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Das Haupttheorem der linearen Programmierung

Von B. Romer, Basel

Zusammenfassung

Sind« Veränderliche, die entweder nur nichtnegativ oder dann nur nichtpositiv
sein dürfen, durch ein System von k linearen Ungleichungen miteinander verbunden,
das ihnen noch Bewegungsfreiheit liisst, so kann man dieses System durch
Hinführen von lc neuen Veränderlichen in ein Gleichungssystem umwandeln. Bas
Haupttheorem der linearen Programmierung sagt dabei aus, dass, um den Extremwert

irgendeiner Linearkombination der ursprünglichen Veränderlichen ausfindig
zu machen, jeweils n der (n + k) Veränderlichen Null gesetzt werden müssen. Der
Verfasser beweist das Theorem durch schrittweise Verallgemeinerung, ausgehend
von n 2, k 1. Er bespricht schliesslich noch gewisse Verallgemeinerungen.

Die nichtnegativen Veränderlichen xvx2, ...,xn mögen den

Einschränkungen unterliegen

fljl xt + ttj2 X2Clin xn <1 Sj

a2l Xl a22 X2 "h ' ' d" ü2n Xn S2

akl + ak2 x2-\- 4- akn xn ^ sk,

wo die a und s feste Grössen sind und in jeder Ungleichung mindestens
ein Koeffizient a von Null verschieden ist.

Es wird gefragt, ob

X Vi Xl + ?2 X2 + • • • + Pn Xn + C (2)

wo wir alle pvp2, ...,2V a's von Null verschieden voraussetzen, ein

Maximum annimmt; und,, wenn ja, wie gross es ist und für welche Werte
der Veränderlichen es erreicht wird. Wie man leicht einsieht, ändert die
Konstante c an der maximierenden Kombination der xt, x2, xn

nichts; sie beeinflusst nur den Betrag des Maximums.
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Eng verwandt ist die Aufgabe, (2) zu einem Minimum zu machen,
wenn die Ungleichungen (1) umgekehrt lauten (;> statt <S). Diese zweite
Art der Aufgabe entsteht beispielsweise bereits dadurch, dass man die

Beziehungen (1) und (2) links und rechts mit (—1) multipliziert; — X
muss dann ein Minimum werden, in (1) wechseln alle Koeffizienten
sowie die Grössen s ihr Vorzeichen, und die Ungleichungen kehren ihre

Richtung um.

Im folgenden wird uns nur die Maximum-Aufgabe beschäftigen.

Dass unter Umständen X kein Maximum hat, d.h. beliebig gross
gemacht werden kann, zeigt nachstehendes Beispiel: alle p in (2) mögen
positiv, die Koeffizienten a in (1) für bestimmte Veränderliche x ebenfalls

durchwegs positiv, für die übrigen Veränderlichen hingegen durchwegs

negativ sein; nehmen die Veränderlichen der ersten Gruppe beliebig

grosse Werte an, diejenigen der zweiten Gruppe allesamt auch, wobei
die Bedingungen (1) erfüllt seien, so wird X sehr gross.

Bei der sogenannten linearen Programmierung hat man es mit
eingekleideten Beziehungen wie (1) und (2) zu tun. Bei einem der
Lösungsverfahren, der Simplexmethode, werden die Ungleichungen (1) zunächst
durch Einführen nichtnegativer «Schlupfvariablen» xn hl, xn h2,..z„
in Gleichungen umgewandelt:

anxi + a12 x2+ + ahlx„ + xn+1

a2l xl a22 x2 • ~b a2n xn ~b xn+2 s2 ^
akl xl + ak2 x2 + • • • + akn xn + I-k ~ Sk •

Alle Gleichungen (3) setzen wir ausdrücklich als miteinander
verträglich und voneinander unabhängig voraus.

Die Simplexmethode geht beim Aufsuchen der maximierenden
endlichen Werte der Veränderlichen von folgendem Haupttheorem aus:

Damit die Grösse X in (2) beim Vorliegen einengender Bedingungen
(3) ihr Maximum erreicht - sofern sie überhaupt eines hat -, müssen n
Veränderliche unter den insgesamt (n + k) Null sein.

