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Die Ermittlung der Risikogewinne

im Versicherungswesen aufrisikotheoretischer Grundlage

Von Hans Ammeter, Ziirich

Der Schweizerischen Lebensversicherungs- und Rentenanstalt

zu threm 100jihrigen Jubilium gewidmet

A. Problemstellung und grundsitzliche Erwidgungen

1. Der Gewinn aus irgendeiner wirtschaftlichen Téatigkeit wird
grundsitzlich nach dem Schema

Gewinn — Krlos — Aufwand

ermittelt. Fiir die nicht vollstindig innerhalb der Abrechnungsperiode
abgewickelten Geschifte, die sogenannten unvollendeten Umsitze,
sind dabel besondere Riickstellungen einzusetzen, welche, je nachdem
es sich um eine Erfolgs- oder Liquidationsrechnung handelt, in ver-
schiedener Weise zu bemessen sind.

Im Versicherungswesen tritt eine besondere Art von nicht voll-
endeten Umsitzen auf. Die Prémienberechnung geht nidmlich von
einem vollendeten Risikoumsatz, d. h. von der Annahme aus, dass
alle theoretisch moglichen Schadenabliufe auftreten. Praktisch wird
jedoch wegen der stochastischen Natur des versicherungsmissigen
Risikos immer nur ein Teil dieser Moglichkeiten realisiert; der ver-
bleibende Rest von nicht aufgetretenen Moglichkeiten dussert sich in
den Schwankungen der jihrlichen Schadenbelastung. Wiirde man die-
sen unvollendeten Risikoumsétzen bei der Bestimmung der Risiko-
gewinne nicht Rechnung tragen, d.h. den Gewinn lediglich als Dif-
ferenz zwischen der eingenommenen Nettorisikoprimie P’ und dem
tillig gewordenen Gesamtschaden S bestimmen und diesen Gewinn
fortgesetzt ausschiitten, so verblieben dem Versicherer keine Mittel,
um die in einzelnen Jahren auftretenden Uberschiiden zu decken. Eine
versicherungsmissige Risikodeckung konnte so auf die Dauer nicht
funktionieren und wiirde den Sicherheitsanforderungen kaum geniigen,
welche die Versicherten mit Recht an einen Versicherungstriger stellen.

10
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Es 1st daher notwendig, den unvollendeten Risikoumséitzen bei
“der Ermittlung der Risikogewinne durch geeignete Riickstellungen
Rechnung zu tragen. Dies fiihrt zu der in der vorliegenden Arbeit dar-
gelegten Theorie der Gewinnermittlung auf risikotheoretischer Grund-
lage, welche dem stochastischen Charakter der im Versicherungswesen
auftretenden Vorgiénge gerecht wird.

2. Die einfachste Methode der risikotheoretischen Gewinnermitt-
lung geht von der Aufteilung der gesamten Nettorisikoprimie P’ in
zwel Komponenten aus; eine Komponente ist die Grundquote kP’
(0<<k’<< 1), welche die Normalschéiden deckt und die Sicherheitsmarge
enthilt; die andere Komponente — die Uberschadenquote (1 —k')P" —
deckt die allenfalls auftretenden Uberschiiden. Die Uberschadenquote
(1—Ek")P" wird in jedem Rechnungsjahr einer Ausgleichsreserve gut-
geschrieben, der anderseits allfillige Uberschiiden S—E’ P’ >0 belastet
werden. Es ergeben sich dann — je nach dem aufgetretenen Gesamt-
schaden S — die nachstehenden Gut- und Lastschriften, welche den
Riickstellungen fiir die unvollendeten Risikoumsitze entsprechen.

Héhe Gutschrift Lastschrift Risikogewinn
des Gesamtschadens der Ausgleichsreserve °
S < k'P' (1—k)P’ 0 KD —S
KP <8< P P—8 g
S=> P 0 S—P

3. Die unter Ziffer 2 geschilderte Methode gipfelt in der Gewinn-
formel ¢ =KP—8. (a)

Diese Art der Risikogewinnermittlung, die als die natiirliche Methode
bezeichnet werden kann, ist nicht die einzig mdgliche. Man konnte
z.B. Formel (a) verallgemeinern in

G =k (kéP' —8), (k<1), (b)
oder G=FKP —8S+m'P fir S<KPF,
— m'P fir § = K'P', (©)

mit 0 <m’ < 1—k".
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Nimmt man an, dass die Gewinnformeln in einem noch niher zu pri-
zisierenden Sinne stets gleichwertig konstruiert werden, so fiihrt For-
mel (a) zu stirker schwankenden Jahresgewinnen als die Formeln (b)
und (¢). Man kénnte theoretisch sogar so weit gehen und einen festen

Jahresgewinn
° G =FKP (d)

festsetzen. Damit kiime man allerdings zu einer nur noch fiktiven Ge-
winnermittlung, weil der wirkliche Schadenverlauf keine Rolle mehr
spielen wiirde.

Durch die Gestaltung geeigneter Gewinnformeln kann man einer
bestimmten Gewinnpolitik Rechnung tragen. Es ist durchaus zuléssig,
nicht die natiirliche Methode (Formel (a)) zu wihlen, obschon dadurch
der natiirliche Fluss der Gewinne kiinstlich gesteuert wird. Eine der-
artige Gewinnpolitik erfordert allerdings — wie noch zu zeigen sein
wird — grossere Riickstellungen und Sicherheitsmittel als die natiir-
liche Methode.

