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Approximative Reservenberechnung

mit Hilfe der linearen Programmierung

Von M. Frischknecht, Zürich

Zusammenfassung

Anhand eines Beispieles für eine approximative Reservenbereclmung, bei
dem durch Ermittlung von Maximal- und Minimalwerten ein zuverlässiges
Ergebnis eingegabelt werden kann, wird gezeigt, dass sich die lineare Programmierung
auch in versicherungstechnischen Berechnungen anwenden lässt.

Die lineare Programmierung hat in den letzten Jahren, insbesondere

in den angelsächsischen Ländern, im Rahmen der Wirtschaftstheorie

und der betrieblichen und volkswirtschaftlichen Planung grosse
Bedeutung erlangt. Bei uns ist ihre Theorie wie auch ihre Anwendung
noch wenig bekannt; mit Rücksicht darauf sollen hier einige ihrer
Wesenszüge vorgängig dargestellt werden, soweit dies zum besseren
Verständnis der nachfolgend behandelten Anwendung auf die
Reservenberechnung dienlich ist1).

I.

Das Charakteristikum der linearen Programmierung lässt sich am
einfachsten anhand von zwei praktischen Anwendungsbeispielen
darlegen :

Erstes Beispiel

Das Fabrikationsprogramm einer Firma umfasst eine Auswahl von
verschiedenen Erzeugnissen, zu deren Herstellung grundsätzlich die
gleichen Rohmaterialien, Maschinen, Apparate, Belegschaften usw.,
aber für jedes Fabrikat in verschiedener Menge oder Zahl benötigt
werden. Die Verkaufspreise der verschiedenen Produkte sind ebenfalls

L Literaturhinweise finden sich am Schlüsse dieser Arbeit.
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verschieden. Mit Hilfe dor linearen Programmierung ist es nun möglich,
das Fabrikationsprogramm dieser Firma so festzusetzen, dass ihr unter
der Annahme, dass alle Erzeugnisse verkauft werden können, innerhalb
einer Fabrikationsperiode ein maximaler Verkaufserlös erwächst.

Zweites Beispiel

Der menschliche Körper benötigt zu seinem normalen Fortbestehen

u.a. eine bestimmte Mindestmenge an Kalorien und Vitaminen. Dieser
Mindestbedarf ist durch die tägliche Nahrungsmittelaufnahme, bei der
die einzelnen verfügbaren Nahrungsmittel die Kalorien und Vitamine
in verschiedenen Mengen enthalten, zu decken. Hier erlaubt die lineare

Programmierung die Aufstellung eines minimalen Ernährungsplanes,
durch den einerseits der Bedarf an Kalorien und Vitaminen innerhalb
eines Zeitabschnittes gerade gedeckt wird, und hei dein anderseits die

Ernährungskosten ein Minimum worden.

Als Zusammenfassung der beiden Beispiele kann gesagt werden:

«Die lineare Programmierung ist eine wissenschaftliche Methode,
die erlaubt, auf Grund von linearen Beziehungen ein maximal günstiges
Programm festzulegen.»

Zur Lösung von solchen Aufgaben, in denen also ein maximaler
Erfolg oder ein minimaler Aufwand erstrebt wird, wurden verschiedene
Methoden, unter anderem die sogenannte Simplexmethode, entwickelt.
Diese beruht auf einem System von linearen Ungleichungen, als formel-
mässiger Darstellung von linear veränderlichen Elementen. Für ein

Maximumproblem hat das erwähnte System folgendes Aussehen:

Xi P os12 x2 ~b • • b ei« Li iL ^1

w2t U ~b a22 'L ~b • • ~b xn V S2

(,1:1 U "b ai:2 ^2 ~b • • • "b 'Li 'Li

worin die aj;- die einzelnen Elemento, die <S'; die maximal zur Verfügung
stehende Menge dieser Elemente und die a;. die Variablen darstellen.
Das zu maximierende Ergebnis der Programmierung lässt sich seinerseits

in eine lineare Gleichung bringen, von der Form:

2/i'H-b y2x2 + + ynx„ Y.



