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Introduction a la théorie de I'information

Par Philippe Dubots, Zurich

F

Résumé

L’auteur expose les éléments de la théorie de I'information et traite quelques
exeruples simples d’application.

A Torigine de la théorie mathématique de U'information, créée par
Pingénieur américain Shannon [1]1) dans les années 1947/48, se trouvent
des problémes purement techniques de transmission de messages sous
forme de signaux & l'aide de procédés radio-électriques. Itroitement
apparentée an calcul des probabilités, la théorie de I'information a déja
666 appliquée avec sucees dans de nombreux domaines de la physique
et de la technique (perfectionnement des machines & caleuler électro-
niques, problémes du codage dans les télécommunications, processus
fondamental de I'observation scientifique, ete.). A 'heure actuelle, elle
constitue le fondement d’une branche plus générale de la science connue
sous le nom de cybernétique dont le champ d’application, grace aux tra-
vaux fondamentaux du mathématicien américain Wiener, s'étend jus-
qu'a la psychologie (6tude du comportement normal ou pamt}lologi(ltle
du systéme nerveux et, en particulier, analyse du mécanisme des
rétlexes) et méme jusqu’a la biologie.

Le présent article se propose d’exposer d'une maniére élémentaire
los bases de la théorie de I'information et d’aborder quelques exemples
simples d’application. Afin de faciliter la compréhension et la, présenta-
tion des idées développées, la rigueur mathématique a été saerifide au
profit de raisonnements empiriques et intuitifs. Le lecteur soucicux de
s'orienter sur les essais entrepris récemment par de nombreux auteurs

') Les chiffres entre crochets se rapportent & la liste bibliographique & la fin
du présent article.
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en vue de donner & cette théorie une base rigoureusement mathéma-
tique et méme axiomatique, pourra se reporter de préférence a. 1'ar-
ticle [10] résumant les travaux publiés & ce sujet jusqu’a ce jour, et &
I'ouvrage [5].

I. Eléments de la théorie de I'information

1. Remarques préliminaires [4]

La théorie mathématique de l'information part d’une définition
précise et objective de la notion d’information et ne tient pas compte
de la valeur subjective que peut revétir une information. Plus exacte-
ment, 'information est considérée comme une grandeur absolue qui a
la méme valeur numérique pour tout observateur.

Ainsi, par exemple, I'information obtenue en choisissant une carte
dans un jeu de cartes sera représentée par la méme grandeur, que la
carte tirée soit un as, un sept ou un roi. Lia valeur de la carte ainsi que
la stratégie adoptée par les joueurs (éléments qui dépendent nécessaire-
ment des régles du jeu pratiqué) sont des notions qui relévent de la
théorie moderne des jeux et non de la théorie de 'information.

En fait, la défimtion de la notion d’information est fondée sur le
critére de la rareté. Si une situation est rare, sa réalisation fournit de
'information, que cette information soit ou non dénuée de valeur.

L’interprétation restreinte donnée au mot «information» peut
paraitre sévere, mais elle répond, par exemple, aux préoccupations de
I'ingénieur des télécommunications qui doit pouvoir transmettre toute
information contenue dans un message sans se soucier de la valeur que
présente cette information pour le destinataire. Seule I'élimination de
tout élément subjectif a permis de donner une définition quantitative
de 'information et de traiter cette derniére comme une grandeur mesu-
rable. L’utilité d’une telle définition s’est affirmée d’une maniére pro-
bante dansg I'étude de nombreux problémes seientifiques et techniques
en permettant de parvenir & des conclusions d’ensemble de réelle valeur
pratique et d’une grande généralité.