4. Das dargelegte Verfahren fiir die Gewinnermittlung erstrebt
eine Ordnung, bei der Risikoverluste nicht in FErscheinung treten, in-
dem Verluste stets iiber die Ausgleichsreserve abgebucht werden. Den-
noch wire es denkbar, dass Risikoverluste vorkommen, nimlich dann,
wenn sich die Ausgleichsreserve erschopfen wiirde, z. B. wenn ein be-
sonders hoher Uberschaden auftritt oder wenn Jahre mit Uberschaden
sich hidufen wiirden. Es empfiehlt sich deshalb, den Anfangswert u
der Ausgleichsreserve und die Faktoren in der Gewinnformel so fest-
zusetzen, dass eine Erschopfung der Ausgleichsreserve praktisch als
ausgeschlossen gelten kann. Man gelangt dann zu einem gesicherten
Risikoausgleich, der sich in folgenden drei Stufen vollzieht:

BErstes Risiko:

Der Versicherer deckt die individuellen Schiden aus den einzelnen
Versicherungen mit Hilfe der Gesamtrisikoprimie P’, soweit diese da-
zu ausreicht.

Zwentes Risiko:

Die in Reserve gestellten Uberschadenquoten (1 —%)P’ decken
das Risiko eines Gesamtiiberschadens S —k' P’ >0, soweit sie dazu
ausreichen.
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Drittes Rastko:

Die Ausgleichsreserve mit dem passend festgelegten Anfangswert
uw und die Sicherheitsmarge in den Uberschadenquoten (1—k')P’
decken das Risiko von Super-Uberschiiden, welche zu einer Erschép-
fung der Ausgleichsreserve fithren konnten.

5. An sich geniigt es, wenn der geschilderte dreistufige Risikoaus-
gleich fiir das Gesamtrisikogeschiift eines Versicherers gewihrleistet ist.
In diesem Sinne konnte das geschilderte Verfahren fiir alle Geschafts-
zweige und Risikoverbénde zusammen als Ganzes angewendet, werden.

Der Versicherungstriger muss anderseits den Verlauf des Risiko-
geschiftes getrennt nach Geschéiftszweigen und Risikoverbinden ver-
folgen und die Grundlagen der Préamienkalkulation in allen Risiko-
verbdnden laufend iiberwachen. Dariiber hinaus erscheint es als wiin-
schenswert, dass — abgesehen von Zuweisungen im Zuge des Ausgleichs
von Uberschiiden — die einzelnen Risikoverbinde sich selbst erhalten.
Dies lisst sich erreichen, indem fiir jeden Risikoverband getrennt die
anzuwendende Gewinnformel festgesetzt wird, wobei den besonderen
Bediirfnissen jedes Risikoverbandes durch geeignete Konstruktion der
Gewinnformel Rechnung getragen werden kann. Die dem Ausgleich der
Uberschiéiden dienende Ausgleichsreserve wird jedoch fiir alle Risiko-
verbédnde gemeinsam gefiihrt.

6. Fiir die praktische Durchfiihrung der geschilderten Gewinn-
ermittlung miissen die in den Gewinnformeln auftretenden Zahlen-
faktoren k', die sogenannten Gewinnfaktoren, bestimmt werden. Dabei
geht man von der Annahme aus, dass der Gesamtschaden S eine zu-
fallige Variable ist, deren Verteilungsgesetz durch die in Abschnitt B
skizzierten Hilfsmittel der kollektiven Risikotheorie einer technischen
Analyse zugéinglich gemacht wird. Fiir die Berechnung der Gewinn-
faktoren werden drei Prinzipien vorgeschlagen, die anhand der natiir-
lichen Gewinnformel (a) im folgenden diskutiert werden.

Prinzip I:
Der Gewinnfaktor k&’ in der Formel
G = ]ﬁ’P, ——-S

wird so bestimmt, dass der Erwartungswert des Uberschadens
S—F'P’ >0 gleich gross wird wie die Uberschadenquote (1—k")P”,
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d.h., es 1st fir S—K'P' >0 »
(1—kVP =E{S—KP'} = f(S—k'P’) f(S,P") ds. (1)
kP!
In dieser Formel bedeutet f(S,P’) die Frequenzfunktion des Gesamt-
schadens, welcher wihrend der Zeitspanne auftritt, die der Netto-
primieneinnahme P’ zugeordnet ist. Ks lasst sich zeigen, dass die Be-
stimmungsgleichung (I) gleichwertig ist der Bedingung
P!
AP = E{F'P'—8} = f(k’P’—S) f(S,P") dS, (')
0
oder in Worten, der Gewinnfaktor &’ wird so bestimmt, dass der Er-
wartungswert des jihrlichen Gewinnes G = k'P'—S = 0 gleich gross
wird wie die in der Nettoprimie enthaltene Sicherheitsmarge AP.