— 103 —

Hie Aufgabe besteht nun darin, bei den vorgegebenen, empirisch
bestimmten a{j, S{ und j/}., die Variablen xj so zu bestimmen, dass Y
ein Maximum wird.

Die Lösung der Aufgabe geht so vor sich, dass vorerst durch
Einführung von Hilfsvariablen, den sogenannten Schlupfvariablen, die
Ungleichungen in Gleichungen verwandelt werden, womit sich dann
folgendes Gleichungssystem ergibt:

an xi ~b 0-i2 x2 +•••"!" xn ~b xn n
^21 Xi ~h a22 X2 ~h • • • ~L O-in %n A Li 1 2 ^2

akl xt + aka x2+ + aht x„ + xn_t k Sk.

Die zu den Schlupfvariablen a:H+1 bis xn+k gehörenden y sind
selbstverständlich Null, so dass die Lösungsgleichung die Form erhält:

Vi xt ~1~ I/2 x'i + • • • "I" !Jn xn + 0 a:„ (.j -I- • • + 0 xn_t_k Y.
Das System der Bedingungsgleichungen in dieser Form ist nicht

lösbar, da darin mehr Variablen als Gleichungen vorkommen; um die
Lösbarkeit zu erreichen, müssen n Variablen Null gesetzt werden. Der
Kernpunkt des Verfahrens der Simplexmethode besteht nun darin, die
Auswahl der grösser als Null gesetzten Variablen (oder Schlupfvariablen)

so zu treffen, dass Y ein Maximum wird. In der Praxis hat sich
dabei folgendes Vorgehen als am zweckmässigsten erwiesen:

In erster Linie werden die ursprünglichen Variablen xx bis xn Null
und die Schlupfvariablen grösser Null gesetzt, Y wird dadurch vorerst

ein Minimum. Nachher wird systematisch eine der Null gesetzten
Variablen nach der andern gegen eine der grösser Null gesetzten
ausgetauscht. Der Austausch erfolgt dabei in der Weise, dass der
Wertzuwachs von Y jedesmal möglichst gross wird. Das Vorgehen wird
dabei so lange wiederholt, bis Y ein Maximum erreicht.

Anhand einer graphischen Darstellung lässt sich das Verfahren in
einem Beispiel mit zwei Variablen und drei Ungleichungen anschaulich
zeigen:

Gegeben sind die drei Bedingungs-Ungleichungen:

Ujl X\ ~f~ L2 x2 D Vj (I)
ft2j X1 + tt22 x% Y. S.> (IJ)
a31 X1 "b a32 **'2 ^3 ' (III)
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welche nach Einführung der Schlupfvariablen die form erhalten:

'Li xi &i2 x% -h S,

0*21 Xj -(- U<22 X2 ~t~ 'h ^2

aSl X1 + (t32 ^2 + J'g S3

In einem rechtwinkligen Koordinatensystem mit xx und x2 als
Ordinaten grenzt jede der drei Ungleichungen einen Bereich ab, innerhalb

dem die betreffende Ungleichung erfüllt ist. Da xx und x2 nicht
negativ sein können, sind diese drei Bereiche je ein rechtwinkliges
Dreieck im zweiten Quadranten mit den Gleichungen ^ aij xj
(in denen also die zugehörige Schlupfvariable Null ist) als Hypotenuse
(vgl. Fig. 1).

Figur 1

Der Bereich, in welchem alle drei Ungleichungen erfüllt sind, liegt
im schraffierten Gebiet, mit den Eckpunkten P„, l\, P2, P3 und P4.
Im Sprachgebrauch der linearen Programmierung wird ein solches

Polygon als konvexes Gebiet bezeichnet. Die Lösungsgleichung

Vi xi + 2/2 x2 Y

liegt ebenfalls auf einer Geraden, der Lösungsgeraden, die sich mit
zunehmendem Wert von Y nach oben verschiebt. Das Maximum für Y
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wird nun offensichtlich dann erreicht, wenn die Lösungsgerade das
konvexe Gebiet gerade noch berührt, was hier im Punkt P3 der Fall
15,t; je nach Neigung der Geraden könnte dies aber auch im Punkt P1(
P> oder P4 sein.

