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Einsatz elektronischer Rechenautomaten

liir die Ausgleichung mit orthogonalen Polynomen

Von R. Hiisser und W. Wegmüller, Bern

Zusammenfassung

Es wird gezeigt, wie im ein- und zweidimensionalen Fall die theoretischen
Ansätze für die Ausgleichung mit orthogonalen Polynomen zweckmässig umzuformen
sind, um bei Vorgabe äquidistant liegender Beobachtungswerte sich mit Vorteil
elektronischer Rechenautomaten bedienen zu können.

Die massgebenden Programmierungsschritte für die rekursive Durchführung
aber Berechnungen werden anhand allgemein gültiger Ablaufdiagramme eingehend
erläutert. Für die konkrete Verwirklichimg der dargelegten Ergebnisse wurde das
uem Institut für angewandte Mathematik der Universität Bern zur Verfügun«
stehende Elektronenrechengerät Gamma 3B-AET eingesetzt.

1 Problemstellung

Die zentrale Frage bei Ausgleichsproblemen lautet: Wie können
empirische Daten durch theoretische Werte, die irgendeine Gesetzmässigkeit

befolgen, am besten approximiert werden In dieser allgemeinen
Formulierung sind noch zwei Belange völlig offen: Welcher Art ist die
geforderte Gesetzmässigkeit, und was besagt «am besten approximiert»

Unter den vielen, mehr oder weniger objektiven Vorschriften,
denen die Näherungswerte genügen sollen und unter den verschiedenen
Definitionsmöglichkeiten der «besten Approximation» wählen wir
folgende Fassung:

Die gegebenen Beobachtungswerte sind durch ein Polynom Z-ten
Grades - welches seinerseits als Linearkombination orthogonaler
Polynome vom Grade X 0,1, l darzustellen ist - so zu approximieren,
dass die Bedingung

2 (Beobachtungswerte —Näherungswerte)2 Minimum
erfüllt ist.
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Die theoretischen Grundlagen sowie zahlreiche Vereinfachungs-

möglichkeiten (Tabellen, Rechenscheinas usw.) für die praktische
Durchführung einer solchen Ausgleichung sind in [8]x) zusammengestellt.

Trotzdem erfordert jede numerische Auswertung mit vielen

Beobachtungen, speziell bei zwei- oder mehr unabhängigen Veränderlichen,

einen erheblichen Rechen- und Zeitaufwand.

Es lohnt sich deshalb zu prüfen, ob der Einsatz elektronischer

Rechengeräte für die Ausgleichung mit orthogonalen Polynomen
Erleichterungen und Vorteile bieten kann, wie gegebenenfalls die Ansätze

für eine rationelle Auswertung umzuformen sind und welches die
massgebenden Programmierungsschritte einer solchen Ausgleichung sein

werden. Erfahrungsgemäss ist mit Rechenautomaten eine Beschleunigung

des Rechenprozesses dann zu gewärtigen, wenn es gelingt, die

ganze Ausgleichstechnik möglichst auf Rekursionsbeziehungen und

anderweitige Iterationen aufzubauen.

Damit ist bereits der Weg unserer Untersuchungen vorgezeichnet.
Immerhin drängt sich noch eine Vereinfachung auf: Wir fordern die

Vorgabe äquidistant liegender Beobachtungswerte 2). Dies hat den Vorteil,

dass die orthogonalen Polynome zum vornherein forrnelmässig
explizit gegeben sind, dass die vielen speziell für numerische Auswertungen

vorteilhaften .Eigenschaften und Hilfsbeziehungen der
orthogonalen Polynome voll ausgenützt werden können und dass schliesslich

- wie unser Vorschlag zur Programmierung bekundet - nur die

Beobachtungswerte, nicht aber die Argumente selbst gespeichert werden
müssen.

Methodisch erläutern wir zuerst das Vorgehen im zweidimensionalen

Fall. Die Probleme bei nur einer Variablen ergeben sich dann
durch Spezialisierung. Bezüglich der Bezeichnungsweise halten wir uns

weitgehend an die in [8] verwendete Symbolik.

