beispiel für künstliche Intelligenz wollen wir nun ein

Programm betrachten, das Newell, Shaw und Simon aufgestellt haben.
Dieses Programm ist in der Lage, Aufgaben einer gewissen Struktur auf
verschiedenen Gebieten zu lösen. Da die Erklärung des Programms sich
im Abstrakten bewegen muss, soll vorerst anhand eines Beispiels gezeigt
werden, wie eine bestimmte Aufgabe praktisch gelöst wird. Die
Darstellung beschränkt sich dabei auf das Wesentliche.



— 85 —

Wir stellen der Maschine die Aufgabe zu beweisen, dass

(tg x + ctg x) sin x cos x 1

lst. Das Ziel bestellt für die Maschine darin, eine Reihe von
Transformationen der linken Seite der Gleichung zu finden, die sie in die rechte
Seite überführt. Erlaubte Transformationen sind die Regeln der Schul-
algebra und die elementaren Beziehungen zwischen den trigonometrischen

Funktionen. Das Hauptziel der Maschine besteht also in der
Überfuhrung der linken Seite in die rechte. Sie versucht nun zuerst, ob es

durch die einmalige Anwendung der erlaubten Umwandlungsregeln
möglich ist, das Ziel zu erreichen. Das ist nicht der Fall. Dann setzt sich
die Maschine eine Unteraufgabe, nämlich die Reduktion des
Unterschieds zwischen den beiden Seiten. Als Unterschied ist z. B. zu verzeich-
uen, dass auf der linken Seite eine Tangensfunktion vorkommt, auf der
rechten Seite nicht. Die algebraischen Mittel helfen nicht weiter. Ist es

möglich, den Tangens auf der linken Seite wegzuschaffen mit Hilfe der
zur Verfügung stehenden Beziehungen zwischen den trigonometrischen
Funktionen Die Maschine stellt fest, dass das möglich ist, da sich der
Tangens als reziproker Wert des Cotangens ausdrücken lässt. Diese

Ersetzung wird durchgeführt. Ein Teilziel ist erreicht. Der «Abstand»
der linken Seite von der rechten Seite ist verkleinert. Die reduzierte
Aufgabe lautet nun, die transformierte linke Seite in die rechte Seite
überzuführen. Das gelingt abermals nicht in einem Schritt. Die Maschine
stellt sich wiederum das Teilziel, den Abstand der beiden Seiten zu
verkleinern. Auf der linken Seite kommt der Kotangens vor, auf der rechten
Seite nicht. Algebraische Methoden ergeben keinen Fortschritt. Die

cos x
Anwendung der Beziehung cotg x führt dann zum Erreichen

sin x
des Teilziels. Es ergibt sich als neue linke Seite

1 cos x\- H r 1 sin x cos x.
cos x sin x I

sin x /
Nunmehr versucht die Maschine die Entfernung zwischen den beiden
Seiten weiter zu verkleinern und stellt fest, dass sie dafür die Beziehung
sm2 x + cos2 x 1 benützen sollte. Diese Relation lässt sich dafür im
Augenblick nicht anwenden. In mehreren Einzelschritten, die wir nicht
mehr genau ausführen wollen, wird der Unterschied zwischen der linken



— 86 —

Seite und der anzuwendenden Beziehung durch algebraische Schritte
verkleinert, bis die Transformation gelingt und die Maschine stolz «quod
erat demonstrandum» schreibt.

Nach diesem Beispiel für eine Anwendung des allgemeinen
Programms für die Lösung von Aufgaben, das von Newell, Shaw und Simon
entwickelt worden ist, wollen wir es nun kurz in seiner vollen Allgemeinheit

charakterisieren. Es handelt sich nicht um ein Programm, das etwa

nur zur Lösung derartiger trigonometrischer Aufgaben aufgestellt wurde ;

die Lösungsmethode ist allgemein und wurde z. B. auch für Probleme der

Logistik eingesetzt. Das Programm stellt ein Teilgebiet der Forschungsarbeit

der Verfasser dar, welche nach ihren eigenen Worten das Verständnis

intellektueller, anpassungsmässiger und schöpferischer Tätigkeit des

Menschen anstrebt. Als Grundlage für das Programm dienten Beobachtungen

an amerikanischen Studenten beim Lösen von Aufgaben auf dem

Gebiete der symbolischen Logik. Die Studenten mussten laufend
aussprechen, was sie beim Lösen der ihnen gestellten Probleme dachten.
Das auf Grund dieser Beobachtungen erstellte Programm ist in der Lage,
Probleme zu bewältigen, welche sich allgemein auf Objekte und Operatoren

beziehen. In unserem trigonometrischen Beispiel sind Objekte die

Zahlen und trigonometrischen Funktionen, Operatoren, die mit den

Objekten erlaubten algebraischen und trigonometrischen Umformungen.

