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Einsatz elektronischer Rechenautomaten

fiir die Ausg]eichung mit orthogonalen Polynomen

Von R. Hiisser und W. Wegmiiller, Bern

Zusammenfassung

_ Bswird gezeigt, wie im ein- und zweidimensionalen Iall die theoretischen An-
Sf’ttze tiir die Ausgleichung mit orthogonalen Polynomen zweckmiissig umzuformen
sid, um bej Vorgabe dquidistant liegender Beobachtungswerte sich mit Vorteil
elektronischer Rechenautomaten bedienen zu kénnen.

Die massgebenden Programmierungsschritte fiir die rekursive Durchfithrung
aller Berechnungen werden anhand allgemein giiltiger Ablaufdiagramme eingehend
erliutert. Fiir die konkrete Verwirklichung der dargelegten Iirgebnisse wurde das
dem Tustitut fiir angewandte Mathematik der Universitit Bern zur Verfigung
stehende Iilektronenrechengerit Gamma 3B-AET eingesetzt. °

1 Problemstellung

Die zentrale Frage bei Ausgleichsproblemen lautet: Wie kénnen
empirische Daten durch theoretische Werte, die irgendeine Gesetzmissig-
keit befolgen, am besten approximiert werden? In dieser allgemeinen
Formulierung sind noch zwei Belange vollig offen: Welcher Art ist die
geforderte Gresetzmissigkeit, und was besagt «am besten approximierty 9

Unter den vielen, mehr oder weniger objektiven Vorschriften,
denen die Niherungsworte geniigen sollen und unter den verschiedenen
Definitionsmiiglichkeiten der «besten Approximation» wihlen wir fol-
gende Fagsung:

Die gegebenen Beobachtungswerte sind durch ein Polynom I-ten
Grades — welches seinerseits als Linearkombination orthogonaler Poly-
nome vom Grade 1 = 0, 1, ..., darzustellen ist — o zu approximieren,
dass die Bedingung

> (Beobachtungswerte — Niherungswerte)? = Minimum

erfiillt ist.
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Die theoretischen Grundlagen sowie zahlreiche Vereinfachungs-
moglichkeiten (Tabellen, Rechenschemas usw.) fiir die praktische
Durchfithrung einer solchen Ausgleichung sind in [3]') zusammen-
gestellt. Trotzdem erfordert jede numerische Auswertung mit vielen
Beobachtungen, speziell bei zwei- oder mehr unabhingigen Verinder-
lichen, einen erheblichen Rechen- und Zeitaufwand.

I's lohnt sich deshalb zu priifen, ob der Einsatz elektronischer
Rechengerite fiir die Ausgleichung mit orthogonalen Polynomen Fr-
leichterungen und Vorteile bieten kann, wie gegebenenfalls die Anséitze
fiir eine rationelle Auswertung umzuformen sind und welches die mass-
gebenden Programmierungsschritte einer solchen Ausgleichung sein
werden. Krfahrungsgemiss ist mit Rechenautomaten eine Beschleu-
nigung des Rechenprozesses dann zu gewirtigen, wenn es gelingt, die
ganze Ausgleichstechnik moglichst auf Rekursionsbeziehungen und
anderweitige [terationen aufzubauen.

Damit ist bereits der Weg unserer Untersuchungen vorgezeichnet.
Immerhin dringt sich noch eine Vereinfachung aut: Wir fordern die
Vorgabe dquidistant liegender Beobachtungswerte 2). Dies hat den Vor-
teil, dass die orthogonalen Polynome zum vornherein formelmissig
explizit gegeben sind, dass die vielen speziell fiir numerische Auswer-
tungen vorteilhaften Figenschaften und Hilfsbeziehungen der ortho-
gonalen Polynome voll ausgeniitzt werden kénnen und dass schliess-
lich — wie unser Vorschlag zur Programmierung bekundet — nur die
Beobachtungswerte, nicht aber die Argumente selbst gespeichert werden
miissen.

Methodisch erliutern wir zuerst das Vorgehen im zweidimensio-
nalen Fall. Die Probleme bei nur einer Variablen ergeben sich dann
durch Spezialisierung. Beziiglich der Bezeichnungsweise halten wir uns
weitgehend an die in [3] verwendete Symbolik.

1) Zahlen in eckigen Klammern verweisen auf die Literaturangaben (Seite 168).

2) In einer von :.S.Flouseholder [2] aut Seite 221 aufgestellten Rekursions-
beziehung glauben wir die Méglichkeit erkannt zu haben, die Ausgleichung mit or-
thogonalen Polynomen auch im Falle nicht dquidistanter Argumente programmieren
zu konnen.