Ces remarques montrent clairement les limites de la théorie de
l'information et elles doivent étre présentes & l'esprit dans les appli-
cations.
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2. Notion d’entropie d’une expérience [1] [4][5] [T]

La définition de la notion d’information dérive de la notion d’en-
tropie introduite par Shannon pour caractériser lo degré d’indéter-
mination d’une expérience. Considérons I'exemple simple suivant:

Soit une expérience o susceptible de prendre m valeurs A dis-
binctes également probables a priori. Pour m = 1, lexpérience ne pré-
sente aucune indétermination, puisque le résultat de l'expérience est
connu d’avance. Si m est grand, Uobservateur ne disposant d’aucun
élément d’information supplémentaire sur I'expérience o, ne sera en
général pas en mesure de prédire lissue de I'expérience envisagée. Plus
grand sera m, plus grand sera le degré d’indétermination de Uexpérience
considérée. Le degré d’indétermination se présente done comme une
fonction f(m) croissant avee m et s"annulant pour m = 1. Pour déter-
miner cette fonetion complétement, il convient de lui imposer, en plus
de la condition triviale de continuité, une propriété d’additivité.

Soient deux expériences indépendantes « et f, la premiére pouvant
prendre comme précédemment m valeurs 4; et la seconde n valeurs B,
distinctes également probables a priori. Conmderonb I'expérience cou-
plée B consistant & réaliser simultanément les expériences o et B. Dans
ces conditions, il est naturel d’admettre que U'indétermination de 1’ex-
Périence couplée off sera égale & la somme des indéterminations carac-
térisant les expériences « et f. Chaque valeur de la premiére expérience
Pouvant étre couplée avee toute valeur de la seconde expérience, le
hombre total de valeurs possibles également probables a priori de I'ex-
Périence «ff sera donc égal & mn. Il en résulte la condition suivante

pour la fonction f(m): fmm) = f(m) + f(n).

Les conditions posées suffisent & déterminer complotement la structure
de la fonction f(m) qui est du type logarithmique. La mesure du degré
d’indétermination d’une expérience susceptlble de prendre m valeurs 4,

distinctes également probables a priori s’exprime ainsi par la fonctlon

f(m) = logm avec f(1) =

Le choix de la base des logarithmes n’est pas essentiel, car le passage
d’un systéme de logarithmes & un autre revient & multiplier la fonction
log m par une constante. égale au module du changement de bage,
¢'est-d-dire & choisir une autre unité pour la mesure du degré d'indéter-

mination d’une expérience.



Dans les applications techniques, 1l est d’usage de choisir les loga-
rithmes de base 2. [,'unité d’indétermination est appelée unité binaire
ou bit et caractérise le degré d’indétermination d’'une expérience pré-
sentant deux issues possibles également probables a priors (par exemple
0 et 1 dans le systéme de numération binaire). Le choix des logarithmes
de base 10 conduit & V'unité décvmale qui est environ Y plus grande
que 'unité binaire (en effet: log, 10 = 3,32).

La fonetion log m qui représente en définitive l'indétermination
totale de expérience « peut aussi se mettre sous la forme

N o Ot 1
logm = > logm = —> log .,

la, sommation portant sur m termes et . désignant la probabilité que
I'une quelconque des m issues possibles 4, également probables a prior
soit sélectionnée. Dans la somme ci-dessus, chaque terme — ! log
représente en quelque sorte l'indétermination engendrée par chacune
des m issues possibles de 'expérience w.

La définition de la mesure d’indétermination relative & une expé-
rience susceptible de prendre m valeurs distinctes également probables
a preory, peut étre immeédiatement généralisée au cas d'une expérience
a pouvant prendre m valeurs distinetes 4, avec une probabilité p(A,;).
[expression obtenue dans le cas particulier permet de présumer que
la mesure de I'indétermination de U'expérience « généralisée sera repré-
sentée par I'expression

H(a) = — D p(d)logp(4;) avee D p(d) = 1.
= =1

Cette grandeur H(x) positive joue un role analogue & celui de la
notion d’entropie en thermodynamique et a été, pour cette raison,
appelée par Shannon Uentropie de Uexpérience «. Elle peut aussi étre
interprétée comme la valeur probable d’'une grandeur aléatoire qui
prend la valeur —log p(4,) avec la probabilité p(4,).