B Zahlen in eckigen Klammern verweisen auf die Literaturangaben (Seite 168).
2) In einer von .LS.Householder [2] auf Seite 221 aufgestellten Rekursionsbeziehung

glauben wir die Möglichkeit erkannt zu haben, die Ausgleichung mit
orthogonalen Polynomen auch im Lalle nicht iiquidiatanter Argumente programmieren
zu können.



2 Zweidimensionale Ausgleichung

21 Methode
m

Ks seien M V n. mit gewissen Ungenauigkeiten behaftete Be-
1=1

obachtungs- oder Messwerte w{xi,yi) zu den Argumenten (xgegeben
(i 1,2, »j; y — 1, 2,

Gesucht wird ein Polynom zlk(x,y), welches die Beobachtungswerte

w(x,y) möglichst gut approximiert, d.h.

2 2 izi,k(x>y) - w(x,tj)]2 Minimum. (1)
x y

Gas Polynom zlJ{(x,y) wird fc-tes Ausgleichspolynom Z-ten Grades in x
«nd y genannt (k 0, 1, l) und soll als Linearkombination der
orthogonalen Polynome Pkjl(x,y) eines vollständigen Systems dargestellt

i x /'

*ufc>y) 22 + 2 au» piJx'V) (2)
A=0/< 0 /« 0

Die Bestimmung der Koeffizienten aX ß
bzw. at erfolgt durch

Nullsetzen der entsprechenden partiellen Ableitungen von (2) und führt
unter Berücksichtigung der Orthogonalitätsbedingungen

\
x y

„ f 0> für l -h V oder u g,2 ^,y) PfJx,y) \
' '

(s)V [#(), fur A ~ v und /.« g,
«otdieBmetamg

E/A

«*„ ">£2 [l\fl(x,y)]'2
' (4)

Daraus geht deutlich hervor, dass die Koeffizienten a, vom
r1 i7mi(-t l und vom Index k des Ausgleichspolynoms zl k(x,y) unabhängig
smd. Ferner ist zu ihrer Berechnung nur je eine Gleichung (4)
aufzulösen und nicht etwa ein ganzes lineares, inhomogenes Gleichungssystem

wie im allgemeinen Fall, wo die l\fl(x,y) wohl ein vollständiges,
mcht aber ein orthogonales Polynonisystem bilden. Gerade diese
bemerkenswerte Eigenschaft zeichnet die orthogonalen Polynome für die
Ausgleichsrechnung aus. Mit jeder Erweiterung des Grades l oder
Indexes k treten in (2) zusätzliche Glieder und damit auch neue a!l
uuf, ohne aber die vorangehenden nach (4) bereits berechneten
Koeffizienten wertmässig zu beeinflussen.
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Für clie weitere Bearbeitung treffen wir eine vereinfachende, in
ihrer Auswirkung aber entscheidende Annahme. Die Punkte sollen
in der a;y-Ebene ein vollständiges, regelmässiges Punktgitter bilden,
dessen äusserste Punkte alle auf den Begrenzungslinien eines

achsenparallelen Rechteckes liegen mit dem Zentrum (0,0). x; variiert dann
m—1 to — 1 n — 1 n — 1

zwischen — (1) - und // zwischen — (1) d. h.II IIes gibt insgesamt M mn Beobachtungswerte 1).

Unter diesen Voraussetzungen entarten nämlich - wie in [3] gezeigt
wurde — die zweidimensionalen orthogonalen Polynome P^/t(x,y) in
das Produkt zweier eindimensionaler orthogonaler Polynome {x)
und P„G/); d.h. _f,U1 P^y) px-ll{x)Plt(y). (5)

Dank (5) führen die getroffenen Annahmen auf interessante
Vereinfachungen. Sie gestatten insbesondere die erfolgreiche Anwendung
der meisten, nur für orthogonale Polynome einer Veränderlichen
gültigen Gesetzmässigkeiten auf unser zweidimensionales Problem.

