Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker
= Bulletin / Association des Actuaires Suisses = Bulletin / Association of
Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker
Band: 60 (1960)

Artikel: Das Haupttheorem der linearen Programmierung
Autor: Romer, B.
DOl: https://doi.org/10.5169/seals-966789

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-966789
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

— 247 —

Das Haupttheorcm der linearen Programmierung

Von B. Romer, Basel

Zusammenfassung

Sind n Veranderliche, die entweder nur nichtnegativ oder dann nur nichtpositiv
sein diirfen, durch ein System von k linearen Ungleichungen miteinander verbunden,
das ihnen noch Bewegungsfreiheit lisst, so kann man dieses System durch Ein-
fiihren von k neuen Veriinderlichen in ein Gleichungssystem umwandeln. Das
Haupttheorem der linearen Programmierung sagt dabei aus, dass, um den Iixtrem-
wert irgendeiner Linearkombination der urspriinglichen Veriinderlichen ausfindig
zu machen, jeweils n der (n + k) Veriinderlichen Null gesetzt werden miissen. Der
Verfasser beweist das Theorem durch schrittweise Verallgemeinerung, ausgehend
von n = 2, k = 1. Kr bespricht schliesslich noch gewisse Verallgemeinerungen.

Die nichtnegativen Veriinderlichen z,, x,, ..., «, moégen den Lin-
schrinkungen unterliegen

Oy Ty F O Tyt oo 04, T, =< 8

gy Ty + gy Ty oo+ Qg Ty = 8y (1)

. .

.

IA

Ay Ty + Qg Ty + oo+ Uy Ty = 8

wo die ¢ und s feste Grossen sind und in jeder Ungleichung mindestens
ein Koeffizient @ von Null verschieden ist.
Bis wird gefragt, ob
X =p & +P@+t. ... +p,2,+c, (2)

wo wir alle py, p,, ..., P, als von Null verschieden voraussetzen, ein
Maximum annimmft ; und, wenn ja, wie gross es ist und fiir welche Werte
der Verdnderlichen es erreicht wird. Wie man leicht einsieht, éindert die
Konstante ¢ an der maximierenden Kombination der z,z,,...,z,
nichts; sie beeinflusst nur den Betrag des Maximums.
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Eng verwandt ist die Aufgabe, (2) zu einem Minimum zu machen,
wenn die Ungleichungen (1) umgekehrt lauten (= statt =£). Diese zweite
Art der Aufgabe entsteht beispielsweise bereits dadurch, dass man die
Beziehungen (1) und (2) links und rechts mit (— 1) multipliziert; — X
muss dann ein Minimum werden, in (1) wechseln alle Koeffizienten
sowie die Grossen s ihr Vorzeichen, und die Ungleichungen kehren ihre
Richtung um.

Im folgenden wird uns nur die Maximum-Aufgabe beschiftigen.

Dass unter Umstinden X kein Maximum hat, d.h. beliebig gross
gemacht werden kann, zeigt nachstehendes Beispiel: alle p in (2) mégen
positiv, die Koeffizienten @ in (1) fiir bestimmte Veréinderliche z eben-
talls durchwegs positiv, fiir die tibrigen Veréinderlichen hingegen durch-
wegs negativ sein; nehmen die Verinderlichen der ersten Gruppe beliebig
grosse Werte an, diejenigen der zweiten Gruppe allesamt auch, wobei
die Bedingungen (1) erfiillt seien, so wird X sehr gross.

Bei der sogenannten linearen Programmierung hat man es mit ein-
gekleideten Beziehungen wie (1) und (2) zu tun. Bei einem der Liosungs-
verfahren, der Simplexmethode, werden die Ungleichungen (1) zuniichst
durch Finfithren nichtnegativer « Schlupfvariablen» @, ,, @, o, ..+, T, 4
in Gleichungen umgewandelt:

Uy Tyt g By oo Ay @y Ty = 8
gy Ty 4 (gg Ty + « o A Uoy Ty T Ty g = Sy (3)

.
.

Uy Ty & (g Lo + ot e, Ty, + Lyyip = Spe

Alle Gleichungen (8) setzen wir ausdriicklich als miteinander ver-
triglich und voneinander unabhingig voraus.