Prinzvp I1:

Die Bestimmungsgleichungen (I) erfagssen wohl die zweite Risiko-
stufe im Sinne von Ziffer 4, lassen jedoch die dritte Stufe unberiick-
sichtigt. Um dieser Rechnung zu tragen, muss die Verteilung der Uber-
schiiden L=S8S—KP firS>kP,

L=0 tir S<EK'P’
betrachtet werden. Die Verteilung — ihre Frequenzfunktion sei mit
f(L) bezeichnet — lidsst sich durch ihre Momente

My = _foLr f(L) dL

charakterisieren, von denen das erste Moment p, mit dem bereits
angegebenen Erwartungswert des Uberschadens identisch ist. Das
Streuungsquadrat des Uberschadens

o = iy — i} = [ (L—p)*f(L) L
0

stellt ein einfaches Mass fiir die Variabilitit der Uberschiden dar. Nach
Tchebycheff erreicht die Wahrscheinlichkeit dafiir, dass der wirkliche
Uberschaden nicht hoher ausfillt als

) g
bei beliebiger Verteilung f(L) mindestens
1
1—

o2
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Setzt man « = 3, und bemisst man die Uberschadenquote auf

w8 s,
so wiirde diese mit einer Wahrscheinlichkeit von mehr als 8/, aus-
reichen, um allfillige Uberschéiden zu decken. Man gelangt so, an Stelle
von Gleichung (I), zur die dritte Stufe beriicksichtigenden Bestim-
mungsgleichung fiir den Gewinnfaktor £’

(1—K)P" = py+a |/ py. (1T)
Prinzip 111:

Das zweite Glied rechts in Formel (II) fiihrt mitunter zu einer
untragbar hohen Uberschadenquote. Dies lisst sich vermeiden, indem
man an Stelle von (II) die Bestimmungsgleichung

(1—Kk)VP = (1 +Ayp) (I1I)

beniitzt, in welcher der Uberschaden-Sicherheitszuschlag A]'%, so an-
gesetzt wird, dass die noch nidher zu umschreibende Ruinwahrschein-
lichkeit w(u) hinreichend klein ausfillt. Unter y(u) versteht man die
Wahrscheinlichkeit, dass die Ausgleichsreserve mit dem Anfangswert u,
der die Uberschadenquoten (14 A L) u, gutgeschrieben und der die
aufgetretenen Uberschiiden belastet werden, jemals negativ wird.

Bis lidsst sich zeigen, dass die Formel fiir die Ruinwahrscheinlich-
keit y(u) giiltig bleibt, wenn die Gewinnfaktoren k£’ fiir jeden Risiko-
verband getrennt nach der Formel (III) bestimmt werden, voraus-
gesetzt, dass die Schadenverliufe in den einzelnen Risikoverbiéinden
untereinander stochastisch unabhéngig sind und fiir jeden Risikover-
band die gemeinsame Ausgleichsreserve mit dem Anfangswert « in
Rechnung gestellt wird. Damit gelangt man zu einer theoretisch und
praktisch befriedigenden Gewinnermittlung, diesich gegebenenfallsleicht
auf verallgemeinerte Gewinnformeln im Sinne der Formeln (b), (¢) und

(d) tibertragen lasst. % .

*

Die angefiihrten Formeln beziehen sich auf den Fall mit nur posi-
tivem Risiko. Der Fall mit negativem Risiko, der z.B. in der Lebens-
fall- und Rentenversicherung auftritt, lisst sich nach sinngeméss dhn-
lichen Methoden behandeln, wobei die Begriffe Gewinn und Uber-
schaden gewissermassen ihre Bedeutung tauschen. Ebenso ldsst sich
der Fall mit gemischtem Risiko behandeln, wobei man zweckmissig
vom insgesamt tiberwiegenden Risiko ausgeht.
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Das skizzierte Verfahren bezieht sich nur auf die Ermittlung der
Risikogewinne, kann aber auf alle Versicherungszweige angewendet
werden. Ferner kann es — wenn Gewinnbeteiligung vorgesehen ist —
auch angewendet werden auf die Gewinnverteilung nach Risikover-
binden und auch auf Koliektiv-Risikoversicherungen aller Art, z.B.
auf Gruppenversicherungen und Riickversicherungen.

B. Risikotheoretische Grundlagen

1. Grundlegende Annahmen und Formeln [4] 1)

Die Risikotheorie betrachtet die in einem Versicherungsbestand
auftretenden Schadensbelastungen als zufillige Variable, welche durch
bestimmte Verteilungsgesetze charakterisiert werden. Die theoreti-
schen Erwartungswerte dieser zufélligen Variablen sind identisch mit
den nach dem Aquivalenzprinzip bestimmten Nettoprimien. Diese
Figenschaft des Erwartungswertes bildet gewissermassen die Briicke
zwischen der elementaren Theorie, welche vom Aquivalenzprinzip aus-
geht, und der Risikotheorie, welche den stochastischen Charakter des
Risikoprozesses beriicksichtigt.

Die Verteilung des Gesamtschadens in einem beliebigen Versiche-
rungsbestand fiir eine gegebene Abrechnungsperiode ist ein zu kom-
plexes Gebilde, um direkt angegeben werden zu kénnen. Man 1st daher
gezwungen, die Gesamtverteillung aus einfacheren Elementen aufzu-
bauen. In dieser Hinsicht sind bisher zwei Wege beschritten worden,
welche unter dem Namen der individuellen und der kollektiven Risiko-
theorie bekannt geworden sind.

Die éltere individuelle Risikotheorie geht von der Gesamtheit der
bei den einzelnen Versicherungen im allgemeinen tiberblickbaren Scha-
densmoglichkeiten aus und baut aus den fiir alle Einzelversicherungen
als bekannt vorausgesetzten Elementarverteilungen die eigentlich allein
interessierenden Verteilungen fiir Versicherungsbestinde auf. Die vor-
ausgesetzte Kenntnis der technischen Eigenschaften aller Einzelversiche-
rungengestaltet dieAnwendung derindividuellen Theorieuniibersichtlich
und zeitraubend.