Zunächst können vermöge der Rekursionsansätze

PU.)-* nw-Xli)
und (6)

n2(w2_t<2\
-f/i-n(y) ~ ypß(y)

mit P0( x) P0 (y) 1; l\(x) x, P^y) y, (6')

auch die orthogonalen Polynome zweier Veränderlichen Pkift{x,y) mit
Hilfe von (5) rekursiv bestimmt werden. Dies ist eine für die numerische

Auswertung stark ins Gewicht fallende Beziehung.

l) Wären an Stelle der oben normierten Argumente die Grössen

(a + ih,b + jh*)

gegeben, dann könnte durch die Transformationen

f; — a m — 1 tjj — b n — 1
und Vi * - — -

h 2
1 h* 2

stets erreicht werden, dass gilt

/ to -f- 1 n + 1 \ /i 1,2,..., m\(^')=r 2 2 \j 1, '2,



Sodann lassen sieh für das Aufsuchen der Entwicklungskoeffizienten
aKß weitere, für das Rechnen bedeutungsvolle Vereinfachungen folgern.
Wenn wir (5) in (4) einführen, ergibt sich

zi, Mx.y) Pa-,,0) PJ,y)

°*"' {S[!V»J'}{SK,to)]!}'
x y

Rio beiden im Nenner von (7) auftretenden Summen

2 [Pa-»P und ^[p„(2/)]a
x y

lassen sich ebenfalls rekursiv herleiten

(8)

mit 2 [P0(a:)]2 m und V [P0(//)]2 n.
x U

Rie Roppelsumme im Zähler von (7) verursacht zur expliziten
Ermittlung immer noch einen grossen Rechenaufwand. Zur weiteren
Vereinfachung bedient man sich mit Vorteil der Symmetrie-Eigenschaften
der eindimensionalen orthogonalen Polynome.

P\-n(~ x) (~iy-"p*j+x),
P,(-y) M)"P,(+y) {)

m—l n—1

2

und erhält

m

s^,„ £ ^Px^l(x)P/J(y){w{+x,+y) + (-iytiv(-\-x,-y)-i
*-{*»-{" +(-iy-vw(-x, + y) + (-iyw(-x,-y)}. ^

Rie Summationen 2 erstrecken sich über die Werte

m—1 w—1
x bzw. ?/ 0, 1,2, bzw.j 2 2

0tleraber
1 8 5 » - n—1

* W " 2' 2' 2 2 b' ~

2 '

je nachdem ob m bzw. n ungerade oder gerade ist. Einer besonderen
Erwähnung bedürfen noch die Spezialfälle, wo x und y einzeln oder
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zusammen den Wert null annehmen können, .letzt reduziert sich der
Ausdruck

{w(+x, + ij) + (-1 )"w(+x,-y) + (-l)x~"w(-x, + y) + (-1 )xw(-x,-y)}

m (10) zu + für x o,

w(+x,0) + (— l)*-" w(— x,0), für y 0,

«(0,0), für x y 0.

Nach (10) brauchen also die Werte der orthogonalen Polynome
einer Veränderlichen lediglich für die positiven Argumente bekannt
zu sein. Erneut bieten sich hieraus für die numerische Auswertung
beachtliche Vorteile, indem sich jetzt die Zählersumme S^_ aus
additiven Multiplikationen einer geeigneten Kombination der vier
Beobachtungen

w(+x,+y), w(+x, — y), w(—x,-\-y), w(—x, — y) (11)

mit den Polynomwerten Pfl(y) für positive Argumente ergibt.

Es ist zweckmässig, die vier Beobachtungen (11) zu nachstehenden
Hilfswerten zu vereinigen

SS w(+x, -[-y) + w(+x,—y) + w(—x,+y) + w(—x,—y),
SD to(+x,+y) — io(+x,—y) + w(—x,+y) — w(—x,—y),

^
DS w(+x, +y) + w(+x,—y) — w{—x, + y) — w(—x,—y),
DD w(+x,+ y) — w(+x,—y)—w(--x,+y) -\- w{—x,—y).