Die Simplexmethode geht beim Aufsuchen der maximierenden end-
lichen Werte der Verinderlichen von folgendem Haupttheorem aus:

Damit die Grosse X in (2) beim Vorliegen einengender Bedingungen
(8) ihr Maximum erreicht — sofern sie tiberhaupt eines hat —, miissen n
Veriinderliche unter den insgesamt (n+ k) Null sein.

Welche Verianderlichen verschwinden miissen und ob dies schliess-
lich iiberhaupt zu einemn Maximum von X fithrt, ergibt sich aus den
weiteren Verfahrensschritten. Wir verzichten darauf, diesen hier nach-
zugehen.
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In einem verdienstvollen Aufsatz, betitelt «Approximative Re-
servenberechnung mit Hilfe der linearen Programmierung», hat Herr
M. Trischknecht in dieser Zeitschrift erstmals gewisse Aufgaben und
L(')'sungs'wege der linearen Programmierung im Versicherungswesen auf-
gezeigt ; ein Passus dieses Aufsatzes (60.Bd., Heft 1, S.103) bietet in-
sofern Gielegenheit zu Missverstindnis, als unterstellt wird, die Be-
dingungsgleichungen (8) seien nur lésbar, wenn # Verinderliche Null
wiirden. Das gilt jedoch bloss im Zusammenhang mit der Extremal-
autgabe; sonst aber lassen sich die Gleichungen (3) nach & Veriinder-
lichen auflgsen, wenn die itbrigen beliebig vorgegeben sind ; die ersteren
werden dann eben lineare Funktionen der letzteren.

Das Haupttheorem wird im erwiihnten Aufsatz fir den Falln = 9,
k = 8 geometrisch bewiesen.

Wir gedenken hier einen Beweis zu geben, der auf geometrische
Darstellung verzichtet. Fr mag vielleicht etwas mithsamer sein, ge-
stattet aber die Voraussetzungen und gedanklichen Schritte klar her-
auszustellen. Der Beweisgang vollzieht sich in drei Stufen:

a) die Behandlung des einfachen Falles: n = 2, k = 1;
b) die Behandlung des allgemeineren Falles: n beliebig, & = 1;

¢) die Behandlung des allgemeinsten Falles: n beliebig,  beliebig.

Der Fall n = 2, k = 1.

VV]I’ h&ben XI o X__c —— pl ,’L'l ‘+‘p2 :Eg}

(4)

8§ = &+ Uy Ty + 3.

Wir verlangen, dass mindestens ein p und ein @ mit gleichem Index
von Null verschieden sind und dass

j) — plp2’

a; ‘

nicht verschwindet (Vermeiden der Entartung). Dabei sind somit im
Vergleich zu (2) die Voraussetzungen fiir p gelockert. Die Reihenfolge
der Bezeichnungen richten wir so ein, dass D > 0 ist.
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Dann wird, weil z;, z, = 0 sind,

Da) = X'ay—py(s—ua3) = 0, "

Dxy = py(s—a5) —X'a; = 0; 9

daraus X'ay = py(s—us), (6)
)

X'a, < p(s—uy).

Damit tiir X ein echtes Maximum vorhanden ist, muss unbedingt
mindestens eine der Ungleichungen (6) eine endliche Obergrenze fiir
X'’ liefern. Dabei spielen die Vorzeichen von a,, ay mit. Ergeben beide
Ungleichungen (6) eine solche Obergrenze, so ist die kleinere davon
massgebend ; eine und dieselbe Obergrenze kénnen sie nicht haben, weil
sonst — py/— @, = P, /a, sein miisste, was wegen D > 0 verboten ist.

An der Maximalstelle muss x; = 0 sein. Denn in der dafiir mass-
gebenden Ungleichung aus (6) ist rechts a; die einzige freie Verinder-
liche, und die rechte Seite hingt linear von ihr ab. Das Maximum von
X' muss somit entweder mit dem Maximum oder dann mit dem Mini-
mum von a, zugleich vorkommen. Nun hat z; kein Maximum; sein
Minimum (Null) und das Maximum von X’ (und X) treffen also zu-
samren.