Welche Veränderlichen verschwinden müssen und ob dies schliesslich

überhaupt zu einem Maximum von X führt, ergibt sich aus den

weiteren Verfahrensschritten. Wir verzichten darauf, diesen hier
nachzugehen.
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In einem verdienstvollen Aufsatz, betitelt «Approximative Be-
servenberechnung mit Hilfe der linearen Programmierung», hat Herr
M.Frischknecht in dieser Zeitschrift erstmals gewisse Aufgaben und
Ijösungswege der linearen Programmierung im Versicherungswesen
aufgezeigt; ein Passus dieses Aufsatzes (GO. Bd., Heft 1, S. 103) bietet
insofern Gelegenheit zu Missverständnis, als unterstellt wird, die
Bedingungsgleichungen (3) seien nur lösbar, wenn n Veränderliche Null
würden. Das gilt jedoch bloss im Zusammenhang mit der Extremal-
aufgabe; sonst aber lassen sich die Gleichungen (3) nach h Veränderlichen

auflösen, wenn die übrigen beliebig vorgegeben sind; die ersteren
werden dann eben lineare Punktionen der letzteren.

Das Haupttheorem wird im erwähnten Aufsatz für den Pall n 2,
'c 3 geometrisch bewiesen.

Wir gedenken hier einen Beweis zu geben, der auf geometrische
Darstellung verzichtet. Er mag vielleicht etwas mühsamer sein,
gestattet aber die Voraussetzungen und gedanklichen Schritte klar
herauszustellen. Der Beweisgang vollzieht sich in drei Stufen:

a.) die Behandlung des einfachen Falles: n 2, k 1;

b) die Behandlung des allgemeineren Falles: n beliebig, k 1;

c) die Behandlung des allgemeinsten Falles: n beliebig, k beliebig.

Der Fall n 2, k — 1.

Wir haben
X X—c p1x1 + pz x2,

(4)
s =- a1x1 + a2 xz + x3.

Wir verlangen, dass mindestens ein p und ein a mit gleichem Index
von Null verschieden sind und dass

D P1P2I

«1 i

nicht verschwindet (Vermeiden der Entartung). Dabei sind somit im
Vergleich zu (2) die Voraussetzungen für p gelockert. Die Beihenfolge
der Bezeichnungen richten wir so ein, dass D > 0 ist.



— 250 —

Dann wird, weil xv x2 0 sind,

Dxj X'a2 — p2(s — x3) i> 0,

D x2 pt (s — x3) — X' at 0;

daraus X'a2^.p2(s—x3),
(6)

X'ax pt(s —x3).

Damit für X ein echtes Maximum vorhanden ist, muss unbedingt
mindestens eine der Ungleichungen (6) eine endliche Obergrenze für
X' liefern. Dabei spielen die Vorzeichen von nvci2 mit. Ergeben beide

Ungleichungen (6) eine solche Obergrenze, so ist die kleinere davon

massgebend; eine und dieselbe Obergrenze können sie nicht haben, weil
sonst —p2j—ci2 — •pja1 sein inüsste, was wegen D > 0 verboten ist.

An der Maximalstelle muss a'3 0 sein. Denn in der dafür
massgebenden Ungleichung aus (6) ist rechts x.3 dio einzige freie Veränderliche,

und die rechte Seite hängt linear von ihr ah. Das Maximum von
X' muss somit entweder mit dem Maximum oder dann mit dem Minimum

von x3 zugleich vorkommen. Nun hat a:3 kein Maximum; sein

Minimum (Null) und das Maximum von X' (und X) treffen also

zusammen.

Durch Eückgriff auf die Ungleichung in (5), von welcher die schliesslich

massgebende in (6) stammt, erhält man ausserdem noch, dass dann
entweder xx oder x2 Null werden inuss, während die dritte Variable sich

aus der Nebenbedingung in (4) ergibt. Ist z.B. x2 «stärker», so wird für
ihre Maximalstelle x2 s/a2 und des weiteren

Max X Pa
s+c.

