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Die Ermittlung der Risikogewinne

im Versicherungswesen aufrisikotheoretischer Grundlage

Von Hans Ammeter, Zürich

Der ScAiüe/zer/sc/iera Leftensrers/cAeruregs- une/ Rtuiienansfa/f

zu /Arem / 00/äArigera JuA/Zäitm geiv/dmel

A. Problemstellung und grundsätzliche Erwägungen

1. Der Gewinn aus irgendeiner wirtschaftlichen Tätigkeit wird
grundsätzlich nach dem Schema

Gewinn Erlös — Aufwand

ermittelt. Für die nicht vollständig innerhalb der Abrechnungsperiode
abgewickelten Geschäfte, die sogenannten unvollendeten Umsätze,
sind dabei besondere Rückstellungen einzusetzen, welche, je nachdem
es sich um eine Erfolgs- oder Liquidationsrechnung handelt, in ver-
schiedener Weise zu bemessen sind.

Im Versicherungswesen tritt eine besondere Art von nicht voll-
endeten Umsätzen auf. Die Prämienberechnung geht nämlich von
einem vollendeten Bisikoumsatz, d. h. von der Annahme aus, dass

alle theoretisch möglichen Schadenabläufe auftreten. Praktisch wird
jedoch wegen der stochastischen Natur des versicherungsmässigen
Risikos immer nur ein Teil dieser Möglichkeiten realisiert; der ver-
bleibende Rest von nicht aufgetretenen Möglichkeiten äussert sich in
den Schwankungen der jährlichen Schadenbelastung. Würde man die-

sen unvollendeten Risikoumsätzen bei der Bestimmung der Risiko-
gewinne nicht Rechnung tragen, d.h. den Gewinn lediglich als Dif-
ferenz zwischen der eingenommenen Nettorisikoprämie P' und dem

fällig gewordenen Gesamtschaden S bestimmen und diesen Gewinn

fortgesetzt ausschütten, so verblieben dem Versicherer keine Mittel,
um die in einzelnen Jahren auftretenden Überschäden zu decken. Eine
versicherungsmässige Risikodeckung könnte so auf die Dauer nicht
funktionieren und würde den Sicherheitsanforderungen kaum genügen,
welche die Versicherten mit Recht an einen Versicherungsträger stellen.
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Es ist daher notwendig, den unvollendeten Bisikoumsätzen bei
der Ermittlung der Bisikogewinne durch geeignete Bückstellungen
Bechnung zu tragen. Dies führt zu der in der vorliegenden Arbeit dar-

gelegten Theorie der Gewinnermittlung auf risikotheoretischer Grund-
läge, welche dem stochastischen Charakter der im Versicherungswesen
auftretenden Vorgänge gerecht wird.

2. Die einfachste Methode der risikotheoretischen Gewinnermitt-
hing geht von der Aufteilung der gesamten Nettorisikoprämie P' in
zwei Komponenten aus; eine Komponente ist die Grundquote fc'P'

(0<k'< 1), welche die Normalschäden deckt und die Sicherheitsmarge
enthält; die andere Komponente - die Überschadenquote (1 — fc')P' -
deckt die allenfalls auftretenden Überschäden. Die Überschadenquote

(1—k')P' wird in jedem Bechnungsjahr einer Ausgleichsreserve gut-
geschrieben, der anderseits allfällige Überschäden S — k'P'>0 belastet
werden. Es ergeben sich dann - je nach dem aufgetretenen Gesamt-
schaden S - die nachstehenden Gut- und Lastschriften, welche den

Bückstellungen für die unvollendeten Bisikoumsätze entsprechen.

Höhe
des Gesamtschadens

Gutschrift | Lastschrift
der Ausgleichsreserve

Risikogewinn

S V fc'P'

fc'P' <i s <; P'
,S' A; P'

(1 — k')P'
P' - »5

0 1
o

o

hg

fc'P' — S

0

0

3. Die unter Ziffer 2 geschilderte Methode gipfelt in der Gewinn-

G fc'P' —S. (a)

Diese Art der Bisikogewinnermittlung, die als die natürliche Methode
bezeichnet werden kann, ist nicht die einzig mögliche. Man könnte
z.B. Formel (a) verallgemeinern in

G kj (k;P' - S), (fcj < 1), (b)

oder G fc'P'— S + m'P' für S k'P',
m'P' für S ^ fc'P',

mit 0 < to' < 1 — k'.
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Nimmt man an, dass die Gewinnformeln in einem noch näher zu prä-
zisierenden Sinne stets gleichwertig konstruiert werden, so führt For-
mel (a) zu stärker schwankenden Jahresgewinnen als die Formeln (b)

und (c). Man könnte theoretisch sogar so weit gehen und einen festen

Jahresgewinn
G fc'P' (d)

festsetzen. Damit käme man allerdings zu einer nur noch fiktiven Ge-

winnermittlung, weil der wirkliche Schadenverlauf keine Eolle mehr

spielen würde.
Durch die Gestaltung geeigneter Gewinnformeln kann man einer

bestimmten Gewinnpolitik Rechnung tragen. Es ist durchaus zulässig,
nicht die natürliche Methode (Formel (a)) zu wählen, obschon dadurch
der natürliche Fluss der Gewinne künstlich gesteuert wird. Eine der-

artige Gewinnpolitik erfordert allerdings - wie noch zu zeigen sein

wird - grössere Rückstellungen und Sicherheitsmittel als die natür-
liehe Methode.

4. Das dargelegte Verfahren für die Gewinnermittlung erstrebt
eine Ordnung, bei der Risikoverluste nicht in Erscheinung treten, in-
dem Verluste stets über die Ausgleichsreserve abgebucht werden. Den-
noch wäre es denkbar, dass Risikoverluste vorkommen, nämlich dann,
wenn sich die Ausgleichsreserve erschöpfen würde, z.B. wenn ein be-
sonders hoher Überschaden auftritt oder wenn Jahre mit Überschaden
sich häufen würden. Es empfiehlt sich deshalb, den Anfangswert -w

der Ausgleichsreserve und die Faktoren in der Gewinnformel so fest-

zusetzen, dass eine Erschöpfung der Ausgleichsreserve praktisch als

ausgeschlossen gelten kann. Man gelangt dann zu einem gesicherten
Risikoausgleich, der sich in folgenden drei Stufen vollzieht:

DVsfes Pisifco:

Der Versicherer deckt die individuellen Schäden aus den einzelnen

Versicherungen mit Hilfe der Gesamtrisikoprämie P', soweit diese da-

zu ausreicht.

Zweifes Pisifco :

Die in Reserve gestellten Überschadenquoten (1 — fe')P' decken
das Risiko eines Gesamtüberschadens S — &'P'>0, soweit sie dazu
ausreichen.
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Drittes Pm7co:

Die Ausgleichsreserve mit dem passend festgelegten Anfangswert
m und die Sicherheitsmarge in den Überschadenquoten (1 — 7c') P'
decken das Risiko von Super-Überschäden, welche zu einer Erschöp-
fung der Ausgleichsreserve führen könnten.

5. An sich genügt es, wenn der geschilderte dreistufige Risikoaus-
gleich für das Gesamtrisikogeschäft eines Versicherers gewährleistet ist.
In diesem Sinne könnte das geschilderte Verfahren für alle Geschäfts-

zweige und Risikoverbände zusammen als Ganzes angewendet werden.
Der Versicherungsträger muss anderseits den Verlauf des Risiko-

geschäftes getrennt nach Geschäftszweigen und Risikoverbänden ver-
folgen und die Grundlagen der Prämienkalkulation in allen Risiko-
verbänden laufend überwachen. Darüber hinaus erscheint es als wün-
sehenswert, dass - abgesehen von Zuweisungen im Zuge des Ausgleichs
von Überschäden - die einzelnen Risikoverbände sich selbst erhalten.
Dies lässt sich erreichen, indem für jeden Risikoverband getrennt die
anzuwendende Gewinnfornrel festgesetzt wird, wobei den besonderen
Bedürfnissen jedes Risikoverbandes durch geeignete Konstruktion der
Gewinnformel Rechnung getragen werden kann. Die dem Ausgleich der
Überschäden dienende Ausgleichsreserve wird jedoch für alle Risiko-
verbände gemeinsam geführt.

6. Für die praktische Durchführung der geschilderten Gewinn-

ermittlung müssen die in den Gewinnformeln auftretenden Zahlen-
faktoren 7c', die sogenannten Gewinnfaktoren, bestimmt werden. Dabei

geht man von der Annahme aus, dass der Gesamtschaden S eine zu-

fällige Variable ist, deren Verteilungsgesetz durch die in Abschnitt B
skizzierten Hilfsmittel der kollektiven Risikotheorie einer technischen

Analyse zugänglich gemacht wird. Für die Berechnung der Gewinn-
faktoren werden drei Prinzipien vorgeschlagen, die anhand der natür-
liehen Gewinnformel (a) im folgenden diskutiert werden.

Pmmp I;
Der Gewinnfaktor 7c' in der Formel

G 7c'P' — »S

wird so bestimmt, dass der Erwartungswert des Überschadens

S — 7c'P'>0 gleich gross wird wie die Überschadenquote (1 — 7c')P',



— 149 —

d. h., es ist für <S — fc'P' > 0
oo

(l-fc')P' LjP-fc'P'} f (S-ft'P') /(S,P') PS. (I)
&'P'

In dieser Formel bedeutet /(£>,P') die Frequenzfunktion des Gesamt-

Schadens, welcher während der Zeitspanne auftritt, die der Netto-
prämieneinnahme P' zugeordnet ist. Es lässt sich zeigen, dass die Be-

Stimmungsgleichung (I) gleichwertig ist der Bedingung
Ä'P'

AP P{fe'P'-S} [ (ft'P'-iS)/(S,P')dS, (I')
0

oder in Worten, der Gewinnfaktor fe' wird so bestimmt, dass der Er-
wartungswert des jährlichen Gewinnes G fc'P' — <S 2; 0 gleich gross
wird wie die in der Nettoprämie enthaltene Sicherheitsmarge AP.

Prômp II:
Die Bestimmungsgleichungen (I) erfassen wohl die zweite Risiko-

stufe im Sinne von Ziffer 4, lassen jedoch die dritte Stufe unberück-
sichtigt. Um dieser Rechnung zu tragen, muss die Verteilung der Über-
Schäden ^ S-fc'P' für 5 > fc'P',

t 0 für S <; k'P'

betrachtet werden. Die Verteilung - ihre Frequenzfunktion sei mit
/(L) bezeichnet - lässt sich durch ihre Momente

/r,. f1/ /(L) IL
0

charakterisieren, von denen das erste Moment /tj mit dem bereits

angegebenen Erwartungswert des Überschadens identisch ist. Das

Streuungsquadrat des Überschadens

/"22 P2 — f (^ — /L)' /(ü) dL
0

stellt ein einfaches Mass für die Variabilität der Überschäden dar. Nach

Tchebycheff erreicht die Wahrscheinlichkeit dafür, dass der wirkliche
Überschaden nicht höher ausfällt als

/«i +«.
bei beliebiger Verteilung /(L) mindestens

1
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Setzt man a 3, und bemisst man die Überschadenquote auf

/h + 3 [/ /.<2,

so würde diese mit einer Wahrscheinlichkeit von mehr als % aus-
reichen, um allfällige Überschäden zu decken. Man gelangt so, an Stelle

von Gleichung (I), zur die dritte Stufe berücksichtigenden Bestim-
mungsgleichung für den Gewinnfaktor A:'

(l-ft')P'=a*i + «1/Ä4- (Ii)
Prmüp IJJ:
Das zweite Glied rechts in Formel (II) führt mitunter zu einer

untragbar hohen Überschadenquote. Dies lässt sich vermeiden, indem
man an Stelle von (II) die Bestimmungsgleichung

(l-fc')P' (l+«/h (HI)
benützt, in welcher der Überschaden-Sicherheitszuschlag so an-
gesetzt wird, dass die noch näher zu umschreibende Ruinwahrschein-
lichkeit y>(w) hinreichend klein ausfällt. Unter ^(it) versteht man die

Wahrscheinlichkeit, dass die Ausgleichsreserve mit dem Anfangswert w,
der die Überschadenquoten (l+d"p,)^<i gutgeschrieben und der die

aufgetretenen Überschäden belastet werden, jemals negativ wird.
Es lässt sich zeigen, dass die Formel für die Ruinwahrscheinlich-

keit y(w) gültig bleibt, wenn die Gewinnfaktoren fc' für jeden Risiko-
verband getrennt nach der Formel (III) bestimmt werden, voraus-
gesetzt, dass die Schadenverläufe in den einzelnen Risikoverbänden
untereinander stochastisch unabhängig sind und für jeden Risikover-
band die gemeinsame Ausgleichsreserve mit dem Anfangswert m in
Rechnung gestellt wird. Damit gelangt man zu einer theoretisch und
praktisch befriedigenden Gewinnermittlung, die sich gegebenenfalls leicht
auf verallgemeinerte Gewinnformeln im Sinne der Formeln (b), (c) und
(d) übertragen lässt. ^

*

Die angeführten Formeln beziehen sich auf den Fall mit nur posi-
tivem Risiko. Der Fall mit negativem Risiko, der z.B. in der Lebens-
fall- und Rentenversicherung auftritt, lässt sich nach sinngemäss ähn-
liehen Methoden behandeln, wobei die Begriffe Gewinn und Über-
schaden gewissermassen ihre Bedeutung tauschen. Ebenso lässt sich
der Fall mit gemischtem Risiko behandeln, wobei man zweckmässig

vom insgesamt überwiegenden Risiko ausgeht.