Durch Rickgriff auf die Ungleichung in (5), von welcher die schliess-
lich massgebende in (6) stammt, erhélt man ausserdem noch, dass dann
entweder z, oder x, Null werden muss, wéihrend die dritte Variable sich
aus der Nebenbedingung in (4) ergibt. Ist z.B. x, «stirker», so wird fiir
ihre Maximalstelle z, = sfa, und des weiteren

Max X = P2 s+e.

Qy

Handelt es sich bei der Nebenbedingung um eine echte Gleichung,
ist also die «iiberzihlige» Variable z; von vornherein Null, so d&ndert sich
nichts an den darauffolgenden Schliissen.

Der Fall: n beliebrg, k = 1

Jetzt liegt das System vor
XN =X—c=p2,+ P22+ ... +P,%,,

S == alml-l‘a2$2+ . u e +a”$”—i“$”+1.
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Wir denken uns (7) dargestellt als
§ =X —(gagt ... tpa) = prag+pyay,

' =s—(ag2g+ ... +a,2,) =0, 2, +2,+1,,,.

(8)

Ty, Ty, ..., T, seien beliebig gewiihlt, aber vorldufig testgehalten; nur
zy, &, und z, , , seien beweglich. Damit haben wir den ersten Fall wieder
vor uns. Wir werden, um & unter diesen Umstinden zu maximieren,
x, . sowie eine der Grossen x,, , Null zu setzen haben. Beispielsweise
mdége dies fiir x,, z, , der Fall sein. Iolglich gilt fiir den erreichbaren
Hochstwert von &

Py = ij [s—=(ag5+ ... +a,x,)] = Max[X—c—(pya5+... + p,,)].

Das bleibt giiltig fiir jeden Wert, den xy, z,, ..., &, angenommen
haben, also insbesondere auch fiir jenen, den sie annehmen, wenn sie
sich am allfilligen Maximum von X beteiligen. Somit scheiden z, und
Z, , aus der weiteren Betrachtung aus. Sie tragen zum Maximum von X
nichts bei, wenn sie es nicht schon fiir das Maximum von & tun. Letzt-
lich rithrt dies davon her, dass es ausschliesslich von den Koeffizienten
p und @ abhingt, welche Verinderlichen zu verschwinden haben, und
nicht etwa von X und s oder von & und s’. Wir diirfen den Gedanken-
gang mit z,, x,, ..., 2, allein fortsetzen. Mithin haben wir beispielsweise

’ A" 3 —_— P -
=X —(pat+ ... +P%) = Payt+ Py,
' =s—(ayx + ... +a,x,) = dyTy+ag 2y,

Die ¢iiberzihlige» Veriinderliche (Schlupfvariable) entfillt nun,
was durchaus nicht stért. Wir scheiden weitere Variable aus; bei jedem
Schritt verschwindet eine davon. Bei jedem Schritt miissen aber auch
die im einfachen Fall erwiihnten Bedingungen erfiillt bzw. erfiillbar
sein, was wir nachdriicklich betonen.

Schliesslich bleibt genau eine nichtverschwindende Variable zuriick,
welche als stirkste» allein zum Héchstwert von X in (7) beisteuert.
Anders gesagt:

Bei (n-+1) Verinderlichen mit einer einzigen Nebenbedingung wie
(7) erreicht X sein Maximum, falls » Verinderliche (und darunter die
Schlupfvariable) verschwinden.

Das entspricht der Aussage des Haupttheorems.



Der Fall: n beliebig, I beliebig

Wir kommen zu den Beziehungen (2) und (3) und setzen dabei
voraus, dass mihdestens eine der Determinanten k-ter Ordnung, welche
sich aus der Matrix mit k& Zeilen und (n + k) Spalten

Qg g vy, 1 0.0

Oy B wss By, O Louws 0

.

By oy oo Uy T 1 e B

gewinnen lassen, von Null verschieden sei (Vermeiden der Entartung).
Diejenige, welche aus den k Zeilen und den letzten &k Spalten entsteht
(Koetfizienten der Schlupfvariablen), zihlen wir dabei ausdriicklich
nicht mit; sie ist ja gleich Kins.

