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Zur Axiorriatik
der innermathematischen Wahrscheinlichkeitstheorie

Seinem verehrten Kollegen

Pro/. Dr. rirî/utr ylMer

in freundschaftlicher Gesinnung zum sechzigsten Geburtstag gewidmet

von H. /fadic/gcr, Bern

1. Zielsetzung

Der wesentlichste Fortschritt, den die Entwicklung der Wahr-
scheinlichkeitstheorie iti den letzten Dezennien zu verzeichnen hat,
besteht wohl darin, dass klar erkannt wurde, dass eine mathematische
Wahrscheinlichkeitstheorie eines streng gefassten axioinatischen Fun-
damentes bedarf und dass ein solches auch gegeben werden kann.

Es liegt in der Natur der Sache, class diese neuzeitlichen Theorien
bei der angestrebten grossen Allgemeinheit wohl die Fragen der exakten

Begriffsbildungen und der zu wählenden Grundgesetze abklären und

lehren, wie aus gegebenen Wahrscheinlichkeitswerten andere abgeleitet
werden können, dabei aber zu unbestimmt bleiben müssen, als dass es

möglich wäre, auf Grund der vorliegenden axioinatischen Fundierung
die tatsächliche Ermittlung eines einzigen nichttrivialen Wahrschein-
lichkeitswertes vorzunehmen.

Die klassische Wahrscheinlichkeitsrechnung kennt indessen zahl-
lose Probleme, deren Lösung im konventionellen Sinn in der tatsäch-
liehen Berechnung aller gefragten Wahrscheinlichkeitswerte besteht.
Gerade diese Möglichkeiten, die zahlenmässigen Bewertungen der
Chance zufallsartiger Ereignisse unabhängig vom Experiment oder des

noch in der Zukunft liegenden Ablaufs vorausberechnen zu können,
verliehen jedenfalls der Entwicklung der von Jafcob ßerwouZii (Ars con-

jectandi) begründeten Lehre in historischer Zeit die wertvollsten Im-
pulse.

Es handelt sich hierbei um Probleme a priori, deren innermathe-
matische Behandlung dadurch charakterisiert ist, dass zu den üblichen
Grundrelationen gewisse willkürlich, aber sinnvoll gewählte Gleich-
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Setzungen hinzutreten, die dann eine eindeutige Auflösung nach den

gesuchten Wahrscheinlichkeitswerten ermöglichen.
Derartige Festsetzungen über bestehende Gleichmöglichkeiten,

von denen man früher gelegentlich irrtümlicherweise glaubte, sie

streng begründen zu müssen, sind durchaus zulässig. Sie bedingen eine

zusätzliche Idealisierung des der zu lösenden Aufgabe zugrunde liegen-
den mathematischen Modells. Hierbei ist besonders zu beachten, dass

sich diese Voraussetzungen aber lediglich auf das gedachte Modell
beziehen und nicht auf Dinge und Erscheinungen der Wirklichkeit.
Vgl. hierzu einige treffende Äusserungen bei /!. /Uder [1] (insb. S. 15).

Wie sind nun aber in den sich hierfür eignenden Fällen Fest-

Setzungen dieser Art zu treffen?
Behandelt man ein innermathematisches Problem a priori etwa

im Rahmen der heute in weiten Kreisen anerkannten, masstheorotisch
fundierten Wahrscheinlichkeitslehre nach M. FfoZwoiyoro// |2|, so be-

stehen zwischen den vorzunehmenden Festsetzungen angemessener
Gleichmöglichkeiten und den Axiomen, welche der Theorie zugrunde
liegen, keinerlei Beziehungen. Dies bedeutet, dass die Willkür dieser

Festsetzungen in jedem neuen individuellen Falle auch wieder neu in

Erscheinung tritt.
Die Tatsache, dass in zahlreichen einfachen Fällen, vor allem in

solchen vom endlichen Typ, plausible Annahmen gewissennassen auf
der Pfand liegen, ändert nichts daran, dass in schwierigeren Fällen,
etwa bei Aufgaben vom abzählbar- oder überabzählbar-unendlichen

Typ, eine gewisse Unsicherheit vorliegt. Es besteht datier ein Bedürfnis,
bereits eine in den allgemeinen Grundlagen verankerte Wegleitung,
ein in innermathematischen Fällen anwendbares Wahlprinzip zur Fest-

Setzung gleichberechtigter Elementarereignisse zur Verfügung zu haben.

