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Uber eine Bilineardarstellung

der Barwerte temporiirer Verbindungsrenten

Von Ernst Rufener, Ziirich

1. Einleitung

In einem fritheren Beitrag hat der Verfasser bewiesen, dass der
temporire Leibrentenbarwert sich genau dann durch eine k-gliedrige

Bilinearform k
Ay = ,\: Ae‘(t’a) @i(m) , (k=1)
i=1

darstellen lisst, wenn die zugrunde gelegte Uberlebensordnung eine
lineare homogene Differentialgleichung k-ter Ordnung mit konstanten
Koeffizienten erfiillt 1). H.Jecklin 2) hat die Problemstellung auf Ver-
bindungsrenten mit zwei Altersvariablen ausgedehnt und nachgewiesen,
dass die Altersunabhingigkeit der einjihrigen Sterbenswahrscheinlich-
keit notwendig und hinreichend sei fiir eine zweigliedrige Barwertformel

Apy:n] — A(?’b) =} B(n) oy
In Anlehnung an ein von R. Piccard ®) bei tempordren Leibrenten auf

ein Leben dargelegtes Verfahren lidsst sich ebenfalls zeigen, dass durch
den speziellen Ansatz

Gy = A(.6) + B(t,6) etV

eine Uberlebensordnung von Dormoy bestimmt wird 4).

1) «Uberlebensordnungen, fiir welche sich der Leibrentenbarwert durch Zeit-
renten darstellen lisst», Mitteilungen der Vereinigung schweizerischer Versicherungs-
mathematiker, 55. Band, Heft 3 (1955), S.423-473.

) « Lidstonesche Niherungsformel und Makehamsche Funktion», Blitter der
Deutschen Gesellschaft fiir Versicherungsmathematik, Band II, Heft 1 (1954),
S.61-70.

%) « Bemerkungen zu der Lidstoneschen Z-Methode», Blétter fiir Versicherungs-
mathematik, Band 2, S.281.

4) Siehe Fussnote 1 auf folgender Seite.
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Die Uberlebensordnung L(z;, z, . . ., z,,) = [ [ 1,(,) mit der Eigen-
schaft =1

k
d:clccg...mm:ﬂ - EIA@U’(S) @,‘-(.’El, .122, w g -5xm)! (m; 11 k; 1) (1)
lisst sich in sinngemésser Verallgemeinerung des im Falle einer ein-
zigen Altersvariablen erhaltenen Ergebnisses durch eine partielle lineare
Differentialgleichung k-ter Ordnung mit konstanten Koeffizienten
O RN b )=0 @
Gl—+——+ ... +—— ) L(xp 2y, - - -, T,) = ’
i 1( ox, = Oxy Ba;m) e &
charakterisieren, so dass durch (1) Abfallsordnungen [ (z,) bestimmt
werden, die lineare Verbindungen einfacher Exponentialfunktionen mit
Konstanten oder Polynomen in z, als Koeffizienten sind. Die Zeitrenten-
funktionen A4 ,(t,0) sind wie 1 Falle einer Altersvariablen als Liosungen
eines linearen inhomogenen Systemes von Differentialgleichungen nach
Vorgabe gewisser Anfangswerte eindeutig bestimmt.

1) Leitet man némlich

t
Goyit) = [y €% dT = A() + B(p) ere+D)
0

nach t ab und setzt . _
a(f) = et A, gty = et B(t),
so folgt aus
tPay = a(t) + B() erz+y)
wegen

tPay tPx+t.y+t = 2tPxy>
o?(t) — B(f) 2= YT = (2),
woraus durch Ableiten nach z auf

ﬁz(t) e2riz+y-+t) — 0,
mithin auf

Bty =0
und damit auf die Funktionalgleichung

o2() = «(20)
mit der Liosung
(X(t) = Pz = sts

geschlossen wird, welche Dormoys Uberlebensordnung charakterisiert.