3. Propriété fondamentale de 'entropie H(wx) [1][4] (7]

Soit @, une expérience pouvant prendre m valeurs distinetes A,
également probables a priors et « une expérience susceptible de prendre
aussl m valeurs distinctes A4, mais avec une probabilité p(4,). A laide
des propriétés élémentaires des fonctions convexes, il est facile de
démontrer I'inégalité suivante

H(o) < H{oy) = logm.
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Le signe d’égalité ne peut avoir lieu que st o = «;, ¢’est-a-dire si
p(4,) = - Ce résultat est plausible, car Uissue de Uexpérience o est
Plus difficile & prévoir que celle de Pexpérience «. Dans le cas ou
l’expériencn « ne présente que deux issues possibles, la démonstration
de Pinégalité ci-dessus est immédiate. Tin effet:

L’entropie d’une telle expérience

H(x) = —plogp,—pylogpy
= —p;logp, —(1—p) log(1—p,) (car p+p;, = 1)

est une fonction de p, qui s’annule pour p, = 0 et p, = 1.
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Représentation graphique de 'entropie d'une expérience «
présentant deux issues possibles

En raison de sa structure symétrique (voir figure), la fonction H (a)
admet pour p, == L == py une valeur maximum égale précisément 3

f[(o{) el 1(){.{ ; = 10g2'

4. Entropie couplée et entropie conditionnelle [1] [4] [7]

Soient deux expériences o et f caractérisées par les tableaux de

probabilités suivants:

J 14': l ‘ ]37 ]
a = pld;) ; f= (B .
l’[;:::l’z,,..,"nl lj:]"%.i"'!w”

Considérons I'expérience couplée définie par le tableau de probabilités :

A,B;
| p4;B))

P= =19 m |

Yo b By oy s B
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L’entropie couplée de I'expérience composée af qui consiste & réaliser
simultanément les expériences a et f, est définie par I'expression

H(ap) = — > p(d,B;) log p(4;B)),

iL,j=1

ot p(4;B;) désigne la probabilité des issues 4; et B;.
Si les expériences « et B sont indépendantes, ¢’est-a-dire si
p(d;B;) = p(d;) p(B)),
il est facile de démontrer que

H(«p) = H(x) + H(f) .

KEn effet: o
H(ap) = HZIP(A ) p(Bj) [log p(d,) + log p(B;)]
1=
::M®EM&HH@§¥MJ
7::[ =
= H(ax)+ H(f),
car

S:l, P(B;) = N p(4;) = 1.

Si les expériences « et f ne sont pas indépendantes, ¢’est-a-dire si
(A, B;) = p(d,) p(By‘IAi) ;

ou p(B; 4,) désigne la probabilité de I'issue B; lorsque l'issue 4; s'est
produite, I'égalité ci-dessus n’est plus valable. D’une maniére générale,
on démontre que ,
Hap) = H(x) + H(B),
le signe d’égalité n’étant valable que si les expériences « et # sont
g g
précisément indépendantes.

L’expérience couplée «f impose en quelque sorte une contrainte
supplémentaire & la réalisation des expériences « et  envisagées séparé-
ment. Dans ces conditions, il est logique que lindétermination de
Iexpérience couplée off soit inférieure ou au plus égale a la somme des
indéterminations caractérisant les expériences o et 8 considérées indi-
viduellement.
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L’inégalité ci-dessus peut étre remplacée par une égalité d une portée
plus générale. A cet effet, Shannon a introduit la notion d’entropie con-
ditionnelle H (Bl) qui est définie par les relations

H(fo) = 3 pld ) H(pl4)

(2

avec
n

H(pld;) = — >\ p(Bjl4;) log p(B;ld),
=
ol p(B?-{A,;) désigne comme précédemment la probabilité liée de
Pévénement, B, quand on sait que I'événement A, s’est déja réalisé.
La grandeur H(ﬁfa) représente donc I'entropie de I'expérience g lide

a la réalisation de I'expérience .
L’expression de I'entropie conditionnelle F (ﬁl‘oc) peut aussi se mettre

sous la forme: m,n

H(Bla) = — > p(4,B;) log p(B,|,).
ij=1
A partir de ces relations, on démontre aisément que I'entropie
couplée H(afB) de I'expérience composée aff satisfait & I'égalité:
H(«f) = H(x) + H(ﬂjoc).

I en résulte immédiatement que

0 < H(fo) = H(P),

la limite supérieure n’étant valable que lorsque les expériences « et 8
sont indépendantes et la limite inférieure lorsque l'issue de lexpé-
rience « détermine entiérement lissue de I'expérience . Dans ce dernier

ca lent:
8, on obtient H(up) = H(a).