— 151 —

Das skizzierte Verfahren bezieht sich nur auf die Ermittlung der

Eisikogewinne, kann aber auf alle Versicherungszweige angewendet
werden. Eerner kann es - wenn Gewinnbeteiligung vorgesehen ist -
auch angewendet werden auf die Gewinnverteilung nach Eisikover-
bänden und auch auf Kollektiv-Eisikoversicherungen aller Art, z.B.
auf Gruppenversicherungen und Eückversicherungen.

B. Risikotheoretische Grundlagen

1. Grundlegende Annahmen und Formeln [4] *)

Die Eisikotheorie betrachtet die in einem Versicherungsbestand
auftretenden Schadensbelastungen als zufällige Variable, welche durch
bestimmte Verteilungsgesetze charakterisiert werden. Die theoreti-
sehen Erwartungswerte dieser zufälligen Variablen sind identisch mit
den nach dem Äquivalenzprinzip bestimmten Nettoprämien. Diese

Eigenschaft des Erwartungswertes bildet gewissermassen die Brücke
zwischen der elementaren Theorie, welche vom Äquivalenzprinzip aus-

geht, und der Eisikotheorie, welche den stochastischen Charakter des

Eisikoprozesses berücksichtigt.
Die Verteilung des Gesamtschadens in einem beliebigen Versiehe-

rungsbestand für eine gegebene Abrechnungsperiode ist ein zu kom-
plexes Gebilde, um direkt angegeben werden zu können. Man ist daher

gezwungen, die Gesamtverteilung aus einfacheren Elementen aufzu-
bauen. In dieser Hinsicht sind bisher zwei Wege beschritten worden,
welche unter dem Namen der individuellen und der kollektiven Eisiko-
theorie bekannt geworden sind.

Die ältere individuelle Eisikotheorie geht von der Gesamtheit der
bei den einzelnen Versicherungen im allgemeinen überblickbaren Scha-

densmöglichkeiten aus und baut aus den für alle Einzelversicherungen
als bekannt vorausgesetzten Elementarverteilungen die eigentlich allein
interessierenden Verteilungen für Versicherungsbestände auf. Die vor-
ausgesetzte Kenntnis der technischen Eigenschaften aller Einzelversiche-

rangen gestaltet dieAnwendung der individuellenTheorieunübersichtlich
und zeitraubend.

i) Zahlen in [] beziehen sich auf das Literaturverzeichnis.
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Einen anderen Weg schlägt die moderne kollektive Risikotheorie
ein. Sie geht - ohne sich um die Verhältnisse bei den einzelnen Ver-
Sicherungen zu kümmern - von der verhältnismässig leicht überblick-
baren Verteilung für den Gesamtbestand in einem infinitesimalen Zeit-
element aus und baut aus diesen Elementarverteilungen - lediglich
unter Benützung gewisser Bestandeseigenschaften - die Verteilung des

Gesamtschadens für eine gegebene Abrechnungsperiode auf. Die kol-
lektive Betrachtungsweise steht dem Grundgedanken des Versiehe-

rungswesens näher als die individuelle Methode, weil die versicherungs-
mässige Risikodeckung nur innerhalb von Kollektiven, nicht aber bei

einzelnen Versicherungen funktionieren kann.

Das Verteilungsgesetz des in einer Abrechnungsperiode auftretenden
Totalschadens S kann unter bestimmten Voraussetzungen in der Form

oo ^
/(s,i) 2—r«*'(S) (i)

dargestellt werden; in dieser Formel bedeuten

/(<S,t)d)S die Wahrscheinlichkeit, dass der Totalschaden S in das Inter-
vall (jS,S + dS) fällt, wenn eine Abrechnungsperiode betrachtet
wird, in der genau t Schadenfälle theoretisch erwartet werden ;

s^jS) dS die bedingte Wahrscheinlichkeit, dass der Gesamtschaden aus

genau r Schadenfällen in das Intervall (S,S + dS) fällt.

Die Verteilung s*'(S) entsteht rekursiv aus der Schadensummen-

Verteilung s**(S) s(S) nach der Formel

S

s*'(S) J«(*) 6*b-b(S -*) & (2)
0

und ist mit der r-ten Faltungspotenz von s(»S) identisch.

Der in Formel (1) rechts auftretende Ausdruck

/M —r (3)
r

stellt die aus der Wahrscheinlichkeitsrechnung bekannte Verteilung
von Poisson dar; /(r,<) bedeutet die Wahrscheinlichkeit, dass genau r
Schadenfälle eintreten, wenn theoretisch t Fälle erwartet werden.
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Der als einziger Parameter in Formel (3) auftretende Erwartungs-
wert < ist - wenn die mittlere Schadensumme

als Rechnungseinheit eingeführt wird - gleich der theoretisch erforder-
liehen Gesamtrisikoprämie für die betrachtete Abrechnungsperiode.
Umgekehrt kann man die Risikoprämie f auch als Mass für die zeit-
liehe Länge der betrachteten Abrechnungsperiode benützen. Cramér
deutet daher den Erwartungswert < als «transformierte Zeit».

Die Ableitung der Formel (1) stützt sich im wesentlichen auf fol-
gende drei Annahmen:

aj Im infinitesimalen Zeitelement treten nur ein oder gar
kein Schadenfall auf.

5j Die Verteilungen des Gesamtschadens in den aufeinanderfolgenden
Zeitelementen sind untereinander stochastisch unabhängig,

c,1 Der Erwartungswert f ist für eine gegebene Zeitstrecke eine feste

Diese Annahmen können z.B. als erfüllt gelten, wenn gleichbleibende
oder gesetzmässig sich verändernde Schadenswahrscheinlichkeiten vor-
liegen.

In der Wirklichkeit sind die geschilderten Annahmen kaum je
streng erfüllt. Mitunter treten sogar erhebliche Abweichungen auf. In
früheren Arbeiten des Verfassers [1] wurden daher diese zu engen An-
nahmen erweitert auf zufallsartig schwankende Schadenswahrschein

lichkeiten, was implizite zu gewissen Abhängigkeiten unter den Scha-

denfällen führt. An die Stelle der Poissonverteilung (3) tritt dann die

negative Binomialverteilung

7i-(-r—1\ < r Ä

r / f+A £ -J-

in der fe einen Schwankungsparameter bedeutet, der um so kleiner aus-

fällt, je grösser die Schwankungen in den Schadenswahrscheinlichkeiten

angenommen werden. Der Grenzfall 7i oo entspricht dem Spezialfall
von festen Schadenswahrscheinlichkeiten, der auf die Poissonverteilung
(3) zurückführt.

oo

(4)
0

Zahl.
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Die Verteilung (5) ergibt sich unter folgenden Annahmen: Der
feste Erwartungswert f wird ersetzt durch einen zufallsartig schwanken-
den Wert fg, worin der Faktor 5 eine zufällige Variable ist, welche der

Primärverteilung „ ,-1

dH(g) A i (6)

genügt. Im Anhang I wird unter A gezeigt, dass die Verteilung (5)
sich auch noch aus einer Beihe von weiteren scheinbar untereinander
wesentlich verschiedenen Modellen ergibt. Ferner lässt sich die gegen-
über (1) verallgemeinerte Formel

/(SM) v r
r=0 \

+ -î1 f r "

Ä

\ r / f+ /i f+
(S) (7)

näherungsweise auf verschiedene weitere Modelle zurückführen (siehe

Anhang I, Abschnitt B). Dies sichert der Verteilung (7) eine fast um-
fassende Anwendbarkeit, sowohl in der Lebens- als auch in der Sach-

Versicherung.

2. Momentenformeln

Die wichtigsten Eigenschaften der Verteilungen (1) und (7) des

Gesamtschadens lassen sich aus ihren Momenten erkennen. Die For-
mein für die ersten Momente sind in der nachstehenden Tabelle zu-
sammengestellt, wobei angenommen wird, dass nur positive Schaden-

summen auftreten und die Momente p-ter Ordnung um Null der Scha-

densummenverteilung s(S) mit

S. js*8(S)<IS

bezeichnet werden. Die Momente der Verteilung des Gesamtschadens
sind als r-te Ableitungen der zugehörigen charakteristischen Funktion

z(j>««(S)dS- -1 (8)

an der Stelle r 0 bestimmt worden, worin zur Abkürzung

fc gesetzt wurde.X
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a) Erstes Moment um Null (Erwartungswert):

Verteilung (1)

Verteilung (7) " *

Zweites Moment um den Erwartungswert
(Streuungsquadrat)

Verteilung (1) /4
Verteilung (7) 'A + A'î) •

c^) Drittes Moment um den Erwartungswert
(Schiefe)

Verteilung (1) ^ f&,»

Verteilung (7) // f(S3 + 3 *SA + 2 /S«). ^

d) Viertes Moment um den Erwartungswert
(Exzess)

Verteilung (1) ^ fS^ + StAj, (9d)

Verteilung (7) ^ t(S, + 4 + 3 + 12/3^ +
+ 6/S}) + 31^(5 2 + 2*S,S» +« •

e) Fünftes Moment um den Erwartungswert

Verteilung (1) A + (9e)

Verteilung (7) ^ <(Sg + 5 + IOjAA + 2O/S3S? +
+ 30 /S& + 60 /SySq + 24 /S?) +

+ 10^&Ä + AS? + 3AA + 5 /^S? + 2 /St).
Ein Vergleich der entsprechenden Momentenformeln zeigt, dass

o) die Verteilungen (1) und (7) im Erwartungswert übereinstimmen
und

die Streuungsquadrate und die höheren Momente der verall-
gemeinerten Verteilung (7) grösser sind als bei der Verteilung (1).

Bemerkenswert ist, dass weder in den Formeln (1) und (7) noch
in den Momentenformeln (9) Eigenschaften der einzelnen Versicherungen
und deren Anzahl auftreten. Lediglich die Bestandeseigenschaften,
welche in den Parametern f und fe oder ^ zum Ausdruck kommen,
sowie die Schadensummenverteilung s(S) und deren Momente S kom-

men in den genannten Formeln vor. Darin äussert sich der kollektive
Charakter der Lundbergschen Bisikotheorie.



— 156 —

3. Grenzverteilungen

Für die späteren Untersuchungen ist es nützlich, die Grenzformen
der Verteilungen (1) und (7) für kleine und grosse Werte von f zu kennen.
Die entsprechenden Formeln werden daher im folgenden zusammen-
gestellt.

aj GrewOTerfeifwwg /ür fcZeme Werfe row f

Es gilt die Grenzformel für beide Verteilungen (1) und (7)

/I für S 0,
lim /(S,f) lim /(S,f,Ä) (10)
(o (o m) lur o > 0.

bj GrewOTerfefüwwf/ew für grosse Werfe row f

Die Verteilungsfunktionen

F(S,t,fc) J7(S,U)dS,
0

welche den Verteilungen (1) und (7) entsprechen, gehen für grosse
Werte von f in die nachstehenden Grenzfunktionen über, wobei die
Variable S ersetzt wird durch die Hilfsvariablen

S^ « - «r
relativer Gesamtschaden in bezug auf den Erwartungswert),

T1 g-fcSl
ob,/ £ -

standardisierter Gesamtschaden mit dem Erwartungswert
Null und dem Streuungsquadrat Eins).

Zu aa) Für den relativen Gesamtschaden g gelten die Grenzformeln

/0 für g < 1,
]imF(g,f,Ä oo) (11)
(oo M fur g =2: 1 ;

und

hm D(g,f,ü =£ oo) I ——-—dp (12)
<-00 /

0

I(üg,ü), (unvollständige D-Funktion).
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Zu bbJ Für den standardisierten Gesamtsehaden 2 gilt die Grenzformel

Die Grenzverteilungen aeg) des relativen Gesamtschadens g ent-

sprechen dem schwachen Gesetz der grossen Zahlen, bei dem eine Mass-

Stabverkürzung im Verhältnis 1 : i vorgenommen wird ; die Grenzvertei-

lungen bbdes standardisierten Gesamtschadens 0 entsprechen ander-
seits dem starken Gesetz der grossen Zahlen, bei dem der Maßstab im
Verhältnis 1 : [/f verkürzt wird. Während sich beim standardisierten
Schaden « sowohl für die Verteilung (1) als auch für die verallgemeinerte
Verteilung (7) die Gauss-Verteilung als Grenzfunktion ergibt, gehen
beim relativen Schaden g die beiden Verteilungen in zwei verschiedene
Grenzfunktionen über: Bei der Verteilung (1) erhält man die Elementar-
Verteilung (11) und bei der verallgemeinerten Verteilung (7) die unvoll-
ständige Gammafunktion (12) als Grenzfunktion. Die letztere Grenz-

Verteilung ist mit der Verteilungsfunktion der Primärverteilung (6)

identisch.