2. Bemerkungen zu einer speziellen partiellen linearen

Differentialgleichung

Im folgenden betrachten wir die homogene partielle Differential-
gleichung k-ter Ordnung inm (m = 1) Variablen mit konstanten Koeffi-
zienten

k a 0 0 M
W + _|._ ._|_ _) — 0 (‘))
X il | = sy Lpy) = U, 4
,url-—-—O 8 ( 8‘3:1 ox 2 oz m/ (p(ml, 2 g )

deren Lisungsgesamtheit wir charakterisieren.

Durch die lineare Variablentransformation

X=§=24+2,+... }2,,

& = 2, — 1, (h = 2,8, ..0s)
lmt 6 o X‘! a F‘SA —
z, G 0§ oz, ST o0&’
0 0 0 0 0
————Ez 6512 — s (h:2:33 :m)’
o, 7 0§, Oz, 0, 0,
mithin 0 o 0
T, S X
und Up b n ) (1™ m
a(.’L‘l, Loy « o oy ﬂ';m)

geht (2) in eine lineare homogene Differentialgleichung k-ter Ordnung
in X mit konstanten Koeffizienten

& N
> c”m“(dy> P(X565 85 .08, =0 (3)
#=0 <
liber.
Die Variablen &,, (h = 2,8, ..., m) treten darin als Parameter auf.

Die Lisungen von (3) bestimmen einen linearen Raum, der durch %
Hauptlosungen 4,(X), (v = 1,2, ..., k) aufgespannt wird; die Koeffi-
zienten in den Linearverbindungen der Hauptlosungen sind Funk-
tionen der Variablen &, (h = 2,8, ..., m).
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Vermoge des Ansatzes

'l,l)(f(; & sy o h o, fm) — %(52’ &g o .o, Sm) 0X

wird die Ermittlung eines Hauptsystems auf das Bestimmen der Wur-
zeln der charakteristischen Gleichung

k
>FEmtet =0 (4)
nu=0
d . -
e Z Cu " =0, g = mo ('1")
=0
zuriickgefiihrt.

Es sei o, o-fache, g, o,-fache, ..., o; o;-fache Wurzel von (4),
01+ 0z + ... +0; = k. Die allgemeine Lésung von (3) 1st dann ge-
geben durch

io_ g o _
w(‘\ ; 521 533 LIRS ] Em) == 2 BQ’LX 2 XT:,U(E2’ 53’ LA ) E-m) ‘Xlu ! (D)
=1 a=1
und es wird
i
o(z) = p(x, Ty, . . -, T,) = V pQi(Titaet e +am) |

1

Z ‘Qi#(ml_ww Ty~ Tgs o« oy Ty—Tyy) (1 F+Zg+ -+« + xm)y_l (5")
=1

-,
I

allgemeine Losung von (2). y,, sind willkiirlich gewihlte Funktionen
der Variablen &, (h = 2,3, ..., m), mithin sind die £;, willkiirliche
Funktionen der Differenzen z,—x,, (h = 2,3, ..., m).

Im Falle k reeller voneinander verschiedener Wurzeln ¢y, 0,, . . ., 0
bildet A,(X) = %%, (v = 1,2, ..., k) ein Hauptsystem und es ist

k
(p(SC) = 2 Q@-(azlﬂscz, T1—Tgs + v ey 531*%) 691:(131+z2+-- )
=1

allgemeine Liosung. Ist o k-fache reelle Wurzel der charakteristischen
Gleichung, so wird ein Hauptsystem durch

A(X) = XX, (v=1,2,...,k)

bestimmt, und die allgemeine Losung (5") ist dann von der Form

K
P(a) = D) QT — Ty &y — g, + o o, By— ) (Ty Ty . . . - 3,) L B F I E o Haml,
=
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Wihlt man fiir die Berechnung des Barwertintegrals

t
1
dxlwg---xm T f(p('r i ‘E) 6_65 d‘E
()
0

eine in der Losungsmenge (5") enthaltene Funktion als Sterbegesetz, so
lasst sich fiir den Barwert nach einigen Umformungen die k-gliedrige

Summe
¢

I 8 (% (u—1)! m” i
2 X NN QJ ): L (B — gy <o o Ty—T,y) X""" (v—_T)—' f&" g 00 gg,
0

-

S
|

S

X =uaz,4+2,+ ...+ z,, angeben, in der Altersvariable und Renten-
dauer 1m Sinne unseres Ansatzes getrennt sind. Ks gilt daher

Satz 1. Fiir ein Sterbegesetz, das der Lisungsmenge { ¢} angehort, lisst
sich der tempordire Leibrentenbarwert durch eine k-gliedrige Bilinearformel

k
dﬂ'l To..ozmil] E At(t!é) @‘(TJJI, Loy v+ vs 1"m> ’

t=1

darstellen.