1) Zahlen in [ ] beziehen sich auf das Literaturverzeichnis.
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Einen anderen Weg schligt die moderne kollektive Risikotheorie
ein. Sie geht — ohne sich um die Verhiltnisse bei den einzelnen Ver-
sicherungen zu kiimmern — von der verhaltnisméssig leicht iiberblick-
baren Verteilung fiir den Gesamtbestand in einem infinitesimalen Zeit-
element aus und baut aus diesen Ilementarverteilungen — lediglich
unter Beniitzung gewisser Bestandeseigenschaften — die Verteilung des
Gesamtschadens fiir eine gegebene Abrechnungsperiode auf. Die kol-
lektive Betrachtungsweise steht dem Grundgedanken des Versiche-
rungswesens niher als die individuelle Methode, weil die versicherungs-
méssige Risikodeckung nur innerhalb von Kollektiven, nicht aber bei
einzelnen Versicherungen funktionieren kann.

Das Verteilungsgesetz des in einer Abrechnungsperiode auftretenden
Totalschadens S kann unter bestimmten Voraussetzungen in der Form

oo —i 47

S = >

r=0

s*(S) (1)

dargestellt werden; in dieser Formel bedeuten

f(S,t)dS die Wahrscheinlichkeit, dass der Totalschaden S in das Inter-
vall (S,S -+ dS) fillt, wenn eine Abrechnungsperiode betrachtet
wird, in der genau ¢ Schadenfille theoretisch erwartet werden;

s*"(S)dS die bedingte Wahrscheinlichkeit, dass der Gesamtschaden aus
genau r Schadenfillen in das Intervall (S,S 4 dS) fillt.

Die Verteilung s*'(S) entsteht rekursiv aus der Schadensummen-

verteilung s*(S) = s(S) nach der Formel

S
$7(S) = [ () NS —2) de 2)

0
und 1st mit der r-ten Faltungspotenz von s(S) identisch.
Der in Formel (1) rechts auftretende Ausdruck
et

r!

f(rt) = (3)
stellt die aus der Wahrscheinlichkeitsrechnung bekannte Verteilung
von Poisson dar; f(r,t) bedeutet die Wahrscheinlichkeit, dass genau r
Schadenfille eintreten, wenn theoretisch ¢ Fille erwartet werden.
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Der als einziger Parameter in Formel (3) auftretende Erwartungs-
wert ¢t 1st — wenn die mittlere Schadensumme

8, = fs s(S) dS (4)

als Rechnungseinheit eingefiihrt wird — gleich der theoretisch erforder-
lichen Gesamtrisikoprédmie fiir die betrachtete Abrechnungsperiode.
Umgekehrt kann man die Risikopriimie ¢ auch als Mass fiir die zeit-
liche Linge der betrachteten Abrechnungsperiode beniitzen. Cramér
deutet daher den Erwartungswert ¢ als «transformierte Zeit».

Die Ableitung der Formel (1) stiitzt sich im wesentlichen auf fol-
gende drel Annahmen:

a) Im infinitesimalen Zeitelement (1, 4 dt) treten nur ein oder gar
kein Schadenfall auf.

b) Die Verteilungen des Gesamtschadens in den aufeinanderfolgenden
Zeitelementen sind untereinander stochastisch unabhingig.

¢) Der Erwartungswert ¢ ist fiir eine gegebene Zeitstrecke eine feste
Zahl.

Diese Annahmen koénnen z.B. als erfiillt gelten, wenn gleichbleibende
oder gesetzmdssig sich verindernde Schadenswahrscheinlichkeiten vor-
liegen.

In der Wirklichkeit sind die geschilderten Annahmen kaum je
streng erfiillt. Mitunter treten sogar erhebliche Abweichungen auf. In
fritheren Arbeiten des Verfassers [1] wurden daher diese zu engen An-
nahmen erweitert auf zufallsartic schwankende Schadenswahrschein
lichkeiten, was implizite zu gewissen Abhéngigkeiten unter den Scha-
denféllen fiihrt. An die Stelle der Poissonverteilung (3) tritt dann die
negative Binomialverteilung

_ (htr—1 N A
fr.t:h) _( r )[H-h] [i_-}——h}’ (5)

in der h einen Schwankungsparameter bedeutet, der um so kleiner aus-
fallt, je grosser die Schwankungen in den Schadenswahrscheinlichkeiten
angenommen werden. Der Grenzfall h = oo entspricht dem Spezialfall
von festen Schadenswahrscheinlichkeiten, der auf die Poissonverteilung
(3) zuriickfiihrt.
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Die Verteilung (5) ergibt sich unter folgenden Annahmen: Der
feste Erwartungswert ¢ wird ersetzt durch einen zufallsartig schwanken-
den Wert #q, worin der Faktor q eine zufillige Variable ist, welche der
Priméirverteilung W e g1 dg

I'(h)

dH(q) = (6)
geniigt. Im Anhang I wird unter A gezeigt, dass die Verteilung (5)
sich auch noch aug einer Reihe von weiteren scheinbar untereinander
wesentlich verschiedenen Modellen ergibt. Ferner lisst sich die gegen-
iiber (1) verallgemeinerte Formel

o - - 7 h h
e I L

niherungsweise auf verschiedene weitere Modelle zuriicktiihren (siehe
Anhang I, Abschnitt B). Dies sichert der Verteilung (7) eine fast um-
fassende Anwendbarkeit, sowohl in der Lebens- als auch in der Sach-
versicherung.