C. Die Verteilungen des Gewinnes und des Überschadens

Von grundlegender Bedeutung für die Tarifierung von Gewinn-
formein sind die Verteilungen des Gewinnes und des Überschadens.

Im folgenden werden daher die wichtigsten Eigenschaften dieser Ver-
teilungen untersucht.

(13)

Gauss-Verteilung).

1. Allgemeine Formeln

Der Gewinn G fc'P'— S für S < fc'P',
0 für S ^ fc'P',

und der Überschaden (14')

L - S —Jfe'P'

0

für S>/c'P',
für S < fc'P'
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hängen von der zufälligen Variablen S ab und haben daher ihrerseits
den Charakter von zufälligen Variablen. Für die weiteren Unter-
suchungen empfiehlt es sich, die mittlere Schadensumme als Eech-
nungseinheit einzuführen; dies führt auf folgende Substitutionen:

G
_

P
d ~ VT' ' ~ VT'Oj 1

i fc fc'(l+d),Si'
s
Si

P' (1 + A)P.

P bedeutet die nach dem Äquivalenzprinzip berechnete Nettoprämie
und (1 -f-d) den Sicherheitsfaktor.

Es ergeben sich dann an Stelle von (14') die Definitionsgleichungen
in kanonischer Form:

</ Zcf — a; für a: < Zcf,

0 für a: > Zcf ;

(14)
Z a: — Zcf für a; > Zcf,

0 für a: <i Zcf.

Die Verteilungen der zufälligen Variablen g und / sind durch die

Verteilung des transformierten Gesamtschadens a: gegeben; für die Ver-
teilungsfunktionen gilt :

(14g)

(141)

F(0,Zcf,Zc) 1—F(Zcf,f,/c) für gr 0,
1 — F(Zcf — 0,f,/i) für 0 < 0 <( Zcf ;

F(Z,Zcf,7c) F(Zcf,f,/i) für Z 0,

F(Zcf + Z,f,Zi) für Z > 0.

Die Erwartungswerte von 0 und Z ergeben sich aus

F {ffci} /(Zd —a;) /(«,/,/«) da:, (15g)
0

oo

F {Zfcj} (a; — Zcf) /(a:,f,/t) da;. (151)



— 159 —

Zwischen diesen Erwartungswerten besteht die einfache Beziehung

l(k-l), (16)

mit derenHilfe sie gegenseitig aufeinander zurückgeführt werden können.

Setzt man k 0, so erhält man, weil E {(fo) 0 ist, aus (16) das

plausible Resultat
E{M *•

Für k 0 ist somit der Erwartungswert des Üherschadens gleich der

theoretischen Nettoprämie f.

Ein weiterer bemerkenswerter Spezialfall ergibt sich für k 1 ;

es ist dann

d.h., die Erwartungswerte von Gewinn und Überschaden in bezug auf
die theoretische Nettoprämie t sind gleich gross. Dies ist eine der Aus-
drucksformen des Äquivalenzprinzips. Daraus folgt ferner, dass

ist, je nachdem k =s 1 ist.

Analog wie der Erwartungswert, der mit dem ersten Moment der

Verteilung identisch ist, lassen sich allgemein die Momente um Null
des Gewinnes <7 und des Überschadens 1 darstellen. Es ist

-^1.^/1 / (**—z)7(zM)<fo, (i7g)
0

CO

J(®-K//(®,a)d®. (i7i)
fc/

Zwischen den entsprechenden Momenten gilt als Verallgemeinerung
von Gleichung (16) die Beziehung

mu + (-i)>,{y i 0 (-i)s (is)
i=0

in der die Momente um Null des transformierten Gesamtschadens a: mit
bezeichnet sind. Für das zweite Moment erhält man beispielsweise

(kl)- —2^ + ^. (19)
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Unter Berücksichtigung des Yerschiebungssatzes

' 2
^<2 /^2 /"l

erhält man für die Streuungsquadrate die Beziehung

+^2 {'/£/} —1^2 2|"l {t/ftf} i"l {^(}
fl9'i

«(Sa + z)-2E{fc,}E{Z„},
mit deren Hilfe die Streuungsquadrate von Gewinn und Überschaden

gegenseitig aufeinander zurückgeführt werden können (Sg zweites
Moment um Null der transformierten Schadensummenverteilung s(x)).
In ähnlicher Weise liessen sich Beziehungen zwischen den höheren
Momenten um den Erwartungswert herleiten.

2. Grenzfälle

Eür die Tarifierung von Gewinnformeln ist es nützlich, die Mo-
menten-Grenzwerte für grosse und kleine Versicherungsbestände zu
kennen. Da die Grösse der Versicherungsbestände durch die erwartete
Schadenzahl t gemessen wird, genügt es, die Grenzübergänge t-<-0 und
f-»-oo zu untersuchen.

u,) Momenfen-Grew^werte /ür feleme IFerte uow <

Führt man die relativen Gewinne und Überschäden

<7 Z

* t t

ein, so ergeben sich für die Erwartungswerte dieser Grössen unter Be-

rücksichtigung der Grenzverteilung (10) und der Beziehung (16) die
Grenzwerte

ft

und (20)hmE{U=l-

Für kleine Versicherungsbestände streben somit die Erwartungswerte
des relativen Gewinnes und Überschadens gegen den Gewinnfaktor k
und gegen Eins.



Die Streuungsquadrate und alle höheren Momente um den Er
wartungswert der Verteilung des relativen Gewinnes g' streben für
kleine t gegen Null, weil die Grenzverteilung (10) in einen Punkt de-

generiert. Für den relativen Überschaden wächst - wie man mit Hilfe
von Formel (19) zeigen kann - das Streuungsquadrat für £-() bis ins
Unendliche.

fc) Mowenfew-Grew^werte /ür grosse IFerte ron £

aaj Grenzwerte für den relativen Gewinn und Überschaden

Unter Berücksichtigung der Grenzverteilung (11), welche für feste

Schadenswahrscheinlichkeiten, d.h. für k oo gilt, erhält man für die

Erwartungswerte des relativen Gewinnes und Überschadens die ein-
fachen Ausdrücke:

/0 für k < 1,
lim £?{&,} - / (21g')
(oo Mc— 1 fur fc 5:1

und

/I — k für k < 1,

!ÏU'« <o (MO
/l 00

Die Streuungsquadrate und alle höheren Momente um den Mittel-
wert streben für grosse £ gegen Null, weil die Grenzverteilung (11) sich
'schliesslich in den Mittelwert konzentriert.

Geht man von der Grenzverteilung (12) aus (d.h. k oo), so er-

geben sich für den relativen Gewinn und Überschaden gegenüber (21)
abweichende Momenten-Grenzwerte. Für den Erwartungswert findet

e^fkkU
lim H (<,;,} ^ + (fc-1) I(kfc,k), (22 g')
(oo r (ft-f-Jj

oo

lim Ë (£(.,} — V — (k-l)[l-I(kfc,Ä)], (221')
(oo r (ß-f-i)

co

Afc

fe-V''<«=•"> - TW""
worin

die unvollständige Gamma-Funktion bedeutet. Für die Streuungsqua-
drate und die höheren Momente Hessen sich analoge Formeln herleiten.

11
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Bemerkenswert ist, dass die Verteilungen (1) und (7), wie ein Ver-
gleich der Formeln (21) und (22) zeigt, zu wesentlich verschiedenartigen
Momenten- Grenzwerten führen.

Grenzwerte für den standardisierten Gesamtschaden

Ersetzt man den transformierten Schaden a; durch den standardi-
sierten Schaden 2, d.h. setzt man

£ /<i -)- 2(7

worin den Mittelwert und u die Streuung des transformierten Scha-
dens bedeuten und entsprechend für die Schadengrenze

so lassen sich der transformierte Gewinn p und der transformierte Über-
schaden Z im neuen Maßstab in der Form

darstellen, worin die Hilfsvariable 2 für grosse t der Normalverteilung
mit dem Mittelwert Null und der Streuung Eins folgt. Für die Er-
wartungswerte gelten dann die Formeln

^ — /h ~f~

0 (a — 2)ct,
Z (2 — a)cr

a

— CO

und 00

a

Die Auswertung dieser Integrale führt auf
Ct2

2

E (g j er a 0(a) (23 g)

2

E{Z) a (231)

mit a

— 00
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Mit Hille der Formeln (23) und gegebenenfalls von analogen For-
mein für die höheren Momente lassen sich Näherungswerte für die Er-
wartungswerte und Momente berechnen, wenn die Verteilung des Ge-

samtschadens durch die Normalverteilung approximiert werden darf,
d.h. wenn f gross und die Summenstreuung verhältnismässig niedrig ist.

D. Das Ruinproblem bei der Überschadenversicherung

1. Vorbemerkungen

Im Zusammenhang mit den Bemerkungen zum Prinzip III, unter
Ziffer 6 in Kapitel A, stellt sich die Frage, wie die Ruinwahrscheinlich-
keit y>(«) für eine Überschadenversicherung oder der zugehörige Sicher-

heitszuschlag A bestimmt werden können. Die Lösung dieses Problems
ist für den Fall einer gewöhnlichen Versicherung - im Gegensatz zur
Überschadenversicherung - in der kollektiven Risikotheorie wohl-
bekannt [4]. Es zeigt sich, dass die verallgemeinerte Fragestellung in
ähnlicher Weise beantwortet werden kann wie im Falle der gewöhn-
liehen Versicherung und dass die gewöhnliche Versicherung als Spezial-
fall in der Lösung für die Überschadenversicherung erscheint.

Die Problemstellung lässt sich in folgender Weise umschreiben:

Gegeben ist eine Überschadenversicherung für einen Versiehe-

rungsbestand, der durch die Rechnungselemente (i,s(x),/i) charakteri-
siert sei. Überschäden sind zu decken, soweit sie den Selbstbehalt fci

überschreiten. Zum Ausgleich des Überschadenrisikos wird eine Über-
Schadenreserve mit dem Anfangswert m gestellt. Dieser Reserve werden
einerseits die Überschadenprämien

(i+#/)*%}
gutgeschrieben. Anderseits werden der Reserve alle auftretenden Über-
Schäden belastet.

Krage: Wie gross ist die Wahrscheinlichkeit y(«), dass die Über-
schadenreserve jemals am Ende einer Abrechnungsperiode erschöpft sein

wird, wenn die Überschadendeckung immer wieder erneuert und - sofern
der Ruin nicht vorher eintritt - bis ins Unendliche fortgesetzt wird

Für die im folgenden skizzierte Lösung wird eine ähnliche Methode
benützt, wie sie Täcklind [6] für das Ruinproblem bei der gewöhnlichen
Versicherung entwickelt hat.
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2. Nur positive Schadensummen

Es sei î/ der Gewinn der Überschadenreserve in einer Abrechnungs-
période. Zwischen diesem Gewinn und dem aufgetretenen Gesamt-
schaden a; besteht folgende Beziehung:

/(l —« +
(24)

\(l + A)E{^} für

Unter Berücksichtigung der Formel (1) für die Verteilung des Gesamt-
Schadens a; (oder Formel (7)) lässt sich in Verbindung mit den Trans-

formationsgleichungen (24) die Verteilungsfunktion F(y) darstellen;
-F(y) bedeutet dabei die Wahrscheinlichkeit, dass die Überschaden-

reserve in einer Abrechnungsperiode um höchstens den Betrag 1/ zu-
nimmt. Führt man für die erhöhte Überschadenprämie (1+A) }

die abgekürzte Bezeichnung 1 ein, so gelten für die Verteilung des Ge-

winnes ?/ folgende Beziehungen:

y

j i,
— oo

Z fcZ oo

J î/df(î/) ï I*/(a;,t,/t) da; + J (F— a; + /et) /(a:,t,/i) da:

— oo 0 /cZ

I-E{y AE{U-
Der Erwartungswert des Gewinnes ist somit gleich dem Sicherheits-

Zuschlag in der Überschadenprämie.

Bezeichnet man mit i/>„(m) die Wahrscheinlichkeit, dass die Über-
schadenreserve mit dem Anfangswert it während der ersten r — 1 Ab-
rechnungsperioden nie erschöpft wird, dass aber Ruin in der r-ten
Abrechnungsperiode eintritt, so erhält man die Rekursionsformeln

Vi(«) '")
OO

V2M dE(?/—ît)

y» /V»-i(î/) ^(//—M) •
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Daraus ergibt sich für die Ruinwahrscheinlichkeit >/j(m) (Ruin in irgend-
einem Jahr) unter Berücksichtigung von

vM 2 v»
die Integralgleichung

¥>(m) F(—M) + Jy(î/) M) (25)
0

deren Lösung y(w) die gesuchte Ruinwahrscheinlichkeit darstellt. Es

wird hier darauf verzichtet, die Integralgleichung (25) aufzulösen und
die Lösung zu diskutieren. Hingegen wird die vom Ruinproblem bei

einer gewöhnlichen Versicherung her wohlbekannte Majorante zur
Ruinfunktion ^) ^ e"«" (26)

hergeleitet, welche für die hier verfolgten Zwecke genügt.