Soit 'expérience composée o = o, o, ... o qui consiste & réaliser
k expériences «;. I’entropie H(x) satisfait & l'inégalité suivante qui est
une généralisation du résultat indiqué précédemment dans le cas de
deux expériences:

H(x) < H(ai) + H(oy) + ... + H(e,),

négalité que nous aurons I'occasion d’utiliser dans la seconde partie
du présent article.



5. Définition de la notion d’information [1] [4][7]

Par définition, Uentropie H(fB) caractérise le degré d’indétermina-
tion de lexpérience B. H(B) égal & zéro signifie que le résultat de
Pexpérience f est connu d’avance. Une expérience auxiliaire quel-
conque « (susceptible de présenter plusieurs issues possibles) précédant
I'expérience B peut limiter le nombre des éventualités de cette dernicre
et ainsi diminuer son degré d’indétermination. Cette circonstance s’ac-
corde avee le fait que l'entropie conditionnelle H ([J;a) est plus petite
ou au plus égale & 'entropie inconditionnelle H(S) de 'expérience f.

Si le résultat de 'expérience auxiliaire « n’influe pas sur celui de
I'expérience f, on obtient:

H(Ba) = H().

Si, par contre, I'expérience « détermine complétement l'issue de Uex-
périence 3, la relation suivante est valable:

H(fja) = 0.
Par conséquent, la différence

[(off) == H(B)— H(fa)

peut étre interprétée comme une mesure indiquant de combien diminue
lindétermination de U'expérience p par la réalisation de I'expérience
auxiliaire «. Cette mesure est appelée la quantite d’information que
fournit 'expérience « au sujet de U'expérience #. Si, dans I'expression
I{«p), Uexpérience « coincide avee Uexpérience f, on obtient:

L[(BP) = L(B) = H(B).
En effet, la réalisation de 'expérience f déterminant entierement son
1ssue, on a nécessairement:

H(Bp) = 0.

Il découle de ces considérations que la grandeur H(f), définie &
Porigine comme le degré d’'indétermination de 'expérience f3, peut étre
également utilisée pour mesurer la quantité d’information que recele
I'expérience . Kin se reportant & la définition de I'entropie H(f) sous
sa forme générale, il apparait que cette grandeur représente plus pré-
cisément I'information moyenne contenue dans 'expérience f (le carac-
téere de valeur moyenne étant conditionné par les différentes issues
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Possibles de 'expérience f). Dans cet ordre d'idées, les notions d’en-
tropie et d’information sont parfaitement identiques. Plus I'indéter-
Wination d’une expérience est grande, plus U'information obtenue par
Sa réalisation est grande. Ainsi, par exemple, si la probabilité p d’un
événement est petite (décos d’une personne jeune), information ob-
tenue par la réalisation de cet événement inattendu est sans aucun
doute plus grande quo si p est grand (décds d'une personne centenaire).

I est facile de vérifier que

I(af) = I(p),
d’ot résulte I'inégalité:
If) = Hio) = I{a).
Cette inégalité est plausible, car I'information contenue dans une ex-
Périence « au sujet d’une autre expérience 8 ne peut étre supérieure i
Pinformation contenue dans I'expérience o envisagée en elle-méme.

II. Applications de la théorie de I'information

Cette seconde partie est consacrée & application des notions d’en-
tropie et d’information & la résolution de quelques problémes simples
provenant de différents domaines. Dans le cadre d'une introduetion,
il ne saurait étre question de traiter dans toute sa généralité le pro-
bléme fondamental du codage qui nécessite un appareil mathématique
trés avancé (analyse de Fourier, théorie des sondages et des filtres).

1. Probléme de logique [7]

Soit un nombre entier quelconque x positif, inférieur ou égal & N.
Combien faut-il poser de questions pour le deviner, celui qui a 1maginé
le nombre répondant par oui ou par non aux questions qui lui sont
posées ?