2 Zweidimensionale Ausgleichung

21 Methode

m
¥, 1 . . \ % % . .
Es seien M — :\: n, mit gewissen Ungenauigkeiten behaftete Be-
|
Obrt(j "- 4 k) ] il 7] Lr b &% 4 ] 7
achtungs- oder Messwerte w(z;,y;) #u den Argumenten (z,,y;) ge-

geben (b=1,2, ..., m; 1=12,...,m)

Gesucht wird ein Polynom 2,.(x,y), welches die Beobachtungs-
werte w(z,y) moglichst gut approximiert, d.h.
2 D [aley) —w(ay)] = Minimum, (1)
& Y
Das Polynom 2y o(z,y) wird k-tes Ausgleichspolynom I-ten Grades in x
und y genannt (k= 0,1, ..., 1) und soll als Linearkombination der
orthogonalen Polynome P, (,y) eines vollstindigen Systems dargestellt
werden

-1 4 i
auey) = 2 34, B, @y)+ X a, B(ey). @)
A=0pu=0 o=

Die Bestimmung der Koeffizienten a, bzaw. a; , erfolgt durch
Nullsetzen der entsprechenden partiellen Ableitungen von (2) und fiihrt
unter ]'ieriicksichtigung der Orthogonalititsbedingungen

25 R i == (0, fir 4 £ v oder u -+
SNNP () P (2,1 ’ “ e :
r %‘ 1l ®0) Bo(2y) +0, fir A =» und u=p, ()

auf dj A \
die Begziehung -\j N aw(zy) Py (x,y)
. 5 | (4)
Ap T '\ > (1 : h {
S N W)
x Y

Daraus geht deutlich hervor, dass die Koeffizienten (y, vom
(?'rl"ctd ! und vom Index k des Ausgleichspolynoms 21,.(®,y) unabhingig
SInd. Ferner ist zu ihrer Berechnung nur je eine (:‘rleichu.rig (4) auf-
zuldsen und nicht etwa ein ganzes lineares, inhomogenes Gleichungs-
System wie im allgemeinen Iall, wo die P, «(2,7) wohl ein vollstindiges,
nicht aber ein orthogonales Polynomsystem bilden. Gerade diese be-
merkenswerte Kigenschaft zeichnet die orthogonalen Polynome fiir die
Ausgleichsrechnung aus. Mit jeder lirweiterung des Grades ! oder
Indexes k treten in (2) zusitzliche Glieder und damit auch neue a,
&‘“f, ohne aber die vorangehenden nach (4) bereits berechneten Koef’-
fizienten wertméssig zu beeinflussen.
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Iiir die weitere Bearbeitung treffen wir eine vereinfachende, in
ihrer Auswirkung aber entscheidende Annahme. Die Punkte (z;,3;) sollen
in der zy-lIibene ein vollstindiges, regelmissiges Punktgitter bilden,
dessen dusserste Punkte alle auf den Begrenzungslinien eines achsen-
parallelen Rechteckes liegen mit dem Zentrum (0,0). z, variiert dann
zwischen — m;l (1) mg——l und y; zwischen — %gl (1) ngl , d.h.
es gibt insgesamt M = mn Beobachtungswerte 1).

Unter diesen Voraussetzungen entarten nidmlich — wie in [3] gezeigt
wurde — die zweidimensionalen orthogonalen Polynome P, (z,y) in
das Produkt zweier eindimensionaler orthogonaler Polynome P (x)

und P (y); d.h.
() @) = Py (@) P(y). (5)

Dank (5) fithren die getrotfenen Annahmen auf interessante Ver-
einfachungen. Sie gestatten insbesondere die erfolgreiche Anwendung
der meisten, nur fiir orthogonale Polynome einer Veriinderlichen giil-
tigen Gresetzmissigkeiten auf unser zweidimensionales Problem.

Zunichst konnen vermoge der Rekursionsansitze

22(m2— 2)

Pule) = 2Bid =T B

und (6)
‘gtz(nz —~ i)

Poily) = yP(y) *4(4“”2__1) 1Y) s

mit Pyx) = F(y) =1; Bz) ==z, Py) =y, (6"
auch die orthogonalen Polynome zweier Veriinderlichen P, ,(,y) mit
Hilfe von (5) rekursiv bestimmt werden. Dies ist eine fiir die numerische
Auswertung stark ins Gewicht fallende Beziehung.

1y Wiiren an Stelle der oben normierten Argumente die Grissen
(&m;) = (a-+h,b 4 i)

gegeben, dann kénnte durch die Transformationen

§—a m—1 nj—b  m—1
gy 'thv — = und y; = T gy
stets erreicht werden, dass gilt
m-1 . n41 ) (’i:l,Q,...,m
o) = (=75 =y ) (TS )

\
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A} . . L ..

