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Zur Axiomatik
der innermathematischen Wahrscheinlichkeitstheorie

Seinem verehrten Kollegen

Prof. Dr. Arthur Alder

in freundschaftlicher Gesinnung zum sechzigsten Geburtstag gewidmet

von H. Hadwiger, Bern

1. Zielsetzung

Der wesentlichste Fortsehritt, den die lintwicklung der Wahr-
scheinlichkeitstheorie in den letzten Dezennien zu verzeichnen hat,
besteht wohl darin, dass klar erkannt wurde, dass eine mathematische
Wahrscheinlichkeitstheorie eines streng gefassten axiomatischen Fun-
damentes bedarf und dass ein solches auch gegeben werden kann.,

[%s liegt in der Natur der Sache, dass diese neuzeitlichen Theorien
bei der angestrebten grossen Allgemeinheit wohl die Fragen der exakten
Begriffsbildungen und der zu wihlenden Grundgesetze abkliren und
lehren, wie aus gegebenen Wahrscheinlichkeitswerten andere abgeleitet
werden konnen, dabei aber zu unbestimmt bleiben miissen, als dass es
moglich wiire, auf Grund der vorliegenden axiomatischen 'undierung
die tatsichliche Krmittlung eines einzigen nichttrivialen Wahrschein-
lichkeitswertes vorzunehmen.

Die klassische Wahrscheinlichkeitsrechnung kennt indessen zahl-
lose Probleme, deren Lidsung im konventionellen Sinn in der tatsich-
lichen Berechnung aller gefragten Wahrscheinlichkeitswerte besteht.
Gerade diese Moglichkeiten, die zahlenmissigen Bewertungen der
Chance zufallsartiger Ireignisse unabhingig vom Fixperiment oder des
noch in der Zukunft liegenden Ablaufs vorausberechnen zu konnen,
verliehen jedenfalls der Entwicklung der von Jakob Bernowlli (Ars con-
jectandi) begriindeten Liehre in historischer Zeit die wertvollsten Im-
pulse.

s handelt sich hierbei um Probleme a priori, deren innermathe-
matische Behandlung dadurch chprakterisiert ist, dass zu den iiblichen
Grundrelationen gewisse willkiirlich, aber sinnvoll gewiihlte (leich-
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setzungen hinzutreten, die dann eine eindeutige Auflosung nach den
gesuchten Wahrscheinlichkeitswerten ermdoglichen.

Derartige Festsetzungen iiber bestehende Gleichmdglichkeiten,
von denen man frither gelegentlich irrtiimlicherweise glaubte, sie
streng begriinden zu miissen, sind durchaus zulissig. Sie bedingen eine
zusiitzliche [dealisierung des der zu losenden Aufgabe zugrunde liegen-
den mathematischen Modells. Hierbel ist besonders zu beachten, dass
sich diese Voraussetzungen aber lediglich auf das gedachte Modell
beziehen und nicht auf Dinge und Frscheinungen der Wirklichkeit.
Vgl. hierzu einige treffende Ausserungen bei 4. Alder [1] (insb. S.15).

Wie sind nun aber in den sich hierfiir eignenden Ifillen Mest-

setzungen dieser Art zu treffen?

Behandelt man ein innermathematisches Problem a priori etwa
im Rahmen der heute in weiten Kreisen anerkannten, masstheoretisch
fundierten Wahrscheinlichkeitslehre nach 4. Kolmogoroff (2], so be-
stehen zwischen den vorzunehmenden Festsetzungen angemessener
Gleichmoglichkeiten und den Axiomen, welche der Theorie zugrunde
liegen, keinerlet Beziehungen. Dies bedeutet, dass die Willkiir dieser
Iestsetzungen in jedem neuen individuellen Ifalle auch wieder new in
lirscheinung tritt.

Die Tatsache, dass in zahlreichen einfachen Ifillen, vor allem in
solchen vom endlichen Typ, plausible Annahmen gewissermassen auf
der Hand liegen, dndert nichts daran, dass in schwierigeren Fillen,
etwa bel Aufgaben vom abzihlbar- oder iiberabzihlbar-unendlichen
Typ, eine gewisse Unsicherheit vorliegt. Iis besteht daher ein Bediirfnis,
bereits eine in den allgemeinen Grundlagen verankerte Wegleitung,
ein in innermathematischen Millen anwendbares Wahlprinzip zur Fest-
setzung gleichberechtigter Elementarereignisse zur Verfiigung zu haben.