Diese vier (Irössen sind in Gleichung (10), je nachdem ob X und ß
gerade oder ungerade sind, gemäss dem

Schema

X — ungerade X gerade

f.t ungerade

u — gerade

SD DD

DS SS

(12';

einzusetzen.
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Selbst die eigentliche Ermittlung der ausgeglichenen Werte lässt

sich unter Berücksichtigung von (2), (5), (1!) und (9) rekursiv vollziehen.
Danach wird _ziAx>y) *i.k-i(x>y) + GiAx>y)

bzw. (Dl)
zi \ i,o(x'U)' zi,i{x>y) + Gi hi.o(x>y)'

imt
GUx>y) «w Fi-k(x) pk(y)

/1U/.bzw. (ld)
Git-uo(x>y) ai n,o pm t(x) po{y)

und
zo,o(x>y) ~ «o,oPo(*)Po(l/) o00>

für alle l 0,1, 2, und k 0,1, ...,/.
Insbesondere gilt nun

ziA+x>+y) zi,k-i(+x'+y) + GiA+x'+y) >

ziA+x'—y) zi,k~i(+x'—y) + (-1 )kGi,k(+x'+y)>

zi,k(~x>+y) zi,b~i(—x>+y) + {—V^GiA+^+y)'
zul~x~y) zi,k-i(-x,—y) + {-V GiA+x'+y)

(14)

Wie früher bei der Berechnung der Summen Sx nach (10) reicht
auch hier vermöge (18') die blosse Kenntnis der eindimensionalen
Polynomwerte für positive Argumente aus.

Bei Ausgleichsproblemen macht sich stets das Bedürfnis geltend,
möglichst frühzeitig Anhaltspunkte über die Güte der Approximation zu
besitzen. Hierzu eignet sich das verallgemeinerte KriterumvonG.J.TAd-
stone. Man berechnet die Summen der quadratischen Abweichungen

2 2 KAx'ry)f 2 2 [w(x>y)~ziAx>y)Y>
x y x y

die sich mit (13), (13') und (7) durch nachstehende Rekursionsformelu
bestimmen lassen.

2 2 [uiAx<v)Y 22 K/c-i(K;</)]2 - au v 2 w{x,y) i\_k(x) i\{y)
x y x y x y \±0)

2 2 K n,o(®.»)]3 22 [uiAx>y)]2-ai i.i,o 2 2 w(x>y) pi \-Ax) po(y) >

x V x y XI/
mit

2 2 K.o{x<y)f 22 [w(x-y)]2—ao,o 2 2 w(x>y) po(x) po(y)
x y X y x y

und P0(x) P0(y) 1.
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Als Präzisionsmass definiert man den Ausdruck

Lu 2 2 iui,kM]a. (16)
/ x u

wo

mn —
n

2
(2 m — n— 8), für m>n

i
- mn —

und stellt zur Beurteilung der Güte der Ausgleichung folgendes Kri-
terium auf:

Die Ausgleichung mit dem gemäss (13) um ein Glied erhöhten
Ausgleichspolynom ist immer dann vorteilhaft, wenn

Ausser dem einfach zu berechnenden Nenner / setzt dieses
Verfahren lediglich die Kenntnis von 2 2 \w(x>y)Y sowie der Zähler und

Nenner von ai ft gemäss (7) voraus. Lange bevor die ausgeglichenen
Werte vorliegen, kann man bereits einen ersten Überblick über den

Stand der Ausgleichung gewinnen. Nicht unerwähnt bleibe, dass für
eine endgültige Beurteilung der Güte der Ausgleichung noch weitere
Kriterien herangezogen werden müssen [1, 5].

Fassen wir die bisher gewonnenen Ergebnisse zusammen. Für die

Ausgleichung mit orthogonalen Polynomen verdienen folgende
Eigenschaften und Besonderheiten speziell hervorgehoben zu werden:

1. Die Koeffizienten ax der Ausgleichspolynome zUk{x,y) sind vom
Grad des gewählten Ausgleichsansatzes unabhängig und ergeben
sich direkt aus Beziehung (4).

2. Unter der Voraussetzung eines achsenparallelen Rechteckbereiches
lassen sich die zweidimensionalen orthogonalen Polynome Px^(x,y)
nach (5) durch das Produkt der beiden eindimensionalen
orthogonalen Polynome Px-^x) und P^{y) darstellen.

3. Unter der Annahme äquidistanter Beobachtungswerte wird die

Berechnung der orthogonalen Polynome P^ix) und PJ^y), der

bzw. Lj j lj0 < L2li (17)
ausfällt.

x y
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Summen V [P^ (a:)]2 und N] [Z3,,(//)]2, der ausgeglichenen Werte
X y

zi,k(x>V) sowie (ier Summe der quadratischen Abweichungen
V V [ul k(x,y)]2 durch die Rekursionsbeziolumgen ((>), (3), (13),
x y

(14) und (15) wesentlich vereinfacht.