Sodann lassen sich fiir das Aufsuchen der Entwicklungskoeffizienten
“2,, Weltere, fiir das Rechnen bedeutungsvolle Vereinfachungen foloern,
Wenn wir (5) in (4) einfiihren, ergibt sich

Z 2 ’w(m’y) 'Pi.—;t(w) P,u(y)

e = (S (S (BT v

Die beiden in Nenner von (7) auftretenden Summen
E [Pﬁ.—gt(x)]z und }:j [Z)#(y)]z
z Y
lassen sich ebenfalls rekursiv herleiten
A2(m2—A%) ..
Ny - e LRI TR TS
% [“Pﬂ-(x)]‘2 _ 11(422#1) >__| [11"1(‘1;)] ’

Z

: pE (0 — i)
S B = L S B
S HOF =gy 5150
mit > [Py(2)]? = m und > [B(y)]* = n.

& Y

Die Doppelsumme im Zihler von (7) verursacht zur expliziten
El‘mittlung immer noch einen grossen Rechenaufwand. Zur weiteren Ver-
efmfa,chung bedient man sich mit Vorteil der Symmetrie-Iligenschaften

der eindimensionalen orthogonalen Polynome.

P, (—a) = (=)D (+2),
P(—y) = (— 1) E(+y)

f

(%)

und erhglt

m—1 n—1
Bl ot
St =D D P (2) Py) (2, +3) + (1) w(+2,—y) +

e={}v={} + (=D (=, +y) + (—1)‘7,(1(—-w,w'g/)}. (19)

Die Summationen Z erstrecken sich iiber die Werte
m— 1 n—1

x baw, y=10,1,2, ..., 9 bzw.

oder {j

S Tiber b 1 3 5 m—1 I n—1
T bzw. y = I YW, g
J¢ nachdem ob m bzw. n ungerade oder gerade ist. Biner besonderen
EI'Wéthnung bediirfen noch die Spezialfille, wo 2 und y einzeln oder
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zusammen den Wert null annehmen kénnen. Jetzst reduziert sich der
Ausdruck

folre, +9) + D) wlt+z,—y) + CD w0z, +y) + (1) w(-2,-y)

n(10)2u 0, ) (1) w0(0,—y), fiir @ — 0,
w(42,0) + (— ¥ w(—=z,0), fir y =0,
(0,0), fir 2z =y = 0.

Nach (10) brauchen also die Werte der orthogonalen Polynome
einer Veriinderlichen lediglich fiir die positiven Argumente bekannt
zu sein. Erneut bieten sich hieraus fiir die numerische Auswertung
. beachtliche Vorteile, indem sich jetzt die Zidhlersumme Sy p AU

additiven Multiplikationen einer geeigneten Kombination der vier
Beobachtungen

w(+z,+y), witz,—y), w—z+y), wl—z,—y) (11)

mit den Polynomwerten P () P (y) fiir positive Argumente ergibt.

lis 15t zweckmadssig, die vier Beobachtungen (11) zu nachstehenden
Hilfswerten zu vereinigen

S8 = w(+a, +y) + w(+z,—y) + wl—z,+y) + w(—z,—y),

SD = w(+x,+y) — w(+z,—y) + w(—z, +y) — w(—z,—y), (12)

DS = w(+z,+y) + w(+z,—y) — w(—z,+y) — w(—z,—Yy),

DD = w(+x, +y) —w(+z,—y) —w(—z,+y) + w(—2z,—y).

Diese vier GGiréssen sind in (tleichung (10), je nachdem ob 1 und w
gerade oder ungerade sind, gemiiss dem

Schema

A = ungerade 1 = gerade

w1 = ungerade SD ’ DD
(127)

= gerade DS ' SS

pinzusetzen.
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Selbst die eigentliche Frmittlung der ausgeglichenen Werte lisst
sich unter Beriicksichtigung von (2), (5), (6) und (9) rekursiv vollzichen.

Danach wird
20(®Y) = 2 () + Gy, Y)

bzw. (18)
2y 0@sy) = 2(2y) + Gy (2y)
mit,
G, (1 a P.(1
b, LlTy) = v D ) D) (13
Giol®Y) = ap 0D (@ x) By(y)
und .
20.0(Z:Y) = ag By(x) Bi(y) = agp,
fir alle { =0,1,2, ... und k=0,1, ..., 1.
Insbesondere gilt nun
2+, +y) = 2 (2 +y) + G2, +y),
(14)

+ G,
28 —Y) = 2y oy (Hu *J) (=D G )
(=2 +Y) = 2 (=2, +y) + (1) (),
2 (—z,—y) = Zz.fc—l(‘ —Y) + (=1 G+, +y).

Wie frither bei der Berechnung der Summen S, ,  nach (10) reicht
auch hier vermoge (18’) die blosse Kenntnis der eindimensionalen
Polynomwerte fiir positive Argumente aus.