2. Momentenformeln

Die wichtigsten Figenschaften der Verteilungen (1) und (7) des
Gesamtschadens lassen sich aus ihren Momenten erkennen. Die For-
meln fiir die ersten Momente sind in der nachstehenden Tabelle zu-
sammengestellt, wobel angenommen wird, dass nur positive Schaden-
summen auftreten und die Momente p-ter Ordnung um Null der Scha-
densummenverteilung s(S) mit

S, = |57 s(8)ds
0

bezeichnet werden. Die Momente der Verteilung des Gesamtschadens
sind als r-te Ableitungen der zugehdorigen charakteristischen Funktion

00 ~h
py(7) = llﬂf( f ¢ 5(S) dS wl)] (8)
0 d
an der Stelle T = 0 bestimmt worden, worin zur Abkiirzung
B t
2= gesetzt wurde.
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a) Erstes Moment um Null (Erwartungswert):
Verteilung (1)

= I8, . 9
Verteilung (7) & : (92)

b) Zweites Moment um den Erwartungswert u,:
(Streuungsquadrat)

Verteilung (1) py = 1S,,

— , 5 (9b)
Verteilung (7) e = t(Ss+ %57) .
¢) Drittes Moment um den Erwartungswert u,:
(Schiete)
Verteilung (1) g = 18, 90)
, c
Verteilung (7) py = 1(S;+ 848,58, +24%5)).
d) Viertes Moment um den Erwartungswert g, :
(Exzess)
Verteilung (1) u, = 1S, + 8282, (9d)

Verteilung (7) py = (S, + 4755, + 8482+ 12 425,52 +
+ 6 2°S1) + 82%(S5 + 215,51 + £°S1).
¢) Fiinftes Moment um den Erwartungswert p,:
Verteilung (1) uy = t8; 4 10#2S,S,, (9e)
Verteilung (7) ps = t(Ss =45 1S,S, +104S,S, + 20 425,53 +
-+ 8042538, + 60 S, S + 24 4*S)) +
+ 1083(SyS, + 15357 + 8 S551 + 5 %S, 51+ 24°57) -

Ein Vergleich der entsprechenden Momentenformeln zeigt, dass
a) die Verteilungen (1) und (7) im Erwartungswert iibereingtimmen
und
b) die Streuungsquadrate und die hoheren Momente der verall-
gemeinerten Verteilung (7) grosser sind als bei der Verteilung (1).

Bemerkenswert ist, dass weder in den Formeln (1) und (7) noch
in den Momentenformeln (9) Eigenschaften der einzelnen Versicherungen
und deren Anzahl auftreten. Lediglich die Bestandeseigenschaften,
welche in den Parametern ¢ und h oder y zum Ausdruck kommen,
sowle die Schadensummenverteilung s(S) und deren Momente S, kom-
men in den genannten Formeln vor. Darin dussert sich der kollektive
Charakter der Lundbergschen Risikotheorie.
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3. Grenzverteilungen

Fiir die spéteren Untersuchungen ist es niitzlich, die Grenzformen
der Verteilungen (1) und (7) fiir kleine und grosse Werte von ¢ zu kennen.
Die entsprechenden Formeln werden daher im folgenden zusammen-
gestellt.

a) Grenzverterlung fiir klewne Werte von t
Es gilt die Grenzformel fiir beide Verteilungen (1) und (7)
/1 fir S=0 s

lim £(S,t) = lim {(S,t,h) =
>0 f( ) t»0 f( ) \0 fir S > 0.

b) Grenzverteilungen fiir grosse Werte von t

Die Verteilungsfunktionen

F(S,t,h) ffoh

welche den Verteilungen (1) und (7) entsprechen, gehen fiir grosse
Werte von ¢ in die nachstehenden Grenzfunktionen iiber, wobei die
Variable S ersetzt wird durch die Hilfsvariablen

) S
aa -
1= s,
(= relativer Gesamtschaden in bezug auf den Frwartungswert),
S— tS
bb)

Vﬂz

(= standardisierter Gesamtschaden mit dem Erwartungswert
Nuoll und dem Streuungsquadrat Eins).

Zu aa) Fiir den relativen Gesamtschaden ¢ gelten die Grenzformeln

N i g<1,

}fg Plabh =) =1 fir g=1; y
und

lim F(gt,h = oo) — f i Juk sl (12)

tmco F(h)

= I(hq,h), (unvollstindige I-Funktion).
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Zu bb) Fiir den standardisierten Gesamtschaden z gilt die Grenzformel

4

1 _e
lim F(z,t,h) = —— e *dé& 13

L
=

— C0

(Gauss-Verteilung).

Die Grenzverteilungen aa) des relativen Gesamtschadens g ent-
sprechen dem schwachen Gesetz der grossen Zahlen, bei dem eine Mass-
stabverkiirzung im Verhéltnis 1: ¢ vorgenommen wird ; die Grenzvertei-
lungen bb) des standardisierten Gesamtschadens z entsprechen ander-
seits dem starken Gesetz der grossen Zahlen, bei dem der Malistab im
Verhiiltnis 1: |/t verkiirzt wird. Wihrend sich beim standardisierten
Schaden z sowohl fiir die Verteilung (1) als auch fiir die verallgemeinerte
Verteilung (7) die Gauss-Verteilung als Grenzfunktion ergibt, gehen
beim relativen Schaden g die beiden Verteilungen in zwei verschiedene
Grenzfunktionen iiber: Bei der Verteilung (1) erhélt man die Elementar-
verteilung (11) und bei der verallgemeinerten Verteilung (7) die unvoll-
stindige Gammafunktion (12) als Grenzfunktion. Die letztere Grenz-
verteillung ist mit der Verteilungsfunktion der Primérverteilung (6)
1dentisch.