L’expérience f dont il s’agit de déterminer l'issue peut prendre
N valeurs possibles, le nombre imaginé z étant 'un des nombres quel-
conques compris entre 1 et N (limites comprises). 4 priori, ces N va-
leurs peuvent étre considérées comme également probables. [ expé-
rience 8 contient donc une quantité d’information égale 3

I() = log N.
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Considérons l'expérience auxiliaire composée
o= 0y Oy ... Ol

qui consiste & poser k questions. L’expérience «, n'ayant que deux
igsues possibles (réponse affirmative ou négative) contient une infor-
mation maximum égale &

En vertu de I'inégalité indiquée & la fin de la premieére partie (chiffre I),

on obtient: 7
I(e) < klog2.

1) < 1(a).
Pour que l'expérience auxiliaire « détermine complétement l'issue de

I'expérience B, il faut que
I{of) = 1(F).

De cette fagon, nous obtenons 'inégalité suivante qui va permettre de
déterminer le nombre k:

Par ailleurs, on sait que

log N < k log2 = log 2%,
d’ot 1l résulte que

2]:: ; 1\7,
¢’est-a-cire
log,e N
log,, 2

le signe d’égalité n’étant valable que lorsque N est une puissance de 2.

Considérons, a titre d’exemple, le cas d’'un nombre & deviner com-
pris entre 1 et 10, limites incluses. Pour N = 10, I'inégalité ci-dessus

donne
k= 8,32

Or k ne peut étre qu'un nombre entier de sorte que le nombre minimum,
de questions nécessaires dans ce cas particulier est égal &

k= 4.

Montrons rapidement comment il est possible de déterminer effec-
tivement un nombre x compris entre 1 et 10 & 1'aide de quatre ques-
tions:
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Partageons 'ensemble des nombres entiers compris entre 1 et 10
en deux parties égales. Lia premiére question permettra de situer le
nombre x dans 'une de ces deux parties. La partie sélectionnée est 3
Nouveau partagée en deux parts de trois et deux chiffres. A Paide de
la seconde question, il sera possible de déterminer dans quelle partie
de ce sous-ensemble se trouve le nombre z. Iin continuant de eette
maniére, il est visible que le nombre z pourra étre effectivement défini
& I'aide de quatre questions au plus. Notons en passant que ces quatre
questions suffiraient méme & déterminer un nombre = compris entre
1 et 16, limites incluses.

S1 'interrogateur dispose d’une information préliminaire sur le
nombre z, les N valeurs possibles ne peuvent plus étre considérées
comme également probables a priors. Le nombre minimum de ques-
tions qui permet de déterminer dans tous les cas le nombre z, sera
néanmoins donné par 'inégalité établie précédemment. Le procédé
appliqué dans 'exemple particulier ci-dessus pourra étre maintenu et
permettra d’arriver au but quelle que soit la répartition des proba-
bilités attachées aux différentes valeurs possibles. Suivant les circons-
tances, il est cependant possible qu’une stratégic plus avantageuse soit
coneevable en vue de déterminer le nombre x plus rapidement. Iin cas
d’échec de cette stratégie, il faut s'attendre alors & ce que le nombre
de questions nécessaires devienne supérieur & la valeur k& résultant de
Uinégalité établie antérieurement. A ce point de vue, cette derniére
valeur peut étre considérée comme une valeur moyenne du nombre de
questions indispensables pour déterminer le nombre x. Illustrons cet
aspect du probléme & l'aide de 'exemple simple suivant:

Soit N =4 et x,, zy, 23 et x, les valeurs possibles du nombre
cherché. Fin vertu de I'inégalité définissant k, deux questions seront
néeessaires pour déterminer complétement le nombre z, si le procédé
de partage en sous-ensembles est adopté. Supposons que la valeur z i
501t plus probable que les trois autres valeurs @y, 2y et z,. Si la pre-
mi¢re question posée consiste & demander si z = x; et que la réponse
soib affirmative, le probldme aura été résolu au moyen d’une seule
question. Si, par contre, la réponse est négative, une nouvelle question
ne suffira plus en général & déterminer le nombre x. Dans lo cas le plus
défavorable, trois questions au total seront nécessaires. Bn fait, la
stratégie la plus avantageuse & adopter dans ce jeu dépendra des pro-
babilités attachées aux différentes valeurs Ly
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2. Probléme élémentaire du codage [1] [4][7]

Soit un message de N nombres, exprimé & l'aide des chiffres
0,1,2,...,9) du systeme décimal. Dans le domaine des communica-
tions, le probléeme du codage le plus simple consiste & transerire ce
message donné dans le systéme de numération binaire, le chiffre 5,
par exemple, étant représenté par le symbole 101. Quel est le nombre
minimum de signes du systéme binaire nécessaires pour transmettre le
message de N chiffres du systéeme décimal ?