Bei Ausgleichsproblemen macht sich stets das Bediirfnis geltend,
moglichst frithzeitig Anhaltspunkte iiber die Griite der Approximation zu
besitzen. Hierzu eignet sich das verallgemeinerte Kriterum von(. J. Lid-
stone. Man berechnet die Summen der quadratischen Abweichungen

2 2 [y = 2 2 [wle,y) =z (@)
xr ¥y Ty
die sich mit (13), (18’) und (7) durch nachstehende Rekursionsformeln

ra

bestimmen lassen.

2 Sl = 5 3 () —aus 3 X wlag) Byfe) B
23 [ ao @l = 33 [l =0 3 S 0wy) B(@) Bly),

mit

2 2l [oal@ylt = 3 3 [ulzyl —ago 3 D wlzy) Bfa) Bily)

und Px) = Py) = 1.

(15)
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Als Prizisionsmass definiert man den Ausdruck

1’ v 1\ .
T = 3 Sl (16)

WO

{l(l
= mn— -
[ 2
A 11+ 1)
. m
l = mn —[- 5 + (k + 1)} —g 2n—m—1), ftir m<n

und stellt zur Beurteilung der Giite der Ausgleichung folgendes K-
tertum auf:

Die Ausgleichung mit dem geméss (13) um ein Glied erhdhten
Ausgleichspolynom ist immer dann vorteilhaft, wenn

L%,k < L?,k—l bzw. L%H,O < L%,z (17)
ausfallt.

Ausser dem einfach zu berechnenden Nenner f setzt dieses Ver-

fahren lediglich die Kenntnis von )} ' [w(z,)]? sowie der Zihler und
z
Nenner von a, , gemiss (7) voraus. Lange bevor die ausgeglichenen

Werte vorliegen, kann man bereits einen ersten Uberblick {iber den
Stand der Ausgleichung gewinnen. Nicht unerwidhnt bleibe, dass fiir
eine endgliltige Beurteilung der Giite der Ausgleichung noch weitere
Kriterien herangezogen werden miissen [1, 5].

Fagsen wir die bisher gewonnenen Ergebnisse zusammen. Fiir die
Ausgleichung mit orthogonalen Polynomen verdienen folgende Eigen-
schaften und Besonderheiten speziell hervorgehoben zu werden:

1. Die Koeffizienten a, , der Ausgleichspolynome 2, ,(z,y) sind vom
Grad des gewihlten Ausgleichsansatzes unabhidngig und ergeben
sich direkt aus Beziehung (4).

2. Unter der Voraussetzung eines achsenparallelen Rechteckbereiches
lassen sich die zweidimensionalen orthogonalen Polynome P, (z,y)
nach (5) durch das Produkt der beiden eindimensionalen ortho-
gonalen Polynome P,_ (z) und P,(y) darstellen.

3. Unter der Annahme dquidistanter Beobachtungswerte wird die

Berechnung der orthogonalen Polynome P,  (z) und P, (y), der
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N [P A712 . I /aA]2 o aiE e : At

Summen > [P,_ (2)]* und > [P,(1)]? der ausgeglichenen Werte
T y

z (@) sowle der Summe der quadratischen Abweichungen

SN [ ()] durch die Rekursionsbezichungen (6), (8), (18),

T
(14)Uund (15) wesentlich vereinfacht.

4. Zufolge der Symmetrie (9) der eindimensionalen orthogonalen
Polynome fiir dquidistante Argumente ist sowohl zum Aufsuchen
der Summen 5, , , nach (10) und damit der Koetfizienten a, ,
nach (7) als auch zur Bestimmung des Ausgleichspolynoms z, ,(x,y)
nach (14) lediglich die Kenntnis der Werte der orthogonalen Poly-
nome fiir positive Argumente erforderlich.

n. Mit den Formeln (2) und (13) gewinnt man nicht nur die aus-
geglichenen Werte fiir emen speziellen Grad, sondern — wie aus
dem schrittweisen Aufbau von z; ,(x,y) hervorgeht — gleichzeitig
die ausgeglichenen Werte fiir sdmtliche Polynome niedrigeren
Grades. Dies gestattet, den Grad des Ausgleichspolynoms vor-
liufig etwas hoher anzusetzen als unbedingt notwendig wire und
nach der Durchfiihrung der Ausgleichung unter den Ansitzen
niedrigeren Grades jenen auszuwéhlen, welcher den speziellen Be-
dingungen und Kriterien am besten geniigt.