Per weiter oben geschilderte Lösungsvorgang mit dem Austausch
der Variablen geht in diesem Beispiel folgendermassen vor sich:

Von den insgesamt fünf Variablen können drei als grösser Null
vorbestimmt werden, und die zwei andern müssen Null gesetzt werden.
Als erstes werden nun die drei Schlupfvariablen x3, xA und x5 grösser
Null gesetzt, so dass die eigentlichen Variablen xx und x2 Null sind.
Pie Lösungsgerade geht damit durch den Punkt P0, und Y ist Null.
Als nächstes wird die Schlupfvariable ,r4 Null und an ihrer Stelle x%
grösser Null gesetzt, worauf jetzt die beiden Variablen xx und a:4 Null
smd. Per Punkt, in dem dies zutrifft, ist P4, und die Lösungsgerade
geht demzufolge durch diesen Punkt, so dass Y jetzt grösser Null ist.
Ln nächsten Schritt wird die Schlupfvariable x3 Null und dafür xx
grösser Null gesetzt; jetzt sind die beiden Schlupfvariablen x3 und n4
Null. Piese Bedingung trifft für P;! zu, und die Lösungsgerade geht
durch diesen Punkt, wobei, wie oben erwähnt wurde, Y jetzt den
grössten Wert erreicht hat. Im vorliegenden Beispiel macht es den
Anschein, dass das Vorgehen vereinfacht werden könnte dadurch, dass
nicht im Punkt Pu begonnen wird, sondern in einem dem Maximum
näher liegenden. In der Praxis hat sich jedoch das hier geschilderte
Verfahren als zweckmässiger erwiesen.

Per Lösungsvorgang bleibt sich für Minimum-Aufgaben und für
Beispiele mit mehr als zwei Variablen grundsätzlich gleich, und die
gesuchte Maximum- oder Minimunibedingung kann stets als
Berührungspunkt eines mehrdimensionalen konvexen Gebietes mit einer
Hyperebene aufgefasst werden.

IL

Im folgenden soll nun die Anwendung der linearen Programmierung

in einer versicherungstechnischen Berechnung gezeigt werden;
es handelt sich um die approximative Berechnung der Prämienreserve
nach t Jahren, in einem Versicherungsbestand, dessen altersmässige
Struktur nicht bekannt ist. Pas Anwendungsbeispiel stützt sich auf die
Arbeit der beiden Engländer S.Benjamin und C.W. Benett im «Journal
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of the Institute of Actuaries». Es wird dabei vom Gedanken

ausgegangen, dass bei der Durchführung von derartigen oder ähnlichen
Approximationsberechnungen vielfach Näherungsmethoden verwendet
werden, deren Güte oft nicht genau beurteilt werden kann. Die lineare

Programmierung dagegen erlaubt es, nicht nur ein befriedigendes
Ergebnis zu erzielen, sondern auch, weil in der Rechnung jeweils ein

Maximal- und ein Minimalwert ermittelt wird, ein Fehlermass zu
berechnen. Es kann auch gezeigt werden, wie die Leistungsfähigkeit der

Methode und dadurch die Genauigkeit der Approximation sukzessive

gesteigert werden kann, dadurch dass im Verlaufe der Rechnung immer
weitere Unterlagen herangezogen werden. So werden der Reihe nach

folgende Annahmen getroffen:

1. Vom Bestand ist lediglich das Total der Versicherungssummen
bekannt,

2. zusätzlich ist noch das Total der Bruttoprämien bekannt,

8. und ausserdem steht die Summenverteilung des letzten Eintritts¬
jahrganges im Detail zur Verfügung.