Damit ist das Ziel, das wir durch eine Axiomatik der innermathe-
matischen Wahrscheinlichkeitstheorie zu erreichen trachten, bereits an-
gedeutet. Es soll versucht werden, die geläufige masstheoretische

Grundlage von /udmor/oro// für die allgemeine Wahrscheinlichkeits-
theorie so zu erweitern, dass geeignete innermathematische Probleme

a priori in einer Art und Weise bearbeitet werden können, welche die

Festsetzungen über gleichberechtigte Elementarereignisse nicht incli-

viduell willkürlich, sondern in einer in der Axiomatik generell vor-
gezeigten Form vorzunehmen erlaubt. In den passenden Fällen kann
dann die tatsächliche Berechnung einzelner Wahrscheinlichkeitswerte
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in der üblichen Art durchgeführt werden, ohne die Grenzen des aus-
schliesslich durch die Axiome festgelegten Arbeitsfeldes zu über-
schreiten.

Der Gedanke, der zu diesem Ziel führen kann, ist nicht neu. Inner-
halb der Problemgruppe der geometrischen Wahrscheinlichkeiten ist
seine konsequente Verwertung langst üblich. Es handelt sich um den

Einsatz eines Invarianzprinzips. Nachdem schon il/. W. Oo/Am [8] im
.fahre 1868 invariante Ansätze zur Ermittlung geometrischer Wahr-
scheinlichkeiten benutzte, war es besonders Cr. Pd/.//u |4), der im Jahre
1917 diese anzuwendenden Integraldichten durch eine deutlich hervor-

gehobene Invarianzforderung in eindeutiger Weise charakterisierte und

am Ende der zitierten Abhandlung (I.e. S.328) der Hoffnung Ausdruck

gab, «dass die vorangehende Bestimmung der Wahrscheinlichkeit auf
Grund der Forderung der Unabhängigkeit von der Lage zur Aufklärung
der Prinzipien der Wahrscheinlichkeitsrechnung beitragen wird».

In der von IL. B/asc/i/cc und seiner Schule |5| begründeten Integral-
geometrie, die aus der Lehre von den geometrischen Wahrscheinlich-
Leiten hervorgegangen ist, hat in der Tat das Invarianzprinzip eine

fundamentale Bedeutung erlangt. Hierüber kann man sich beispiels-
weise bei L. H. .SVmfn/A [6| orientieren. Die integralgeometrischen Masse

sind durch die Forderung, gegenüber der Bewegungsgruppo des be-

trachteten Baumes invariant zu sein, im wesentlichen eindeutig fest-

gelegt.
Es gilt nun, diesen Gedanken in allgemeinster Form aufzugreifen

und eine Invarianzforderung gegenüber einer geeigneten Gruppe in das

axiomatische System einer innennathomatischen Wahrseheinlichkoits-
theorie einzubauen. Für die Bearbeitung der Probleme a priori ergibt
sich so eine wesentlich straffere Führung, indem die Gleichwertigkeit
oder Äquivalenz der Elementareroignisse durch eine willkürlich, aber

sinnvoll festgesetzte, im Ereignisraum wirkende Gruppe bestimmt wird.
In allen Fällen, in denen sich die Problemmodolle für die inner-

mathematische Behandlung nicht eignen, so dass sich im Ereignisraum
keine nichttriviale Gruppe in sinnvoller Weise auszeichnen lässt, kann

man auf die identische Gruppe greifen. Die Invarianzforderung triviali-
siert sich, und man hat wieder die invarianzlose Grundlage der all-
gemeinen Wahrscheinlichkeitstheorie. In diesem Sinne ist das axio-
matische System von Jvoiwoj/oro// der invarianzlose Sonderfall eines

umfassenderen invarianten Systems.
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Es geht also darum, die Idee der Gruppe als fruchtbares gestalten-
des und ordnendes Prinzip der mathematischen Wissenschaften auch
für die Wahrscheinlichkeitstheorie nutzbar zu machen.

2. Axiome; Wahrscheinlichkeitsfeld

Wir formulieren nun vier Axiome, die der innermathematischen
Wahrscheinlichkeitstheorie zugrunde gelegt werden sollen.

I. ß sei eine Menge, genannt Sreigf«isra«m. Ihre Elemente itl!
heissen A/emewtorereù/ms.se. M sei eine additive Mew/ewfcZasse (evtl.
Mengenkörper) von Elementarereignismengen A c ß. 5b enthalte auch
die leere Menge 0. Es gilt also

(a) A,ß « 5b, 4«ß 0t^il«B(5b;

(b) 0 e 5b.