Damit 1st das Ziel, das wir durch eine Axiomatik der innermathe-
matischen Wahrscheinlichkeitstheorie zu erreichen trachten, bereits an-
gedeutet. Ks soll versucht werden, die geliufige masstheoretische
Grundlage von Kolmogoroff fiir die allgemeine Wahrscheinlichkeits-
theorie so zu erweitern, dass geeignete innermathematische Probleme
a priori in einer Art und Weise bearbeitet werden konnen, welche die
Festsetzungen iiber gleichberechtigte Ilementarereignisse nicht indi-
viduell willkiirlich, sondern in einer in der Axiomatik generell vor-
gezeigten I'orm vorzunehmen erlaubt. In den passenden Fillen kann
dann die tatsichliche Berechnung einzelner Wahrscheinlichkeitswerte



in der iiblichen Art durchgefiithrt werden, ohne die Grenzen des aus-
schliesslich durch die Axiome festgelegten Arbeitsteldes zu iiber-
schreiten.

Der Gedanke, der zu diesem Ziel fithren kann, st nicht neu. Inner-
halb der Problemgruppe der geometrischen Wahrscheinlichkeiten ist
seine konsequente Verwertung lingst iiblich. Ks handelt sich um den
Finsatz eines Invarianzprinzips. Nachdem schon M. W. Crofton [3] im
Jahre 1868 invariante Ansitze zur Frmittlung geometrischer Wahe-
scheinlichkeiten benutzte, war es besonders G. Pélya [4], der um Jahre
1917 diese anzuwendenden Integraldichten durch eine deutlich hervor-

gehobene Invarianztorderung in eindeutiger Weise charakterisierte und
am Ende der zitierten Abhandlung (1.e. 8.328) der Hoftnung Ausdruck
cab, «dass die vorangehende Bestimmung der Wahrscheinlichkeit auf
Grund der Forderung der Unabhiingigkeit von der Lage zur Autklirung
der Prinzipien der Wahrscheinlichkeitsrechnung beitragen wivd».

Inder von W. Blaschke und seiner Schule | 5] begriindeten Integral-
geometrie, die aus der Lehre von den geometrischen Wahrscheinlich-
keiten hervorgegangen ist, hat in der Tat das Invarianzprinzip eine
fundamentale Bedeutung erlangt. Hieriiber kann man sich beispiels-
weise bet L. 4. Santald | 6] orienticren. Die integralgeomoetrischen Masse
sind durch die Torderung, gegeniiber der Bewegungsgruppe des be-
trachteten Raumes invariant zu sein, im wesentlichen eindeutig fest-
gelegt.

Iis gilt nun, diesen Gredanken in allgemeinster Form aufzugreifen
und eine Invarianztorderung gegeniiber einer geeigneten Gruppe in das
axiomatische System einer innermathematischen Wahrsceheinlichkeits-
theorie einzubauen. Ifiir die Bearbeitung der Probleme a priori ergibt
sich so eine wesentlich stratfere Ifiithrung, indem die Gleichwertigkeit
oder Aquivalenz der Elementarereignisse durch eine willkiirlich, aber
sinnvoll festgesetzto, im Freignisraum wirkende Gruppe bestimmt wird.

In allen Tillen, in denen sich die Problemmodelle fiir die inner-
mathematische Behandlung nicht eignen, so dass sich im lireignisraum
keine nichttriviale Gruppe in sinnvoller Weise auszeichnen lisst, kann
man auf die identische Gruppe greifen. Die Invarianzforderung triviali-
siert. sich, und man hat wieder die invarianzlose Grundlage der all-
gemeinen Wahrscheinlichkeitstheorie. In diesem Sinne ist das axio-
matische System von Kolmogoroff der invarianzlose Sonderfall eines
umfassenderen invarianten Systems.



Iis geht also darum, die Idee der Gruppe als fruchtbares gestalten-
des und ordnendes Prinzip der mathematischen Wissenschaften auch
fiir die Wahrscheinlichkeitstheorie nutzbar zu machen.

2. Axiome; Wahrscheinlichkeitsfeld

Wir formulieren nun vier Axiome, die der innermathematischen
Wahrscheinlichkeitstheorie zugrunde gelegt werden sollen.

I. R set eine Menge, genannt Ereignisrawm. Ihre Elemente x ¢ R
heissen Ilementarereignisse. K sei eine additive Mengenklasse (evtl.
Mengenkorper) von Flementarereignismengen 4 ¢ B. & enthalte auch
die leere Menge 0. Iis gilt also

(@) 4,Be¢R, AdnB=0n4v Be&;

(b) 0eR.