Wenn wir als Beispiel das Schachspiel betrachten, so sind die

Schachstellungen die Objekte und die erlaubten Züge die Operatoren, die neue

Objekte ergeben. Für ein formales mathematisches System hingegen
sind Objekte die Axiome und Theoreme, Operatoren die erlaubten

Regeln für das Schliessen.

Das Programm bezieht sich auf allgemeine Objekte und allgemeine
Operatoren. In der Anwendung auf ein bestimmtes Gebiet ist es deshalb

notwendig, Angaben über die Eigenschaften der Objekte und Operatoren

zusätzlich noch anzugeben. Das Trennen der Methoden für die

Lösung von den Eigenschaften eines bestimmten Anwendungsgebietes
zeigt, dass der Name «general problem-solving program» zu Recht
gewählt wurde. Immerhin muss betont werden, dass nicht alle Aufgaben,
die zu lösen sind, sich in dieser einfachen Form stellen. Das Programm
ist allgemein in dem Sinne einer Anwendbarkeit auf viele Gebiete, nicht
aber auf alle.

AVenn der Mensch ein Problem löst, so verwendet er dabei häufig
heuristische Methoden, d.h. er benützt Verfahren, die nicht ganz exakt



— 87 —

smd und nicht sicher zum Ziele führen, Analogieschlüsse, Veränderung
der Aufgabe usw. Auch die Maschine braucht etwas Ähnliches. Wir
wollen aber dafür entgegen dem Vorgehen von Newell, Shaw und Simon
üicht ebenfalls das Wort Heuristik verwenden, sondern wie mehrere
Kritiker vorschlagen, den Ausdruck «Strategie». Es dürfte zweifellos
besser sein, alles zu vermeiden, was leicht zu Missdeutungen führen
kann. Der Ausdruck Strategie ist sachlich, während das Wort Heuristik

vielleicht zu stark dazu verführt, Übereinstimmung mit dem Denken

des Menschen beim Lösen von Aufgaben anzunehmen.
Was fur Strategien sind jetzt im «general problem-solving program»

Pingebaut

Einmal das Prinzip des Anstrebens von Teilzielen, d.h. es wird
versucht, ein Ziel, das in einem Schritt nicht erreicht werden kann, durch
ein leichteres Teilziel zu ersetzen. Dazu ist es notwendig, dass das
Programm in der Lage ist, einen Fortschritt auf ein Ziel hin zu erkennen,
d-h. es müssen auf irgendeine Weise Definitionen von Unterschieden
gegeben sein. In unserem Beispiel der trigonometrischen Funktionen
besteht z. B. ein Unterschied durch das Vorkommen trigonometrischer
Funktionen auf der linken Seite; die auf der rechten Seite fehlen. Die
Unterschiede können jedoch auf ganz verschiedenen Gebieten bestehen.
Ks kann ja nicht nur inbezug Vorhandensein von Elementen, sondern
auch in ihrer Verknüpfung ein Unterschied bestehen, wie das Beispiel

(a — b) (a + b) a2— b2

Zeigt. Hier kommen auf beiden Seiten die gleichen Grössen vor, aber ihre
^ erknüpfung ist verschieden.

Beim Beweisen eines Satzes kann es bekanntlich unter Umständen
zweckmässig sein, das Problem scheinbar zu komplizieren, indem etwa
Hilfsvariable oder Zusatzglieder eingeführt werden. Das Programm
von Newell, Shaw und Simon weist diese Möglichkeit nicht auf. Es handelt

sich um ein geradliniges Vorgehen.
Die zweite Strategie, die in das Programm eingebaut ist, besteht im

Wechselspiel zwischen Hilfsmitteln und Zielen. Die Art dieses
Vorgehens kann vielleicht an besten mit dem sehr einfachen Beispiel erklärt
Werden, das Newell, Shaw und Simon in ihrer Arbeit verwendet haben:

Ich möchte meinen Sohn in den Kindergarten bringen. Was ist
der Unterschied zwischen dem, was ich habe und dem, was ich will?
Häiunliche Entfernung. Was überwindet räumliche Entfernung? Mein



— 88 —

Auto. Mein Auto kann nicht fahren. Was ist notwendig, damit es wieder
fährt? Eine neue Batterie. Wer hat neue Batterien? Eine Garage usw.