«2

Handelt es sich bei der Nebenbedingung um eine echte Gleichung,
ist also die «überzählige» Variable x3 von vornherein Null, so ändert sich

nichts an den darauffolgenden Schlüssen.

Der Fall: n beliebig, k 1

Jetzt liegt das System vor

X' X-c plXl + p2x2+ +pnxn,
s alXl + a2x2 + +an xn + xn+1.



251 -
Wir denken uns (7) dargestellt als

£ X' — (p3 X3 + ...+ Vn xn) Vi «I + V-i X2 '
(H)

s' s — (a3 x3+ + a„ xn) al + a2 x2 + xn,

x3, xA, xn seien beliebig gewählt, aber vorläufig festgehalten; nur
xlt x2 und xn+l seien beweglich. Damit haben wir den ersten Fall wieder
vor uns. Wir werden, um £ unter diesen Umständen zu maximieren,
xnl t sowie eine der Grössen xlt x2 Null zu setzen haben. Beispielsweise
möge dies für xv x)H.t der Fall sein. Folglich gilt für den erreichbaren
Höchstwert von £

p2x2 [s- (a3 a;3 -(-... +anxn)] Max \X—c—(p3x3 + + pnx^~\.
a2

Das bleibt gültig für jeden Wert, den x3, xv xn angenommen
haben, also insbesondere auch für jenen, den sie annehmen, wenn sie
sich am allfälligen Maximum von X beteiligen. Somit scheiden xL und
xn h [ aus der weiteren Betrachtung aus. Sie tragen zum Maximum von X
nichts bei, wenn sie es nicht schon für das Maximum von £ tun. Letztlich

rührt dies davon her, dass es ausschliesslich von den Koeffizienten
p und a abhängt, welche Veränderlichen zu verschwinden haben, und
nicht etwa von X und s oder von £ und s'. Wir dürfen den Gedankengang

mit x2, x3, .xn allein fortsetzen. Mithin haben wir beispielsweise

£' X' — (Vi + + pn x„) p2 x2 + p3 xs,

s" s — (a4 xi + + a„ xj a2 x2 + a3 x3.

Die «überzählige» Veränderliche (Schlupfvariable) entfällt nun,
was durchaus nicht stört. Wir scheiden weitere Variable aus; bei jedem
Schritt verschwindet eine davon. Bei jedem Schritt müssen aber auch
die im einfachen Fall erwähnten Bedingungen erfüllt bzw. erfüllbar
sein, was wir nachdrücklich betonen.

Schliesslich bleibt genau eine nichtverschwindende Variable zurück,
welche als «stärkste» allein zum Höchstwert von X in (7) beisteuert.
Anders gesagt:

Bei (n +1) Veränderlichen mit einer einzigen Nebenbedingung wie
(7) erreicht X sein Maximum, falls n Veränderliche (und darunter die
Schlupfvariable) verschwinden.

Das entspricht der Aussage des Haupttheorems.

17
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Der Fall: n beliebig, k beliebig

Wir kommen zu den Beziehungen (2) und (3) und setzen dabei

voraus, dass mindestens eine der Determinanten fc-ter Ordnung, welche

sich aus der Matrix mit k Zeilen und (n + k) Spalten

gewinnen lassen, von Null verschieden sei (Vermeiden der Entartung).
Diejenige, welche aus den k Zeilen und den letzten k Spalten entsteht
(Koeffizienten der Schlupfvariablen), zählen wir dabei ausdrücklich
nicht mit; sie ist ja gleich Eins.

Die Zahl der Nebenbedingungen drücken wir um eine herab, indem
wir gleichzeitig xt ausschalten; xt muss zu denjenigen Variablen gehören,
deren Koeffizienten in einer nichtverschwindenden Determinante
vorkommen. Wir multiplizieren die erste Nebenbedingung derart, dass wir
davon die zweite, dritte Nebenbedingung abziehen können und
dabei in der jeweiligen Differenzgleichung der Koeffizient von xi
verschwindet. So kommen wir auf (n+k — 1) Veränderliche (ohne xt) in
(k — 1) Nebenbedingungen.