Eür die Durchführung der einzelnen Berechnungen wird aus der
Theorie der linearen Programmierung das System der linearen
Gleichungen ^
mit der Lösungsgleichung

2̂j Vi xi Y V*"1)

übernommen sowie das Prinzip, einzelne der Variablen Null und andere

grösser Null zu setzen und die Auswahl so zu treffen, dass Y ein Maximum

oder ein Minimum wird. Im hier vorliegenden Spezialfall sind

von Anfang an mehr Variablen als Ungleichungen vorhanden; es kann
darum hier direkt von Gleichungen anstello von Ungleichungen
ausgegangen werden, und die Einführung von Schlupfvariablen erübrigt
sich demzufolge.

Im einzelnen wird den Berechnungen ein Bestand an gemischten
Versicherungen auf Schlussalter 65 zugrunde gelegt, der im Rahmen
eines Gruppenversicherungsvertrages auf den I.Januar 1955
abgeschlossen worden ist. Das niedrigste Eintrittsalter beträgt 25 Jahre,
das höchste 53, und gesucht ist die Prämienreserve am 31. Dezember
1959, d.h. nach t 5 Jahren, für den noch vorhandenen Bestand,
nach den Rechnungsgrundlagen TG 1953, 2%%.
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!• Rechnung mit dem Summentotal als einzige Bestandesangabe

In Anwendung des Gleichungssystems (0.1) ergibt sich hier bei nur
emer Bestandesangabe nur eine einzige Bedingungsgleichung, nämlich

X25 "b X2ß + • • + 11-53 — b ' (1 .1)
und daneben die Lösungsgleichung

2/25 a25 ~b I/26 x2ß + • • + 2/53 H53 Y. (1-2)
Die Variablen x- bedeuten hier die auf die einzelnen Alter 25

bis 53 entfallenen Versicherungssummen, S die Totalsunnne, y. die
Einheitswerte der Reserven und Y das Total der Reserve, für welches
em Minimal- und ein Maximalbetrag gesucht wird.

Bei nur einer Bedingungsgleichung ist es offensichtlich, dass nur
eine Variable grösser als Null sein kann, so dass also die ganze
Versicherungssumme in einem einzigen Alter zusammengefasst ist. Ebenso
offensichtlich ist, dass sich der kleinste Wert von Y dann ergibt, wenn
die ganze Versicherungssumme auf das Alter 25 und der grösste dann,
wenn die Summe auf das Alter 53 gelegt wird. Bei einem Summontotal
von Er. 953 093 hat sich so ergeben:

Minimum Fr. 75 942

Maximum Fr. 350 17G.

Um für die weiteren Vergleiche ein Mass für den Bereich des
maximalen Fehlers zu erhalten, wird noch ein standardisierter Fehler
ermittelt und als solcher definiert:

Maximum — Minimum

Maximum + Minimum

In der ersten Rechnung ergibt sich:

Standardisierter Fehler 64,36%.

Im praktischen Gebrauch worden nun wahrscheinlich weniger die
Extremwerte interessieren als irgendein plausibler Zwischenwert,
beispielsweise der Mittelwert, der sich hier auf

Fr. 213 059

stellt, und schliesslich wird noch für diesen Mittelwert ein Fehlermass
ermittelt, als prozentuale Abweichung gegenüber dem hier zu Vergleichszwecken

eruierten genauen Betrag der Reserve von Fr. 126 205; dieser
Eohler stellt sich hier auf yj 0/
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Alle diese ersten Ergebnisse zeigen, dass sich auf Grund der
einzigen Bestandesangabe keine befriedigende Approximation ergibt.
Diese erste Berechnung wurde auch mehr aus Gründen der Systematik
als zur Erzielung von brauchbaren Resultaten durchgeführt.

2. Rechnung mit dem Summentotal
und dem Bruttoprämientotal als Bestandesangaben

Dadurch, dass jetzt zwei Bestandeselemente vorliegen, führt die

Anwendung des Gleichungssystems (0.1) der linearen Programmierung
auf zwei Bedingungsgleichungen, es sind dies

«25 + «26 + • • • + «53 S

P25 «25 + P26 «26 + • + P53 «53 (2.1)

und die Lösungsgleichung

P25 «25 "b P26 «26 + • • + t/53 3*53 1 (2-2)

in denen p^ die Einheitswerte der Prämien und ZJ das Prämientotal des

Bestandes, im Betrage von Er. 29 924 darstellen.