Man sieht hier schön den Wechsel zwischen Zielen und den zum
Erreichen dieser Ziele notwendigen und zweckmässigen Hilfsmitteln.
Diese primitive Art von - sagen wir nun nicht «Denken», sondern
Verarbeitung - ist in das «general problem-solving prograin» ebenfalls eingebaut.

Abstrakt ausgedrückt muss das Programm in der Lage sein,
Differenzen zwischen den Objekten zu erkennen und die geeigneten Operatoren

zu finden, welche diese Differenzen überwinden. Dabei wird es

notwendig sein, eine Bangordnung der verschiedenen Arten von
Differenzen zu erstellen, damit wichtige vorweg entfernt werden.

Soweit sind die im Programm berücksichtigten Strategien so

aufgebaut, dass sie nur jeweils einen Schritt in Richtung auf das Ziel hin
ausführen, ohne einen Gesamtplan der Lösung anzustreben. Eine
weitere Strategie sucht nun einen derartigen Plan für eine Lösung
herzustellen, indem gewisse Einzelheiten der Aufgabe weggelassen werden.

Das so vereinfachte Problem wird gelöst und dann der Lösungsweg

auf das ursprüngliche Problem übertragen. Das Verfahren führt
nicht unbedingt zum Ziel, wie auch die bisher beschriebenen Strategien

nicht, bringt aber in vielen Fällen eine wesentliche Verkürzung
des Arbeitsganges, gelegentlich aber auch eine unnötige Verzögerung
infolge der Untersuchung von Lösungen des vereinfachten Problems,
die sich nicht auf das ursprüngliche Problem übertragen lassen. Diese

Strategie ist bei unserem trigonometrischen Beispiel nicht angewendet
worden.

In das «general problem-solving program» sind noch andere
Strategien eingebaut, auf die hier nicht mehr näher eingegangen werden
soll. Dem Aufstellen eines derartigen anspruchsvollen Programms
stellen sich noch viele Schwierigkeiten entgegen. Wenn hier nur auf
einige Grundzüge eingegangen werden konnte, dürfen deshalb die

Schwierigkeiten für das Programmieren einer derartigen künstlichen
Intelligenz nicht unterschätzt werden.

Wir wollen uns nun als letztes einem Ausblick auf Anwendungen
für Forschungsaufgaben der reinen Mathematik zuwenden. Die bereits
behandelten Beispiele haben wohl schon zur Genüge gezeigt, wie falsch

es ist anzunehmen, dass elektronische Bechengeräte nur für numerische

Aufgaben eingesetzt werden können. Man kann z.B. heute schon mit
ihnen analytisch integrieren und differenzieren.



— 89 —

Schwierige mathematische Theoreme sind zurzeit durch Maschinen
nicht zu beweisen. Bs hat sich gezeigt, dass die Beherrschung von
Kalkülen der Logik eine entscheidende Voraussetzung für Erfolge auf
mathematischem Gebiet bilden. Dem amerikanischen Forscher Wang
ist es im Jahre 1960 gelungen, 850 Sätze aus dem bekannten Buch von
Whitehead und Rüssel «Principia mathematica» maschinell zu beweisen,

wobei die Maschine für die ganze Arbeit gut 8 Minuten brauchte. Sie

entdeckte dabei, dass ein Theorem nicht der Klassenlogik, sondern der
Aussagenlogik zugehört, was bisher den Autoren und allen Lesern
entgangen ist. Hingegen hat sie glücklicherweise kein Theorem als
Filsch bezeichnet.