I1. Fine ausgezeichnete nichtleere Teilmenge I ¢ B des Freignis-
aumes sel die Minhertsmenge, die aus den in Betracht gezogenen
Elementarereignissen bestehen soll; 4 kann auch mit B zusammen-
fallen.

I Uber & sei die Funktion ¢ definiert, die jeder lireignismenge
A4 e & die reelle Zahl ¢(4) zuordnet, so dass die folgenden Forderungen
erfiillt werden: (a) p(d4) < p(B)[A < B]; (b) () £ 0; (¢) p(4) -+
+ @(B) = @p(4d v B)[d ~ B = 0]. ¢ ist demnach monoton, normierbar
und additiv. Offensichtlich gilt ¢(4) = 0 und @(0) = 0; ¢ ist definat.

1V, R ist Wirkungsraum einer Gruppe (¢ von Transformationen «,
die den Ereignisraum auf sich abbilden. Geht die Menge B¢ R durch
eine Operation «e(G aus 4 ¢ B hervor, was wir auch durch B = A*
ausdriicken wollen, so heissen 4 und B G-gleich, symbolisch 4 ~ B.
R sel G-fres und ¢ sei G-anvariant, so dass die folgenden Forderungen
erfiillt werden:

(a) 4efR, A~ B BeR;

(b) A,Bef, A~ B p(d) = g(B).
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[5s folgen die grundlegenden Definitionen:
Sind fiir einen Raum R, eine Mengenklasse K, eine Ninheitsmence
te b) o
I, eine Funktion ¢ und eine wirkende Gruppe (¢ die Axiome [. big [V.
) 2 !
erfiillt, so bilden diese fiinf Gegebenheiten ein G-immvariantes Walr-
1) o
schemlichkeitsfeld < B,1,GR,p>.
Ist C' ¢ B eine Tellmenge des Ereignisraumes B und gilt ¢ ~ If e
e} o) l»] ’
so 1st die durch den Ansatz

W = W(C) = (1)

gebildete reelle Zahl W die Wahrscheinlichkeat dafiir, dass ein’ (i-zufillig
ausgewiihltes Ilementarereignis x e I}, das in Betracht gezogen ist,
also zu 4 gehort, auch in € enthalten ist.

Wir geben noch emen kurzen Kommentar zu den einzelnen
Axiomen:

Zn Axiom L: Die Festlegung einer Mengenklasse & solcher Iile-
mentarereignismengen, fiir welche Wahrscheinlichkeitsaussagen ge-
macht werden sollen, 18t notwendig, weil sich andernfalls nicht in
allen I"dllen fiir beliebige Teilmengen von I Funktionen ¢ finden
lassen, die den weiteren [forderungen geniigen. In gewissen Réumen
aibt es absolut unmessbare Mengen.

Die sonst iibliche Forderung, dass & ein Mengenkorper sei, ist
hier abgeschwiicht, indem nur die Additivitit von 8 verlangt wird.
Dies geschiecht im Hinblick auf besonders ausgezeichnete Inhalts-
systeme, deren Definitionsfelder nicht Mengenkorper sind.

Zu Axiom Il: Gegeniiber der iiblichen Ifassung der masstheo-
retischen Grundlegung ist die Sachlage neu, dass die Menge 4 der in
Betracht gezogenen Elementarereignisse, die der Gesamthelt der mog-
lichen Tille entspricht, in einen sie i allgemeinen wnfassenden
Ereignisraum R eingebettet wird. Diese Massnahme dringte sich vor
allem auf, um einen Wirkungsraum einer Gruppe zu schaffen, welcher
die Formulierung eines Invarianzaxioms erlaubt. Sie wirkt sich in-
dessen auch auf die wettere Entwicklung der Wahrscheinlichkeits-
rechnung vereinfachend aus, indem sie eine natiirliche und miihelose
Handhabung der sogenannten bedingten Wahrscheinlichkeiten in die
Wege leitet.



Zu Axiom [1I: Die Funktion @(4) stellt eine Inhaltsimasszahl fiir
die Punktmengen 4 ¢ K dar; sie dient dazu, die « Anzahly der giinstigen
und moglichen I'dlle in geeigneter Weise zu erfassen, gleichgiiltig, ob
es sich um Probleme vom endlichen, abzihlbar-unendlichen oder kon-
tiuterlichen T'ypus handelt. '

Zu Axiom LV: Die Festlegung einer im lireignisraum I wirkenden
Gruppe (¢ kann als Verallgemeinerung der Anwendung eines Sym-
metrieprinzips gelten. Die einmalige Wahl der Gruppe entscheidet
simultan tiber alle Gleichwertigkeiten. Das in elnem gewissen Sinne
vollkommene (resetz der Gruppe bietet eine gewisse Gewihr dafiir,
dass die durch sie induzierten Gleichwertigkeitsfestsetzungen sinnvoll
sind ; bel ungebundener Willkiir ist dies nicht im gleichen Masse sicher.
Das Gesetz der Gruppe kann ausserdem fiir die Losungstheorie eines
innermathematischen Problems eine vorteilhafte innere (reschlossen-
heit erwirken.