22 Programmierung

Das Erstellen eines Programms fiir einen Rechenautomaten erfolgt
In zwel grossen Schritten. Vorerst ist die gestellte Aufgabe zu analy-
sieren und formelmiissig darzustellen. Als Resultat dieser Vorarbeiten,
die wir Organisationsphase nennen wollen, entstehen eine umfassende
Formelsammlung und ein detaillierter Arbeitsplan. Normalerweise ist
der Aufwand dafiir bedeutend grosser als tiir den zweiten Schritt, wel-
cher dazu dient, die mathematische oder symbolische Ausdrucksweise
gemilss dem aufgestellten Organisationsplan in die spezifische Ma-
schinensprache zu iibersetzen. Nur dieser zweite, als eigentliche Pro-
grammierungsphase zu bezeichnende Schritt ist vom verfiigharen
System des Rechengeriites abhingig, im Gegensatz zur Organisations-
phase, die stets auf die allgemeine Lisung des Problems ausgerichtet
1st und demnach von der Art des Rechenautomaten nicht beeinflusst
wird.
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Mit den bisherigen Ausfiihrungen sind wir bereits tief in die Or-
ganisationsphase eingedrungen. Die skizzierte Losungsidee muss unter

Beriicksichtigung des Formelapparates sorgfiltig ausgearbeitet und zu
o] (= pp o o o

einemn Rechenplan zusammengestellt werden, wie er etwa durch das
Ablaufdiagramm nebenstehende (Iigur 1) veranschaulicht wird.

[n diesem Ablaufdiagramm lagsen sich fiinf Stufen unterscheiden.

Stufe I:

Stufe II:

Stufe III:

Stufe 1V:

Stufe V:

Start, Fingabe der Beobachtungswerte w(z,y) und der Kon-
stanten, wie z. B. 1, m (= Anzahl Beobachtungswerte in
der z-Richtung), n (= Anzahl Beobachtungswerte in der
y-Richtung), I (= hochster Grad des Ausgleichspolynowms),
k (= Index des I-ten Ausgleichspolynoms) usw. Vorbereitung
der Verzweigungsbetehle, der Adressenrechnung sowie der
weiteren Rechenwerte, Festlegung der Argumente z und ¥
und Bereitstellung der ersten Polynom- und Beobachtungs-
werte nach (6”) und (11).

Berechnung der Kombinationen SS, SD, DS und DD der
Beobachtungswerte w(+ 2, + ) nach (12). Ermittlung und
Speicherung der eindimensionalen orthogonalen Polynome
P,_,(+x) und P, (++ y} nach den Rekursionsbeziehungen (6),
der Hilfsgrossen S, , , mnach (10) fir 2=0,1, ..., (;
p=0,1,..., 4 und der Summe > > [w(x,y)]%

© 'y
Rekursive Bestimmung der Summen > [P, (#)]* und
@

SP.()]? nach (8) zur Berechnung der Koetfizienten «, ,

Yy
nach (7) fiir A =0,1,...,1; »=0,1, ..., 1. Speicherung
aller a, ~Werte und Krmittlung der Summe der quadra-

. . Y \\1 9

tischen Abweichungen > > [u, (x,1)]* nach (15) zur
vy

Beurteilung der Giite der Ausgleichung mit Hilfe des

Prizisionsmasses L3, (16) und des Kriteriums (17).
Durch geeignete Kombination der gespeicherten Koeffi-
zienten a, , und der orthogonalen Polynome P, (z) und
P (y) ergibt sich &, (z,y) nach (13") und damit die aus-
geglichenen Werte z, (z,y) nach (14) fiir 1=0,1, ..., 1;
w=10,1; 523 ha

Test- und Steuerbefehle, Reduktion der Argumente x und y
und Stopbetehl.
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Zweidimensionale Ausgleichung
Gesamtiibersicht

Eingabe der Beobachtungswerte und der Konstanten, Berechnung der Hilfswerte
R=T=V = nein

E—
__ m-—1
Stufe | =
{_
y — n;1
i
Block 1
Pox)=1, Py(x)=x; Po(y)=1, Pi(y)=y | °°
w(+x,+Y), w(+x,—y), w(—=x,+Y), w(—=x,—y)
Stufe 1) $5, SD, D5, DD; 3 5wy Block 2
X Yy
P:'--.u(x)' Py()’); SR—M.# 1 A
‘1’ ...................................................
I (Ist R = nein? )
l nein
Block 3
Stufe 11| b) [Pru(X)]% ;[Pﬂ(y)]*- U 2, rZ [uae(xy)% L3,
________________________________________________________________ RS REES ESEUTSE——
Stufe v
.................................................................. S ——
y—1 =y
Xx—1—x
Stufe v

V =ja, R=ja|~———

Figur 1

11
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Jede der vier ersten Stufen dieses Ablaufdiagramms besteht aus meh-
reren Abschnitten. Ohne auf die letzten Finzelheiten einzugehen, sei
beispielsweise Programmblock 4 der Stufe IV aufgegriffen.