II. Eine ausgezeichnete nichtleere Teilmenge 7? c ß des Ereignis-
raumes sei die Em/teifsmerw/e, die aus den in Betracht gezogenen
Elementarereignissen bestehen soll; 7'7 kann auch mit ß zusammen-
fallen.

III. Über 5b sei die lüm/cßcm 99 definiert, die jeder Ereignismenge
A 5b die reelle Zahl ç>(A) zuordnet, so dass die folgenden Forderungen
erfüllt werden: (a) 93(A) < 99(B) [A c B]; (b) 99(A) -/= 0; (c) 99(A) -j-

+ 99(71) ç)(A <-> ß) [A <-» ß 0]. 99 ist demnach mowofow, ttor»wVr/;«r
und addßm Offensichtlich gilt 99(A) j> 0 und 99(0) — 0; 99 ist de/wtf.

IF. ß ist Wirkungsraum einer Gruppe G von Transformationen a,
die den Ereignisraum auf sich abbilden. Geht die Menge ß c ß durch
eine Operation aeG aus A cß hervor, was wir auch durch B A"
ausdrücken wollen, so heissen A und B G-f/üic/t, symbolisch A ~ ß.
5b sei G-/m und 99 sei G-mwncrol, so dass die folgenden Forderungen
erfüllt werden:

(a) A 5b, A ~ ß L ß t 5b;

(b) A,ß e 5b, A~ß(\ 95(A) 93(ß).
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Ks folgen die grundlegenden Definitionen:

Sind für einen Kaum ft, eine Mengenklasse ft, eine Einheitsmenge
/'l, eine Funktion 99 und eine wirkende Gruppe G die Axiome L bis IV.
erfüllt, so bilden diese fünf Gegebenheiten ein G'-invariantos IFu/w-

.s'c/icwftc/i/cefts/eZd < ft,/?/>',ft,ç»>.
Ist G c .ft eine Teilmenge des Ereignisraumes ft und gilt G « ft e ft,

so ist die durch den Ansatz

w(C - /?)
» H'C') ' '

(1)
93(A)

gebildete reelle Zahl IF die IFa/cm/temftc/t/ceft dafür, class ein'G-zufällig
ausgewähltes Eleuientarereignis « ft, das in Betracht gezogen ist,
also zu Z? gehört, auch in C enthalten ist.

Wir geben noch einen kurzen Kommentar zu den einzelnen

Axiomen:

Zu Axiom I: Die Festlegung einer Mengenklasse ft solcher Kle-

montarereignismengen, für welche Wahrscheinlichkeitsaussagen ge-
macht werden sollen, ist notwendig, weil sich andernfalls nicht in
allen Fällen für beliebige Teilmengen von ft Funktionen 99 finden
lassen, die den weiteren Forderungen genügen. In gewissen Räumen

gibt es absolut unmessbare Mengen.

Die sonst übliche Forderung, class ft ein Mengenkörper sei, ist

hier abgeschwächt, indem nur die Additivität von ,ft verlangt wird.
Dies geschieht im Hinblick auf besonders ausgezeichnete Inhalts-

Systeme, deren Definitionsfelder nicht Mengenkörper sind.

Zu Axiom II: Gegenüber der üblichen Fassung der masstheo-

retisclum Grundlegung ist die Sachlage neu, class die Menge der in

Betracht gezogenen Elementarereignisse, die der Gesamtheit der mög-
liehen Fälle entspricht, in einen sie im allgemeinen umfassenden

Ereignisraum ft eingebettet wird. Diese Massnahme drängte sich vor
allem auf, um einen Wirkungsraum einer Gruppe zu schaffen, welcher
die Formulierung eines Invarianzaxioms erlaubt. Sie wirkt sich in-
dessen auch auf die weitere Entwicklung der Wahrscheinlichkeit«-

reckoning vereinfachend aus, indem sie eine natürliche und mühelose

Handhabung der sogenannten bedingten Wahrscheinlichkeiten in die

Wege leitet.
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Zu Axiom III: Die Funktion 99(A) stellt eine Inhaltsmasszahl für
die Punktinengen A « ft dar; sie dient dazu, die «Anzahl» der günstigen
und möglichen Fälle in geeigneter Weise zu erfassen, gleichgültig, ob

es sich um Probleme vom endlichen, abzählbar-unendlichen oder kon-
tinuierliehen Typus handelt.