Selbstverstindlich ist auch die Wahl der Gruppe willkiirlich.
Jedoch goll sie beim innermathematischen ideellen Modell das wieder-
geben, was i aussermathematischen wirklichen Tatbestand wesent-
lich zur Wirkung kommt.

Die Mannigfaltigkeit der durch unsere Axiome festgelegten Wahe-
scheinlichkeitstelder enthilt insbesondere die Wahrscheinlichkeits-
felder im Sinne der Theorte von Kolmogoroff (ohne Stetigkeitsaxiom)
als Sonderfille. Diese ergeben sich durch die folgenden Speziali-
sierungen: 1. $ ist ein Mengenkdrper; 2. Die Kinheitsmenge 4 ist mit
dem gesamten Freignisraum B identisch; 3. Die Gruppe (7 ist die
[dentitit, das heisst sie enthilt nur die identische Transformation
von [ auf sich.

Uberlegt man sich, was urspriinglich bei einer individuellen Pro-
blemlage bzw. bel einem gewihlten Modell vorgegeben ist, so bemerkt
man, dass es sich um den Freignisraum £, die Einheitsmenge 4 der in
Betracht gezogenen Iilementarereignisse und schliesslich wm die zur
Wirkung kommende Gruppe (¢ handelt. Diese drei Grundgegeben-
heiten bilden zusammen den Kern < R,I1,(;> einer individuellen
Theorie. Durch Adjunktion einer Mengenklasse & und eines assoziier-
ten Operators ¢, kurz eines Systems <$t,p>> zum Kern entsteht das
Wahrscheinlichkeitsfeld << R, I1,G,R,p> . Die (esamtheit der Aussagen,
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die bel festem Kern {iber die in I'rage kommenden Wahrscheinlich-
keitstelder gemacht werden kénnen, bilden Gegenstand einer rein
axiomatischen Theorie.

3. Unabhingigkeit; Multiplikationssatz

Iis sollen zwei Kreignisrdwme 2 und R’ nebeneinander betrachtet
werden. [in alleemeinen wird es sich daber wn Elementarereignisse
verschiedener Art handeln; selbstverstindlich kann aber auch B mit 1’
identisch sein, so dass dieselbe Menge von Lllementarereignissen zwei-
mal gesetzt wird. Sowohl in R wie auch in R’ sei je eine FKinheits-
menge [5 bzw. 4" ausgezeichnet, welche die in Betracht gezogenen
Elementarercignisse  umfasst.  Die  Gleichwertigkeit  bet  zufilliger
Flementeauswahl aus [P bzw. R sei durch die beiden in 1 und R’
wirtkenden Gruppen (¢ und " geregelt. Damit sind die beiden Kerne
< R, W G> und <RIV, gebildet; sie liegen den Theorien zu-
orunde, die unabhiingig voneinander den beiden Ereignisklassen zu-
geordnet werden konnen.

Nun bilden wir ein neues Flementarereignis z == (&,2") dadurch,
dass wir ((-zufillig) ein erstes lilement @ aus [ und anschliessend
(("-zulillig) ein sweites lilement 2" aus R auswihlen und sie zu einem
cgeordneten Paar zusanunentiigen.

So entsteht zunichst ein neuer Ereignisraum 1 x R, dessen
Elemente die (geordneten) Paare (x,2") [xe R, x"e¢ 7] sind. s ist
sinnvoll, in diesemn Raum nur diejenigen lilementarereignisse (x,z’)
in Betracht zu zichen, deren Komponenten x und 2 gleichzeitig in R
bzw. in R" in Betracht gezogen wurden, fiir die also xe Iv, &' 17" gilt.
In dem necuen, durch Paarbildung erzeugten Ereignisratm umfasst
somit die Menge 14 x {19 die in Betracht fallenden lireignisse aus
R x R’'. Zur Bildung eines Kerns ist noch erforderlich, die in B < R’
wirkende Gruppe festzulegen.