4. Zufolge der Symmetrie (9) der eindimensionalen orthogonalen
Polynome für äquidistanto Argumente ist sowohl zum Aufsuchen
der Summen nach (10) und damit der Koeffizienten aA>/1

nach (7) als auch zur Bestimmung des Ausgleichspolynoms zUi{x,y)
nach (14) lediglich die Kenntnis der Werte der orthogonalen
Polynome für positive Argumente erforderlich.

5. Mit den Formeln (2) und (13) gewinnt man nicht nur die

ausgeglichenen Werte für einen speziellen Grad, sondern - wie aus
dem schrittweisen Aufbau von zl k{x,ij) hervorgeht - gleichzeitig
die ausgeglichenen Werte für sämtliche Polynome niedrigeren
Grades. Dies gestattet, den Grad des Ausgleichspolynoms
vorläufig etwas höher anzusetzen als unbedingt notwendig wäre und
nach der Durchführung der Ausgleichung unter den Ansätzen

niedrigeren Grades jenen auszuwählen, welcher den speziellen
Bedingungen und Kriterien am besten genügt.

22 Programmierung

Das Erstellen eines Programms für einen Rechenautomaten erfolgt
in zwei grossen Schritten. Vorerst ist die gestellte Aufgabe zu analysieren

und forinelmässig darzustellen. Als Resultat dieser Vorarbeiten,
die wir Organisationsphase nennen wollen, entstehen eine umfassende

Formelsammlung und ein detaillierter Arbeitsplan. Normalerweise ist
der Aufwand dafür bedeutend grösser als für den zweiten Schritt,
welcher dazu dient, die mathematische oder symbolische Ausdrucksweise
gemäss dem aufgestellten Organisationsplan in die spezifische
Maschinensprache zu übersetzen. Nur dieser zweite, als eigentliche
Programmierungsphase zu bezeichnende Schritt ist vom verfügbaren
System des Rechengerätes abhängig, im Gegensatz zur Organisationsphase,

die stets auf die allgemeine Lösung des Problems ausgerichtet
ist und demnach von der Art des Rechenautomaten nicht beeinflusst
wird.
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Mit den bisherigen Ausführungen sind wir bereits tief in die

Organisationsphase eingedrungen. Die skizzierte Lösungsidee muss unter
Berücksichtigung des Formelapparates sorgfältig ausgearbeitet und zu

einem Rechenplan zusammengestellt werden, wie er etwa durch das

Ablaufdiagramm nebenstehende (Figur 1) veranschaulicht wird.

In diesem Ablaufdiagramm lassen sich fünf Stufen unterscheiden.

Stufe 1: Start, Eingabe der Beobachtungswerte w(x,y) und der Kon¬

stanten, wie z. B. 1, m Anzahl Beobachtungswerte in
der x- Richtung), n Anzahl Boobachtungswerte in der

y-Richtung), l höchster Grad des Ausgleichspolynoms),
k Index des f-ten Ausgleichspolynoms) usw. Vorbereitung
der Verzweigungsbefehle, der Adressenrechnung sowie der
weiteren Rechenwerte, Festlegung der Argumente x und y
und Bereitstellung der ersten Polynom- und Beobachtungswerte

nach (6') und (11).

Stufe II: Berechnung der Kombinationen SS, SD, T)S und DD der
Beobachtungswerte w(±x,±y) nach (12). Ermittlung und

Speicherung der eindimensionalen orthogonalen Polynome
P^_„(+ x) und Pfl(+ y) nach den Rekursionsbeziehungen (6),
der Hilfsgrössen Sx_fl/l nach (10) für X 0, 1 I;

y — 0, 1, X und der Summe V, V} [w(x,y)]'z.
x y

Stufe III: Rekursive Bestimmung der Summen ^ \P\-y{x)Y und
X

2 [^»(-'Z)]2 na°h (H) 551111 Berechnung der Koeffizienten alt/l
y

nach (7) für X 0, 1, I; /.i 0, 1, X. Speicherung
aller ax -Werte und Ermittlung der Summe der quadratischen

Abweichungen V} V nach (15) zur
x y

Beurteilung der Güte der Ausgleichung mit Hilfe des

Präzisionsmasses (16) und des Kriteriums (17).