Zu Axiom IV: Die Festlegung einer im Freignisraum ii wirkenden
Gruppe G kann als Verallgemeinerung der Anwendung eines Sytn-
metrieprinzips gelten. Die einmalige Wahl der Gruppe entscheidet
simultan über alle Gleichwertigkeiten. Das in einem gewissen Sinne
vollkommene Gesetz der Gruppe bietet eine gewisse Gewähr dafür,
dass die durch sie induzierten Gleichwertigkeitsfestsetzungen sinnvoll
sind; bei ungebundener Willkür ist dies nicht im gleichen Masse sicher.
Das Gesetz der Gruppe kann ausserdem für die Lösungstheorie eines

innermathematischen Problems eine vorteilhafte innere Geschlossen-

heit erwirken.

Selbstverständlich ist auch die Wahl der Gruppe willkürlich.
Jedoch soll sie beim innermathematischen ideellen Modell das wieder-
geben, was im aussermathomatischen wirklichen Tatbestand wesent-
lieh zur Wirkung kommt.

Die Mannigfaltigkeit der durch unsere Axiome festgelegten Wahr-
scheinlichkeitsfelder enthält insbesondere die Wahrscheinlichkeit!!-
felder im Sinne der Theorie von /vo/mor/oro// (ohne Stetigkeitsaxiom)
als Sonderfälle. Diese ergeben sich durch die folgenden Speziali-
sierungen: 1. M ist ein Mengenkörper; '2. Die Einheitsmenge 7»'ist mit
dem gesamten Ereignisraum identisch; J. Die Gruppe 17 ist die

Identität, das heisst sie enthält nur die identische Transformation
von F auf sich.

Uberlegt man sich, was ursprünglich bei einer individuellen Pro-

blemlage bzw. bei einem gewählten Modell vorgegeben ist, so bemerkt

man, dass es sich um den Freignisraum ii, die Einheitsmenge /Î der in
Betracht gezogenen Elementarereignisse und schliesslich um die zur
Wirkung kommende Gruppe G handelt. Diese drei Grundgegeben-
heiten bilden zusammen den /Vera <B,/'///> einer individuellen
Theorie. Durch Adjunktion einer Mengenklasse M und eines assoziier-
ten Operators 99, kurz eines «S'y,stems <ft//9> zum Kern entsteht das

IFa/trsc/jeAAIc/t/cel/s/e/f/ < /'/,(?,ft,9?>. Die Gesamtheit der Aussagen,



clio bei festem Kern über die in Krage kommenden Wahrscheinlich-
keitsfelder gemacht werden können, bilden Gegenstand einer rein
axiomatischen Theorie.

15. Unabhängigkeit ; Multiplikationssatz

Ks sollen zwei Kreignisräume Ii und Ii' nebeneinander betrachtet
werden. Ilm allgemeinen wird es sich dabei um Elenientaroreignisse
verschiedener Art handeln; selbstverständlich kann aber auch /i mit Ii'
identisch sein, so dass dieselbe Menge von Klemontarereignissen zwei-

mal gesetzt wird. Sowohl in Ii wie auch in Ii' sei je eine Kinheits-

menge II bzw. /I' ausgezeichnet, welche die in Betracht gezogenen
Elementarereignisse umfasst. Die Gleichwertigkeit bei zufälliger
Elementeauswahl aus /i bzw. Ii' sei durch die beiden in Ii und Ii'
wirkenden Gruppen G und G" geregelt. Damit sind die beiden Kerne

<Ii,II,G> und <Ii',II',G"> gebildet; sie liegen den Theorien zu-

gründe, die unabhängig voneinander den beiden Kreignisklassen zu-

geordnet werden können.
Nun bilden wir ein neues Kleraentarereignis « — («,£') dadurch,

dass wir (G-zufällig) ein erstes Khauent. ;c aus Ii und anschliessend

(G'-zufälligj ein zweites Element a' aus Ii' auswählen und sie zu einem

geordneten Paar zusammenfügen.
So entsteht zunächst ein neuer Ereignisraum Ii X Ii', dessen

Elemente die (geordneten) Paare (.r,.r') | .re Ii, a' c Ii' | sind. Es ist
sinnvoll, in diesem Raum nur diejenigen Elementarereignisse (a,a')
in Betracht zu ziehen, deren Komponenten a und gleichzeitig in Ii
bzw. in Ii' in Betracht gezogen wurden, für die also a c II, a' « /I' gilt.
In dem neuen, durch Paarbildung erzeugten Ereignisraum umfasst
somit die Menge II X /I' die in Betracht fallenden Ereignisse aus

Ii X Ii'. Zur Bildung eines Kerns ist noch erforderlich, die in /i X B'
wirkende Gruppe festzulegen.