3. Bezeichnungen und Differentialrelationen

Die Ausscheideordnung der versicherten Personengruppe

sei durch (3, o, > Tn)

L{z) = L{zy, g, .« s @) = [ [ L(&,), (m=1)
v=1

dargestellt. Von den Funktionen [ (z,)), (v = 1,2, ..., m) setzen wir

hinreichende Regularitit voraus, so dass alle nachfolgenden Operationen

erlaubt sind. Der Uberlebensordnung L(xz) werde nun die Funktion
2w,

F() = F(y @, ..., ) = H ha) =c¢ U L@ (6)

mit -y

zugeordnet,
14
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so dass der Barwert der temporéren Verbindungsrente in der fiir
unsere Untersuchungen geeigneten Form
t i

_ ) 1
oc(:c,t) = Wy v viBm ] = f‘v——l f(LL‘) -d& = F(x)fF(fE‘I“g) as

geschrieben werden kann. Durch Ableiten von

t
F(a)a(zt) = [Flo+£) dé
nach ¢ findet man einerseits ’
7} t
F(x) el )~
ot

anderseits wird die Ableitung von F'(z) «(z,t) in der Richtung e(1,1, ..., 1)
durch Projektion des Gradienten grad F(z)e(z,f) in diese Richtung
bestimmt :

= F(z +1);

/S m mj f’( + E)
(;ny%gxt jjpm+§giﬁFQf@:

t

Jlip@+9d§=Fw+0~Fw»

0

Beide Ableitungen lassen sich in

m 0 0 _
(?Z"I oz, —at>F(m) a(z,t) = —F(x) (7)
zusammenfassen. Unter Beriicksichtigung von (6) und
—a(z1+a:2+...+mm) 0 - (zy+xe +.. . +2m)
grad e ™ =——0e " S P
m
erhélt man
mo9 L ¥ m o5
(2 m)F(” ofol) = ¢ (3 = 8) L@ ala),
und hieraus in Verbindung mit (7)
LI 6>L) t L(x) (8)
—_—— 2 ) = — L(x).
) L LR Cy (
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4. Die Normalform der Bilineardarstellung

Satz 2. Der tempordre Letbrentenbarwert habe dve Bilinearentwicklung
k
(1) afzt) = X 4,0 Pyx), (k=1).
h=1

Die Funktionen A (1), A,(1), ..., 4,(t) seten linear unabhdingig voraus-
gesetzt (keine Ewnschrinkung der Allgemeinheit) und ausserdem ses

Det [[4{0)] + 0.

,k

IOM

lI |I

1
h

Der Barwertformel (1) entspreche'n dann die Beziehungen

(E—EJEWJM%%-JA%J

@) = S o
oo ) = : -~ I
S ) D) - fulan) )
oder , i
) (}_‘J aa)zl(a;l) L(ay) - .- L (%
o(x,t) = S‘ J ) e e SR o 9’
@)= o) ey @ )

Dre nur von Rentendauer t und Zinsintensitit & abhdingigen Funktionen
N,(t) und y,(t) entstehen aus den A,(t) durch lineare Transformation.