Wang glaubt, dass zunächst einfachere Gebiete, wie die
Schulalgebra und Schulgeometrie, erfasst werden können. Schwierigere
Beziehe lassen sich dann stufenweise auch in Angriff nehmen. Es ist dabei
zu berücksichtigen, dass fur eine Maschine die Schwierigkeiten nicht
gleich liegen wie für Menschen. Der Mensch ist im Aborted auf Gebieten,

Intuition und Anschauung ihm helfen. Für nichteuklidische
Geometrie z.B. dürfte die Alaschine einen AVrsprung besitzen.

Die Idee, die gesamte Alathematik auf das schematische Schliessen
innerhalb eines Logikkalküls zurückzuführen, geht auf Leibniz zurück.
Beano, Hilbert und andere haben diesen Gesanken weiterverfolgt.
Hilbert wies darauf hin, dass die gesamte klassische Mathematik sich
im Rahmen der elementaren Prädikatenlogik formalisieren lasse. Als
zentrales Problem der mathematischen Logik ergibt sich somit das

Problem, einen Algorithmus zu finden, der es erlaubt zu entscheiden,
°li eine Formel der Prädikatenlogik gültig ist oder nicht. Church und
-luring haben dann in den Dreissigerjahren dieses Jahrhunderts
gezeigt, dass es keinen Algorithmus für das Entscheidungsproblem der
Bi'ädikatenlogik gibt. Daraus folgt, dass auch elektronische
Rechenmaschinen nicht allgemein entscheiden können, ob eine mathematische
Behauptung zutrifft oder nicht. AArenn es nun aber kein Entscheidungs-
verfahren gibt, so lassen sich wenigstens Beweisverfahren konstruieren,

R- Kalküle, die für jede gültige Formel einen Beweis finden. Für
Ungültige Formeln suchen sie jedoch im allgemeinen unaufhörlich einen
Beweis. Derartige Beweisverfahren lassen sich jedoch auf elektronischen

Rechenmaschinen programmieren.
Es liegt uns nicht, Prophezeiungen anzustellen. Wir wollen deshalb

nur erklären, dass mit dem heute erreichten Stand auf dem Gebiete



- 90 —

der mathematischen Logik eine Grundlage geschaffen ist, welche weitere
Fortschritte in der Eichtling der reinen Mathematik ermöglicht und

sogar wahrscheinlich macht.
Zusammenfassend sei festgehalten, class elektronische Rechen-

maschinen - wenigstens in der in dieser Arbeit betrachteten Form -
deterministisch gebaut sind. Die Vorstellung einer zwar flexiblen, aber
doch in einem höheren Sinne starren, zum voraus festgelegten Arbeitsweise

ist richtig. Mit einer derartigen Arbeitsweise lassen sich jedoch
Aufgaben behandeln, die bisher dem selbständig denkenden Menschen

vorbehalten schienen. Neue Gebiete erweisen sich einer rationalen
Behandlung als zugänglich. Trotzdem bestehen natürlich Grenzen.

Wo z.B. Grenzen liegen, sei am Beispiel der Musik angedeutet.
Soweit die Musik von Kegeln beherrscht wird, soweit ist sie rational
erfassbar. Auch gelegentliche systematische Abweichungen von Eegeln
bilden wieder ein Schema unci lassen sich programmieren. Soweit die

Komposition von Musikstücken also sich auf Regeln zurückführen lässt,
lässt sie sich programmieren. Es ist wohl nicht nötig besonders zu
betonen, dass nur damit Mozart und Bach keine Konkurrenz gemacht
wird.

Es war das Ziel dieser Ausführungen, zu einem vertieften
Durchdenken der sich hier stellenden Probleme anzuregen. Es trifft allerdings

zu, wenn gesagt wird, eine Maschine kann nur das tun, was ihr von
Menschen befohlen wird. Aber man kann z.B. einer Maschine befehlen,
einen inathematischen Beweis zu suchen, etwas zu lernen, sich

zweckmässig an Reaktionen der Aussenwelt anzupassen. Die Auswirkungen
cler uns durch diese neuen Maschinen gebotenen Möglichkeiten greifen
nicht nur in unser materielles Leben ein, sondern müssen uns dazu
veranlassen, unsere Vorstellungen über die Ausnahmestellung des

denkenden Menschen einer genauen Prüfung zu unterziehen. Auch wenn
wir das, was Maschinen leisten können, nur mit simulierter Intelligenz
bezeichnen wollen, greift es doch eindeutig in Bereiche, die wir bis jetzt
dem Menschen vorbehalten glaubten. Der Mensch hat es verstanden,
mit geeigneten Werkzeugen und Maschinen seine eigenen körperlichen
Kräfte und seine Sinnesorgane zu verstärken. Es wird ihm heute die