C. Die Verteilungen des Gewinnes und des Uberschadens

Von grundlegender Bedeutung fiir die Tarifierung von Gewinn-
formeln sind die Verteilungen des Gewinnes und des Uberschadens.
Im folgenden werden daher die wichtigsten Figenschaften dieser Ver-
teillungen untersucht.

1. Allgemeine Formeln
Der Gewinn G =Ek'P'—8S fir S<k' P,
=0 fir S=FK'P’',
und der Uberschaden (14')
L=8S—EkKP fir S>KP,
=0 fir S <k'P’
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hingen von der zuféilligen Variablen S ab und haben daher ihrerseits
den Charakter von zuféilligen Variablen. Fiir die weiteren Unter-
suchungen empfiehlt es sich, die mittlere Schadensumme S; als Rech-
nungseinheit einzufiihren; dies fiihrt auf folgende Substitutionen:

I P
=g =8,
I
- k= k(147),
Sy
S
o=, P — (1+A)P.
1

P bedeutet die nach dem Aquivalenzprinzip berechnete Nettoprimie
und (14 4) den Sicherheitsfaktor.

Iis ergeben sich dann an Stelle von (14") die Definitionsgleichungen
in kanonischer Form:
g=Fk—z fir z<<ki,

=10 fir =z = &i;
(14)
|l =ax—kt fir x> kt,

== ) fir « < kt.

Die Verteilungen der zufélligen Variablen ¢ und [ sind durch die
Verteilung des transtormierten Gesamtschadens x gegeben; fiir die Ver-
teilungsfunktionen gilt:

F(g,kt,h) = 1 —F(ktt,h) fir ¢ = 0, 14g)
= 1—F(kt—git,h) fir 0<<g =< Kkt; (g
F(lkt,h) = F(kt,t,h) fir { = 0, 141)
= F(kt +1t,h) tir 1> 0. (
Die Erwartungswerte von ¢ und [ ergeben sich aus
Kt
E{gy} = [ (t—2) f(z,th) dz, (15g)

[e0]

Bl = [(x—kt) j(zt,h) de. (151)

kit
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Ziwischen diesen Erwartungswerten besteht die einfache Beziehung
Elg,) —E{l,} = t(k—1), (16)
mit deren Hilfe sie gegenseitig aufeinander zuriickgefithrt werden kénnen.

Setzt man k = 0, so erhélt man, weil E {g,} = 0 ist, aus (16) das

plausible Resultat

Fiir k = 0 ist somit der Erwartungswert des Uberschadens gleich der

theoretischen Nettopridmie {.

Ein weiterer bemerkenswerter Spezialfall ergibt sich fiir k = 1;
es 1st dann

E {9:} = E {lt} )

d.h., die Erwartungswerte von Gewinn und Uberschaden in bezug auf
die theoretische Nettopriamie ¢ sind gleich gross. Dies ist eine der Aus-
drucksformen des Aquivalenzprinzips. Daraus folgt ferner, dass

b {gkt} =L {Zkt}
ist, je nachdem k =1 1st.

Analog wie der Erwartungswert, der mit dem ersten Moment der
Verteilung identisch 1ist, lassen sich allgemein die Momente um Null
des Gewinnes ¢ und des Uberschadens I darstellen. Es ist

kt
nelghe) = Elgie} = [ (—a) f(@,th) da, (17g)
0

ue ) = B} = [(@—k) f(zh) de. (171)
kit

Ziwischen den entsprechenden Momenten gilt als Verallgemeimerung
von Gleichung (16) die Beziehung

polowd + 0 dhd = S () @

in der die Momente um Null des transformierten Gesamtschadens z mit
u; bezeichnet sind. Fiir das zweite Moment erhilt man beispielsweise

Mz{gm} +n””2{lkt} = (kt)?— 2kt p; + pg - (19)
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Unter Berticksichtigung des Verschiebungssatzes
fy = o — 143
erhilt man fir die Streuungsquadrate die Beziehung
pa A0+t b} = g2 — 2000 {00t} 01 { )
= t(Se+ 2) — 2B (g} B Ut}

mit deren Hilfe die Streuungsquadrate von Gewinn und Uberschaden
gegenseitig aufeinander zuriickgefiihrt werden konnen (82 = zweites
Moment um Null der transformierten Schadensummenverteilung s(a:)]
In &hnlicher Weise liessen sich Beziehungen zwischen den hoheren
Momenten um den Erwartungswert herleiten.