Desgleichen errechnen wir xt aus der ersten Nebenbedingung als

lineare Funktion der übrigen Variablen und von s1; dies führen wir in
(2) ein. Dadurch wird die Anzahl der massgebenden Veränderlichen
dort nicht beeinflusst, weil xi ersetzt wird durch dort bereits vertretene
Variable und durch x„ i r Wir erhalten

Ä' qlxi+ + xt_{ + qul Xi hl + + qn K1 xn+l + c + g{ s, (9)

alt al2 • • • aln

a2l a22 • • Chn

1 0 0

0 1 0

alA ak2 akn 0 0 1

mit

% lh — Pi
(10)

Pi und gx
Pi
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Nimmt man als x{ die Schlupfvariable xn f t, so wird (2) völlig in
"Kuhe gelassen, und von den Nebengleichungen (3) entfällt einfach die
erste.

So schreiten wir weiter und setzen die Anzahl der Nobenbedingun-
gen auf eine einzige sowie die der Veränderlichen auf (n +1) herab,
während die Anzahl der Veränderlichen in (2) immer gleich n bleibt.
Wird unterwegs eine Schlupfvariable ausgeschaltet, die nur in einer
einzigen Nebenbedingung vorkommt, so lässt man diese Gleichung
einfach beiseite.

Von da an unterwerfen wir das Bestsystem den nämlichen
Überlegungen und Bedingungen wie beim erledigten Pall: n beliebig, k 1.
Eliminieren wir die «stärkste» übriggebliebene Veränderliche (welche
das Maximum erzeugt), indem wir die Nebenbedingung nach ihr
auflösen und dies in X einsetzen, und schreiben wir die schliesslich dort
verbleibenden n Veränderlichen als x', ihre Koeffizienten als r, so
bekommen wir

.V rt x[ -i- r2 x'2 + + rn x'n -b c + tj\ ,9, + </2 s2 b + y'k sK. (11)

Die <j' hängen nur von den Koeffizienten a ab.

Drücken wir also auf Grund der Nebenbedingungen (3) k bestimmte
Variable durch die übrigen aus und ersetzen wir in (2) diese k
Veränderlichen - soweit sie dort überhaupt vorkommen - durch die übrigen,
«o nimmt X nur dann ein Maximum an (wenn überhaupt), sofern diese
verbliebenen n Variablen Null worden.

X in (11) geht dann über in

X c b (/i i'i + l/a s2 + • + <jk sk. (12)

Umgekehrt lassen sich aus (3) nach dem Nullsetzen die übrigen k
Variablen ermitteln. Dadurch werden vernachlässigte Schlupfvariable
und ihre Gleichungen wieder einbezogen. Sind allenfalls einzelne
Lösungswerte darunter negativ, so ist dieses Lösungssystem zu streichen.

Wir können ~verschiedene derartige Lösungssysteme

zu bilden versuchen; von den überhaupt möglichen Lösungen

lassen wir diejenige weg, bei welcher xvxv ...,xn Null gesetzt sind.
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Welche Bewandtnis hat es mit den so erzielten Maxima? Wie
steht es mit dem «allergrössten» erreichbaren Wert von X? Durch
unser Vorgehen stellen wir vorerst nichts anderes fest, als dass X durch
eine wohlbestimmte «verbliebene» Gruppe von (n + 1) Veränderlichen
x[, x2,..., x'n, x'n+l erfasst werden kann, wobei diese Veränderlichen einer

einzigen linearen Nebengleichung genügen. Unter den obwaltenden
Umständen und für diese verbliebenen Veränderlichen erreicht zwar X ein
Maximum auf die geschilderte Weise. Bs handelt sich jedoch um einen