Aus dem Ablaufdiagramm (Figur 2) geht hervor, dass zuerst die
Ausgleichspolynome nullten und ersten Grades direkt berechnet wer-
den. Ist der vorgegebene hichste Grad [ des Ausgleichspolynoms grosser
als eins, wird (7, (+,+y) gemiss (13') ermittelt fiir z,y = 0.

Das Aufsuchen der 2, ,(z,) erfolgt alsdann nach (14) mit den dort
ausgewiesenen Fallunterscheidungen. Vom Vorzeichen der Argumente
x,y sowie von der Struktur der Indexe 4 und u (gerade oder ungerade)
hingt es ab, ob G, (+z,+y) mit 2; ,(z,y) additiv oder subtraktiv
zu verbinden ist. Stets gilt

Zl,;z(+w’ + y) = zl,y—l(_kaa ot y) ot Gﬂ,p(—l—m; 4= y) .
Iir 2, ,(+2,—y) fallen die beiden Varianten

d ZL”("}"LL',—?/) = zl,;e—l('i—m’—y) i Gi,;c(“!_"‘l’.’ _}‘y) fur H = gera‘de
un
23 (Fx,—y) = & y(+2,—Yy) — G, (+x,+y) fir g = angerade
in Betracht. Der Entscheid hiertiber wird mittels des Testbefehles
«Ist u = gerade?» gefiillt.
Analog verhilt es sich fiir z; ,(—x,+y). Um iiber die beiden mog-
lichen Ansétze
2, (—x,+Y) = 2 ,(—2,+Yy) + G (+x,+y) fir A—p = gerade
und
ZL”(——.’II, + y) = Zl,{e—l(_w’ e y) - (}1,1¢(+5E’ £ ?]) fiir AMM — ungﬂl‘?[de
befinden zu konnen, priift man «Ist 41— = gerade ?».
Zur Bestimmung von
zl,p(_""l:’__y) = zil,,u—l(#u‘l" —y) + (—1)11 Gﬂ,;e(—l-m’ ‘ll"?l)

muss schliesslich die Struktur von A bekannt sein. F'iir diesen 3. Test
kann man sich behelfsmissig auf die beiden vorerwihnten Entscheide
stiitzen. A ist stets gerade, falls ¢ und (A—u) gleichzeitig gerade oder
ungerade ausfallen; anders ausgedriickt ¢, ¢y = ¢; = -+ 1. Verhalten
sich dagegen u und (A— ) hinsichtlich des Merkmals «gerade» oder
«ungerade» unterschiedlich, dann ist 4 ungerade (¢, ¢y = ¢3 = —1).
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Zweidimensionale Ausgleichung

Detailangaben zu Block 4

¢

Zoo(+ X, +¥) = Qoo
Zyo(+ X, +¥) = oo +Q 10X, Zio(—X, +¥) =0 p0—010X
Zog(+ % +Y) =Zio(+ X, £ Yy +anr Y, Zu(+X,—=Y) = Zo(+ X, £ y)=Q14y
Zig (=X +Y) = Zio(—%, £ Y) +a 11y, Zia(=x—y) = z1o(=X, +y)—ay1y

l ﬂ, =i P, .l.l:.-'.. 0 l
|
1
Gag(+ %, +¥) =03, Piu(+ %) Pu(+)
Liu(+ X +Y) = Ziua(+ X +Y) + Gau(+ %, +Y)

. | _
—iCIst 4 = gerade? )—n&

Giu(+x, +y) —H —Gau(+x, +y) —H
4 =1 Cy =-1
i |
|
Zau(+ X, —Y) = Zapua(+ %, —y) + H I
i .
] (lsr A—u= gerade?} nel
Gau(+x, +y) —H = Gau(+ %, +y) —H
C'Z =1 Cz=—'1

[ |
i

(=X +¥) = Zia (=%, +y) + H

€ € — C3, G Gyu(+x, +y)—H

Zau(= X —¥) = Zppr (=X, —y) + H




— 164 —

Fir die rekursive irmittlung von z, ,(—x,—) gilt demnach der Ansatz
ir —— oy 1 " i
zl,,u(_"b"ﬁy) - Zﬂ.‘;u—-l(——‘l”—y) + 3 CTA,,,.(‘}“ Ly +y)’
mit der Testgrosse ¢y = -+1 (—1) fiir A = gerade (ungerade).

Die Berechnung der ausgeglichenen Werte 2, ,(x,y) wird fiir alle
@w=0,1, ..., 2 durchgefiihrt, bis u = A=11ist (1 =2,8, ..., ).

Beim Druck der Frgebnisse 1st darauf zu achten, dass alle erforder-
lichen Angaben geliefert werden, um die Ausgleichung jederzeit iiber-
blicken und je nach Wunsch schrittweise verfolgen zu kénnen. Unser
Programm soll mindestens folgende Werte drucken:

m, n, L, k;

l; My a‘,‘{‘ﬂx Z 2 [ul,y(a:!y)]zi L%,.u?