(19

2. Grenzfille

Fiir die Tarifierung von Gewinnformeln ist es niitzlich, die Mo-
menten-Grenzwerte fiir grosse und kleine Versicherungsbestinde zu
kennen. Da die Grosse der Versicherungsbestinde durch die erwartete
Schadenzahl ¢ gemessen wird, geniigt es, die Grenziiberginge -~ 0 und
t-» oo zu untersuchen.

a) Momenten-Grenzwerte fiir kleine Werte von i

Fiihrt man die relativen Gewinne und Uberschiden

q l

B 2 e —

g i i
ein, so ergeben sich fiir die Erwartungswerte dieser Grossen unter Be-
riicksichtigung der Grenzverteilung (10) und der Beziehung (16) die

Grenzwerte

lim B {g} =k
t»0

ind lim B {I],} = 1. (20)
t»0

Fiir kleine Versicherungsbestinde streben somit die Erwartungswerte
des relativen Gewinnes und Uberschadens gegen den Gewinnfaktor k
und gegen Kins.
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Die Streuungsquadrate und alle hoheren Momente um den Er
wartungswert der Verteilung des relativen Gewinnes ¢ streben fiir
kleine ¢t gegen Null, weil die Grenzverteilung (10) in einen Punkt de-
generiert. Fiir den relativen Uberschaden wiichst — wie man mit Hilfe
von Formel (19) zeigen kann — das Streunungsquadrat fiir ¢- 0 bis ins
Unendliche.

b) Momenten-Grenzwerte fiir grosse Werte von t

aa) Grenzwerte fiir den relativen Gewinn und Uberschaden

Unter Beriicksichtigung der Grenzverteilung (11), welche fiir feste
Schadenswahrscheinlichkeiten, d.h. fir h = oo gilt, erhilt man fiir die
Erwartungswerte des relativen Gewinnes und Uberschadens die ein-
fachen Ausdriicke:

m FE g, = ¢
t» oo '(]l"t \k—“]. fl‘ll‘ k ; 1 ( g
und hees
1—k fur k<1,
km Bl = 211
PR L Ny fir k>1. &)

h=co

Die Streuungsquadrate und alle hoheren Momente um den Mittel-
wert streben fiir grosse ¢ gegen Null, weil die Grenzverteilung (11) sich
'schliesslich in den Mittelwert konzentriert.

Geht man von der Grenzverteilung (12) aus (d.h. h 5= o0), so er-
geben sich fiir den relativen Gewinn und Uberschaden gegeniiber (21)
abweichende Momenten-Grenzwerte. Fiir den Frwartungswert findet
man

--hlk hl h .
lim E {gy,} = ° (--L—-)-— + (k—1) I(hk,h), (22g"
e (k1)
h-} oo

C~hk ( h k)h
Im E{l,}| = ——— —(k—1)[1—I(Rk,h)], 221
htoo

worin P et
e 1
1(hk,h) — f T

0
die unvollstindige Gamma-Funktion bedeutet. Fiir die Streuungsqua-
drate und die hoheren Momente liessen sich analoge Formeln herleiten.
11
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Bemerkenswert ist, dass die Verteilungen (1) und (7), wie ein Ver-
gleich der Formeln (21) und (22) zeigt, zu wesentlich verschiedenartigen
Momenten-Grenzwerten fiihren.

bb) Grenzwerte fiir den standardisierten Gesamtschaden

Ersetzt man den transformierten Schaden x durch den standardi-
sierten Schaden z, d.h. setzt man

T = pu+ 20,

worin u; den Mittelwert und o die Strenung des transformierten Scha-
dens bedeuten und entsprechend fiir die Schadengrenze

kt = p 4 ao,

so lagsen sich der transformierte Gewinn ¢ und der transformierte Uber-
schaden ! 1m neuen MaBstab in der Form

g = (a—2)o,
| = (z—«)o
darstellen, worin die Hilfsvariable z fiir grosse ¢ der Normalverteilung

mit dem Mittelwert Null und der Streuung Hins folgt. Fir die Ir-
wartungswerte gelten dann die Formeln

[
(9

Elg) = | (a—2)e 2 dz
0= |

und oo

E{f} = V;ﬂf(zéa)ezz dz .

o

Die Auswertung dieser Integrale fiihrt auf

_‘T:.
- e .
Elg} =o|a®(@)— =], (23 g)

; 2

% ]
Bl =0l —afl— 231
) (@) | (231)
LI/QJI

mit 1 .2
Do) =—— | e ? dz.
VQn
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Mit Hilfe der Formeln (23) und gegebenenfalls von analogen For-
meln fiir die hoheren Momente lassen sich Naherungswerte fiir die r-
wartungswerte und Momente berechnen, wenn die Verteilung des Ge-
samtschadens durch die Normalverteilung approximiert werden darf,
d.h. wenn t gross und die Summenstreuung verhiltnismissig niedrig ist.

D. Das Ruinproblem bei der Uberschadenversicherung

1. Vorbemerkungen

Im Zusammenhang mit den Bemerkungen zum Prinzip 111, unter
Zitfer 6 in Kapitel A, stellt sich die I'rage, wie die Ruinwahrscheinlich-
keit y(u) fiir eine Uberschadenversicherung oder der zugehérige Sicher-
heitszuschlag A4 bestimmt werden konnen. Die Lésung dieses Problems
st fiir den Fall einer gewohnlichen Versicherung — im Gegensatz zur
Uberschadenversicherung — in der kollektiven Risikotheorie wohl-
bekannt [4]. Es zeigt sich, dass die verallgemeinerte Fragestellung in
dahnlicher Weise beantwortet werden kann wie im Falle der gewohn-
lichen Versicherung und dass die gewohnliche Versicherung als Spezial-
fall in der Losung fiir die Uberschadenversicherung erscheint.