Stufe IV: Durch geeignete Kombination der gespeicherten Koeffi¬

zienten aA und der orthogonalen Polynome Px_fl(x) und

P (y) ergibt sich Ghß(x,y) nach (13') und damit die

ausgeglichenen Werte zKß(x,y) nach (14) für X 0, 1, I;

y 0,1, X.

Stufe V: Test- und Steuerbefehle, Reduktion der Argumente x und y
und Stopbefehl.
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Zweidimensionale Ausgleichung

Gesamtübersicht

Figur 1

11
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Jede der vier ersten Stufen dieses Ablaufdiagramms besteht aus
mehreren Abschnitten. Ohne auf die letzten Einzelheiten einzugehen, sei

beispielsweise Programmblock 4 der Stufe IV aufgegriffen.

Aus dem Ablaufdiagramm (Figur 2) geht hervor, dass zuerst die

Ausgleichspolynome nullten und ersten Grades direkt berechnet werden.

Ist der vorgegebene höchste Grad l des Ausgleichspolynoms grösser
als eins, wird Gx {+x, + y) gemäss (13') ermittelt für x,y 0.

Das Aufsuchen der zx {x,y) erfolgt alsdann nach (14) mit den dort
ausgewiesenen Fallunterscheidungen. Vom Vorzeichen der Argumente

x,y sowie von der Struktur der Indexe X und y (gerade oder ungerade)

hängt es ab, ob Gx (+x, +y) mit zx<ll_v{x,y) additiv oder subtraktiv
zu verbinden ist. Stets gilt

*xJ+*> + y) ^,f,-i( + x' + y) + G^,(+x, + y).

Für zx {+x,—y) fallen die beiden Varianten

,{+%>—V) ^,„-1 (+26—2/) + Gx^(+x, -\-y) für y gerade
und

ZA,„(+x>—y) 2u/,-i(+a;.—y)— GKtl{+x,+iy) für,« ungerade

in Betracht. Der Entscheid hierüber wird mittels des Testbefehles
«Ist y gerade?» gefällt.

Analog verhält es sich für zX/l{—x,+y). Um über die beiden
möglichen Ansätze

Zi,„{—x> + y) zA,„-i(—x>+y) +G*,f,(+x> + y) für gerade

und

zi.„{—x>+y) x> +y) — Glzt,{+x,+y) für X—y ungerade

befinden zu können, prüft man «Ist X — y — gerade?».

Zur Bestimmung von

h,^—xr-y) ^,„-i(~x~y) + (—tfG^+x^y)
muss schliesslich die Struktur von X bekannt sein. Für diesen J.Test
kann man sich behelfsmässig auf die beiden vorerwähnten Entscheide
stützen. X ist stets gerade, falls y und {X—y) gleichzeitig gerade oder

ungerade ausfallen; anders ausgedrückt Cj c2 c3 +1. Verhalten
sich dagegen y und {X—y) hinsichtlich des Merkmals «gerade» oder

«ungerade» unterschiedlich, dann ist X ungerade (c1cz — c3 — — 1).
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Zweidimensionale Ausgleichung

Detailangaben zu Block 4

i
i

Figur 2
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Für die rekursive Ermittlung von zXfl(—x,-y) gilt demnach der Ansatz

Zi.p-ii—x.—y) + caGxJ+x,+y),

mit der Testgrösse c3 +1 (—1) für X gerade (ungerade).

Die Berechnung der ausgeglichenen Werte z^fl(x,y) wird für alle

jti 0, 1, ..X durchgeführt, bis A Z ist (X 2, 3, ..I).
Beim Druck der Ergebnisse ist darauf zu achten, dass alle erforderlichen

Angaben geliefert werden, um die Ausgleichung jederzeit
überblicken und je nach Wunsch schrittweise verfolgen zu können. Unser
Programm soll mindestens folgende Werte drucken:

m, n, l, k;

aKto SEK,^x,y)Y, Llß,
x y

für alle X 0, 1, I und p 0,1, X;

X, //, w(+x,+y), h,„(+x,+y), w(+x,—y), zxJ+x,—y),
w(—x, +y), zxJ-x, +y), W(-x,-y) zxJ-x,-ij),

für vorgegebene X l und y k.