Die Zahl der Nebenbedingungen driicken wir um eine herab, indem
wir gleichzeitig x; ausschalten ; x; muss zu denjenigen Variablen gehoren,
deren Koeffizienten in einer nichtverschwindenden Determinante vor-
kommen. Wir multiplizieren die erste Nebenbedingung derart, dass wir
davon die zweite, dritte ... Nebenbedingung abziehen kénnen und
dabei in der jeweiligen Differenzgleichung der Koeffizient von 2z, ver-
schwindet. So kommen wir auf (n -+ k—1) Verdnderliche (ohne z;) in
(k—1) Nebenbedingungen.

Desgleichen errechnen wir @, aus der ersten Nebenbedingung als
lineare Funktion der itbrigen Variablen und von s,; dies fithren wir in
(2) ein. Dadurch wird die Anzahl der massgebenden Veréinderlichen
dort nicht beeinflusst, weil ; ersetzt wird durch dort bereits vertretene
Variable und durch a,,, ,. Wir erhalten

X=qa+ gt it H By Hetgi8 (9)

mit -
h —Pr— P
@y
G = pa— 2
) o (10)
Pi P
Qnyy = — —— und g, = .
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~ Nimmt man als a; die Schlupfvariable «, ,, so wird (2) vollig in
Ruhe gelassen, und von den Nebengleichungen (3) entfillt einfach die
erste,

So schreiten wir weiter und setzen die Anzahl der Nebenbedingun-
gen auf eine einzige sowie die der Verdnderlichen auf (n+ 1) herab,
ﬁVﬁhrend die Anzahl der Veridnderlichen in (2) immer gleich » bleibt.
Wird unterwegs eine Schlupfvariable ausgeschaltet, die nur in einer
einzigen Nebenbedingung vorkommt, so lisst man diese Gleichung
einfach beiseite.

Von da an unterwerfen wir das Restsystem den namlichen Uber-
legungen und Bedingungen wie beim erledigten Fall: » beliebig, & - 1.
[liminieren wir die ¢stiirkste» ibriggebliebene Verinderliche (welche
das Maximum erzeugt), indem wir die Nebenbedingung nach ihr auf-
l6sen und dies in X einsetzen, und schreiben wir die schliesslich dort
verbleibenden n Verinderlichen als 2, ihre Koeffizienten als 7, so be-

kommen wir

,\, s ! 4 ! :’ ! ! 1 ’

A= 1y -+ Ty Xy 4+ ..k rn .’Ln + ¢+ Loy SI + f/z 62 Tt '(]k Sk ) (11)
Die ¢ hiingen nur von den Koetfizienten « ab.

Driicken wir also auf Grund der Nebenbedingungen (8) k bestimmte
Variable durch die ithbrigen aus und ersetzen wir in (2) diese k Ver-
anderlichen — soweit sie dort itberhaupt vorkommen — durch die tibrigen,
S0 nimmt X nur dann ein Maximum an (wenn itberhaupt), sofern diese
verbliebenen n Variablen Null werden.

X in (11) geht dann tiber in

o ) 5o ! - .

,.\ = ( ’l" yl bl _!# _(1’2 'S2 7}' L) 7i7 'l]f\: (Sk " (12)
~ Umgekehrt lassen sich aus (3) nach dem Nullsetzen die iibrigen %
Variablen ermitteln. Dadurch werden vernachlissigte Schluptvariable
und ihre Gleichungen wieder einbezogen. Sind allenfalls einzeolne T.6-
sungswerte darunter negativ, so ist dieses Liosungssystem zu streichen.,