Ist es nun der Interpretation der vorliegenden Modelle ange-

messen, als wirkende Gruppe das direkte Produkt G x G" der beiden

Gruppen G und G' zu wählen, so soll dies der mathematische Aus-

druck dafür sein, dass die Ereignisse a und a' der beiden Ereignis-
klassen Ii und Ii' wmWdbw/w/ sind.

Damit ist für den Unabhängigkeitsbegriff, dessen mathematische

Eingliederung in die Grundgesetze der Wahrscheinlichkeitstheorie be-
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kanntlich stets einige Mühe bereitet, wenigstens für die innerraathe-
matische Theorie eine Deutung erzielt, welche den unmittelbaren An-
schluss an die Rechengesetze erlaubt.

Der Kern der durch Paarbildung erzeugten Theorie ist dann
durch (ß x ß', Ë x Ii", G X G') gegeben, wobei das Zeichen X bei

Raum und Menge das cartesische, bei der Gruppe das direkte Produkt
bezeichnet.

Sind jetzt < 5^,99 > und <&',ç>'> zwei Systeme, welche den
Kernen <ß,7?,G> und <ß',E',G'> im Einklang mit den Axiomen
zugeordnet werden können, so ist offensichtlich < ft X SV, 99 X 99' >
ein System, das zum Kern <jRxü', 7Ï X ß", GxG'> hinzu-
gefügt werden kann und, wie man leicht bestätigt, die Axiome wieder
erfüllt. Hierbei ist ft X ft' die Klasse derjenigen Mengen in ß X ß',
welche durch die Mengenpaare M x M' [M « ft, M'eft'] erzeugt wer-
den; der Operator 1/9 99 X 99' ist über ft X ft' durch den Ansatz

y(A X A') 99(A) 99'(xl') definiert.

Eine unmittelbare Folgerung ist der MM/Zr/AftaZwissafe der

Wahrscheinlichkeitsrechnung, wonach für Gcß und C" c ß', also

G X G' c ß X ß', die Regel

1F(C X G") W(C) W'(G') (2)

gilt. Die Gültigkeit des Multiplikationssatzes ist in der hier skizzierten
innermathematischen Theorie im wesentlichen eine Folgerung aus der

postulierten Unabhängigkeit der beiden Ereignisklassen.

4. Ereignisfolgen; Grenzwertsatz

Es sei <ß,ß,G,ft,99> ein Wahrscheinlichkeitsfeld und {ay} be-

zeichne eine unendliche Folge von Elementarereignissen «. e ß
(i 1, 2, 8, Ist A c ß eine Elementarereignismenge, so bedeute

N^.(A) die Anzahl derjenigen Elemente des endlichen Abschnitts

«i, $2,. • der Folge {£c-}, die der Menge A angehören. Nun defi-
nieren wir:

Die Folge {ay.} heisst in ß O-r/few/wertei/f, wenn die beiden nach-

folgenden Bedingungen erfüllt werden: Für jede Menge A «ft, für die

99(A) > 0 ausfällt, gilt



(a) W,(G) -> oo (fe -> oo) ;

Für je zwei Mengen M,7i«R, bei welchen noch </;(/!)>() voraus-
gesetzt wird, gilt

(b) W,(77) / iY,(M) -> ç»(B) / <p(M) (& -> oo).

Für eine Menge 77 c 7f, für die C « 77 ç R gilt, bilden wir die für
ausreichend grosse fc definierten refafwe« HâM/û/fecitew

77,(C) .Y,(C< o 7?) / rV,(77) (fc 1,2,8, (S3)

welche anzeigen, welcher Prozentsatz der ersten fc Elementarereignisse
der 77-gleichverteilten Ereignisfolge {«j} der Menge C <-> 77 der günstigen,
in Betracht gezogenen Elemente angehört. Mit Rücksicht auf die

Definition (1) lässt sich jetzt der Gramüertsafe unmittelbar ablesen,
nach welchem

77,(77) -> IF(77) (/>; -> oo) (4)

gilt.
Die Wahrscheinlichkeit erscheint so als Grenzwert der Folge der

relativen Häufigkeiten, mit welchen die «günstigen» Ereignisse in
den Abschnitten einer Folge «möglicher» Ereignisse auftreten. Damit
ist ein Modell geschaffen, welches den bekannten Prostess der sta-
tiistischen Ermittlung der Wahrscheinlichkeitswerte idealisiert. Die
Existenz des Grenzwertes der relativen Häufigkeiten ist hier eine

Folgerung der von uns getroffenen Voraussetzung, class nämlich die

Ereignisse der Folge im Ereignisraum G-gleichverteilt sein sollen.