Diese Feststellungen beschliessen die Organisationsphase und führen
bereits in die Programmierungsphase über. Hier tritt nim das verfügbare

Rechengerät und dessen Arbeitsweise in den Vordergrund.

Wir haben unsere Überlegungen am Rechenautomaten Gamma
3B-AET x) erprobt, wie er der Universität Bern und weitern
Interessenten im Institut für angewandte Mathematik zur Verfügung steht.

Zwischen das Rechenwerk und den Hauptspeicher (Magnettrommel

mit 8192 Speicherzellen) dieser elektronischen Rechenanlage
sind 6 Normal- und 64 Schnellspeicher geschaltet. Jede Speicherzelle
fasst 12 Tetraden, d.h. 12 Dezimalziffern oder 48 Dualstellen. Als Ein-
und Ausgabe dient eine Tabelliermaschine, welche pro Minute bis zu
150 Lochkarten liest oder 150 Zeilen zu 92 Ziffern druckt; ein mit der
Tabelliermaschine gekoppelter Blocksummenlocher stanzt die
gewünschten Resultate in Lochkarten.

') Hergestellt von der Compagnie des Machines BULId in Paris.
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Die Firma Bull stellt ihren Kunden das sehr einfach zu
handhabende, automatische Programmierungssystem AP 2 zur Verfügung.
Ks handelt sich um Dreiadressbefehle mit symbolischer oder
pseudosymbolischer Adressierung und mnemotechnisch zweckmässig gewählten

Abkürzungen für die auszuführenden Operationen j 4]. Unser

Programm besteht aus ca. 600 solchen Befehlen und gleicht bis zu
mn — 3600 Beobachtungswerte mit einem Polynom bis zum höchsten
Grad l 31 aus. Die Resultate werden mit der Tabelliermaschine
gemäss den auf der vorangehenden Seite vorgemerkten Angaben
übersichtlich herausgedruckt.

Was den Druck der ausgeglichenen Werte anbetrifft, bestehen

folgende vier, durch Steuerkarten wählbare Möglichkeiten:

a) Druck der zx (x,y) für die vorgegebene Kombination X= k;
b) Druck der zXlt(x,y) für die zum kleinsten L2X

fl
führende Kombination

X,f.i;

c) Druck der zXfl(x,y) für die ausgewählten Kombinationen
1 fjh 1,2, Z;

d) Druck der zx (x,y) für sämtliche Kombinationen X 1,2, ...,/— I

und ju 0,1, X sowie X l und y. 0, 1, k.

3 Eindimensionale Ausgleichung (Spezialisierung)

Liegt nur eine Veränderliche vor, so sind merkliche Vereinfachungen

im Ansatz sowie im Arbeitsablauf der Ausgleichung zu gewärtigen.
Wir begnügen uns damit, die wesentlichsten Gesichtspunkte hinsichtlich

Methode und Programmierung zu erörtern.

Gegeben sind m äquidistant gelegene Beobachtungswerto w(xi),
m—1 TO—1

i 1, 2, to, zu den Argumenten xt — (1)
2 2

Gesucht wird das Ausgleichspolynom Z-ten Grades

ZAX) *ZanpAx)> (18)
A=0

so dass
[z,(x) —<«>(a:)]2 Minimum.

X

Die orthogonalen Polynome Px(x) erfüllen die Bekursionsbeziehungen
(6) und (8) und weisen die Symmetrie-Eigenschaft (9) auf.
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Für die Bestimmung der Koeffizienten ax gilt der Ansatz

S-.

a> N] 2ft(*)]2'' (19)

X

m—l

SAwInl je nachdem Ob j» 8»»de, oder
A

^-jo PJ [A ungerade
Mi

und 8 w(+x) + w(—x),

D w(+x) — w(—x) ist.

Für x 0 reduziert sich S und D auf

S D w(0).