Wir kénnen (n:; k) HI) verschiedene derartige Lisungssysteme

L a ‘ n+k\ _
zu bilden versuchen; von ‘den ( & ) tiberhaupt maoglichen Losungen

lassen wir diejenige weg, bei welcher z,,x,, ..., r,, Null gesetzt sind.
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Welche Bewandtnis hat es mit den so erzielten Maxima? Wie
steht es mit dem «allergrossten» erreichbaren Wert von X ? Durch
unser Vorgehen stellen wir vorerst nichts anderes fest, als dass X durch
eine wohlbestimmte «verbliebene» Gruppe von (n-1) Verdnderlichen
Ty, Ty« + oy Ty Ty, €rFaSSE werden kann, wobei diese Verdnderlichen einer
einzigen linearen Nebengleichung gentigen. Unter den obwaltenden Umn-
stinden und fiir diese verbliebenen Veranderlichen erreicht zwar X ein
Maximum auf die geschilderte Weise. Iis handelt sich jedoch um einen
bedingten Hochstwert —sofern es nicht gar ein unbrauchbarer ist, indem
gewisse Verdnderliche unter den z, z,, ..., 2,, 7, , negativ werden. Um
bedingte Hochstwerte handelt es sich, weil der « Wettbewerb» nur unter
einer Auswahl aller Verdnderlichen ausgetragen wird. Von den iibrigen
wird nicht Notiz, deshalb auf sie auch keine Riicksicht genommen. In
(11) gelten dabei die von den 2’ freien Glieder, die in (12) wieder auf-
tauchen, als additive Konstante; sie bleiben daher ohne Einfluss. Dag
trifft jedoch nur solange zu, als man es mit ein und derselben restlichen
Gruppe ,, @y, ..., L,, z tun hat. Geht man zu einer andern iiber, so
fillt (12) anders aus. Das fiir die eine Gruppe gefundene Maximum
sagt somit nichts aus tiber ein zweites, welches durch eine andere Va-
riablengruppe entsteht.

Somit bleibt nichts anderes tibrig, als die verschiedensten «falschen»
verbliebenen Variablengruppen z, x., ... , Null zu setzen. Fine unter
allen muss die «richtige» sein, d.h. das «allergrésste» X hervorbringen.
Dass es keinen Sinn hat, alle denkbaren Stationen anzulaufen, ist klar.
In den weiteren Verfahrensschritten der Simplexmethode folgt man
planmiéssigen Abkiirzungen.

Noch einige Worte zum Fall, dass X an zwei oder mehr verschie-
denen Stellen den ndmlichen Héchstbetrag erreicht; er ist zwar durch
unsere Bedingungen ausgeschlossen. Nehmen wir an, sie seien in dieser
Hingicht nicht erfiillt. Fin Maximum sei erreicht gemiss den Glei-
chungen (11) und (12); ein zweites, gleich hohes entstehe so, dass alle
oder einige der z;, Z,, ... , von Null verschieden ausfallen; beispiels-
weise sei fiir dieses Maximum z; = A, 4, = 4,, ...z, = 4, . Da (11)
fiir jeden X-Wert gilt, haben wir fiir die beiden verschiedenen Iille

X* =rditrdyt . dytetgisito s = ot s+ s

Daraus folgt (18)
ryA +rgdyt ... +r,4, =0
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und desgleichen mit einem laufenden Parameter ¢
tryd +...+r,4,) =tr 4+ ...+tr, 4, =0, (14)

Mit 4, 4,, ..., 4,, sind mithin auch ¢4, ¢4, ...,t4, - bei
Gleichbleiben der iibrigen (n+k—m) Stellen — maximierende Varia-
belnwerte, mit beliebigem ¢.

Erweiterungen

Wir schliessen hier einige Gedanken an, die sich in bezug auf die
Lockerung der einengenden Bedingungen aufdringen:

1. Geht man die einzelnen Uberlegungen durch, so zeigt sich, dass der
allgemeinere Fall, wo zwar (1) weiterhin erfiillt werden soll, die
urspriinglichen Veriinderlichen jedoch beliebig nach unten be-

schrankt sind

Ly 2 0y, Ty = Ugy oey By = %3 Ty = 0, oy, =0

sich zwanglos in die Gedankengéinge einfiigt. (5) und (6) werden
etwas verallgemeinert, dasselbe gilt fiir (8) und (9).

X nimmbt sein Maximum nur dort an, wo n bestimmte Variable
ihre untere Grenze erreichen. Der Fall der Gleichheit zweier solcher
Maxima ist nun jedoch nicht mehr so einfach auszuschliessen.

2. Statt der k& Ungleichungen konnen zum Teil oder ausschliesslich
lineare Gleichungen zwischen z, a,, ..., z, vorkommen. Den Fall
der Uberbestimmtheit — mehr Nebengleichungen als insgesamt Ver-
anderliche - schliessen wir aus. Die Gleichungen betrachten wir als
Sonderfall von Ungleichungen, indem wir uns einseitig gerichtete
Ungleichungen wie bisher hingeschrieben denken. Beirh Ermitteln
des Maximums von X sind schliesslich alle diejenigen Lisungs-
systeme zu meiden, bei denen die betreffenden Schlupfvariablen

von Null verschieden sind.