In der 77- Gleichverteilung findet hier die vagere Vorstellung von der

Regellosigkeit einer Ereignisfolge einen präzisen, mathematisch fass-

baren Ausdruck, so class das Grenzwerttheorem der Wahrscheinlich-
keitstheorie ein beweisbarer Satz wird.

Zum besseren Verständnis dieser Zusammenhänge sollen uns noch

die folgenden Überlegungen dienlich sein:

Wir denken uns bei einem praktischen Problem, bei dem unsere
Theorie angewendet werden soll, eine nicht abbrechende Folge von
wirklich durchgeführten Versuchen, so class das Ergebnis eines Ver-

suches einem Elementarereignis des passenden mathematischen Mo-

clells, also eines 77-invarianten Wahrscheinlichkeitsfeldes, entspricht.
Der wahre Ablauf der Versuchsreihe ist durch den Zufall gesteuert,
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und gerade diese Zufälligkeit soll im Modell durch die im Ereignis-
räum Id wirkende Gruppe G in sinnfälliger und in einer dem wahren
Geschehen adäquaten Weise idealisiert sein. Ein einzelnes wirkliches
Ergebnis eines Versuches stellt sich zufällig ein; dies bedeutet, in
idealisierter Form beim Modell interpretiert, dass das entsprechende
Elementarereignis fr-zufällig aus Ii' ausgewählt wird. Die im Modell
erklärte Wirkung auf die unendliche Ereignisfolge ist die Forderung,
dass die Ereignisse im Raum Id G-gleichverteilt sein sollen.

Die ö-Gleichverteilung stellt gewissennassen ein idealisiertes
Modell für die regulierende Wirkung des phänomenologischen Zufalls
auf den wahren Ablauf einer nicht abbrechend gedachten Versuchs-
reihe dar, und dadurch ist mathematisch fixiert, was intuitiv mühelos
erfasst wird, aber auf exakte Weise nur schwer wiederzugeben ist.

5. Beispiele

Mit drei einfachen Beispielen wollen wir nachfolgend die An-
wendung unserer axiomatischen Theorie kurz erläutern.

/. Das Jtäsfc/ienpro&fewt wm Berfrartd

Wir formulieren diese bekannte, von J. Berfremd im Jahre 1889

(| 7 ], insb. S.2) gestellte und gelegentlich unrichtig beantwortete Frage
iti gleichwertiger Weise, indem wir an Stelle des Kästchonmodells
einen «idealen» Würfel verwenden, der in der konventionellen Weise

mit den sechs Punktzahlen versehen ist. Wir fragen: Bei einem Wurf
erscheine eine Punktzahl, «lie ein Teiler von 10 ist. Wie gross ist die

Wahrscheinlichkeit, dass die antipodische Seitenfläche des Würfels
einen Nichtteiler von 10 aufweist?

Wir konstruieren das Wahrscheinlichkeitsfeld:
Das mathematische Modell besteht zunächst aus einem geo-

metrischen Würfel, der um seinen Mittelpunkt drehbar ist und der in

jeder Position parallel zu einem festen orthogonalen Koordinaten-
system liegen soll.

II Menge der 24 möglichen Positionen des Würfels. Jede Posi-

tion ist ein Elementarereignis.
I? Menge der 12 Positionen, bei welchen die «obere» Seiten-

fläche einen Teiler von 10, also eine der Ziffern 1, 2, 5 trägt. Es liegt
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im Sinne der Voraussetzung der Aufgabe, dass nur diese Positionen
in Betracht gezogen werden.

<7 Gruppe der 24 Drehungen des Würfels in sich um den Mittel-
punkt. Durch die Wahl dieser Gruppe wird der erhobenen Forderung
Rechnung getragen, dass der Würfel (und der Wurf) «ideal» sein sollen.

S\ Klasse der 2"' Teilmengen von /f.
Anzahl der Klotnente. Ks ist insbesondere */(/',') 12. Die

Verifikation der Axiome ist trivial.
Nun ist das Feld </i',/VG..U,</> hergestellt, und es ist die

gestellte Aufgabe zu lösen, das heisst es ist die Menge 6' zu bestim-

men. f.' besteht aus den 12 Positionen des Würfels, bei welchen die

«untere» Seitenfläche einen Nicht toiler von 10, also eine der Ziffern
13,4,6 aufweist. /*,' und 6' enthalten 4 gemeinsame Positionen, wobei
die Ziffern I und 6 oben und unten erscheinen.