Beweus. 1-maliges Ableiten von
t

ik
> 4,(0) By(a) = Fuuf””+5%

0

[/:;-

() =

h

Il

nach ¢ fithrt zu den Beziehungen

k P -1
Fz) > A1) h(x):(at)F(Hz), (G=1,2 ...k,

h=1

aus denen fiir { = 0 unter Beachtung von

\(SJF(IEH)“ B (E ai)AF (#), A=0,1,2,...),

1i=0

das in den k Funktionen @,(z) lineare System

B 1 /o @
EA};’(U)@h(az)::—ﬂx)( )F(x) (=12 ...,k (10)

|
h=1 aCL'
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erhalten wird, welches diese Funktionen bestimmt. Die Anfangswerte
der Ableitungen der zeitabhéngigen und stillschweigend als beliebig oft
differenzierbar vorausgesetzten Funktionen A4 ,(t) seien wie frither mit

AP0) = a,,, (h=1,2, ...,k

bezeichnet und in die k-reihige quadratische Matrix

A = |ag
vom Range & mit der inversen Matrix
i o A
At = ||a™ ah:TAh—--, | 4| = Det [la;,| + 0
zusammengefasst.

Da Det ||a,| # 0, lassen sich mittels (10) in

a(Z:t) = i A,(t) D, (a

die k Funktionen @,(z) eliminieren, und man erhdlt das in Determi-
nantenform gekleidete Ergebnis

o(,t) Ay() Ay(t) - - A4(0)
Det 1 o\ = 0.
i ‘F(;;)(yf ﬁ) ; e

Fiir den Rentenbarwert erhilt man nun durch Entwickeln nach den

Elementen der ersten Kolonne 5
-
B ) (4;' 851:,,)F($)
zi] = ( a” — -,
und hieraus nach der Festsetzung
3
mt) = Z‘IGMAFJ(#) (11)
,u:

die mit (9) tibereinstimmende Formel

(Z . )F(az)

a(zf) — 2 R
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Die vermoge (11) definierte lineare Transformation sel durch

H(t) = (A7) A(f) = (4)" A1), (11°)
() 4,(t)

HEy = PO, ag =40,
| ﬂk.(t) 4 k.(t) festgehalten.

Um in (9) die rechten Seiten durch die Uberlebensordnung L(z)
darzustellen, beachten wir die aus
0
)L x)
xv

a A
(<043 ) Ha), (12
A=01,...,5,

und ersetzen den in (9) unter dem Summenzeichen stehenden Diffe-
rentialausdruck durch

< p )’1;‘ N —%(11+12+---+1m < 1 H+e ¢ GZ
(‘_’&c (x) = e u(a 1)(*) (Z @w) el

i}
—— (1t +...

(S )rw=e

\ ® ‘v

Ty)
+ (——6—{—2 .

entspringende Relation

A b
o —(xy+ao+...+ )

(Z oz, )F(m) =1

o=1 T o,
Wir erhalten 5\t
A (2 L(z)
a(zt) = gm(t); () o 223 .
, B (E x)ﬂ(w) (Ei)c}il(x)
3 Eme (o] TR — = Buo

mithin (9"). Die zeitabhéingigen Funktionen y,(t), (6 = 1,2, ..., k)
sind durch

wt) = S0 (o= Samn
oder (1)
v =0 D= a=| (7)) o

4,.(t) gesetzt,
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durch die Beziehung Y(t) = D'H(t) (18"
definiert, welche in Verbindung mit (11°) die lineare Transformation
Y(t) = D'(A™) A(t) = (A7'DY A(t) = T" A1), (14)
T=47D, |T|=|4* festlegt.

5. Die Differentialgleichungen fiir die Funktionen F'(x) und L(x)

Satz 3. Durch jede der beiden nwicht weter verkiirzbar vorausgesetzten

Bilwnearformen 5 \*1
(2 ) F(a)
S 0
)'./:‘1171 F(x) ,
a(xst) = 'y 0 \M!
L (S5 ,
D) ©)

sind die Funktionen I'(x) und L(x) als Lééungen evner linearen partiellen
Differentialgleichung k-ter Ordnung mit konstanten Koeffizienten der Form
A

9 Sl + 0 4 ’ ) = 0
( ) ’; C}‘ (axl gxz 5% + —axm'/) ('U(LEI, .’132, i W kG ﬂ,m s
bestimmid.

Bewers: Im Hinblick auf eine geschmeidigere Darstellung seien die

Grossen ¥ 5 \A
B = (3o ) P
und 9 \A
Lio) = (3 .- ) T
eingefiihrt.