Es sei ^(w) — — ^(w)

eine Hilfsfunktion, welche der aus (25) hervorgehenden Integralgleichung
oo

y(w) F(w) + ^(y) <ZF(z/—w)
0

genügt, worin oo

F(m) e"*" — [«-*»<IF(0—«)—F(—«)
Ô

bedeutet und R die grösste Zahl ist, welche die Bedingung
OO

JV-*dF(y) 1 (27)
— oo

erfüllt.

Für die Hilfsfunktion F(w) gilt folgende Entwicklung :

OO

F(u) e"*" —e-*"J>*»<IFfo)—.F(—«)
— W

OO —U

«-®"- e-«" J«-*» JF(2/) + c"®" |dF(*/) -H(-w)
— OO — oo

— M

J(«-*«"+») — l)dF(î/) >0.
— oo

Es ist somit 0 < F(it) < e~®".
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Geht man auf den rekursiven Aufbau der Integralgleichung (25) zu-
rück, so lässt sich folgende Beziehung aufstellen:

e

oo

2 V» F(w) + | - v
v l J L V=1

dl%—w).

Ist die Klammer unter dem Integralzeichen rechts positiv, d.h. ist die

Ungleichung

e"«»-2v,(»)>0 (26 a)
r l

erfüllt, so muss auch - da F(w) positiv ist - die linke Seite der obigen
Gleichung positiv sein, oder mit anderen Worten, die Ungleichung
(26a) gilt auch, wenn n — 1 durch n ersetzt wird. Nun ist aber für w 1

—Vi(«) e"®* -**(—«) > ^(«) > 0.

Daraus folgt aber
oo

2 V» e"®*-V(«) > 0
v l

^ e"*». (26)

Die Bestimmungsgleichung (27) für den Parameter ß lässt sich

unter Berücksichtigung der Transformationsgleichungen (24) in folgen-
der Form schreiben:

y fcf oo (2s)f f/(aQ,k) da; + Je^®~*''/(a:,f,fe) da;

J <T«"dF(//) r/fß./.ß " I-
—OO

Eine nähere Untersuchung der Funktion 9?(ß,f,/c) zeigt, dass

9?(0,f,fc) 1 ist; die Ableitung ç/(0,y,fc) nach ß ist gleich dem negativen
erwartungsmässigen Gewinn Die Funktion y>(ß,i,fc) sinkt so-

mit für kleine positive Werte von ß. Anderseits streben der Zähler und
der Nenner in der Quotientendarstellung von 9?(ß,f,fc) und auch der

Quotient selbst für grosse Werte von ß gegen Unendlich. Daraus

folgt - da ç?(i?,y,fc) in ß stetig ist -, dass es einen kritischen Argument-
wert ß > 0 gibt, für den die Bedingung

9?(ß,f,fc) 1 erfüllt ist.
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Wird R so gewählt, so erhält man für den Sicherheitsfaktor (1 + /{'/)
den Ausdrack: >

In jl + — 1)/(®,f,fc) dx)

l+A«/ 1 — • (29)

7? J(x—fei) /(£,<,7t) dx

Für fc 0 erhält man die Spezialformel :

In

1+7,

£ / Y
1- e**s(s)<fe-lj

R7

Formel (29') lässt sich umformen in

(29')

l_g(l+ A)Kx r
1+ - - I e®+(a:)da;. (29")

0

Für 7t oo geht Formel (29") schliesslich über in
oo

1 + (1 + ;,)B fe**s(a:) da;, (29'")
0

Die Formeln (29") und (29'") sind in der kollektiven Risikotheorie
wohlbekannt. Aus ihnen lässt sich bei gegebenem Zuschlagsfaktor der

Ausgleichskoeffizient B bestimmen, welcher in der Formel für die Ruin-
Wahrscheinlichkeit (26) bei einer gewöhnlichen Versicherung auftritt.
Damit ist aber gezeigt, dass Formel (29) die Verallgemeinerung der be-

kannten Ausdrücke (29") und (29'") für die gewöhnliche Versicherung
auf den Fall der Überschadenversicherung darstellt.

3. Nur negative Schadensummen

In einem Versicherungsbestand mit ausschliesslich negativen
Schadensummen (Lebensfallversicherung) können Verluste für den Ver-
sicherer nur entstehen, wenn zu wenig negative Schadensummen fällig
werden, d.h. wenn z.B. in einem Rentenversicherungsbestand zu wenig
Rentner sterben. Eine Überschadendeckung muss daher bei negativem
Risiko so geordnet werden, dass die Summe der fällig werdenden nega-
tiven Schadensummen auf einen Mindestbetrag 7rf ergänzt wird. Bei

negativem Risiko würde man somit besser von einer Unterschaden-

deckung sprechen.
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Eine solche Deckung bei negativem Risiko müsste, wenn die fälligen
Schadensummen mit dem positiven Vorzeichen genommen werden, den

Unterschaden
i fct — a: tur a < fei

decken, wofür eine theoretische Nettoprämie von

Ë {4,} J(fe< —a)/(a,f,Ä) da

erforderlich wäre, die wiederum mit einem Sicherheitsfaktor (1 -f- A"')
zu erhöhen wäre. Für den Sicherheitsfaktor lässt sich durch eine ähn-
liehe Ableitung wie beim positiven Risiko die Formel

In j 1 + [-1) /(z,f,/i) dal

i (30)

R f (fct— a) /(a,t,k) da
Ô

herleiten, die gleich aufgebaut ist wie Formel (29), nur dass das Integra-
tionsintervall (ftf,oo) ersetzt ist durch das Intervall (0,/rf), was gewisser-
massen einer Vertauschung der Begriffe Überschaden und Gewinn ent-

spricht.

Besteht für einen Versicherungsbestand mit ausschliesslich nega-
tivem Risiko eine Unterschadendeckung, so hätte der Erstversicherer

insgesamt folgende Belastungen zu erbringen:

Risikoprämienausgabe für Erstversicherung f,
Prämie für Unterschadendeckung (1 -j-

Fällt die Summe dieser beiden Belastungen kleiner oder höchstens

gleich hoch aus wie die Schadengrenze fet, so würde der Erstversicherer
überhaupt kein Verlustrisiko mehr tragen.

4. Gemischte Schadensummen

Der Fall mit gemischten Schadensummen kann - wenn man vom
insgesamt überwiegenden Risiko ausgeht - auf die gleichen Formeln
wie die Fälle mit nur positivem oder nur negativem Risiko zurück-
geführt werden. Bei überwiegend positivem Risiko ist z.B. der Fall
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eines negativen Gesamtschadens ohne weiteres in der zweiten Zeile von
Formel (24) enthalten und die Ausdehnung des Definitionsbereichs auf

negative Gesamtschäden spielt für die weiteren Entwicklungen keine

Rolle mehr.

5. Beispiele

In der nachstehenden Tabelle sind einige Sicherheitsfaktoren A"'
zusammengestellt, die sich auf folgende Annahmen stützen:

.Erstes Beispiel (positives Risiko) :

s(s) e"*; Ä oo; E 0,1

7c
4" %

t 1 t 10 oo

0,0 11 11 11

0,5 11 20 22

1,0 12 30 114

1,5 14 34 79

2,0 16 27 49

Es zeigt sich, dass der Sicherheitsfaktor A"' als Funktion der

Schadengrenze 7rf bei festem < einen amonotonen Verlauf aufweist und
für ein bestimmtes 7c einen Maximalwert erreicht. Dieser Verlauf des

Sicherheitsfaktors ist plausibel, weil der Erwartungswert des Über-
Schadens E{7j.,} mit steigender Schadengrenze rasch sinkt, die zum
Ruin führenden Schadenverläufe jedoch überwiegend in sich schliesst,
so dass ein fortgesetzt anwachsender Sicherheitsfaktor notwendig ist.

Bei hoher Schadengrenze verlieren anderseits die Überschäden
immer mehr an Gewicht im Verhältnis zur Ausgleichsreserve mit festem
Anfangswert. Von einer bestimmten Schadengrenze an überwiegt dieser
den Sicherheitsfaktor dämpfende Einfluss, wodurch der geschilderte
Verlauf des Sicherheitsfaktors A zustande kommt. Zu beachten ist
allerdings, dass die in der obigen Tabelle zusammengestellten Sicher-
heitsfaktoren nach der in Kapitel E geschilderten Näherungsmethode
von Esscher berechnet wurden und daher einen Approximationsfehler
enthalten, dessen genaue Grösse nur schwer feststellbar wäre.
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Zweites .Beispiet :

Der standardisierte Gesamtschaden 2 sei normal verteilt, d.h.,
man hat ^

/(«) -- e~fc' 99(2),
|/2w

B(s) J" 99(2) 0(2), mit .r 02 + f,
fct era f,

a: — fcf u (2 — a).

Unter Benützung dieser besonderen Annahmen ergibt sich aus
Formel (29) der Ausdruck: mfal 0f—dl

In 0(a) +
^ ^

99(d)

1+C= 7—^TTA—ä7 ü ^(a—/9) {99(a) — oc0(— a)J

<(fe —1)
mit a und ß a — Ru.

a

Inder nachstehenden Tabelle sind einige Werte des Sicherheitsfaktors

A zusammengestellt, welche sich auf die Spezialformel (29c) stützen.

Schadengrenze a
Sicherheitsfaktoren in %

Btx 0,1 Bo 0,3 Bff 1

-0,5 4,0 12,8 49,8
0 4,4 14,1 59,2
0,5 4,5 14,4 63,9
1,0 4,2 13.8 62,1
1,5 3,9 12,5 55,7
2,0 11,1 48,0

Die nach der exakten Spezialformel (29c) berechneten Sicherheits-
faktoren bieten ein weitgehend ähnliches Bild wie die im ersten Beispiel
nach der Approximationsmethode von Esscher berechneten Faktoren.

* *
Die angegebenen Formeln und Beispiele geben eine erste Übersicht

über die mit dem Euinproblem bei Überschadenversicherungen auf-
tretenden Fragen. Hier bietet sich noch ein weites Feld für weitere
Untersuchungen.



— 171 —

E. Unterteilung nach Risikoverbänden

In den bisherigen Untersuchungen wurde angenommen, der gesamte

Versicherungsbestand eines Versicherungsträgers bilde einen einzigen
Risikoverband. Im folgenden wird demgegenüber vorausgesetzt, der

gesamte Versicherungsbestand zerfalle in w Risikoverbände. Grund-
sätzlich lassen sich die bisher abgeleiteten Formeln auf jeden einzelnen

Teilbestand anwenden. Für den Versicherungsträger stellt sich dann
die Frage, in welcher Weise sich eine solche Unterteilung auf sein Ge-

samtrisiko auswirkt.

Im folgenden wird angenommen, der Gesamtversicherungsbestand
zerfalle in n stochastisch unabhängige Teilbestände mit den Charak-
teristiken

^2 > • • • > • • • ^rz >

Si(a-), S2(z), s<(:r), s„(x),

hi, hg, • • h,,

Bestehen Abhängigkeiten im Schadenverlauf zwischen einzelnen

Teilbeständen, so lassen sich diese nach dem in der Arbeit [2] dar-

gelegten Verfahren wenigstens in erster Näherung auf den Fall mit
stochastisch unabhängigen Teilbeständen zurückführen. Es werden des-

halb für einmal nur stochastisch unabhängige Teilbestände betrachtet.

1. Die Momente der Verteilungen des Gesamtgewinnes
und des Gesamtüberschadens

Für jeden Teilbestand seien in irgendeiner Weise die Gewinn-
faktoren

?Gh-2. • • hj, • • • &„

festgesetzt worden. Man kann die Verteilung des Gesamtgewinnes

0-È0.
i l

und die Verteilung des Gesamtüberschadens

n

£
i i

betrachten.
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Diese Verteilungen ergeben sich aus den entsprechenden Verteilungen
der einzelnen Bisikoverbände als Faltungsprodukte. Es ist

F(G) .F(Gi) .F(G«) * *F(G„)

und ^(•E'i) *^(^2) * • • • •

Für die Erwartungswerte und Streuungsquadrate gelten die ein-
fachen Summenformeln

E{G} 2E{G,} ^nd K(L] VfijL,},
i 1 1 1

n n

^{G} 2A4{Ö<} und ^;{L}
1=1 1=1

Für die höheren Momente Hessen sich weitere Summenformeln auf-
stellen, welche vom vierten Grade an etwas komplizierter aufgebaut
wären.