Gelegenheit geboten, ähnliches auf intellektuellem Gebiete zu
vollbringen. Die wirklich tiefen Probleme für den Menschen liegen jedoch
nicht darin, ob er auf diesem oder jenem Gebiete von einer Maschine
übertroffen wird, sondern wozu er die ihm auf bisher materiellem und



— 91 —

neu nun intellektuellem Gebiete gebotenen Möglichkeiten verwendet.
Las Erkennen der richtigen Maßstäbe und Ziele kann dem Menschen
keine Maschine abnehmen.

Literaturhinweise

^e>>ianek, H.: Kybernetik. I.Teil: Maschinen mit Phantasie; II.Teil: Das Tier und
die Maschine. Mathematik-Technik-Wirtschaft, 4, 1957.
erschiedene: Machine translation of languages; 2.Auflage 1957.

Davis, Martin: Computability and Unsolvability, 1958.
v°n Neumann, John: The Computer and the Brain, 1958.

erkeley, Edmund C.: Symbolic logic and intelligent machines, 1959.
Jewell, .4., Shaw, J.C. and Simon, H.A.: Report on a general problem-solving

program; Information Processing, 1959.
alburn. T., Grimsdale, Tt.L. and Sumner, F.H.: Experiments in machine learning

and thinking; Information Processing, 1959.
unham. B., Fridshal, B. and Sward, G.L.: A non-heuristic program for proving
elementary logical theorems; Information Processing. 1959.

elernter, H.: Realization of a geometry theorem proving machine; Information
krocessing, 1959.

teinbueh, K.: Pattern recognition and machine learning; Information Processing,

1959.
vlniore, P.: A program for the production from axioms, of proofs for theorems
derivable within the first order predicate calculus; Information Processing, 1959.
lachnian, H.M.: NPL symposium on the mechanization of thought processes;
Communications of the Association for Computing Machinery, 2, 1959.

teinbuch, K.: Lernende Automaten; Elektronische Rechenanlagen, 1, 1959.
at>Uiel. A.L.: Some studies in machine learning, using the game of checkers;
IBM Journal of research and development, 3, 1959.

^er>ianek, H.: Wesen und Grenzen des Automaten; Mathematik-Technik-Wirt-
schaft, 6, 1959.

1 r'iwitz, D., Prawitz, H. and Voghera, N.: A mechanical proof procedure and its
realization in an electronic computer; Journal of the Association for Computing
Machinery, 7, 2, 1960.
a"is, M. and Putnam, H.: A computing procedure for quantification theory;
Journal of the Association for Computing Machinery, 7, 3, 1960.

IcC'arthy, J. : Recursive functions of symbolic expressions and their computation
by Machine, Part. I.; Communications of the Association for Computing Machinery,

3, 4, 1960.
Tflrtg. jg prov;ng theorems by pattern recognition I. ; Communications of the

Association for Computing Machinery, 3, 4, 1960.
'"ïore, P.C.: A proof method for quantification theory: its justification and
realization; IBM Journal of research and development, 4, 1, 1960.

aier, R. and Zemanek, H. : Automatische Orientierung im Labyrinth ; Elektronische
Bechenanlagen, 2, 1, 1960.
anJ,H.: Toward mechanical mathematics. IBM Journal of research and development,

4, 1, 1960.
erschiedene: Advances in computers; vol. 1, 1960.



— 92 —

Résumé

Après une brève présentation du fonctionnement fondamental des ensembles
électroniques à programme enregistré, l'auteur, à l'aide de quelques exemples,
montre jusqu'à quel point aujourd'hui les machines sont capables d'imiter
l'intelligence.

Summary

After a short presentation of the fundamental functional system of stored
program electronic data processing machines, the author shows with help of a few
examples how far today intelligence can be imitated by machines.

Riassunto

Dopo una breve descrizione dei sistemi de lavoro fondamentali dei complessi
elettronici a programmazione interna, l'autore mostra con alcuni esempi, fino a che

punto oggi le macchine sono in grado di imitare 1'intelligenza.


	Simulation von Intelligenz durch Maschinen