Mit 9>(C <-> F) 4 ergibt sich nach (1) für die gesuchte W ahr-
scheinlichkeit

IP li'(C') 1/3,

in Übereinstimmung mit der von /feWratuZ gegebenen Lösung.

2. />te 7'.vc/tc/;t/.vc7/c//.v67i« /u<mm//.svw//f/u./«'

Die Frage lautet: Wie gross ist die Wahrscheinlichkeit dafür, dass

zwei zufällig ausgewählte natürliche Zahlen einen nicht trivialen ge-
nieinsamen Teiler haben, das heisst, dass der Bruch p/r/ kürzbar ist,'?

Vorbereitend betrachten wir in einer cartesischen Fi bene die
Punkte mit ganzzahligen Koordinaten .r,;/, die das Kinheitsgitter /'
bilden. Mit 7',.(/c 1,2,...) soll der Komplex der Gitterpunkte ('',//)
bezeichnet werden, für die -A: g .»•,</ <= A: gilt. Ks sei .4 eine Menge

von Gitterpunkten und ;V(/( r> '/',.) bezeichne die Anzahl der in 7',.

enthaltenen Punkte von .1. Wird

gesetzt, so ist

/>,(<) W.I~7G 4Ar

/)(.!) (ifll />,,(.•() (/,:

die Dichte von .4, falls der Grenzwert existiert.
Nun konstruieren wir wieder das Wahrscheinlichkeitsfeld ; Mengen

natürlicher Zahlenpaare interpretieren wir als Gitterpunktsmengen
von /':
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B — Menge aller Gitterpunkte von /'. Jedes Paar ganzer Zahlen
ist ein Elementarereignis.

7Ï Menge der im Innern des ersten Quadranten von jT gelegenen

Gitterpunkte; es werden also lediglich die natürlichen Zahlenpaare in
Betracht gezogen.

(7 — Gruppe der Gittertranslationen, die also G in sich selbst
verschieben.

51 — Klasse aller Gitterpunktsmengen, die im oben festgelegten
Sinn eine Dichte aufweisen.

9? — Dichte. Es wird insbesondere rp(7?) — D(G) — 1/4.

Die Verifikation der Axiome ist sehr einfach und kann dem Leser
überlassen bleiben. Das Feld < 7?,Z?,G,ft,9>> steht zur Verfügung.

Um die Lösung der gestellten Aufgabe in die Wege zu leiten, ist
zunächst die Menge C festzulegen.

C Menge aller von verschiedenen Gitterpunkte (;r,//), für
welche die beiden ganzen Zahlen j; und *// einen grössten gemeinsamen
Teiler > 1 aufweisen.

Bezeichnet G'' mit einem natürlichen r die Menge der von (0,0)
verschiedenen Gitterpunkte (;r,/y), für die :r; — n • r, 7/ m- r (n,m

ganz), so hat GL wie man mühelos ausrechnet, die Dichte

D(/") 1/r.

Sind r,(v =1,2,.. .,*) s paarweise teilerfremde natürliche Zahlen,
so weist der gemeinsame Durchschnitt der ihnen entsprechenden /""
die Dichte

/)(/"> - - G'«) 1 / (r? O

auf. Die oben eingeführte Menge C lässt sich als Vereinigungsmenge

G' L7G''"

darstellen, erstreckt über alle Primzahlen; bezeichnet die r-te Prim-
zahl. Mit einfachen Abschätzungen ergibt sich, dass auch C' eine

Dichte aufweist, also zur Klasse 51 gehört, und zwar gewinnt man
mit wiederholter Verwendung des Additionstheorems

/>•/.< - B) "A I - B)
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und anschliessendem Grenzübergang fc -> oo zunächst die Beziehung

wobei 27" eine Summation bedeutet, die sicii über alle Kombina-
tionen r,/<... der Indizes 1,2,... der Klasse m erstrecken soll.

Die rechts stehende Summe kann durch ein einfaches unendliches

Produkt ausgedrückt werden, indem sich

e«,
oder

ergibt. Schliesslich gilt noch

ç>(C - E) 7)(C - E) (1/4) D(C').