Will man beispielsweise im Sinne von Prinzip II unter Ziffer 6,

in Kapitel A, eine Sicherheitsmarge in die Gesamtüberschadenprämie
in der Höhe der a-fachen Streuung einrechnen, so könnte man in jedem
einzelnen Risikoverband die Sicherheitsmarge auf den a-fachen Betrag
der zugehörigen Streuung ansetzen, wobei die Faktoren so zu wählen
sind, dass die Bedingung

V, a- J/Va l-L;}
i=ii=i

erfüllt ist. Diese Bedingung lässt sich auf unendlich viele Arten erfüllen.
Sollen z.B. alle a^ gleich hoch angesetzt werden, so ist

<*]/ S/vi-M
» i l

S V/4 {£.}
i=l

was für n gleiche Bestände auf

a
2t.- T

führen würde.
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2. Das Ruinproblem

In ri stochastisoh unabhängigen Risikoverbänden werden die Über-
schaden getrennt ermittelt, jedoch stets einer gemeinsamen Überschaden-

reserve belastet. Jeder Risikoverband leistet an die Überschadenreserve

in jeder Abrechnungsperiode einen Beitrag von

L< (1+A^)E{L<}.
Es stellt sich dann die Frage, wie die Sicherheitsfaktoren an-

zusetzen sind, so dass die Majorante zur Ruinwahrscheinlichkeit (26)
einen gegebenen Wert erreicht.

Für die Lösung dieser Frage geht man von Formel (27) aus und
interpretiert 1/ als Summe aller der einzelnen Risikoverbände, d. h.,
es ist „

2/ S 2/i •

1 1

Es ist dann, weil der Ausdruck links in Formel (27) die charak-
teristische Funktion der Verteilung F(j/) darstellt, die sich bei der

Summierung der Variablen in ein Produkt umsetzt

L Z<

Je-^1%) /J Jc-^'dF(^).
— oo — oo

Gleichung (27) geht somit in die allgemeinere Form

77 (V^di%,) 1. (82)
;=i J

— co *

über.

Die Bedingung (82) lässt sich auf unendlich viele Arten erfüllen.
Die einfachste Lösung erhält man, wenn man jeden Faktor des Pro-
duktes in Formel (82) links einzeln gleich Eins setzt, oder mit anderen

Worten, wenn man das Ruinproblem für jeden Risikoverband getrennt
löst, jedoch stets die gemeinsame Überschadenreserve in Rechnung
stellt. Allen Lösungen der Gleichung (82) gemeinsam ist es - wenn die
Gewinnfaktoren fest gewählt werden -, dass die Summe der Über-
Schadenquoten gleich gross ist wie bei der geschilderten einfachsten

Lösung.



— 174 —

F. Numerische Berechnung von Erwartungs-werten
nach der Methode von Esscher

Die numerische Auswertung von Erwartungswerten von der Form

M

J —je) /(#,<,fc) dx

oder
oo

I" ^(.r — 7ci) /(x,h^) dr
fei

stösst auf fast unüberwindliche Schwierigkeiten, hauptsächlich, weil in
den Formeln (1) und (7) für die Frequenzfunktion des Gesamtschadens
alle Faltungspotenzen s*'(2) für lrgrrgjoo auftreten; die rekursive
Berechnung dieser Faltungspotenzen gestaltet sich äusserst mühsam
und grenzt schon bei verhältnismässig niedrigem Faltungsgrad fast ans
Unausführbare. Glücklicherweise lassen sich die in Frage stehenden

Erwartungswerte nach einer asymptotischen Näherungsmethode aus-

werten, die erstmals von F. Esscher [5] auf die VerteilungsfunktionE(a;,i)
erfolgreich angewendet worden ist. Im folgenden werden die nach der
Methode von Esscher sich ergebenden Näherungsformeln hergeleitet,
welche für die numerische Berechnung der in dieser Arbeit auftreten-
den Erwartungswerte äusserst nützlich, oft sogar unentbehrlich sind.

1. Allgemeine Formeln

Es sei e".s(.r)
*'•'•) —y—

eine transformierte Frequenzfunktion der Schadensumme a, deren
s

Momente — durch die Erwartungswerte
^0

oo

5, | d.r
ö

gegeben seien. Über den Transformationsparameter c wird später pas-
send verfügt. Zwischen den Faltungspotenzen von s(a) und .?(«) besteht
die einfache Beziehung

s*'(a) sj s*'(a).
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Ersetzt man in der Formel (7) die Schadensummenverteilung s(x)
durch die transformierte Verteilung s(x) und substituiert man ausser-
dem an Stelle des Parameters t den transformierten Parameter

t

so kann man die Frequenzfunktion (7) durch die Formel

/(x,«,7i) C(x)/(x,f,/i) (83)

darstellen, in der die Hilfsfunktion (7(,r) durch die Formeln

C(s) e-"(l - ^(5o -1))"" für Ii ^ oo

für Ä oo
(34)

bestimmt ist. Die Funktion /(x,i,7i) stellt eine transformierte Frequenz-
funktion des Gesamtschadens dar, die gleich aufgebaut ist wie die Fre-

quenzfunktion /(®,t,Ä), nur dass s(x) und f ersetzt sind durch s(x) und f.

Es erweist sich als nützlich, den Transformationsparameter c so

zu wählen, dass die Schadengrenze fct zum Erwartungswert des Scha-
dens x bezüglich der transformierten Verteilung /(x,ï,&) wird; dies führt
auf die Bestimmungsgleichung

oo

J xe" s(x) <Jx

* =- 4--. (35)

1
/ \

; IJ e"s(x) dx — lj
%(v-1)

Nach Formel (35) erhält man stets einen eindeutig bestimmten
Wert für den Transformationsparameter c, der einem gegebenen Wert
des Faktors fc zugeordnet ist.

Es ist c < 0 für fc < 1,

c 0 für fc= 1,

c > 0 für Ä>1.

Die transformierte Verteilung /(x,f,/i) ist somit vollständig und eindeutig
bestimmt.
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Durch diç Substitution

® i"i + £ |//«2 + I Ä
*0 \ ^0 /

wird die transformierte Verteilung /(a;,£,/t) standardisiert; die Hilfs-
variable £ weist den Mittelwert Null und die Streuung Eins auf.

Für grosse f folgt der standardisierte Gesamtschaden der aus der
transformierten Verteilung /(a;J,Ä) sich ergebenden Normalverteilung
(13). Für endliche Werte von ï gilt unter bestimmten Voraussetzungen
nach Cramér [4] die Reihenentwicklung

/(£,!,Ä) 95(f) —

3! m)'«,7^(0 +

+...
bei der die jeweils in einer Zeile stehenden Glieder die gleiche Grössen-

Ordnung in f aufweisen. In Formel (36) bedeuten 95(f) die Frequenz-
funktion der standardisierten Normalverteilung

7sr~"
und 95'''(f) die zugehörigen Ableitungen. Die Grössen u) sind die Mo-
mente um den Mittelwert der transformierten Verteilung /(a:,f,/i) und
ergeben sich sinngemäss aus den Formeln (9), indem f und s(ai) durch f

und s(a:) ersetzt werden. Wird der Transformationsparameter c nach

Gleichung (35) bestimmt, so wird die Schadengrenze fc< zum Mittel-
wert der transformierten Verteilung /(,rj,/i). Dieser Mittelwert geht
durch die Standardisierung in den Nullpunkt über. Dies erleichtert
die Auswertung der im folgenden darzustellenden Erwartungswerte
wesentlich.
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2. Die Esscherschen Funktionen

Für die weiteren Betrachtungen erweist es sich als nützlich, die
Esscherschen Funktionen -E„(y) einzuführen. Diese sind durch das

Integral
Er.(y) (37)

0

definiert. Für r s 0 ergibt sich die Grundfunktion
oo

^oo(y) E(y) f~ (38)
K 2TJ J J/23T Kl/)

0

die durch den von Laplace stammenden unendlichen Kettenbruch

1/271 E(y)
—* (38 a)
2/+ 1

2/+ 2

1/+3
1/+ 4

dargestellt werden kann. Für grosse y gilt überdies die asymptotische
Entwicklung

1 1 1.8 1.3.5 1.3.5.7
F 2tt %) ~ + t + g

• • • (38b)
2/ 2/ 2T 2/ 2/

Für negative ?/ ist 0(y)* (38 c)^

1/2ttK2/)
^

Im Anhang II ist die Funktion i?(y) für den praktisch in Betracht
fallenden Bereich tabelliert.

Aus den Funktionen I?oo(2/) ergeben sieb die weiteren Esscher-
Funktionen durch die Rekursionsformel

-®os(2/) - (39a)
dy

oder allgemein dE,,. ,v(w)
®r»(2/)

'
• (39 b)

dy
12
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Daraus folgen die für die numerische Berechnung bequemen Be-
kursionsformeln für ,/t~ ^E„(t/) =K2»^r.(y).
wobei zur Abkürzung in den Funktionen E„(i/) das Argument 1/ weg-
gelassen wird.

E'oo Hoo H10 — — ?yHoo +1 H20 ?/Hio + Hoo

®oi Ï/Eoo 1 H11 2/Ejo ~ Hoo H'21 2/H20 2Eio
H02 — yHoi H'l2 — t/Hu H01 E22 Î/H21 — 2En
HQ3 2/E02 +1 Hl3 " 2/Hia H'02 H03 2/H22 2EJ2

H04 2/E03 Hl4 2/HI3 Hf)3 E04 yHas 2E13

Eo5 2/E04 3 Hl3 Î/H14 H04 H20 I/H24 2Ei4
E06 — 2/Ê05 E]g Î/H15 H'05 H26 I/Has -2Bi5
HQ7 2/HO6 + 1^ H'l7 " ?/EI6 H06 H27 Î/H26 — 2Ei6
H'O8 2/H'O7 Hl8 2/HJ7 EQ7 Ë28 2/Ë27 2H]7

I'09 2/E08 10J Hl9 ?yEi8 Eos ^29 — 1/ h'28 2Hi8

(40 a) (40 b) (40 c)

Die Funktionen E^(t/) lassen sich auch in der Form

Ë,,(î/) -fVs(2/) ^00(2/) + Qr»(2/) (41)

darstellen, worin P„(if) und Q„(f/) Polynome in y sind. Für die hier
in Betracht kommenden Anwendungen sind jedoch die Bekursions-
formein (40) bequemer, weil stets die ganze Folge der Funktionswerte
zu einem gegebenen Argumentwert y benötigt wird.

3. Die Berechnungsformeln von Esscher

Mit Hilfe der Reihenentwicklung (36) lassen sich die zu berechnen-
den Erwartungswerte unter Benützung der unter Ziffer 2 dargestellten
Esscherschen Funktionen in einer der numerischen Bechnung zugäng-
liehen Form darstellen. Je nachdem, wieviele Glieder der Beihenent-

wicklung (86) benützt werden, ergeben sich der Reihe nach die Ap-
proximationsformeln : Benützte Glieder Grössenordnung

in Formel (36) des Approximationsfehlers

Esscher 0 1. Zeile

Esscher I 1. und 2. Zeile r'
Esscher II 1. bis 3. Zeile £"*'•

Esscher III 1. bis 4. Zeile
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Zu beachten ist, dass die Grössenordnung des Approximations-
fehlers von ï und nicht von £ abhängt ; da f bei festem f mit steigender
Schadengrenze fcf anwächst und für fc-«-oo ebenfalls unendlich gross
wird, so ist der Approximationsfehler in der Regel um so kleiner, je
höher die Schadengrenze fcf liegt. Darin liegt ein wesentlicher Vorzug
des Esscherschen Verfahrens, weil die Approximation gerade für hohe

/c-Werte besonders heikel ist.

aj Fdes Gesawfcc/iadews

Geht man von Formel (33) für die Frequenzfunktion des Gesamt-
Schadens aus und ersetzt man darin die transformierte Frequenzfunk-
tion durch die Reihenentwicklung (36), so ergibt sich

0

F(fct,t,fc) ~ C(fcf) I (?(£) - ^ yW(|) df, für fc < 1,

— oo

oo

1 -F(fe,i,Ä) ~ C(fcO I Ç)f) - A yW(f) df, für fc7> 1,
J \
0

worin mit ^ die von den Momenten abhängigen Koeffizienten (ohne
Zahlenfaktoren) von 9?'''(f) in der Reihenentwicklung (36) bezeichnet
sind. Setzt man

y |c[//4 ;

und führt man die Esscherschen Funktionen ein, so ergeben sich der
Reihe nach folgende Formeln:

F(fci,t,Ä) ~ C'(fcf) {Eo„(?/)j, für fc < 1, (a)

(42.0)
1 -F(tt,*,Ä) ~ tf(fc) (Koo(.¥)i> für fc ^ 1. (b)

Essener I:
F(fti,<,Ä) ~ C(fcf) |e„o(?/) 4- ^3^03(2/)}. für it < 1, (a)

(42.1)

1 — F(Jrf,f,Ä) ~ C(fcf) |Eqo(2/) — — -E?oa(2/)| > für fc ^ 1. (b)
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fisscler I/:
W/,/0 ~ C(/4) {^00(3/) + I; ®o»(?y) + I, R«(//) + ~ r Sœ(2/)}, (a)

(42,11)

1 - F(fct,i,Ä) ~ C(W) [Eoo(/y) - § ßo3(y) +1- £04(2/) + -gr^)} • W

Ussc/ter Iii:
F(fctf,A) ~ C7(&0 jl?oo(?/) + |y ^03(2/) + I ^04(2/) + -gf ®oe(2/) +

1
_ - 35 _ _ 280 1

~(~
~g

(/)5 10/23)^(2/)+ ^,^3/34-^07(22)4 g,
- /S) 3?oo(/y)

J
> (a)

(1^,111)

1-F(fc2,a) ~ C(Jc/) (Soo(2/)- g' -Eos)»/) + |y 0«(2/) +

1 _ 35 _ _ 280/1 „
5 ^ "-5(2/)

y j
/33/I4 0OT(2/)

g
000(22)

| • (b)

Die in den Gleichungen (30) und (29) auftretenden Hilfswerte

fc®<*'-*>/(®M) da:

und "
00

|'e^-""/(;riI;)I.r
/c/

lassen sich auf die Berechnungsformeln (42) zurückführen. Beispiels-
weise ist

(13 a)

J*e®'^"/(®M)(ix~ C'(fei) I ~j8,ç»®(f)...^df.
/c/ 0

Daraus folgt, dass der in Frage stehende Hilfswert durch die ent-

sprechenden Formeln (b) in den Gleichungen (42) dargestellt werden
kann, wenn man ?/ durch

//=//—12^/1 (43 b)
ersetzt.
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Beim Hilfswert
J•') ,/j) da;

ist entsprechend von den Formeln (a) auszugehen und ?/ durch (48 b)

zu ersetzen.