Ty

fﬁr alle 2 =0,1,..,lund p=0,1, ..., ;

Ay wy w(a,+y), 2, (Fa,+y), w(+a,—y), 2 (42, —y),
w(—ax,+y), 2, ,(—z,+y), wi—z,—y), zﬂﬂu(—w,ﬁy),

tiir vorgegebene 4 = [ und u = k.

Diese Feststellungen beschliessen die Organisationsphase und fiithren
bereits in die Programmierungsphase iiber. Hier tritt nun das verfiig-
bare Rechengerit und dessen Arbeitsweise in den Vordergrund.

Wir haben unsere Uberlegungen am Rechenautomaten (Gamma
3B-AET1) erprobt, wie er der Universitit Bern und weitern Inter-
essenten im Tnstitut fiir angewandte Mathematilk zur Verfiigung steht.

Zwischen das Rechenwerk und den Hauptspeicher (Magnet-
trommel mit 8192 Speicherzellen) dieser elektronischen Rechenanlage
sind 6 Normal- und 64 Schnellspeicher geschaltet. Jede Speicherzelle
fasst 12 Tetraden, d.h. 12 Dezimalziffern oder 48 Dualstellen. Als [lin-
und Ausgabe dient eine Tabelliermaschine, welche pro Minute bis zu
150 Lochkarten liest oder 150 Zeilen zu 92 Ziffern druckt; ein mit der
Tabelliermaschine gekoppelter Blocksummenlocher stanzt die ge-
wiinschten Resultate in Lochkarten.

1) Hergestellt von der Compagnie des Machines BULL in Paris.



Die Firma Bull stellt ihren Kunden das sehr einfach zu hand-
habende, automatische Programmierungssystem AP 2 zur Verfiigung.
Es handelt sich um Dreiadressbefehle mit symbolischer oder pseudo-
symbolischer Adressierung und mnemotechnisch zweckméssig gewihl-
ten Abkiirsungen fiir die auszufiihrenden Operationen [4]. Unser
Programm besteht aus ca. 600 solchen Befehlen und gleicht bis zu
mn = 3600 Beobachtungswerte mit einem Polynom bis zum hdchsten
Grad | = 81 aus. Die Resultate werden mit der Tabelliermaschine
gemdss den auf der vorangehenden Seite vorgemerkten Angaben iiber-
sichtlich herausgedruckt.

Was den Druck der ausgeglichenen Werte anbetrifft, bestehen
folgende vier, durch Steuerkarten wihlbare Moglichkeiten:

a) Druck der z, (x,y) fiir die vorgegebene Kombination 4 = I, u = k;
b) Druck der z; ,(z,y) fiir die zum kleinsten L , fithrende Kombina-
tion A, ;
¢) Druck der 2, ,(z,y) fiir die ausgewihlten Kombinationen
== L% . .0
d) Druck der z, (2,y) tiir simtliche Kombinationen 4 =1,2,...,1-1
und g =0,1,...,A sowie A =1l und = 0,1, ..., k.

3 Eindimensionale Ausgleichung (Spezialisierung)

Iiegt nur eine Veréinderliche vor, so sind merkliche Vereinfachun-
gen im Ansatz sowie im Arbeitsablauf der Ausgleichung zu gewirtigen.
Wir begniigen uns damit, die wesentlichsten Gesichtspunkte hingicht-
lich Methode und Programmierung zu erdrtern.

(regeben sind m dquidistant gelegene Beobachtungswerte w(z,),
m—1 m-—1

9 (1) 9 -

Gesucht wird das Ausgleichspolynom I-ten Grades

1=1,2,...,m, zu den Argumenten x, = —

!
31(1) = A‘S—:’)aﬁ' ')A(:IJ), (18)
$0 dags - D7) —w(z)]? = Minimum.
&

Die orthogonalen Polynome P(z) erfiillen die Rekursionsbeziehungen
(6) und (8) und weisen die Symmetrie-Eigenschaft (9) auf.
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Fiir die Bestimmung der Koeffizienten «, gilt der Ansatz

5, Se@B

A
4 = o = —x (19)
O Z[U]
mit gL
2 ST A = gerade, oder
8y = Z{OPA(:L) lD}, je nachdem ob 1 sty
T’
und S = w(+x) + w(—),

D = w(+z) —w(—=z) ist,.
Ifiir # = 0 reduziert sich S und D auf
S =D = w(0).