Bei zwei Bedingungsgleichungen können zwei Variablen als grösser
Null bestimmt werden, so dass sich die Gleichungen (2.1) wie folgt
reduzieren: „xu + xv S

Tu Xu + Vv «t. P, (2-3)

und es sind die beiden Alter u und v so zu wählen, dass sich in der

I,ösung8gleiobung Y, (2.4)

für Y in einem Eall ein Minimum und im andern Fall ein Maximum
ergibt.

Die Lösung lässt sich hier, in Anbetracht dessen, dass nur zwei

Variablen auftreten, auf graphischem Wege am schnellsten finden:

In einem rechtwinkligen Koordinatensystem mit p und y als

Koordinaten werden die 29 Punkte p,•/.(/,• eingetragen und alsdann ein

Streckenzug so durch diese Punktfolge gelegt, dass in dem daraus
entstehenden Polygon, welches als konvexes Gebiet bezeichnet werden
kann, keine Winkel von über 180° entstehen und alle Punkte entweder
im Innern oder am Rande des konvexen Gebietes liegen (vgl. Fig. 2).
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n

Wenn nun die Aufgabe als physikalisches Problem aufgefasst wird,
80 können je für das Minimum und das Maximum dio auf die zwei zu
bestimmenden Alter u und v entfallenden Versicherungssummen als
entsprechende Gewichte in zwei Punkten der graphischen Darstellung
angesehen worden. Werden diese beiden Gewichte dann ihrerseits durch
ihren Schwerpunkt ersetzt, so ist augenscheinlich, dass sich dann ein
Minimum oder ein Maximum für die ."Reserve ergibt, wenn dieser
Schwerpunkt an den Rand des konvexen Gebietes zu liegen kommt.
Da nun seine Abszisse gleich der Durchschnittsprämie p des Bestandes

sein muss (p --- werden durch die beiden Schnittpunkte der

Senkrechten p mit dem Bande des konvexen Gebietes die zwei extremsten
Dagen des Schwerpunktes bestimmt, und die Alter u und v ergeben
sich aus den den beiden Schnittpunkten benachbarten Eckpunkten
des konvexen Gebietes. Im vorliegenden Bestand sind es die Alter 25
und 51 für das Minimum bzw. 35 und 37 für das Maximum.
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Nach Auflösen der beiden Bedingungsgleichungen (2.8) und
Einsetzen der erhaltenen Werte von xu und xv in die Lösungsgleichung
(2.4), ergibt sich:

Minimum Fr. 123 512

Maximum Fr. 128 309

Standardisierter Fehler. 1,91%
Mittelwert Fr. 125 910

Fehler des Mittelwertes. —0,23%.

3. Rechnung mit dem Summentotal, dem Prämientotal
und der Summenverteilung des letzten Eintrittsjahrganges

als Bestandesangaben

Die Kenntnis der altersmässigen Summenverteilung im Neu

Versicherungsbestand führt nicht auf eine dritte Bedingungsgleichung im
Gleichungssystem; dagegen lässt sie sich für die Erweiterung der

Bedingungsgleichungen (2.1) durch Nebenbedingungen verwenden.

a) Wird angenommen, die auf die einzelnen Eintrittsalter
entfallenden Beträge an Versicherungssummen seien im Altbestand vom
1. Januar 1955 nie grösser als im Neubestand vom 1. Januar 1959, so

lauten die Nebenbedingungen, wenn er® die einzeln bekannten Summen
des Neubestandes darstellen:

XZ3 X2b

X26 - X*s
(3.1)

X63 X53 •

Als Folge dieser Nebenbedingungen ergeben sich jetzt folgende

neuen Bedingungsgleichungen:

x°a + x°b+ ...+<px(,q + Xx°r S

Va X°a + Vk4+---+ <PTq A + XVr x°r P »

mit 0 < cp < 1 und 0 < X < 1,

und es sind wiederum die Alter a bis r so auszusuchen, dass in der

Lösungsgleichung

Va x°a + yb A+ + <P y„ A + x Vr 4 % (3-8)