bedingten Höchstwert - sofern es nicht gar ein unbrauchbarer ist, indem
gewisse Veränderliche unter den xv x%, ...,xn, xn yk negativ werden. Um
bedingte Höchstwerte handelt es sich, weil der «Wettbewerb» nur unter
einer Auswahl aller Veränderlichen ausgetragen wird. Von den übrigen
wird nicht Notiz, deshalb auf sie auch keine Rücksicht genommen. In
(11) gelten dabei die von den x' freien Glieder, die in (12) wieder
auftauchen, als additive Konstante; sie bleiben daher ohne Einfluss. Das

trifft jedoch nur solange zu, als man es mit ein und derselben restlichen
Gruppe x[, x'v zu tun hat. Geht man zu einer andern über, so

fällt (12) anders aus. Das für die eine Gruppe gefundene Maximum
sagt somit nichts aus über ein zweites, welches durch eine andere

Variablengruppe entsteht.

Somit bleibt nichts anderes übrig, als die verschiedensten «falschen»
verbliebenen Variablengruppen x[, x2,... x'n Null zu setzen. Eine unter
allen muss die «richtige» sein, d.h. das «allergrösste» X hervorbringen.
Dass es keinen Sinn hat, alle denkbaren Stationen anzulaufen, ist klar.
In den weiteren Verfahrensschritten der Simplexmethode folgt man
planmässigen Abkürzungen.

Noch einige Worte zum Fall, dass X an zwei oder mehr verschiedenen

Stellen den nämlichen Höchstbetrag erreicht; er ist zwar durch
unsere Bedingungen ausgeschlossen. Nehmen wir an, sie seien in dieser

Hinsicht nicht erfüllt. Ein Maximum sei erreicht gemäss den

Gleichungen (11) und (12); ein zweites, gleich hohes entstehe so, dass alle
oder einige der x[, x'2,... x'n von Null verschieden ausfallen; beispielsweise

sei für dieses Maximum x[ — Av x'2 A2,... x'm Am. Da (11)

für jeden X-Wert gilt, haben wir für die beiden verschiedenen Fälle

X* r1A1 + r2 A2 + + rmAm + c + g[Sl + + g'ksk c + g[st + + g'ksk.

Daraus folgt
r1A1 + r2A2+ +rmAm 0

(18)



und desgleichen mit einem laufenden Parameter t

KriA{ + +rmAm) =tr1A1+...+trmAm 0. (14)

Mit Al,A2,...,Am sind mithin auch tA1,tA2,...,tAm - bei
Gleichbleiben der übrigen (n + k—m) Stellen - maximierende
Variabeinwerte, mit beliebigem t.

Enveiterungen

Wir schliessen hier einige Gedanken an, die sich in bezug auf die
Lockerung der einengenden Bedingungen aufdrängen:

1- Geht man die einzelnen Überlegungen durch, so zeigt sich, dass der
allgemeinere Fall, wo zwar (1) weiterhin erfüllt werden soll, die

ursprünglichen Veränderlichen jedoch beliebig nach unten
beschränkt sind

al > ^2 ^2 > ' **> an> hl 0

sich zwanglos in die Gedankengänge einfügt. (5) und (6) werden
etwas verallgemeinert, dasselbe gilt für (8) und (9).

X nimmt sein Maximum nur dort an, wo n bestimmte Variable
ihre untere Grenze erreichen. Der Fall der Gleichheit zweier solcher
Maxima ist nun jedoch nicht mehr so einfach auszuschliessen.

2. Statt der k Ungleichungen können zum Teil oder ausschliesslich
lineare Gleichungen zwischen xlt xv xn vorkommen. Den Fall
der Überbestimmtheit - mehr Nebengleichungen als insgesamt
Veränderliche - schliessen wir aus. Die Gleichungen betrachten wir als
Sonderfall von Ungleichungen, indem wir uns einseitig gerichtete
Ungleichungen wie bisher hingeschrieben denken. Beim Ermitteln
des Maximums von X sind schliesslich alle diejenigen Lösungssysteme

zu meiden, bei denen die betreffenden Schlupfvariablen
von Null verschieden sind.