Die Differentialrelation

@@
(7) (L 5;;—55)1*’ (2)azt) = —F(2)

/

tihrt in Verbindung mit

Flz) awt) = fﬂl nx(t) 4 ()

P
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auf die Beziehung

F(z) __k{?l j&i%@.).fﬂ@ﬁ‘l(x) ____ﬁl(t)*_.l}?‘(g;) =0
= () (1)
in der 7,(f) = 0 vorausgesetzt werden darf und die sich nach den Defi-

nitionen Fy(z) = F(x),

und 0.(0) = _ﬁa+(tLﬂ’ A=12...,k—1), (1)
()
P
QO(t) nfc(t)
ur N
durch F,(z) +]§)Qa(t) Hiz) =10 (16)

schreiben lisst. Um einzusehen, dass darin die Grossen (),(t) Konstante
sind, beweisen wir zunichst den folgenden Hilfssatz:

k-1
Sind in g(x) + D () falx) = 0 (imzundt)
i=o
dve Funktionen f,(z), (A= 0,1, ...,k—1I) linear unabhdingig, dann
sind die q,(t) Konstante.

Dieser Satz wird indirekt bewiesen. Angenommen, es existiere ein
q,(t) £ ¢ fir 0 < v < k—1, so wiirde fiir geeignet gewihlte Argu-
mente a und b (a = b) die Differenz

q,(a) —¢,(b) #+ 0

ausfallen. In der durch Subtraktion aus

9(z) + geqa(ao fi() = 0

k-1
und g(x) +§)q,1(b) fa@) =0
gewonnenen Relation #- _
%) [9:(a) — q;(D)] fi(x) =0 (in z)
miisste daher mindestens eine der Grossen

q2(a) — q;(b)
von Null verschieden sein, wodurch ein Widerspruch zur vorausgesetz-
ten linearen Unabhéngigkeit der f,(z), (A = 0,1, ...,k—1) entsteht.
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Da die Normalform der Bilineardarstellung eine minimal vor-
ausgesetzte Gliederzahl enthilt, sind in (16) die Funktionen F,(z),
(A=0,1,2,...,k—1) linear unabhéngig anzunehmen !). Nach dem
Hilfssatz ist ¢ ) — ¢ , — konstant, (A =0,1,...,5k—1) (15

und die Funktion F(z) hat demnach der Differentialgleichung
2

¢ ¢ ) F 0 1 7
Zwk- ( "L;E';WL oz, T m s oz, (x) =0, o= )
mit der charakteristischen Gleichung

*tor o e, =0 (18)

zu gentigen.
Tritt an Stelle von (7)

0 0
(8) (2 ﬁ T 5) L(x) a(z,t) = — L(z),

so filhren dieselben Frwéigungen unter Berticksichtigung von
k

L(z) af,t) = Z Yult) Lya(2)

auf die Differentialgleichung

k 7 A
% (—+j-.v+...+aiﬁ>L(m):0, =1, (19)

welche die Uberlebensordnung L(z) als notwendige Bedingung fiir die
Darstellbarkeit der Verbindungsrente als Bilinearform zu erfiillen hat.
(19) ist die charakteristische Gleichung

o +u o ... fx =0 (20)
zugeordnet, deren Koeffizienten durch

C Yaa® 0y — wa)

B N, - R ., ¢

o Yi(t)
und Y1(t) + Sy, (t) —1 (21)
H, — —
g Y,(1) definiert sind.