Die approximative Beurteilung der Giite der Ausgleichung erfolgt

analog zum Kriterium (17) mittels des Prizisionsmasses

1
2= - N
[4 m— l . 1 2 [ul(‘q’)] (20)
Dabei bedeutet
D @) = 3 ()~ s@)

[ (@] —a > 2. L w(z) Pyw), (21)

mib Z [10(2)]? = Z w(2) ]2 — aq Z w(x

Formal entsprechen diese Ansétze vollstindig den fiir zwei Verinder-
lichen giiltigen Beziehungen. Also diirfte sowohl zwischen den Ablauf-
diagrammen als auch zwischen den eigentlichen Programmen selbst —
abgesehen von gewissen Modifikationen — eine weitgehende Uberein-
gtimmung bestehen. Dies trifft, wie das Ablaufdiagramm fiir den ein-
dimensionalen Fall (Figur 8) zeigt, wohl fiir jede einzelne der fiinf
Stufen zu, nicht aber fiir den &dusserlichen Gesamtaufbau. Das Auf-
suchen der vier Beobachtungswerte (11) in den Eckpunkten (+ =, + ¥)
erfordert namlich bei zwei Verdnderlichen einen viel grosseren Auf-
wand (Adressenrechnung) als jener fiir die beiden Beobachtungs-
werte w(+ x) bei einer Variablen. Deshalb wurde dieser Programm-
ausschnitt in Figur 1 zusammen mit weiteren Befehlen am Anfang und

f
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Eindimensionale Ausgleichung

Gesamtiibersicht

LEingabe der Beobachtungswerte und der Konstanten, Berechnung der Hilfswerte ]

Sfufe | X =

Stufe | i

Pal)s Sy P

ot i

ot A= 12 )nein
2 )
- Ist x =0 oder x = '/, ? )=l X—1—x
BE

Stufe |11 N; = 3 [Pa(x)]% G,l="Niﬂ'- Sua) L

(AT —A}—

Stufe 1v

oty

Pa(+ %), za(+X) = Zay (+ x) + a2 Pa(+ %)
Za(— X) = 23_1(— X) + (—-1)30.;1 P,](-l- X)

1a ,
ja

NStop,

Figur 3
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Ende des Programmes nur einmal niedergeschrieben und durch eine
«zyklische» Organisation entsprechend oft angerufen. Beim ohnehin
einfacheren eindimensionalen Ausgleichsverfahren haben wir dagegen
die wenigen Befehle zweimal geschrieben (vgl. Ifigur 3, Beginn und
Finde der Stufen I/IT und 1V/V). Die Stufen II, IIT und IV sind jetzt
ganz unabhingig voneinander, und die Programmstruktur tritt klarer
hervor. '

Wenn auch unsere Untersuchungen in der eigentlichen Program-
mierungsphase Bezug nehmen auf das an der Universitit Bern vor-
handene elektronische Rechengerit, so sel doch abschliessend darauf
hingewiesen, dass die vorgeschlagenen Lésungen fiir die ein- und zwei-
dimensionale Ausgleichung mit orthogonalen Polynomen in ihrer
Grundkonzeption auch fiir andere Systeme von Rechenautomaten
Griiltigkeit besitzen.
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Résumé

Pour I'ajustement & l'aide de polynomes orthogonaux, les auteurs montrent
comment on peut adapter de fagon appropriée les données théoriques, dans le cas
d’une et de deux variables, afin de pouvoir utiliser avec profit les machines électro-
niques si U'on connait des valeurs d’observation équidistantes.

Les instructions de programmation pour l'exécution de tous les calculs de
récurrence sont expliqués & fond au moyen d’organigrammes de validité générale.
La machine électronique Gamma 3B-AET de U'Institut des mathématiques appli-
quées de I’Université de Berne a été mise A contribution pour 'obtention de résul-
tats concrets.

Riassunto

Gli autori dimostrano come si possono trasformare opportunamente i dati
teorici, nel caso di una e due dimensioni, per 'aggiustamento con polinomi ortogo-
nali, in modo che, conoscendo valori d’osservazione equidistanti, sia possibile uti-
lizzare con vantaggio le calcolatrici elettroniche.

Le istruzioni di programmazione che servono all'esecuzione di tutti i calcoli
con formule di ricorrenza, vengono spiegate a fondo per mezzo di diagrammi a
blocchi, di validita generale. Per ottenere 1 risultati concreti venne usata la calco-
latrice elettronica Gamma 3B-AET dell’Istituto di matematica applicata dell-Uni-

versita di Berna,

Summary

The authors demonstrate how, in one and two dimensions, the theoretic model
for the graduation with orthogonal polynomials can be adapted to the use of elec-
tronic computers, provided the observed data are given for equidistant values.

The decisive programming steps for the carrying out of the computations by
recurrence are explained in detail, using flow charts of general validity: The nume-
rical application of the results set forth was carried out with the electronic Com-
puter Gamma 3B-ALXT at the disposal of the Institute of applied mathematics of

Berne University.
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