Ce probleme revient & rechercher le code le plus avantageux qui
permette une transmission plus rapide du message et, par conséquent,
une utilisation plus rationnelle de la ligne de transmission. Il est facile
de se rendre compte que le nombre de signes binaires nécessaires pour
représenter un nombre compris entre 0 et 9 (limites incluses) est
exactement équivalent au nombre de questions qu’il faut poser pour
deviner un chiffre compris entre 1 et 10 (voir développements sous 1.).
Pour transmettre un nombre du systéme décimal, nous aurons done
besoin de 4 signaux binaires (le nombre 5 étant alors représenté par
le symbole 0101). Un message de N nombres du systéme décimal
nécessitera ainsi 4 N signaux binaires. L'information contenue dans un
nombre exprimé dans le systéme décimal est égale au plus A

log 10 = 1 unité décimale,

cette valeur maximum n’étant valable que si les dix valeurs possibles
(0,1, ...,9) sont indépendantes entre elles et également probables
a priori. Un message de N chiffres en systéme décimal contiendra done
au maximum une information égale ¢
N unités décimales = 12 N unités binaires,
puisqu’une unité déecimale vaut approximativement %’ unités binaires.
Chaque élément du message codé peut prendre deux valeurs pos-
sibles (0 ou 1) et fournit done au maximum une information égale &
log 2, soit une unité binaire. Un message composé de 4 N signaux
binaires fournira ainsi au maximum une information de

4 N unités binaires,

soit 2 N unités binaires de plus que linformation maximum con-
tenue dans un message de N nombres du systéme décimal. Il $’ensuit
que le code envisagé (quatre signes binaires par chiffre du systéme
décimal) n’est pas le plus avantageux du point de vue de la théorie
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de l'information. Il est aisé de concevoir comment un code plus avanta-
goux peutb étre construit. A ceb effet, il suffit de partager le message
de N chiffres du systome décimal en tranches de deux chiffres et de
coder chacune de ces tranches directement suivant le systéme de
Numeération binaire. Lle nombre de signaux binaires nécessaires pour
transmettre une tranche de deux nombres du systéme décimal, com-
prise entre 00 et 99, est égal & 7 et correspond au nombre de questions
qu'tl faut poser pour deviner un nombre compris entre 1 et 100 (limites
comprises). Un message de N nombres du systéme décimal nécessitera
dans ces conditions (N étant supposé pair pour plus de simplicité)
'7"2E = 8,5 N signaux binaires,

801t 2; signaux binaires de moins que dans le procédé du codage en-
visagé initialement. 11 serait théoriquement possible de réduire encore
plus le nombre de signaux binaires en partageant le message de
N nombres du systéme décimal en tranches de M chiffres et en trans-
crivant directement chacune de ces tranches suivant le systéme de
numération binaire. Le nombre de signaux binaires nécessaires pour
eprésenter une tranche de M chiffres du systéme décimal est égal &
k = _logml()j’ ,
logyy

olt 10™ désigne le nombre de valeurs que peut prendre une tranche de
M chiffres dans le systéme décimal. Dans ces conditions, le nombre de
signaux binaires requis pour transcrire un message de N nombres du
Systéme décimal suivant le systéeme de numération binaire & 'aide du
brocédé du codage par tranches, sera donné (N étant supposé divisible
par M pour plus de simplicité) par 'expression:

Nology 10" logel0 o

M log,2

logy,

3. Probléme du langage [1] [2] [4] [7]

La part la plus importante de I'information est transmise par le
langage. Emvisageons le probléme du calcul de la quantité d’informa-
tion que contient une phrase écrite. Ce probléme d’une Importance
Pratique trés grande est compliqué. Le manque de données statistiques
concernant le langage n’a pas encore permis de parvenir 4 une solution
rigoureuse et compléte de cette question,
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Les ‘résultats obtenus sous chiffre 2. peuvent dtre transposés au
cas ol le message ne se présente pas sous forme de chiffres, mais sous
forme de lettres tirées d’un alphabet de n lettres par exemple. Si toutes
les lettres de l'alphabet envisagé sont considérées comme également
probables a priord, il sera possible de transmettre un message de
N lettres, partagé en tranches de M lettres, & l'aide de

logom |
logy, 2

gignaux binaires. Or il se trouve que 'hypothése formulée n’est pas
valable dans le domaine du langage. Ainsi, par exemple, dans un texte
francais quelconque, les lettres o ou e apparaissent plus souvent que
les lettres y ou k. De telles anomalies se rencontrent dans toutes les
langues.

Shannon et d’autres auteurs se sont penchés sur cet aspect du
probléme et ont étudié tout particuliérement la structure de la langue
anglaise. Les résultats obtenus dans ce domaine sont exposés sommaire-
ment dans la suite.

L’alphabet de la langue anglaise se compose de 27T lettres (I'espace
entre les mots étant asgsimilé & une lettre). Si toutes les lettres se pré-
sentaient dans un texte anglais avec la méme probabilité, I'information
contenue dans une lettre serait au plus égale 8

[, = log 27 = 1,431 unités décimales.
Les statistiques établies & partir d'un texte anglals ayant un sens et
suffisamment long ont permis de déterminer approximativement les

probabilités de survenance des diverses lettres. L’extrait suivant donne
une idée de I'ordre de grandeur de ces probabilités.

lettre ¢ probabilités de survenance p,

espace entre

les mots 0,200
E 0,105
T 0,072
1 0,055
D 0,035
P 0,018
K 0,003

Z 0,001
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Si les lettres ¢ de I'alphabet envisagé sont supposées indépendantes
entre elles, I'information moyenne contenue dans une lettre transmise
& partir d’un texte anglais scra alors donnée par

27

I, = H =—>p,logp;, = 1,213 unitiés décimales.

i=1
Mais cette grandeur moyenne est blen supérieure a la valeur réelle-
ment transmise. Kn effet, dans un texte ayant un sens, la probabilité
de transmettre une lettre donnée dépend essentiellement des lettres
qui la précédent. Ainsi, il est trés probable que la lettre ¢ soit suivie
de la lettre i dans la langue anglaise. L’interdépendance des lettres
dans toute langue est une forme particuliére de la corrélation, notion
fondamentale en statistiquo appliquée.

Soient deux expériences «, et a, qui consistent & étudier le com-
portement de deux lettres successives queleconques @, et a;, tirdes d'un
texte ayant un sens. L’information totale résultant de la réalisation
de ces deux expériences dépendantes est donnée par la relation:

H(oqot) = H(oty) + H(Oﬁzial) = H(“z,‘fﬁ)s

car on peut toujours admettre que la lettre a; précédant la lettre a;
est connue & la réception du message (de borte que H(ay) = 0). Dans
ces conditions, I'information moyenne contenue dans une lettre trans-

mise devra dtre caleulée par la formule

I, = H(mylo,) = — > plaa;) log p(a;a;),

ol p(a,a;) désigne la probabilité de survenance des lettres a, et a a;,

P(ajla;) la probabilité de survenance de la lettre a; lorsqu’on sait
qu’elle est précédée de la lettre a;, et n le nombre de lettres de I'alphabet
envisagé.

De méme, si I'on considére un groupe de trois lettres successives
quelconques a,, a; et a, et si I'on tient compte de la corrélation Liant
la troigidme Iettre a; aux deux premieres @ et a;, I'information moyenne
contenue dans une lettre transmise sera représentée par la formule

n
Iy = H(ugouyon) = — D) plaa,m) log p(a, a;a;),
) '!:ilk-_'l
ou les probabilités introduites dans cette expression ont des significa-

tions analogues & celles indiquées précédemment. La méthode de caleul
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de I'information moyenne d’une lettre relative & un groupe de deux
et trois lettres peut étre immédiatement généralisée au cas d’un groupe
de N lettres avec N quelconque.