Ist es nun der Interpretation der vorliegenden Modelle ange-
messen, als wirkende Gruppe das direkte Produkt ¢ x ¢ der beiden
Gruppen (¢ und (" zu wihlen, so soll dies der mathematische Aus-
druck dafiir sein, dass die Freignisse z und 2" der beiden Kreignis-
klassen B und R’ unabhdingig sind.

Damit ist fiiv den Unabhéingigkeitsbegriff, dessen mathematische
Fingliederung in die Grundgesetze der Wahrscheinlichkeitstheorie be-
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kanntlich stets einige Miihe bereitet, wenigstens fiir die innermathe-
matische Theorie eine Deutung erzielt, welche den unmittelbaren An-
schluss an die Rechengesetze erlaubt.

Der Kern der durch Paarbildung erzeugten Theorie ist dann
durch (B x R, Il x It", ( X G") gegeben, wobel das Zeichen X bei
Raum und Menge das cartesische, bet der Gruppe das direkte Produlkt
bezeichnet.

Sind jetzt <K,p> und <&',¢"> zwel Systeme, welche den
Kernen << B, F,(i > und < R, I',(' > 1m Finklang mit den Axiomen
zugeordnet werden konnen, so ist offensichtlich <f X R, ¢ X ¢’ >
ein System, das zum Kern < R x I/, IV x IV, (¢ x "> hinzu-
gefiigt werden kann und, wie man leicht bestitigt, die Axiome wieder
erfiillt. Hierbei ist & X K die Klasse derjenigen Mengen in B x I,
welche durch die Mengenpaare 4 x 4’ [4eR, A" e R'] erzeugt wer-
den; der Operator ¢ = @ X ¢’ ist iiber & X & durch den Ansatz
p(d x 4") = ¢(A4) ¢’ (4") definiert.

Eine unmittelbare Iolgerung ist der Multiplikationssatz der
Wahrscheinlichkeitsrechnung, wonach fiir C<R und C'c R, also
U x C'cR x R, die Regel

W(C x ") = W(C) W) (2)

ailt. Die Giiltigkeit des Multiplikationssatzes st in der hier skizzierten
innermathematischen Theorie im wesentlichen eine Folgerung aus der
postulierten Unabhingigkeit der beiden Ireignisklassen.

4. Ereignisfolgen; Grenzwertsatz

s sei << IE,G,R,p> ein Wahrscheinlichkeitsfeld und {x;} be-
zeichne eine unendliche I'olge von lilementarereignissen ;¢ R
(v=1,2,38,...). Ist 4cR eine Elementarereignismenge, so bedeute
N,(4) die Anzahl derjenigen Ilemente des endlichen Abschnitts
Ty, Tg,. .., %, der Folge {z,}, die der Menge A angehoren. Nun defi-
nieren wir:

Die Folge {z,} heisst in R (f-gleichverteilt, wenn die beiden nach-
folgenden Bedingungen erfiillt werden: I'iir jede Menge 4 ¢ &, fiir die
p(A) > 0 ausfillt, gilt



(3) Ny(d) > co (k > o0);

Fiir je zwet Mengen /,B ¢8R, bei welchen noch ¢(4) > 0 voraus-
gesetzt wird, gilt

(b) Ny(B) [ Ny(A) > (B) | p(d) (k > co) .

1Mir eine Menge C ¢ R, fiir die C' ~ I e K gilt, bilden wir die fiir
ausreichend grosse k definierten relativen Hwfigkeiten

H(C) = N,(C ~ E) | N(E) (k =1,2,3,...) (3)

welche anzeigen, welcher Prozentsatz der ersten k& lilementarereignisse
der (F-gleichverteilten Kreignistolge {x;} der Menge €' ~ I4 der giinstigen,
in Betracht gezogenen Iilemente angehort. Mit Riicksicht auf die
Definition (1) ldsst sich jetzt der Gremzwertsatz unmmittelbar ablesen,
nach welchem

H,(C) - W(C) (ki - o0) (4)
oilt.

Die Wahrscheinlichkeit erscheint so als Grenzwert der Folge der
relativen Hiufigkeiten, mit welchen die «giinstigen» Freignisse in
den Abschnitten einer I'olge «mdéglicher» lireignisse auftreten. Damit
ist ein Modell geschaffen, welches den bekannten Prozess der sta-
tistischen Frmittlung der Wahrscheinlichkeitswerte idealisiert. Die
Iixistenz des Grenzwertes der relativen Hiufigkeiten ist hier eine
IFolgerung der von uns getroffenen Voraussetzung, dass néimlich die
Ereignisse der Ifolge 1m Hreignisraum G-gleichverteilt sein sollen.
In der (-Gleichverteilung findet hier die vagere Vorstellung von der
Regellosigkeit einer Ireignisfolge einen prizisen, mathematisch fass-
baren Ausdruck, so dass das Grenzwerttheorem der Wahrscheinlich-
keitstheorie ein beweisbarer Satz wird.