Besonders zu beachten ist, dass die dargelegten Berechnungsregeln
für die beiden Hilfswerte nur anwendbar sind, wenn beim erstgenannten
Hilfswert fc 2> 1 ist und beim zweiten Hilfswert fc< 1. Ist diese Voraus-

Setzung nicht erfüllt, so empfiehlt es sich, von den Formeln

Jdz + /(z,a) dz Je***"/(s,*,A) dz
0 fcf 0

(/ oo \ v-/i
1 — £^JV**s(2)d2 — 1 jj, für li^oo,

/ oo

-n ß/c+i- e^^s(2)rfs J

e " für A oo, (44)

auszugehen, bei denen in der ersten Zeile immer einer der beiden Sum-
manden links nach der Formel (42) und ihre Summe nach der Formel
(44) berechenbar ist.

Î)J ZKe Erwartwic/staerfe von Gewinn nnd ÜberscAaden

Eine analoge Ableitung wie bei der Verteilungsfunktion des Ge-

samtschadens führt beim Erwartungswert des Gewinnes für fc < 1 zu
der nachstehenden Esscher-III-Formel.

#{&«} /(k<—»)/(&,<,A) dz ~
0

~ {-®lo(l/) + ^7 ®!3(?y) + ^ ^14(2/) + ^16(?/) +

+ g,
(Äs —10#,) Eis(î/) + ^ ^3/^4-^17(2/) + -

yp Ä3^19(2/)| • (45,111 a)
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Für fc 25 1 gilt ferner für den Erwartungswert des Über Schadens

die nachstehende Esscher-III-Formel
oo

Ejlj.,} |"(a: — fet) /(#,!,7i) da:

/ci

~ C(fo)^ {Eio(</) - -|f ^13(2/) + I; ßu(y) + Sie(») -
1 _ _ 35 _ _ 280 1

gl"
(jÖ5 10/13)^5(2/)

y J

/?3 /?4 ^17(2/)
(JI

/S3 -^19(2/)
j

• (45,111 b)

Durch Weglassung von Gliedern ergeben sich die entsprechenden
Esscher-Formeln (45) niedrigeren Grades.

Sind Erwartungswerte des Gewinnes für fc + 1 oder Erwartungs-
werte des Überschadens für fc < 1 zu berechnen, so ist vorerst der durch
die Formeln (45a) oder (45h) berechenbare Wert zu ermitteln; an-
schliessend ergibt sich der eigentlich gesuchte Wert aus der Umrech-
nungsformel (16).

c^l Zweites Momewf der Ferfei/w«/ des Gewmraes wwd des Überscl/adens

Es gelten folgende Esscher-III-Formeln:

Zweites Moment des Gewinnes für fc < 1 :

E{(fc<—x)®} J(fef—x)2/(x,f,/i) dx ~
0

~ C(fcf)^{E,o(t/) + A S„(z,) + A E,,(//) + A°A E„(j/) +

1 _ _ 35 _ _ 280 „ 1

~t~
g

(/?5 IO/I3)-^25(2/) U —
y

/G4^27(2/) "h
g,

/I3 ^29(2/) j • (46,IIIa)

Zweites Moment des Überschadens für fc + 1 :

00

E{(x— fcfü} J"(x— fc<)®/(x'd,7i) dx ~

~ C(fe) £ js^//) -A E^) + A E^(2/) + * +26(1/) -
1 _ _ 35 _ _ 280 1

"g I (^5 10/13)^25(2/) yy £3&#27(2/) g| (46,111 b)
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Sind zweite Momente zu berechnen, die ausserhalb des Gültigkeits-

bereichs der beiden Formeln (46) liegen, so ist unter Anwendung der

Umrechnungsformel (19) analog zu verfahren wie beim Erwartungs-
wert des Gewinnes und des Überschadens.

* *
*

Die abgeleiteten Esscher-Formeln weisen den vor allem für die An;
Wendungen gewichtigen Vorzug auf, dass sie an fast keine einschrän-
kenden Bedingungen über die Schadensummenverteilung s(x) gebun-
den sind. Ferner lassen sich die Esscher-Formeln auch anwenden, wenn
die Schadensummenverteilung eine analytische Form aufweist, die eine

Integration in geschlossener Form nicht zulässt oder wenn die Schaden-

Summenverteilung sogar nur numerisch, ohne formelmässige Darstel-

lung, gegeben ist.

Die Esscher-Formeln sind vor allem nützlich, wenn 1 eine gewisse
Schranke (etwa 1 )> 3) überschreitet. Für ganz kleine 1 ist es in der Regel
ebenso einfach oder gar noch einfacher, eine exakte Berechnung durch-
zuführen, weil dann nur die verhältnismässig leicht berechenbaren

Faltungspotenzen niedrigsten Grades von s(x) benötigt werden.

Noch nicht restlos geklärt ist die Frage, welche Genauigkeit mit
den verschiedenen Esscher-Formeln praktisch erreicht wird. Diese Frage
lässt sich wohl nur durch systematische Vergleichungen mit exakten
Funktionswerten hinreichend beantworten. Solche Untersuchungen
liessen sich durch die modernen Rechenautomaten auf elektronischer

Grundlage mit mehr Aussicht auf Erfolg durchführen als bisher.

G. Anwendungen

Bei der Anwendung des dargelegten Verfahrens der Risikogewinn-
Ermittlung muss man von den die Verteilung des Gesamtschadens be-

stimmenden Rechnungselementen 1, s(x) und /i ausgehen. Die erwartete
Schadenzahl 1 und die Schadensummenverteilung s(x) erfassen den

Umfang und die Struktur des Versicherungsbestandes. Durch den

Schwankungsparameter /i lassen sich schliesslich die Unsicherheit von <

und s(x) sowie allfällige Störungen des normalen Risikoablaufes (Ku-
mulrisiko usw.) berücksichtigen. Von besonderer Bedeutung ist bei den
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meisten Anwendungen die Schadensummenverteilung s(x). Im folgen-
den werden daher vorerst einige diesbezügliche statistische Erfahrungen
aus der Einzelversicherung bei der Schweizerischen Lebensversiche-

rungs- und Eentenanstalt bekanntgegeben, die dank der in freundlicher
Weise erteilten Erlaubnis hier mitgeteilt werden dürfen.

1. Schadensummenverteilungen aus der Lebensversicherung

Die Schadensummenverteilung s(x) bezieht sich nicht auf die sta-
tistisch nur schwer erfassbaren remcherien Schadensummen, sondern
auf die /äZ%en Schadensummen. Für die empirische Bestimmung der

Schadensummenverteilung geht man daher von den binnen einer be-

stimmten Zeitspanne fällig gewordenen Schadensummen aus, ordnet
diese nach steigenden Schadensummen und bildet daraus die Verteilung
der Schadensummen. Derartige empirische Schadensummenverteilungen
wurden aus den in den Jahren 1935, 1945 und 1955 fällig gewordenen
Schadensummen im Bestände der grossen Einzel-Kapitalversicherungen
(ohne Volksversicherungen) des Schweizergeschäftes der Schweize-
rischen Lebensversicherungs- und Eentenanstalt abgeleitet. Für das

Jahr 1955 wurde überdies je eine Verteilung mit und ohne Berücksich-

tigung der Sonderleistungen aus den obligatorischen Zusatzversiche-

rungen für Unfalltod und Tod nach langdauernder Krankheit (im fol-
genden «wfc-Leistungen» genannt) aufgestellt. In analoger Weise wurde
die Verteilung der negativen Schadensummen im Einzel-Eentenbestand
Schweiz für das Jahr 1955 bestimmt.

Die für das Jahr 1955 ermittelten Verteilungen sind auf der folgen-
den Seite graphisch dargestellt. Alle Verteilungen weisen im ganzen
gesehen ein ähnliches Bild auf und gehören zum asymmetrisch glocken-
förmigen oder J-förmigen Typus. Die im unteren Ast ausgeprägten
Unregelmässigkeiten bei den aus der Einzel-Kapitalversicherung ab-

geleiteten Verteilungen sind in erster Linie eine Folge davon, dass

die runden Versicherungssummen von Fr. 5000 und Fr. 10 000 vor-
herrschen.
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Beobachtete Schadensummenverteilungen aus dem Jahre 1955

bei der Schweizerischen Lebensversicherungs- und Rentenanstalt
«
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Die wichtigsten statistischen Masszahlen aller fünf Verteilungen
sind in der nachstehenden Übersicht festgehalten.

Beobachtete Schadensummenverteilung

Einzel-Kapitalversicherungen Einzel-
Renten-

ver-
Sicherung

1955
1935 1945

1955

ohne 1 mit
«k-Leistungen

Anzahl der fälligen
Schadensummen 466 476 514 523 997

mittlere Schadensumme

% in sFr. 5009 3404 5660 7111 7204

absolute Summen-

Streuung -|/% in sFr. 7222 5151 7626 8786 9667

relative Summen-

Streuung ~ in % 144 151 135 124 134

Die mifffere iSWtadenswTOme ist in der Einzel-Kapitalversicherung
im Jahrzehnt 1985-1945 um etwa 1/3 gesunken; dies ist wohl eine Folge
des Rückgangs der Neuproduktion in den dreissiger Jahren und auch
des Rückgangs der Sterblichkeit, welche die Sterbefälle immer mehr
in die oberen Altersklassen zurückdrängte, wo die Risikosummen mit
Rücksicht auf das bis dahin gebildete Deckungskapital immer kleiner
werden. Die grossen Neuzugänge der Nachkriegsjahre sowie der ver-
mehrte Abschluss von Risiko-Todesfallversicherungen haben bis zum
Jahre 1955 die mittlere Schadensumme sogar über das ursprüngliche
Niveau hinaussteigen lassen. Durch den obligatorischen Einschluss der

«k-Leistungen ergab sich eine weitere Erhöhung der mittleren Schaden-

summe um rund 25%. Bemerkenswert ist, dass die relative Summen-

Streuung in allen vier Verteilungen aus der Einzel-Kapitalversicherung
ungefähr gleich geblieben ist; die Abweichungen liegen überdies im
Bereich von zufälligen Schwankungen. Die in Einheiten der jeweiligen
mittleren Schadensumme dargestellten Schadensummenverteilungen
sind somit in den letzten zwei Jahrzehnten trotz der inzwischen ein-



— 187 —

getretenen Veränderungen (Vergrösserung der Versicherungsbestände,
Sterblichkeitsverbesserung, Umstellung der Reserve auf neue Rech-

nungsgrundlagen, Einschluss der w/c-Leistungen usw.) im wesentlichen
unverändert geblieben. Die in der kollektiven Risikotheorie übliche
Annahme einer gleichbleibenden Summenstruktur findet damit ihre

praktische Bestätigung. Nicht gleich geblieben ist allerdings das Sum-

menniveau, was sich auf die Höhe der erforderlichen Sicherheitsreserven
auswirkt.

Bemerkenswert ist, dass die Verteilung der negativen Schaden-

summen aus der Einzel-Rentenversicherung im Jahre 1955 eine grosse
Ähnlichkeit mit der gleichzeitig beobachteten Verteilung der positiven
Schadensummen aus der Einzel-Kapitalversicherung mit Einschluss
der wfc-Leistungen aufweist. Dies zeigt sich unter anderem darin, dass

die mittlere Schadensumme und die relative Summenstreuung nahezu
übereinstimmen.