3. Alle Uberlegungen gelten durch sinngemiisse Umkehrung der
Bedingungen und Beziehungen auch fiir die Aufgabe, ein Minimum
zu finden., Die Variablen unterliegen dabel im sinngemiss «iiber-
setzten» Beweisgang nach wie vor der Bedingung, nichtnegativ zu
sein. Die Schlupfvariablen haben jedoch die Koeffizienten — 1 in
den entsprechenden Gleichungen (3).
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4. Wir brauchen, um die Uberlegungen zu erweitern, nur daran zu
denken, beigpielsweise durch ein lineares Gleichungssystem eine
umkehrbar eindeutige Zuordnung zwischen z,, x,, ... x, einerseits
und andern Verinderlichen y,, ¥,, ..., 3, anderseits zu schaffen wie
folgt : , _

Ty = by Yy H by Yyt by YRy
Ly = b21 Yy -+ b22 Yy +. 4+ bzn i + h’z

(15)

Ly == b-nl 7 . & bn2 Y + ot brm Y EE hn ]
Dieser Zusammenhang sel hier nur angedeutet.

5. Sind die Verdnderlichen z, z,, ..., #, nach unten und nach oben
beschriinkt, so werden dadurch die Uberlegungen eliminiert, welche
fiir beliebig grosse Werte von thnen gelten. Ob man dann vielleicht
mit einer Kopplung von Uberlegungen zum Maximum von X (fir
die Beschrinkung der x nach unten) und solchen zum Minimnumvon
(— X)) (fir die Beschrinkung der 2 nach oben) Max X finden kann,
ist als Problem noch offen. Grewiss: Bleiben die nach der Simplex-
methode errechneten maximierenden bzw. minimierenden Werte
fiir jedes 2 innerhalb seines zulissigen Bereiches, so ist die Aufgabe
gelost. Was aber, wenn das nicht zutrifft ? Fiir diesen Iall reichen
die hier geschilderten Uberlegungen nicht aus.

6. Als allgemeines Kennzeichen des Haupttheorems darf wohl gelten,
dass es beim Aufsuchen der Maximalstellen von X den Wertevorrat,
bestehend aus einer einseitig beschrinkten reellen Punktmenge im
(n + k)-dimensionalen Raum, so auszusicben gestattet, dass schliess-
lich nur noch eine endliche Anzahl diskreter Punkte zu priifen ist.
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Summary

_ [E2 variables assumed to be either non-negative or non-positive, are connected
I a system of inequalities with a certain degree of freedom, this system can be
transformed into a system of equations by introducing k new variables. The principal
theorem on linear programming states that for determining the extremum of any
linear combination of the original variables, » of the (n - k) variables must be set
equal to zero. The author demonstrates the theorem by successive generalisation
starting with » = 2, k = 1. Finally he discusses some specific generalisations.

P

Résumé

Sin variables, pouvant étre seulement ou non-négatives ou non-positives, sont
lides entre elles par un systéme de & inéquations dont le rang est inférieur & n, I'intro-
duction de k nouvelles variables permet de transformer ce systéme en un systéme
d’équations. Tin vertu du théoréme principal de la programmation linéaire pour
déterminer la valeur extréme d’une combinaison linéaire quelconque des variables
originales, » des (n - k) variables doivent étre égales & zéro. I.'auteur démontre le
théordme par une généralisation progressive, en partant de n = 2, k = [, Pour
berminer il parle encore de généralisations déterminées.

Riassunto

Se n variabili, che possono essere soltanto o non-negative oppure non-positive,
sono legate fra di loro in un sistema di k disequazioni con un grado di liberts definito;
questo sisterma pud essere trasformato, introducendo k nuove variabili, in un sistema,
(l_i equazioni. Il teorema principale sulla programmagzione lineare dice che, per
riuscire a determinare il valore estremale di una qualsiasi combinazione lineare delle
variabili originali, » delle (n + k) variabili devono essere uguali a zero. L’autore
dimostra il teorema con successiva generalizzazione, partendo da n = 9, f — |,
Infine commenta ancora determinate generalizzazioni.
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