Zum besseren Verstindnis dieser Zusammenhinge sollen uns noch
die folgenden Uberlegungen dienlich sein:

Wir denken uns bet einem praktischen Problem, bei dem unsere
Theorie angewendet werden soll, eine nicht abbrechende Folge von
wirklich durchgefithrten Versuchen, so dass das lirgebnis eines Ver-
suches einem [Elementarereignis des passenden mathematischen Mo-
dells, also eines (-invarianten Wahrscheinlichkeitsfeldes, entspricht.
Der wahre Ablauf der Versuchsreihe ist durch den Zufall gesteuert,
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und gerade diese Zufilligkeit soll im Modell durch die 1 Freignis-
rawm I3 wirkende Gruppe (¢ in sinnfélliger und in einer dem wahren
(reschehen adéiquaten Weise idealisiert sein. Iin einzelnes wirkliches
Iirgebnis eines Versuches stellt sich zufillie ein; dies bedeutet, in
idealisierter Iform beim Modell interpretiert, dass das entsprechende
Flementarereignis (i-zufillic aus R ausgewihlt wird. Die im Modell
erklirte Wirkung auf die unendliche Ireignisfolge ist die Forderung,
dass die lireignisse im Raum B (r-gleichverteilt sein sollen.

Die (i-Gleichverteilung stellt gewissermassen ein idealisiertes
Modell fiir die regulierende Wirkung des phinomenologischen Zufalls
auf den wahren Ablauf einer nicht abbrechend gedachten Versuchs-
reihe dar, und dadurch ist mathematisch fixiert, was mtuitiv miihelos
erfasst wird, aber ant exakte Weise nur schwer wiederzugeben ist.

5. Beispiele

Mit drei einfachen Beispielen wollen wir nachfolgend die An-
wendung unserer axiomatischen Theorie kurz erliutern.

1. Das Kistchenproblem von Bertrand

Wir formulieren diese bekannte, von J. Bertrand i Jahre 1889
(I7), insb. 8.2) gestellte und gelegentlich unrichtig beantwortete I'rage
in gleichwertiger Weise, indem wir an Stelle des Kiéstchenmodells
einen «idealeny Wiirfel verwenden, der in der konventionellen Weise
mit den sechs Punktzahlen versehen ist. Wir fragen: Bei einem Wurt
erscheine eine Punktzahl, die ein Tetler von 10 ist. Wie gross ist die
Wahrscheinlichkeit, dass die antipodische Seitenfliche des Wiirfels
einen Nichtteiler von 10 aufweist ?

Wir konstruieren das Wahrscheinlichkeitsfeld :

Das mathematische Modell besteht zunichst aus einem geo-
metrischen Wiirtel, der um seinen Mittelpunkt drehbar ist und der in
jeder Position parallel zu einem festen orthogonalen Koordinaten-
system liegen soll.

R = Menge der 24 moglichen Positionen des Wiirfels. Jede Posi-
tion ist ein Iflementarereignis.

It = Menge der 12 Positionen, bei welchen die «obere» Seiten-
flache einen Teiler von 10, also eine der Ziffern 1, 2, 5 trigt. Es liegt



im Sinne der Voraussetzung der Aufeabe, dass nur diese Positionen
in Betracht gezogen werden.

(; — Gruppe der 24 Drehungen des Wiirfels in sich um den Mittel-
punkt. Durch die Wahl dieser Gruppe wird der erhobenen Forderung
Rechnung getragen, dass der Wiirfel (und der Wuarf) «ideal» sein sollen.

KR Klasse der 2*' Teilmengen von R.

¢ — Anzahl der Elemente. s st insbesondere ¢(F) — 12. Die
Verifikation der Axiome st trivial.

Nun ist das Feld < B IG K¢ > hergestellt, und es ist die
gestellte Aufgabe zu 16sen, das heisst es st die Menge ¢ zu bestim-
men. (' besteht aus den 12 Positionen des Wiirfels, bei welchen die
«untere» Settenfliche emen Nichtteller von 10, also eine der Ziffern
3,4, 6 aufweist. [Y und €' enthalten 4 gemeinsame Positionen, wobet
die Ziffern 1 und 6 oben und unten erscheinen.,

Mit @(C ~ 1) 4 ergibt sich nach (1) fiir die gesuehte Wahe-
scheinlichkert

W W) = 13,

in Ubereinstimunung mit der von Bertrand gegebenen Liosung,

2. Die T'schebyscheffsche Kiirzungsaufgabe

Die Frage lautet: Wie gross st die Wahrseheinlichkeit datiir, dass
zwel zufillig ausgewihlte natiicliche Zahlen einen nichttrivialen ge-
meinsamen Teiler haben, das heisst, dass der Bruch p/g kitrzbar 1st ?