Die im folgenden behandelten Beispiele gehen von der analytischen
Schadensummenverteilung

a" e~°
«(*) ~~ry V (47)

M«)

aus (V-Verteilung), die nahe mit den in der Lebensversicherung be-

obachteten Verteilungen übereinstimmt. Diese Verteilungen weisen

stets eine mittlere Schadensumme -Eja:} 1 auf; die als einziger
Parameter auftretende Grösse a ist mit der relativen Summenstreuung
er durch die einfache Beziehung

verbunden. Die mitgeteilten Erfahrungszahlen aus der Lebensversiche-

rung würden etwa a -|, d.h. einer relativen Summenstreuung von
rund 140% entsprechen; diese Annahme würde auf die ^--Verteilung
mit einem Freiheitsgrad führen. Die in der Sachversicherung weit
grösseren Summenstreuungen lassen sich durch entsprechende Wahl
des Parameters a berücksichtigen.

Die Verteilung (47) weist den für die Anwendungen wesentlichen
Vorteil auf, dass sie in einfacher Weise integriert und gefaltet werden
kann, was für nicht zu grosses i eine exakte Auswertung der Erwartungs-
werte erlaubt. Die Anwendung der Methode von Esscher wird überdies

erleichtert, weil die Hilfszahlen s, sich in expliziter Form als Funktion
von a und c darstellen lassen.
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2. Untersuchungen über die Höhe der Gewinnfaktoren

a,1 IVw posiZwe Sc/iadensimmew

Die nachstehenden Beispiele stützen sich auf folgende Annahmen:

Schadensummenverteilung : s(cc) e~* ; 1 ; er 1,

Schwankungsparameter : Ii oo (homogener stochastischerProzess),

Tarifniveau: Z' 1,2Z, (d.h. erwartungsmässige Tarif-

marge 16,67% der Nettoprämie Z');

Sicherheitsmarge in der Überschadenquote :

Prinzip I keine,

Prinzip II 10% der Überschadenstreuung,

Prinzip III Ausgleichskoeffizient B 0,1.

In der untenstehenden Tabelle sind die auf Grund der genannten
Annahmen sich ergebenden Gewinnfaktoren fc' für einige Werte von Z

zusammengestellt, die sich auf die natürliche Gewinnformel

(/ fc'Z' — ;r stützen.

TafreZZe 7

f Z'

Gewinnfaktor fc' in % nach Prinzip

I II III

0 0 17
1 1,2 34 11 17

10 12,0 87 82 77
50 60,0 98,1 97,4 95,7

100 120,0 99,4 99,2 98,5
oo OO 100 100 100

Die erwartete Schadenzahl Z (d.h. die transformierte theoretische
Nettoprämie) kann als Mass der Bestandesgrösse verwendet werden.
Es zeigt sich somit, dass die Gewinnfaktoren fc' mit wachsendem Be-
stand ansteigen. Nach Prinzip I ist fc' im theoretischen Grenzfall Z 0

gleich der angenommenen Tarifmarge von 17 % und wächst mit stei-
gendem Z bis auf 100 % im Grenzfall eines unendlich grossen Bestandes.
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Der Grenzwert von 100% wird für 7 100 mit 7c' 99,4% schon

fast erreicht.

Nach den Prinzipien II und III, die mit einer Sicherheitsmarge
in der Überschadenquote rechnen, fällt der Gewinnfaktor 7c' durchwegs
niedriger aus als nach Prinzip I, bei dem keine solche Sicherheitsmarge
eingerechnet wird. Grosse Unterschiede ergeben sich vor allem für
kleine Werte von 7, d.h. für kleine Versicherungsbestände. Bemerkens-
wert ist, dass bei den hier getroffenen Annahmen nach Prinzip II die

Gewinnfaktoren 7c' für kleine Bestände kleiner und für grosse Bestände

grösser ausfallen als nach Prinzip III.
Die Gewinnfaktoren nach Prinzip III gehen von einem Ausgleichs-

koeffizienten 17 0,1 aus, was - wenn man die Näherungsformel für
die ßuinwahrscheinlichkeit

%«) e

benützt - auf
^

In y>(«)

%

führt. Die Annahme B 0,1 entspricht etwa einer Ruinwahrscheinlich-
keit y(ic) von 1 % und einer Ausgleichsreserve von 50 mittleren Schaden-

summen. In der nachstehenden Tabelle sind einige Variationen über
den Ausgleichskoeffizienten B zusammengestellt. Die angegebenen
Gewinnfaktoren stützen sich im übrigen auf die gleichen Annahmen
wie in der Tabelle 1 ; lediglich für die erwartete Schadenzahl wird durch-

wegs der feste Wert 7 50 benützt.

Tafec77e 2

11

Ruinwahrscheinlichkeit y(u)
17o 1 17oo

Ausgleichsreserve *)

Gewinnfaktor 7c'

in %

0,1 46 69 95,7

0,05 92 138 97,4
0,01 460 690 97,9
0,005 920 1380 98,0
0 CO oo 98,1

(Prinzip I)

*) in Vielfachen der mittleren Schadensumme
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In der nachstehenden Tabelle 3 sind weitere Gewinnfaktoren nach

Prinzip III für f 50 angegeben, welche die Auswirkungen verschie-
dener Variationen der relativen Summenstreuung und des Schwan-

kungsparameters k veranschaulichen. Der Ausgleichskoeffizient E ist
durchwegs zuk 0,1 angesetzt worden, und die Schadensummenver-

teilung genügt stets der /"-Verteilung (47).

Takele <3

Relative
Summenstreuun g

CT

Gewinnfaktor 7c' in % für

OO II oo k 50

0 99 99 98

l 96 94 92

94 89 82

1,2 75 43

Die Tabelle 3 zeigt - was zu erwarten war -, dass die Gewinn-
faktoren fc' abnehmen, je grösser die relative Summenstreuung u ist
und je kleiner der Unsicherheitsparanieter k angenommen wird. Varia-
tionen der Summenstreuung er wirken sich verhältnismässig stärker aus
als beim Schwankungsparameter k.

Für ff 1,2 ergeben sich unverhältnismässig kleine Gewinnfak-
toren; in der Kolonne k 50 konnte sogar überhaupt kein Wert mehr

eingesetzt werden. Dies ist eine Folge davon, dass die bei Prinzip III
vorgesehene Sicherheitsmarge in der Überschadenquote eine minimale
Tarifmarge erheischt, die bei der hier getroffenen Annahme (f 1,27).

für er 1,2 und k 50, nicht erreicht wird. Einige Werte dieser mini-
malen Tarifmarge sind in der nachstehenden Tabelle 4 zusammen-
gestellt. Diese ergeben sich aus den Formeln (29) für den Sicherheits-

Zuschlag A'" bei einer Schadengrenze k 0 (gewöhnliches Ruinproblem)
für den Ausgleichskoeffizienten E 0,1.

Die in der Tabelle 4 eingetragene punktierte Linie grenzt das Ge-

biet der Werte von u und ^ ab, welche bei einer Tarifmarge von hoch-
stens 20% der theoretischen Nettoprämie 7 eine sinnvolle Gewinnformel
nach Prinzip III für E 0,1 ergeben. Der in Tabelle 3 nicht berück-

sichtigte Wert für k 50 und <r 1,2 liegt bereits ausserhalb dieses

Gebietes.
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TaèeMe ^

Relative
Summenstreuimg

CT

Minimale Tarifmarge Aq'* in % von t für

* ~~
Ii

0 0,5 1,0 2.0

0 5 8 11 18

0,5 7 10 13 20

1,0 11 14 18 26

1,5 20 24 28 37

2,0 86 41 46 60

3,0 192 215 245 338

Bei grossen Werten der relativen Sunnnenstreuung er und des Dis-
persionsexzesses % ist unter Umständen eine weit grössere Tarifmarge
erforderlich als die in den Tabellen 1 bis 3 angenommene Marge von
'20 %. Solche Fälle kommen insbesondere in der Sachversicherung prak-
tisch vor.

fe^1 Är negtafwe »Schaden.swmmew

Bei Lebensfall- und Rentenversicherungen hat der Versicherungs-
träger ein negatives Risiko zu decken, bei dem die Rollen des Versicherten
und des Versicherungsträgers gegenüber der positiven Risikodeckung
gewissermassen vertauscht erscheinen. Der Versicherer zahlt dem Ver-
sicherten laufend eine Risikoprämie und erhält als Gegenleistung im
Todesfall des Versicherten das freigewordene Deckungskapital. Man
kann daher von einer negativen Risikoprämie und einer negativen
Schadensumme oder kurz von einem negativen Risiko sprechen.

Gewinn ergibt sich bei negativem Risiko, wenn die Summe der

fällig gewordenen negativen Schadensummen eine gewisse Grenze über-
steigt. Die natürliche Gewinnformel bei negativem Risiko lautet daher

<7 a; — hT.

Für die nachstehenden Beispiele werden die gleichen Annahmen be-

nützt, wie für die Beispiele mit positivem Risiko in Tabelle 1. Lediglich
die Beziehung zwischen 1 und h wird abgeändert in < 1,2 f oder

f 0,833h damit sich eine Tarifmarge zugunsten des Versicherers ergibt.
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Tafee77e 5

f t'
Gewinnfaktor 7i' in % nach Prinzip

r II III

0 0

1 0,83 317 384 342

10 8,33 124 131 135

50 41,67 103 106 116

100 83,33 101 103 105

oo CO 100 100 100

Während bei positivem Bisiko die Gewinnfaktoren 7c' mit steigen-
dem 7 anwachsen, ergeben sich bei negativem Bisiko fallende Faktoren.
Bei kleinen Versicherungsbeständen können die Gewinnfaktoren 7c'

mehrere hundert Prozente erreichen. Dies ist verständlich, weil in sol-

chen Fällen nur selten Schadenfälle auftreten, so dass die meisten Ver-

sicherungsjahre dem Versicherungsträger Verlust bringen. Die nur in
einzelnen Jahren auftretenden Gewinne müssen dann grösstenteils zur
Deckung der Verluste in den übrigen Jahren reserviert bleiben.

Für grosse Versichernngsbestände nähert sich der Gewinnfaktor 7c'

von oben her dem Grenzwert von 100 %. Bei positivem Bisiko nähern
sich die Gewinnfaktoren 7c' von unten her der gleichen Grenze.

Nach Prinzip I ergeben sich die niedrigsten Faktoren; die bei den

Prinzipien II und III eingerechnete Überschaden-Sicherheitsmarge
führt - insbesondere für kleine f - zu höheren Gewinnfaktoren 7c'.

Bemerkenswert ist es, dass bei negativem Bisiko die GeAvinnfak-

toren sich weiter von dem für beide Bisikoarten geltenden Grenzwert

von 100% entfernen. Für das negative Bisiko sind somit bei der Ge-

winnermittlung verhältnismässig grössere Überschadenquoten in Bech-

nung zu stellen als für das positive Bisiko. Dies ist eine Folge davon,
dass die Frequenzfunktion des Gesamtschadens vor dem Grenzwert von
100% höher verläuft als nach dem Grenzwert.

* **
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Die angegebenen und besprochenen Beispiele vermögen wohl einen

ersten Überblick zu geben über die Auswirkungen der vorgeschlagenen

Prinzipien für eine risikotheoretisch begründete Gewinnermittlung und
den bei der Anwendung dieser Methode auftretenden Problemen. Die
benützten Modelle der kollektiven Bisikotheorie erlauben es in ver-
hältnismässig einfacher Weise, die besonderen Verhältnisse von Ver-
Sicherungsbeständen hinsichtlich Bestandesgrösse, Summenstruktur,
Kumulrisiko usw. zu berücksichtigen; je nach den konkreten Verhält-
nissen kann eine geeignete Gewinnformel konstruiert werden; die dann
auftretenden Gewinnfaktoren können eindeutig bestimmt werden.

Die geschilderten risikotheoretischen Methoden lassen sich nicht
nur auf die Gewinnermittlung an sich, sondern auch auf die Gewinn-

Verteilung bei Gruppen- und anderen Kollektiv-Versicherungen an-
wenden. Für derartige Anwendungen sei auf die Arbeit [3] verwiesen,
in der auch einige Untersuchungen über die Stabilität der Gewinne -
je nach den angewendeten Gewinnformeln - dargestellt sind.

Anhang I

A. Modelle, welche auf die verallgemeinerte Verteilung (7) führen

1. Schwankende Schadenswahrscheinlichkeiten

Die feste erwartungsmässige Schadenzahl f wird ersetzt durch eine

veränderliche Schadenzahl fq, worin der Paktor g eine zufällige Variable
ist, welche der Primärverteilung

IP cA' clq

^ r(h)

folgt. Die Verteilung (7) ergibt sich aus der Verteilung (1) vermittels
der Beziehung ^

/(x,fA) | dfï(q) /(z,«g).
0

Pür /i oo geht die Verteilung (7) in die Verteilung (1) über.