Y ein Minimum oder ein Maximum wird.
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Auch in diesem Fall führt die graphische Darstellung mit den
29 Punkten Pj/t/j am schnellsten zum Ziel:

Neben die Punktefolge wird in ungefähr gleicher Dichtung zu
deren Verlauf eine Gerade gelegt und diese alsdann parallel zu sich
selbst gegen die Punkte hin verschoben, bis sie den ersten Punkt trifft

Diesem Punkt wird die Versicherungssumme x° im betreffenden
Alter j zugelegt. Nachher wird die Gerade weiter verschoben und die
durch sie getroffenen Punkte fortlaufend mit den in den betreffenden
Altern vorhandenen Summen des Neubestandes versehen, solange, bis
sich bei je einer Teilsumme in den letzten zwei Punkten, die Gesamtsumme

des Altbestandes ergibt. Die Richtung der Geraden ist dabei
gegebenenfalls soweit zu ändern, bis auch das Prärnientotal des
Altbestandes erreicht werden kann.
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Im vorliegenden Bestand waren für die Berechnung des Minimums
die Alter 25-28 und 41-58 mit den vollen Summen und die Alter 29

und 40 mit Teilsummen zu belegen, während für die Berechnung des

Maximums die vollen Summen auf die Alter 30-45 und die Teilsummen
auf die Alter 29 und 46 zu legen waren.

Die Durchrechnung hat sodann ergeben:

Minimum Fr. 125 099

Maximum Fr. 127 210

Standardisierter Fehler.... 0,84 %
Mittelwert Fr. 126 154

Fehler des Mittelwertes. —0,04%.

b) Das Ergebnis dieser Rechnung lässt sich noch dadurch verbessern,
dass anstelle der Nebenbedingungen (3.1) die folgenden gelten:

0,2a;25 ^ a'25 % 0,8x'25

0,2aigg ^ xi(. 0,8i,2G ^ ^
0,2 4, % x53 < 0.8®°,.

In Berücksichtigung des Umstände?, dass die Gesamtsumme des

Altbestandes 58,6% derjenigen des Neubestandes beträgt, dürften
diese Nebenbedingungen einigermassen erfüllt sein.

Sinngemäss zu (3.2) ergeben sich ohne weiteres die zwei
modifizierten Bedingungsgleichungen, und auch die Lösung mit Hilfe der
29 Punkte p •/;/ und der Geraden kann analog wie bei a) angewendet
werden, so dass sich folgende Werte ergeben:

Minimum Fr. 125 676

Maximum Fr. 126 679

Standardisierter Fehler. 0,40%
Mittelwert Fr. 126 178

Fehler des Mittelwertes. —0,02%.

Der rückwirkende Vergleich aller ermittelten Ergebnisse lässt die

Auswirkung der sukzessiven Verfeinerung der Methode deutlich in
Erscheinung treten, wie auch die einzelnen Resultate zeigen, dass die
lineare Programmierung ein ebenso einfach zu handhabendes wie flexibles
Instrument auch im Bereiche versicherungstechnischer Berechnungen
darstellt.
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Resume

Au moyen d'un exemple pour un calcul approximatif des reserves - exemplelui, se basant sur des valeurs maxima et minima, donne un rösultat tout ä fait
a able ~est ^tabli que le «linear programming» est ögalement utilisable dans les

calculs actuariels.

Riassunto

A mano di un esempio per un calcolo approssimativo della riserva, dove
eterminando valori massimi e minimi si puö arrivare ad ottenere un risultato

iclato, vien dimostrato che la programmazione lineare puö essere usata anche percalcoli tecnici assieurativi.

Summary

The paper illustrates the application of linear programming for approximative
reserve valuations. The method gives maximal and minimal values for the reserves
required, a good estimate of which may be extracted from this interval.
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