Vorbereitend betrachten wir in emer cartesischen Fbene die
Punkte mit ganzzahlicen Koordinaten x,y, dic das Finheitsgitter /7
bilden. Mit T, (k = 1,2, ...) soll der Komplex der Gitterpunkte (1)
bezeichnet werden, fiir die &k << a,y << k gilt. s set A eine Menge
von (iitterpunkten und N(A ~ 1) bezeichne die Anzahl der in 1,
enthaltenen Punkte von 4. Wird

D(A) = N ~ T)) [ 4k*
vesetzt, so 1st _
D(A) = lim D, (A) (k - o)
die Dichte von A, falls der Grenzwert existiert.
Nun konstruieren wir wieder das Wahrscheinlichkeitsfeld ; Mengen
natiirlicher Zahlenpaare interpretieren wir als Gitterpunktsmengen
von [
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I = Menge aller Gitterpunkte von 1. Jedes Paar ganzer Zahlen
1st ein Klementarereignis.

I = Menge der im Innern des ersten Quadranten von I gelegenen
(ritterpunkte; es werden also lediglich die natiirlichen Zahlenpaare in
Betracht gezogen.

(r = Gruppe der Gittertranslationen, die also [ in sich selbst
verschieben.

R = Klasse aller Gitterpunktsmengen, die 1m oben festgelegten
Sinn eine Dichte aufweisen.

@ = Dichte. Fs wird insbesondere ¢(IV) = D(I)) = 1/4.

Die Verifikation der Axiome ist sehr einfach und kann dem lLeser
iberlagsen bleiben. Das Feld < R,[,(/,%,p > steht zur Verfiigung.

Um die Losung der gestellten Aufgabe in die Wege zu leiten, ist
zunichst die Menge €' festzulegen.

(' = Menge aller von (0,0) verschiedenen Gitterpunkte (x,y), fiir
welche die beiden ganzen Zahlen x und y einen grissten gemeinsamen
Teiler > 1 aufweisen.

Bezeichnet I mit einem natiirlichen » die Menge der von (0,0)
verschiedenen Gitterpunkte (z,y), tir die x =mn-r, y=—m-r (n,m
ganz), so hat I, wie man miihelos ausrechnet, die Dichte

D™y = 122,

Sind r,(vr = 1,2,...,5) s paarweise tetlerfremnde natiirliche Zahlen,
so weist der gemeinsame Durchschnitt der ihnen entsprechenden I
die Dichte

hi

])('1”1 N ... N st) — 1/(’% s ?3)
auf. Die oben eingefiihrte Menge C lisst sich als Vereinigungsimenge
t o T2 [Py

C — () 1 [

darstellen, erstreckt iiber alle Primzahlen; p, bezeichnet die »-te Prim-
zahl. Mit einfachen Abschitzungen ergibt sich, dass auch € eine
Dichte aufweist, also zur Klasse & gehort, und zwar gewinnt man
mit wiederholter Verwendung des Additionstheorems

Dy(d v B) = Dyd) + DyB) Dy ~ B)
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und anschliessendem Grenziibergang £ — co zundchst die Beziehung

‘ 1A N/ 1032 af 1 2
ey = Zl( ”P») Zz( PPy ) T Z}(\py’py});_) o

wobet 2™ eine Summation bedeutet, die sich iiber alle Kombina-
tionen v,u... der Indizes 1,2,... der Klasse m erstrecken soll.

Die rechts stehende Summe kann durch ein einfaches unendliches
Produkt ausgedriickt werden, indem sich

D(C) = 1— ]OO](JL ;., )

y==1

oder

DC) = 1—

ergibt. Schliesslich gilt noch
p(C ~ ) = D(C ~ E) = (1/4) D(C).

Damit erhélt man nach (1) tiir die gesuchte Wahrscheinhichkeit

(
W— W) =1 —083920.....