13
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2. Wahrscheinlichkeitsansteckung

Die aus dem Urnenschema mit Wahrscheinlichkeitsansteckung
bei einheitlicher Schadensumme von Polya-Eggenberger abgeleitete
Verteilung lautet im Fall der seltenen Ereignisse:

^
f (i + d) (f+ 2d) (f -{- (a;— 1) d)

a;!(l + d)~^**

Setzt man für den Ansteckungskoeffizienten

t
d — Dispersionsexzess),

7i

so ergibt sich nach einigen Umformungen die auf feste Schadensummen
vereinfachte Formel (7).

3. Mehrfache Schadenfälle hei einem Schadenereignis

Durch ein Schadenereignis werden m verschiedene Schadenfälle

ausgelöst (z.B. m Schäden bei einem Hagelwetter oder m Policen bei
einem Todesfall). Die Wahrscheinlichkeit von m Schadenfällen bei einem

Ereignis sei durch die Verteilung

/(m)
1 1

Mi + z) w i + z
mit dem Mittelwert

m /(m)
m=l lu (1 + %)

gegeben. Bei fester erwartungsmässiger Zahl der Schadenereignisse und
unter Annahme der oben genannten Verteilung für die mehrfachen

Schadenereignisse ergibt sich für die Verteilung des Gesamtschadens a;

die Verteilung (7), wenn wiederum

f

gedeutet wird.
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4. Veränderung der Schadensummenverteilung

Die Verteilung des Gesamtschadens bei festen Schadenswahr-

scheinlichkeiten (Formel (1))

V e"'P

mit den Elementen

f

r=0 r

t In (1 +

?"(®),

und

ï(œ)
1

V
ln(l + z) r=l

%

1 + £

' s*'(x)

ist identisch mit der verallgemeinerten Verteilung

~ /7i + r-l\ «
r 7i

\ r ; Z + Ä_ Z+k

mit den Elementen Z,s(a:) und Ii. Daraus lässt sich schliessen, dass bei

Anwendung der verallgemeinerten Verteilung im Rahmen von an sich

festen Schadenswahrscheinlichkeiten das Risiko mitberücksichtigt ist,
dass die Rechnungselemente f und s(œ) sich bis zu den in den obigen
Formeln gegebenen Grenzen ändern können.

5. Nicht hinreichend bekannte Schadenswahrscheinlichkeiten

Bei nicht hinreichend bekannter Schadenswahrscheinlichkeit ist
man gezwungen, die Prämie mehr oder weniger gefühlsmässig zu
schätzen. Bei diesem Vorgehen muss man die Möglichkeit von Fehl-
Schätzungen in Kauf nehmen. Rechnet man beispielsweise mit der
falschen Prämie ig an Stelle der richtigen Prämie < und nimmt man an,
der relative Fehler g folge der Primärverteilung unter Ziffer 1, so erhält
man für die Verteilung des Gesamtschadens a; die Formel

CO

/(a;M) I*dff(g) /(x,fg,oo),
0

welche gemäss Interpretation 1 auf die verallgemeinerte Verteilung (7)
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führt. In diesem Fall hat /i den Charakter eines Unsicherheitsparameters,
der je nach dem Grad der Unsicherheit bei der Prämienabschätzung
passend festzusetzen ist.

B. Veränderliche Schadensummenverteilungen

Es kommt vor, dass die Schadensummenverteilung s(x) sich mehr
oder weniger sprunghaft ändert. Solche Schwankungen können ent-
weder für sich allein oder auch in Verbindung mit Schwankungen in
den Schadenswahrscheinlichkeiten auftreten. Beispielsweise können

folgende Modellfälle auftreten:

Fall I : Der feste Erwartungswert f wird ersetzt durch einen schwan-
kenden Erwartungswert ig, wobei der Faktor g der Primär-
Verteilung unter A 1 folgt. Die Schadensummenverteilung
bleibt fest. Dieser Fall führt arrf die verallgemeinerte Vertei-
lung (7).

Fall II: Der Erwartungswert f bleibt fest. Die einzelnen Summen x
der Schadensummenverteilung werden ersetzt durch propor-
tional schwankende Summen xg, wobei der Faktor g der Pri-
märverteilung

m e~"*' g~* dg
*»<«> —'»'<*

Fall III : Sowohl der Erwartungswert f als auch die Schadensummen x
sind schwankend. Die Schwankungen erfolgen wmWäwglg
voneinander nach den Primärverteilungen unter A 1 und B II.

Fall IV: Wie Fall III; die relativen Schwankungen des Erwartungs-
wertes t und der Schadensummenverteilung s(x) genügen
beide der gleichen Primärverteilung und erfolgen parallel zu-
einander, das heisst, der Erwartungswert t und die Schaden-

summe x gehen gleichzeitig in fg und xg über.

In diesen vier Modellfällen genügen die beiden ersten Momente der

Verteilung des Gesamtschadens den nachstehenden Formeln (Annahme
Si 1).
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Fall Erwartungswert Streuungsquadrat

I

III

II '$2 1 H—
\ m/

+ * + —
V m

IV ^(A + 2) (A +1) + %(A + 1) (4A + 6)

A*

Transformation der Rechnungseinheit im Pall IV ai*

Alle vier Fälle führen im Vergleich zum klassischen Modell

(Streuungsquadrat fSj) zu einer Erhöhung des Streuungsquadrates,
und zwar am stärksten beim Fall IV. Grundsätzlich ist die Streuungs-
formel in allen vier Fällen gleich aufgebaut. Man kann daher in erster

Näherung lediglich mit dem Fall I rechnen, den Schwankungspara-
meter A jedoch so festsetzen, dass die Streuung den «richtigen» Wert
annimmt. Die verallgemeinerte Verteilung (7) folgt dann in erster Nähe-

rung der «richtigen» Verteilung.

Eine derartige Vereinfachung berücksichtigt allerdings nur die

Streuung und vernachlässigt allfällige Unterschiede in den höheren
Momenten. Solche Unterschiede, die sich gegebenenfalls auf Grund
komplizierterer Modelle abschätzen lassen, können durch eine passende
Transformation der Schadensummenverteilung s(x) berücksichtigt wer-
den. Beispielsweise könnte s(x) so transformiert werden, dass die beiden
ersten Momente ihren Wert beibehalten, das dritte Moment jedoch
passend erhöht wird. Auf diese und ähnliche Weise lässt sich die Ver-

teilung des Gesamtschadens œ wohl stets mit Hilfe der verallgemeinerten
Verteilung (7) hinreichend genau annähern. Damit ist nicht nur eine

realistische Erfassung der gegebenen Verhältnisse gewährleistet, sondern

es wird auch ein Formelapparat der praktischen Anwendung zugeführt,
welche für diese Zwecke gerade noch einfach genug ist.

IV*



Anhang II
Ta/ei der SsscÄer-JVw/rf'ion !?(//)

2/

10*1%)

0 1 2 3 4 5 6 7 8 9

-1.4 244 928 248 796 252 743 256 772 260 885 265 084 269 371 273 748 278 218 282 783
-1.3 210 262 213 425 216 652 219 944 223 302 226 728 230 223 233 788 237 426 241 138
-1.2 181 803 184 408 187 064 189 771 192 531 195 344 198 212 201 137 204 120 207 161
-1.1 158 281 160 441 162 641 164 883 167 167 169 493 171 862 174 277 176 738 179 247
-1.0 138 714 140 510 142 351 144 219 146 120 148 055 150 020 152 034 154 079 156 161

-0.9 122 334 123 847 125 386 126 952 128 546 130 167 131 817 133 496 135 205 136 944
-0.8 108 538 109 815 111 114 112 435 113 779 115 146 116 536 117 949 119 386 120 847
-0.7 96 848 97 933 99 036 100 157 101 297 102 456 103 634 104 831 106 047 107 282
-0.6 86 888 87 815 88 757 89 714 90 686 91 673 92 676 93 695 94 730 95 781
-0.5 78 353 79 150 79 959 80 780 81 613 82 459 83 318 84190 85 075 85 974

-0.4 71 001 71 689 72 387 73 095 73 813 74 542 75 282 76 033 76 795 77 568
-0.3 64 636 65 233 65 838 66 451 67 073 67 704 CS 345 68 995 69 654 70 322
-0.2 59 096 59 616 60 143 60 678 61 221 61 771 62 328 62 893 63 466 64 047
-0.1 54 253 54 709 55 171 55 639 56 114 56 595 57 082 57 576 58 076 58 583
-0.0 50 000 50 401 50 808 51 220 51 637 52 059 52 487 52 920 53 359 53 803

0.0 50 000 49 604 49 212 48 825 48 443 48 066 47 694 47 325 46 962 46 603
0.1 46 248 45 897 45 551 45 209 44 871 44 536 44 206 43 880 43 558 43 239
0.2 42 924 42 613 42 305 42 001 41 700 41 403 41 109 40 819 40 532 40 248
0.3 39 968 39 690 39 416 39 144 38 876 38 611 38 319 38 089 37 833 37 579
0.4 37 328 37 079 36 834 86 591 36 351 36 113 35 878 35 645 35 415 35 187

0.5 34 962 34 739 34 518 34 300 34 084 33 870 33 659 33 449 33 242 33 037

0.6 32 834 32 633 32 434 82 237 32 043 31 850 31 659 31 470 31 283 31 097

0.7 30 914 30 732 30 552 80 374 30 198 30 023 29 850 29 679 29 509 29 342

0.8 29 175 29 010 28 847 28 686 28 526 28 367 28 210 28 054 27 900 27 747

0.9 27 596 27 446 27 298 27 150 27 005 26 860 26 717 26 576 26 435 26 296

1.0 26 157 26 021 25 880 25 751 25 618 25 486 25 355 25 226 25 097 24 970

1.1 24 844 24 719 24 595 24 472 24 350 24 229 24109 23 991 23 873 23 756

1.2 23 640 23 526 23 412 23 299 23 187 23 076 22 966 22 857 22 749 22 641

1.3 22 535 22 429 22 325 22 221 22 118 22 016 21 914 21 814 21 714 21 615

1.4 21 517 21 420 21 323 21 228 21 133 21 038 20 945 20 852 20 760 20 669

1.5 20 578 20 488 20 899 20 310 20 223 20 135 20 049 19 963 19 878 19 793

1.6 19 709 19 626 19 543 19 461 19 380 19 299 19 219 19 139 19 060 18 982

1.7 18 904 18 827 18 750 18 674 IS 598 18 523 18 449 18 375 18 301 18 228

] .8 18 156 18 084 18 013 17 942 17 871 17 802 17 732 17 663 17 595 17 527

1.9 17 460 17 393 17 326 17 2G0 17 194 17 129 17 065 17 000 16 937 16 873

2.0 16 810 16 748 16 686 16 624 16 563 16 502 16 441 16 381 16 322 16 262

2.1 16 203 16145 16 087 16 029 15 972 15 915 15 858 15 802 15 746 15 691

2.2 15 636 15 581 15 526 15 472 15 419 15 365 15 312 15 259 15 207 15 155

2.3 15 103 15 052 15 001 14 950 14 900 14 849 14 800 14 750 14 701 14 652

2.4 14 603 14 555 14 507 14 459 14 412 14 365 14 318 14 271 14 225 14 179

2.5 14133 14 088 14 042 13 998 13 953 13 908 13 864 13 820 13 777 13 734

2.6 13 690 13 647 13 605 13 562 13 520 13 478 13 437 13 395 13 354 13 313

2.7 13 273 13 232 13 192 13 152 13 112 13 072 13 033 12 994 12 955 12 916

2.8 12 878 12 840 12 802 12 764 12 726 12 689 12 652 12 615 12 578 12 541

2.9 12 505 12 469 12 433 12 397 12 301 12 326 12 290 12 255 12 221 12 186



— 200 —

2/

10= E(?y)

0 1 2 3 4 5 6 7 8 9

3 12 151 *816 *498 *196 **908 10 635 373 124 *886 *659
4 09 441 233 033 *841 *657 08 480 310 147 *990 *838
5 07 692 551 415 284 157 07 034 *916 *801 *690 *582
6 06 478 377 279 184 091 06 002 *914 *830 *747 *667
7 05 589 513 440 368 298 05 229 163 098 034 *973
8 04 912 853 796 740 685 04 631 579 527 477 428
9 04 380 333 287 242 198 04 154 112 070 030 *990

.'/ 10= F(y) 2/ 10= Efo)

10.0 03 951 20.0 01 990

11.0 03 597 25.0 01 593

12.0 03 302 30.0 01 328

13.0 03 051 40.0 00 997

14.0 02 835 50.0 00 798

15.0 02 648 100.0 00 399

lim î/E(?/) - ,— 0.398 942
i/>- oo ^
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Für weitere Literaturangaben sei auf die Arbeit [4] und den Literaturbericht
über die kollektive Risikotheorie (Blätter der Deutschen Gesellschaft für Versiehe-
rungsmathematik 1956, Band III) verwiesen.
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