Die approximative Beurteilung der Güte der Ausgleichung erfolgt
analog zum Kriterium (17) mittels des Präzisionsmasses

3 2 [«,(*>]• (20)

Dabei bedeutet

2 [ui(x)Y 2 N®)-*i«|a
X X

2 [^i-i(ac)]2 — «i 2 w(x) Pi(x)' (21)
X X

mtt 2 [uo(x)f 2 [i«(®)]2 — a0 2 w(x)XX X

Formal entsprechen diese Ansätze vollständig den für zwei Veränderlichen

gültigen Beziehungen. Also dürfte sowohl zwischen den

Ablaufdiagrammen als auch zwischen den eigentlichen Programmen selbst -
abgesehen von gewissen Modifikationen - eine weitgehende
Übereinstimmung bestehen. Dies trifft, wie das Ablaufdiagramm für den
eindimensionalen Fall (Figur 8) zeigt, wohl für jede einzelne der fünf
Stufen zu, nicht aber für den äusserlichen Gesamtaufbau. Das
Aufsuchen der vier Beobachtungswerte (11) in den Eckpunkten + x, + y)
erfordert nämlich bei zwei Veränderlichen einen viel grösseren
Aufwand (Adressenrechnung) als jener für die beiden Beobachtungswerte

w( + x) bei einer Variablen. Deshalb wurde dieser Programmausschnitt

in Figur 1 zusammen mit weiteren Befehlen am Anfang und

2 w{x) Px(x)

mit
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Eindimensionale Ausgleichung

Gesamtübersicht

Figur 3



— 168 —

Ende des Programmes nur einmal niedergeschrieben und durch eine

«zyklische» Organisation entsprechend oft angerufen. Heim ohnehin
einfacheren eindimensionalen Ausgleichsverfahren haben wir dagegen
die wenigen Befehle zweimal geschrieben (vgl. Figur 8, Beginn und
Ende der Stufen I/II und IY/Y). Die Stufen II, III und IV sind jetzt
ganz unabhängig voneinander, und die Programmstruktur tritt klarer
hervor.

Wenn auch unsere Untersuchungen in der eigentlichen
Programmierungsphase Bezug nehmen auf das an der Universität Bern
vorhandene elektronische Bechengerät, so sei doch abschliessend darauf
hingewiesen, dass die vorgeschlagenen Lösungen für die ein- und
zweidimensionale Ausgleichung mit orthogonalen Polynomen in ihrer
Grundkonzeption auch für andere Systeme von Bechenautomaten
Gültigkeit besitzen.
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Resume

Pour l'ajustement a l'aide de polynomes orthogonaux, les auteurs montrent
comjiient on peut adapter de fa$on appropri6e les donnees lh6oriques, dans le cas
d'une et de deux variables, afin de pouvoir utiliser avec profit les machines electro-
niques si l'on connait des valeurs d'observation tiquidistantes.

Les instructions de programmation pour l'execution de tous les calculs de
recurrence sont expliqu^s a fond au inoyen d'organigrammes de validity generale.
La machine 61ectronique Gamma 3B-AET de l'Institut des mathematiques appli-
qu6es de l'Universitf) de Berne a 6t6 mise ä contribution pour l'obtention de r&sul-
tats concrets.

Riassunto

Gli autori dimostrano come si possono trasformare opportunamente i dati
teorici, nel caso di una e due dimensioni, per 1'aggiustamento con polinomi ortogo-
nali, in modo che, conoscendo valori d'osservazione equidistanti, sia possibile uti-
lizzare con vantaggio le calcolatrici elettroniche.

Le istruzioni cli programmazione che servono all'esecuzione di tutti i calcoli
con formule di ricorronza, vengono spiegate a fondo per mezzo di diagrammi a
blocchi, di validita generale. Per ottenere i risultati concreti venne usata la caleo-
latrice elettronica Gamma 8B-AET dell'Istituto di matematica applicata doll-Uni-
versitä di Berna.

Summary

The authors demonstrate how, in one and two dimensions, the theoretic model
for the graduation with orthogonal polynomials can be adapted to the use of
electronic computers, provided the observed data are given for equidistant values.

The decisive programming steps for the carrying out of the computations by
recurrence are explained in detail, using flow charts of general validity. The numerical

application of the results set forth was carried out with the electronic
Computer Gamma 3B-AET at the disposal of the Institute of applied mathematics of
Berne University.
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