72

3. Die Bertrandsche Krewsaufgabe

J. Bertrand formulierte im Jahre 1889 eine Aufgabe, fiir die er
zugleich dret verschiedene Losungen vorlegte, die auf drei Uber-
legungen begriindet waren, die in gleicher Weise plausibel schienen,
und schaffte so das nach ihm benannte, bekannte «Paradoxon» bei
geometrischen Wahrscheinlichkeiten. Wie spiter R.Deltheisl [8] und
viele andere auseinandersetzten, klirt sich die Sachlage dadurch auf,
dags die verschiedenen Ansitze zur Loésung implizite Festsetzungen
tiber Gleichwertigkeiten enthalten, die voneinander abweichen und
nicht iibereinstimmende FErgebnisse zeitigen. Wir geben der F'rage die
folgende Form: Wie gross ist die Wahrscheinlichkeit, dass eine Ge-
rade der Iibene, die einen Kreis vom Radius B schneidet, auch einen
nur halb so grossen konzentrischen Kreis vom Radius R/2 trifft?
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“Wir vervollstindigen die der Aufgabe zugrunde gelegte Voraus-
setzung durch den Hinweis, dass alle Geraden der INbene, auch solche,
die den grossen Kreis nicht treffen, gleichwertig sein sollen. Damit
18t schon andeutungsweise vorweggenommen, dass die 1in unten ent-
wickelten Modell gewéihlte Gruppe mit derjenigen der euklidischen
Bewegungen, welche die Geraden transitiv vertauschen, identifiziert
werden soll. Die erzielte Losung entspricht also einem bewegungs-
mvarianten Ansatz. Die anderen, von J. Bertrand noch beigefiigten
Liosungen beruhen auf Ansitzen, die mit den Kreisen direkt korrelieren
und diese I[nvarianzeigenschaft nicht aufweisen. Sie sind andern
Gruppen verpflichtet.

Zuniichst ist wieder das Wahrscheinlichkeitsfeld zu konstruieren:

Vorbereitend erértern wir eine dienliche Abbildung der Geraden
in eine Parameterebene. Iis set (7 eine Gerade in der (x,y)-libene und
x cosl -y sinf — p = 0 sei thre Hessesche Normalform. Die beiden
Normalkoordinaten p und 0 von (¢ dienen uns dazu, der Geraden G
einen Punkt ¢/ in der (p,0)-Iibene zuzuordnen. [st p = 0, so liefert ¢/
zwei Punkte (¢ und ;" mit 0 und 0+ 7; dies ist fiir unsere weitere
Verwendung der Abbildung unerheblich. Kiner Geradenmenge 4 ent-
spricht dann eine Punktmenge A4 im Halbstreifen 0 < p << oo;
0<0 <2

R = Menge aller Geraden der bene; ein Elementarereignis ist
eine (rerade (7.

1Y = Menge der Greraden (7, die den grossen Krets treffen; nur
diese Geraden werden in Betracht gezogen.

(i = Gruppe der ebenen Bewegungen.

K = Klasse aller Geradenmengen 4, deren Bilder 4 in der Ebene
der Normalkoordinaten im Jordanschen Sinne messbar sind.

@ = Jordangcher Inhalt, also @(4) = I(4).

Liassen wir den Kreismittelpunkt mit dem Ursprung der Ebene
zusammenfallen, so ist f¢ ein Rechteck 0 < p < B; 0 <0 < 2m;
folglich ist ¢(I7) = 2aR.

Nun sind die Axiome zu priifen. Alles ist ziemlich evident, bis
auf die (-Invarianz von ¢. Diese bestitight sich leicht wie folgt: Ist

x= z'cosa-ty sina-ta

Yy = —a’'sina-| Yy cosa 4 b
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eine Bewegung, welche die Gerade - mit den Normalkoordinaten p
und 0 in die Bildgerade (" {iberfiithrt, so sind die Normalkoordinaten
von (7' durch

0 =0+«

p' = p—acosa—bsina

oder durch
0 =0-+otmn

P’ = asina 4-beosa-—p

gogeben. Fiir die Funktionaldeterminante der durch die Bewegung in
der Normalkoordinatenebene induzierten Abbildung ergibt sich

ap’,0)
op, 0)

Die Abbildung ist demnach flichentreu; der Inhalt einer Jordan-mess-
baren Menge bleibt invariant.

Das leld < B1N,G,K,p> liegt nun vor. IMir die Losung der
gestellten Aufeabe ist noch die Festlegung der Menge €' erforderlich.
C 18t die Menge der Geraden, die den kleineren konzentrischen Kreis
treffen. Das Bild ¢ ist das Rechteck 0 < p < R/2;0 <0 < 2x;

also 18t @(C ~ 1Y) == @(C) = zll. Nach Definition (1) resultiert
W= W) = 1/2.
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