1) Bei linearer Abhiingigkeit der Fy(z), (A =0,1....,k—1),

k—1 kl(a 0 al

v Fyla) = Yep(— +— | F(z) = 0,
CA A( ) A= OC)L &q + 8r2 + + &I‘m) (33)

(nicht alle ¢; = 0), miisste nach Satz 1 der Rentenbarwert bereits eine Bilinear-
form mit weniger als k Gliedern haben.
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Aus (12) schliesst man, dass die Wurzeln der beiden charakte-
ristischen Gleichungen (18) und (20) durch

o=r-+9
mitemander verkniipft sind.
6. Darstellung der Uberlebensordnungen [ (x,)

Im einfachsten Falle, &k = 1, m = 2, ist die allgemeine Lisung
von (20) nach (5) durch

L(z.y) = ale—y) &, at+p =g

gegeben. In Verbindung mit der Produktdarstellung der zusammen-

gesetzten Ordnung L(z,y) = L(z) L(y)
3 == o, 2

l(z) = L(z,0) = a(x) &,
L(y) = LOy) = a(—y) ",

und hieraus, L(0,0) =1 angenommen, fiir die Koeffizientenfunktion
die Hamelsche Funktionalgleichung

folgt

a(z) a(—y) = a(z—y),
die unter schwachen Regularititsvoraussetzungen die Lisung
a2y = Ke* 1
L(z) = Kt = K &%,
l(y) = Kef+"* — K s2

hat, so dass

in Ubereinstimmung mit dem bekannten Ergebnis einfache FExpo-
nentialfunktionen sind.

- }1) a(z)a(—y) = a(r—1y) wird durch Logarithmieren auf die Funktional-
ST P() + pln) = p(E+7)

@(§) = A&

zuriickgefithrt. Wird Differentierbarkeit, Stetigkeit oder Beschrinktheit iiber die
Lésungsfunktion vorausgesetzt, so ist die triviale Lisung auch einzige Lisung.
Die nichttriviale Losung tiberdeckt als « Kurve» die ganze Ebene dicht; sie ist in
jedem Punkt unstetig. Vgl. G. Hamel, «line Basis aller Zahlen und die unstetigen
Lésungen der Funktionalgleichung f(z+ y) = f(z)- f(y)». Math. Annalen 60 (1905),
S.459-462.

mit der trivialen Liosung
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k = 2, m = 2. Die beiden reellen Wurzeln g, und g, der charakte-

ristischen Gleichung seien voneinander verschieden. Aus
L{w.y) = (@) bh(y) = a(@—y) ) 4 bz —y) e
- d’ —01T —01 - -
e hz)e®® = g(@), bLy) e = hy), o0—o =1
gesetzt, zundchst auf

g(il‘) h(y) o= a(a:_y) + b(x_y) Tty
oder

1= 3 )o@)his) = ole—p), D=+,
() = st D= 2t L

und hieraus auf die Relation

D (1 - I;) g9(x) My) =

geschlossen, die — y =1 bzw. £ =1 gewithlt — lehrt, dass die Funk-
tionen ¢g(z) bzw. h(y), mithin [;(z) oder ly(y) aus einer Summe von
Exponentialfunktionen mit konstanten Koeffizienten aufgebaut sind.

Um einzusehen, dass im allgemeinen Falle die Uberlebensord-
nungen [ (z,), (v = 1,2, ..., m) Linearkombinationen von Exponen-
tialfunktionen in x, mit Konstanten oder Polynomen in z, als Koeffi-
zienten sind, ordne man (19) nach absteigenden Potenzen von —ai

Da im erhaltenen Differentialausdruck nur [ (z,) der Differentiation
nach z, unterliegt, stellber -z, =1, (u = 1,2, ..., m; u 5= ») gewihlt -
eine homogene lineare Differentialgleichung k-ter Ordnung fiir I (x,)
dar, woraus die Behauptung ersichtlich ist. — Die Umkehrung des
Satzes, wonach jede aus einfachen Sterbegesetzen vom Exponential-
typus aufgebaute Uberlebensordnung zu einer Bilineardarstellung des

‘TRentenbarwertes Anlass gibt, ist trivial.