Dans cet ordre d’idées, il convient de signaler que le probleme
de la corrélation posé par la transmission d’'un texte ayant un sens
est apparenté a I'étude de chaines particulieres de Markoff. Cette
analogie a déja été mise en évidence par Shannon dans son ouvrage
fondamental [1] et tout récemment par Miinzner [9].

En plus des probabilités de survenance des lettres simples (voir
extrait ci-dessus), celles se rapportant aux groupes de deux et de trois
lettres ont été calculées pour la langue anglaise. A partir de ces données,
Shannon a déterminé les valeurs I, et I,. Le tableau suivant résume
les résultats obtenus:

I, = 1,431 unités décimales
I, = 1,213 unités décimales
I, = 0,999 unités décimales
I, = 0,933 unités décimales.

Si Uon envisage des groupes de lettres toujours plus importants
et s1 U'on tient compte de la corrélation liant ces lettres, 'information
moyenne contenue dans une lettre transmise décroitra en conséquence.
Les grandeurs I,, formeront ainsi une suite monotone décroissante et
I'information moyenne réelle par lettre sera donnée par la limite
I, = liml/

m->co

théorique
m?

lorsqu’un texte ayant un sens et suffisamment long est transmis. Cette
valeur limite n’a pu étre calculée exactement jusqu’a présent en raison
du manque de données statistiques complétes pour les groupes de plus
de trois lettres. Fin vue de son calcul approximatif, Brillouin, entre
autres auteurs, a proposé une méthode fondée sur des statistiques rela-
tives & la fréquence de rencontre d'un mot. De telles statistiques ont
été établies pour la plupart des langues européennes dans I'intention
de faciliter le codage de textes et l'enseignement des langues.

Pour caractériser I'interdépendance des lettres dans toute langue,
Shannon a introduit la notion de redondance d’une langue qui est
définie par 'expression

1

I
Ty log,on
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ol n désigne comme par le passé le nombre de lettres de I'alphabet
envisagé. Les recherches entreprises par Shannon et d’autres auteurs
ont montré que la redondance I est de I'ordre de grandeur de 0,5 pour
la langue anglaise. in d’autres termes, dans un texte anglais ayant un
sens le 509, des lottres est déterminé par la structure méme de la

langue.

De I'application de ces considérations au probléme du codage d’un
texte, posé au début de la présente section, il résulte qu'un texte de
N lettres (N suffisamment grand) ayant un sens peut &tre transmis

én principe au moyen de

I
. T

log,, 2
signaux binaires, nombre qui est notablement inférieur au nombre

logm n

log,, 2 ’

valable lorsque les lettres de l'alphabet envisagé sont considérées
comme également probables a priort. Un procédé de codage utilisant

. I, . o o
moins de N signaux binaires serait théoriquement concevable,
0810
mais il provoquerait une perte d’information qui ne permettrait plus
en général de rétablir la teneur du message transmis.

Les développements sommaires qui préeédent ainsi que les résul-
tats présentés sous chiffre 2. sont & la base d’un théoréme fondaments]
relatif & la vitesse de transmission des messages, dont la démonstration
repose sur un procédé de codage approprié connu sous le nom de code
de Shannon-I'ano. Nous ne donnerons cependant pas U'énoncé de ce
théoréme, car il faudrait, au préalable, introduire la notion de capacité
d'une ligne de transmission. Bien que cette notion soit étroitement
liée & celle de l'information, elle sort du cadre du présent article. Le
lecteur s'intéressant & ces questions fondamentales de la théorie des
bransmissions pourra se reporter aux ouvrages spécialisés indiqués
dans la liste bibliographique ci-aprés.
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Zusammenfassung

Der Verfasser legt die Grundbegriffe der Informationstheorie dar und behan-
delt einige einfache Anwendungsbeispiele.

Riassunto
L’autore expone gli elementi fondamentali della teoria dell’informazione e
tratta alcuni esempi semplici di applicazione.

Summary

The paper deals with the eloments of the theory of information. Its application
is illustrated by some simple examples.
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