Damit erhält man nach (1) für die gesuchte Wahrscheinlichkeit

6
IF IF(C') 1

;- 0,3920

3. Ere 7Jer<rcmtZsc/te Zfrasaw/j/a&e

J.ßerlrarid formulierte im Jahre 1889 eine Aufgabe, für die er

zugleich drei verschiedene Lösungen vorlegte, die auf drei Über-

legungen begründet waren, die in gleicher Weise plausibel schienen,
und schaffte so das nach ihm benannte, bekannte «Paradoxon» bei

geometrischen Wahrscheinlichkeiten. Wie später Zî.DeZZ/tetZ [8] und
viele andere auseinandersetzten, klärt sich die Sachlage dadurch auf,
dass die verschiedenen Ansätze zur Lösung implizite Festsetzungen
über Gleichwertigkeiten enthalten, die voneinander abweichen und
nicht übereinstimmende Ergebnisse zeitigen. Wir geben der Frage die

folgende Form: Wie gross ist die Wahrscheinlichkeit, dass eine Ge-

rade der Ebene, die einen Kreis vom Radius E schneidet, auch einen

nur halb so grossen konzentrischen Kreis vom Radius 27/2 trifft?
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' Wir vervollständigen die der Aufgabe zugrunde gelegte Voraus-

Setzung durch den Hinweis, dass alle Geraden der Ebene, auch solche,
die den grossen Kreis nicht treffen, gleichwertig sein sollen. Damit
ist schon andeutungsweise vorweggenommen, dass die im unten ent-
wickelten Modell gewählte Gruppe mit derjenigen der euklidischen

Bewegungen, welche die Geraden transitiv vertauschen, identifiziert
werden soll. Die erzielte Lösung entspricht also einem bewegungs-
invarianten Ansatz. Die anderen, von J. Bertrand noch beigefügten
Lösungen beruhen auf Ansätzen, die mit den Kreisen direkt korrelieren
und diese Invarianzeigenschaft nicht aufweisen. Sie sind andern

Gruppen verpflichtet.
Zunächst ist wieder das Wahrscheinlichkeitsfeld zu konstruieren:
Vorbereitend erörtern wir eine dienliche Abbildung der Geraden

in eine Parameterebene. Es sei G eine Gerade in der (avy)-Ebene und

® cosfl + y sind — p 0 sei ihre Hessesche Normalform. Die beiden

Normalkoordinaten p und 0 von G dienen uns dazu, der Geraden G

einen Punkt G in der (p,fl)-Ebene zuzuordnen. Ist p 0, so liefert G

zwei Punkte (/' und G" mit 0 und 0 -f- tc ; dies ist für unsere weitere

Verwendung der Abbildung unerheblich. Einer Geradenmenge H ent-

spricht dann eine Punktmenge M im Halbstreifen 0rg(p<oo;
0 ^ 0 < 2jt.

Menge aller Geraden der Ebene; ein Elementarereignis ist
eine Gerade G.

— Menge der Geraden G, die den grossen Kreis treffen; nur
diese Geraden werden in Betracht gezogen,

ff Gruppe der ebenen Bewegungen.
5\ Klasse aller Geradenmengen H, deren Bilder M in der Ebene

der Normalkoordinaten im Jordanschen Sinne inessbar sind.

ç> Jordanscher Inhalt, also 99(H) /(M).
Lassen wir den Kreismittelpunkt mit dem Ursprung der Ebene

zusammenfallen, so ist Ë ein Rechteck 0 <( p U; 0 <j 0 < 2jt;
folglich ist 99(E) 27TjR.

Nun sind die Axiome zu prüfen. Alles ist ziemlich evident, bis

auf die G-Invarianz von 99. Diese bestätigt sich leicht wie folgt: Ist

a: a:' cos a -f- y' sin a + «

y — a:' sin a -f- y' cos a + &



— IG.5 —

eine Bewegung, welche die (terade Cr mit den Normalkoordinafcen p
und 0 in die Bildgerade Cr" überführt, so sind die Normalkoordinaten
von C" durch

0' 0 + a

-// —: p — a cos a /; sin a

oder durch
0' 0 -f- <* + TT

p' a sin a -|- fe cos a p

gegeben. Für die Funktionakleterrainante der durch die Bewegung in
der Normalkoordiuatenebene induzierten Abbildung ergibt sich

W) ^
d(p, oj

Die Abbildung ist demnach flächentreu; der Inhalt einer Jordan-moss-
baren Menge bleibt invariant.

Das Feld < 7f,7</',(7,5\,<p> liegt nun vor. Für die Lösung der

gestellten Aufgabe ist noch die Festlegung der Menge C erforderlich.
C ist die Monge der Geradon, die den kleineren konzentrischen Kreis
treffen. Das Bild (7 ist das Rechteck 0 p 5^ if/2;0 </ 0 < 2tt;
also ist ç»(C7 « 7t') p(C') ttJC. Nach Definition (1) resultiert

IL IF(C') 1/2.
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