Satz 4. Der tempordre Leibrentenbarwert a, , . - 15t dann und
nur dann wm der Form

k
Bos i i 2 N RGN —

darstellbar, wenn die versicherten Leben x, Sterbegesetze [ (x,) befolgen,
die eine Lamearkombination von Emponentwlfunktaonen m x, swnd, mat
Konstanten oder Polynomen in x, als Koeffizienten.
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Die Frage nach den durch die gegebene Gliederzahl k einer
Bilinearentwicklung des Rentenbarwertes bestimmten Darstellungs-
moglichkeiten der einfachen Uberlebensordnungen 1 (z,) fiithrt zu nicht-
elementaren, durch eine eigenartige arithmetische Struktur ausgezeich-
neten Problemen. Wir begniigen uns mit einem Hinweis: Sind im Falle
zweier Altersvariablen die Ordnungen [l;(z) und l,(y) lineare Verbin-
dungen von Exponentialfunktionen mit konstanten Koeffizienten,

kq kg
ll(‘r) - Z ﬂ'l-v ea‘,x’ l2(y) - 2 ﬂ'21' 6.5,,1/,
y=1 y=1

dann ist die Anzahl der Méglichkeiten fiir die gleichzeitige Wahl von £,
und k, bei gegebenem k bestimmt durch die Anzahl Teiler 7, von k 1):

ke k, k, Anzahl Méoglichkeiten 7,
1 1 1 1
2 1 2
2 1 )
3 1 3
3 1 2
1 1 4
2 2 3
4 1

7. Darstellung der Zeitrentenfunktionen #,(t) und y,(t)

Die Relationen (15) — in Verbindung mit (15°) — und (21) stellen
fiir die unbestimmten Funktionen #,(t) und ¥,(f), (* = 1,2, ..., k) je
ein lineares inhomogenes System von Differentialgleichungen erster
Ordnung mit konstanten Koeffizienten dar,

1) Die Zahlen 7, sind Koeffizienten in der Potenzreihenentwicklung der
Lambertschen Reihe

co P ©o i _
X P Nt =24+224+23 4344254484227 428+ ..
v=11"" k=1

ke 1 2 3 4 5 6 7 8 9 10

T 1 2 2 3 2 4 2 4 3 4
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H(t) = RH(t) +Q, (22)
Y(t) = PY(t) + 0, (22')
0 — Wy —0 — %,
1 0 — Wy 4 1 -9 — %4
R = 10 —w,ll, P = 1 -6 — % ity G =
1w, C 1 (54

deren Losungen durch die Anfangswerte
HO =Y0 =0 4
eindeutig bestimmt sind.
Da die Sidkulargleichungen der homogenen Systeme
H(t) = RH(), (28)
Y(t) = PY(t), (28

Det |R—rE| = *+ o'+ ... +0,=0,

Det HP—TEH = "L g™ o +% =0, po=r-4296
mit den charakteristischen Polynomen (18) und (20) der Differential-
gleichungen fiir I'(z) und L(z) iibereinstimmen, bleiben die friiher %)
eingehend dargelegten Zusammenhiinge zwischen Zeitrentenfunktion

und Uberlebensordnung auch im Falle der Verbindungsrente mit be-
liebig vielen Variablen erhalten 3).

H(0) = Y(0) = A(0) = 0 1ist die Folge der Voraussetzung, dass die Bilinear-
form des Leibrentenbarwertes nicht weiter verkiirzbar ist.
#) Vgl. die auf der ersten Seite in Fussnote 1 zitierte Arbeit.

3) Wegen (11') A(t) = A" H(#) erfiillt 4(t) das inhomogene System
fi(t) = A"RANY AW+ A'Q, A(0) =0,
und es ist A(t) = A" RAYVA®M) = PA®).
Aus (13") und (23') folgt R = (D')"! PD und damit die Ahnlichkeit der drei
Matrizen P, R, und P. Da

Spur P = Spur A" R(A’y! = Spur iR = Spur (D)1 PD' =
Spur P = —wy = —ké—xy =ri+r9+ ... + 1,

und weil die Wronskische Determinante A(f) eines linearen Systems 9(f) = VY (¢)
der Relation A(t) = Spur P A(t) zu geniigen hat, schliesst man auf

Det || AP(t)| = Det | 4[(0)| elrrtrat-- 701,
mithin auf Det || 490(#)| = 0 (¢ = 0), falls Det | 4{)(0)|| = 0.

)
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