3. Alle Überlegungen gelten durch sinngemässe Umkehrung der
Bedingungen und Beziehungen auch für die Aufgabe, ein Minimum
zu finden. Die Variablen unterliegen dabei im sinngemäss
«übersetzten» Beweisgang nach wie vor der Bedingung, nichtnegativ zu
sein. Die Schlupfvariablen haben jedoch die Koeffizienten 1 in
den entsprechenden Gleichungen (3).
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4. Wir brauchen, um die Überlegungen zu erweitern, nur daran zu

denken, beispielsweise durch ein lineares Gleichungssystem eine

umkehrbar eindeutige Zuordnung zwischen xu xä, xn einerseits
und andern Veränderlichen yl, y2, yn anderseits zu schaffen wie

folgt:
xi bu Vi + 612 Vi + • • • + bm Vn h K
x2 b2i Vi "h ^22 Vi + • • • + b2n yn + h2

(15)

Xn Ki Vi + hn2 1h -!-••• + Kn Vn + K

Dieser Zusammenhang sei hier nur angedeutet.

5. Sind die Veränderlichen xlt x2, ..xn nach unten und nach oben

beschränkt, so werden dadurch die Überlegungen eliminiert, welche

für beliebig grosse Werte von ihnen gelten. Ob man dann vielleicht
mit einer Kopplung von Überlegungen zum Maximum von X (für
die Beschränkung der x nach unten) und solchen zumMinimumvon
(—X) (für die Beschränkung der x nach oben) Max X finden kann,
ist als Problem noch offen. Gewiss: Bleiben die nach der Simplexmethode

errechneten maximierenden bzw. minimierenden Werte
für jedes x innerhalb seines zulässigen Bereiches, so ist die Aufgabe
gelöst. Was aber, wenn das nicht zutrifft? Pür diesen Fall reichen
die hier geschilderten Überlegungen nicht aus.

6. Als allgemeines Kennzeichen des Haupttheorems darf wohl gelten,
dass es beim Aufsuchen der Maximalstellen von X den Wertevorrat,
bestehend aus einer einseitig beschränkten reellen Punktmenge im
(n + fc)-dimensionalen Baum, so auszusieben gestattet, dass schliesslich

nur noch eine endliche Anzahl diskreter Punkte zu prüfen ist.
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Summary

Xf n variables assumed to be either noil-negative or non-positive, are connected
m a system of inequalities with a certain degree of freedom, this system can bo
transformed into a system of equations by introducing 7c new variables. The principal
theorem on linear programming states that for determining the extremum of any
linear combination of the original variables, n of the (n + 7c) variables must be set
equal to zero. The author demonstrates the theorem by successive generalisation
starting with ti - 2, 7c — 1. Finally he discusses some specific generalisations.

Resume

Si n variables, pouvant etre seulement ou non-negatives ou non-positives, sont
liees entre elles par un systäme de 7c inequations dont le rang est inferieur a n, l'intro-
duction de le nouvelles variables permet de transformer ce Systeme en un Systeme
d'öquations. En vertu du theordmo principal de la programmation linöaire pour
determiner la valeur extreme d'une combinaison linöaire quelconque des variables
originales, n des (n, + /c) variables doivent etre egales a z6ro. L'auteur demontre le
theoröme par une generalisation progressive, en partant de n -= 2, 7c I. Pour
terminer il parle encore de g6ri6ralisations determinees.

Riassunto

Se n variabili, che possono essere soltanto o non-negative oppure non-positive.
sono legate fra di loro in un sistema di k disequazioni c;on un grado di libertä definito,
questo sistema puö essere trasformato, introducendo 7c nuove variabili, in un sistema
di equazioni. XI teorema principale sulla programmazione lineare dice che, per
riuscire a determinare il valore estremale di una qualsiasi combinazione lineare delle
variabili originali, n delle (n + k) variabili devono essere uguali a zero. L'autore
dimostra il teorema con successiva generalizzazione, partendo da n 2, le 1.
Infine commenta ancora determinate generalizzazioni.
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