Die Problemstellung lisst sich in folgender Weise umschreiben:

Gegeben ist eine Uberschadenversicherung fiir einen Versiche-
rungsbestand, der durch die Rechnungselemente [t,s(ac),h) charakteri-
siert sei. Uberschiden sind zu decken, soweit sie den Selbstbehalt kt
iiberschreiten. Zum Ausgleich des Uberschadenrisikos wird eine Uber-
schadenreserve mit dem Anfangswert « gestellt. Dieser Reserve werden
einerseits die Uberschadenprimien

(142 By}
gutgeschrieben. Anderseits werden der Reserve alle auftretenden Uber-
schiiden belastet.

Frage: Wie gross ist die Wahrscheinlichkeit w(u), dass die Uber-
schadenreserve jemals am Iinde einer Abrechnungsperiode erschopft sein
wird, wenn die Uberschadendeckung immer wieder erneuert und — sofern
der Ruin nicht vorher eintritt — bis ing Unendliche fortgesetzt wird ?

Fiir die 1m folgenden skizzierte Liosung wird eine dhnliche Methode
beniitzt, wie sie Ticklind [6] fiir das Ruinproblem bei der gew6hnlichen
Versicherung entwickelt hat.
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2. Nur positive Schadensummen

Es sel y der Gewinn der Uberschadenreserve in einer Abrechnungs-
periode. Zwischen diesem Gewinn und dem aufgetretenen Gesamt-
schaden x besteht folgende Beziehung:

AR EL) 2kt tir x> ke,

- 24
TN+ B, fir @ < kt. =

Unter Beriicksichtigung der Formel (1) fiir die Verteilung des Gesamt-
schadens z (oder Formel (7)) ldsst sich in Verbindung mit den Trans-
formationsgleichungen (24) die Verteilungsfunktion F(y) darstellen;
F(y) bedeutet dabei die Wahrscheinlichkeit, dass die Uberschaden-
reserve in einer Abrechnungsperiode um hochstens den Betrag y zu-
nimmt. Fiihrt man fiir die erhéhte Uberschadenprimie (14 43" El,,}
die abgekiirzte Bezeichnung | ein, so gelten fiir die Verteilung des Ge-
winnes ¥y folgende Beziehungen:

i
[aF@) =1,

I It oo
f ydF(y) =1 [ fxt,h) dz + f (I — -+ kt) f(x,t,h) dz
— 00 0 Kt

= iHE{lk:} = )'}cItIE {lkt} .

Der Erwartungswert des Gewinnes y ist somit gleich dem Sicherheits-
zuschlag in der Uberschadenprimie.

Bezeichnet man mit ,(u) die Wahrscheinlichkeit, dass die Uber-
schadenreserve mit dem Anfangswert « wihrend der ersten »—1 Ab-
rechnungsperioden nie erschopft wird, dass aber Ruin in der »-ten
Abrechnungsperiode eintritt, so erhilt man die Rekursionsformeln

p(u) = F(—u)

ya(u) = [yu(y) AF(y—u)

pou) = [pa(y) dF(y—).
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Daraus ergibt sich fiir die Ruinwahrscheinlichkeit y(u) (Ruin in irgend-
einem Jahr) unter Beriicksichtigung von

) = 2 ()
die Integralgleichung -

p() = F(—w) + [y(y) dF(y—w), (25)

deren Losung y(u) die gesuchte Ruinwahrscheinlichkeit darstellt. s
wird hier darauf verzichtet, die Integralgleichung (25) aufzulésen und
die Losung zu diskutieren. Hingegen wird die vom Ruinproblem bei
einer gewoOhnlichen Versicherung her wohlbekannte Majorante zur
Ruinfunktion p() < F (26)

hergeleitet, welche fiir die hier verfolgten Zwecke geniigt.

— p(u)

eine Hilfsfunktion, welche der aus (25) hervorgehenden Integralgleichung

Ru

Es sei pu) = e

p(u) = F(u) + f@F(y) dF'(y—mu)
0
gentigt, worin -
F(w) = e — [¢® AR (y—u) — F(—u)
0
bedeutet und R die grosste Zahl 1st, welche die Bedingung

[ee}

[emary) =1 (27)

erfiillt.
Fiir die Hilfsfunktion F'(u) gilt folgende Entwicklung:

Flu) = ™ — ¢ Bu j R AR (y) — F(—u)

—u

— ¢ B4 __ g Bu f e B dF(y) + e~ B f e ™ dF(y) — F(—u)

= f (Rt 1) dF (y) > 0.

Es ist somit 0 < Fu) < e
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Geht man auf den rekursiven Aufbau der Integralgleichung (25) zu-
riick, so lasst sich folgende Beziehung aufstellen:

n—1

Ve Z W, (%) = F(u) pe f [GARy_ Z v, (y) | A (y—u) .
r=1
0

r=1

Ist die Klammer unter dem Integralzeichen rechts positiv, d.h. ist die
Ungleichung

n—1
ey, () >0 (262)
r=1

erfiillt, so muss auch — da F(u) positiv ist — die linke Seite der obigen
Gleichung positiv sein, oder mit anderen Worten, die Ungleichung
(26a) gilt auch, wenn n—1 durch n ersetzt wird. Nun ist aber tiirn =1

e —y(u) = ¢ —F(—u) > F(u) >0.
Daraus folgt aber

e — Dy, (u) = ¢ —p(u) >0
y=1

de
e p) < o (26)

Die Bestimmungsgleichung (27) fiir den Parameter B lisst sich
unter Beriicksichtigung der Transformationsgleichungen (24) in folgen-
der Form schreiben:

1 kit o0 (28)
; 0N x4 e .l T
[f,t.h) de + [ f(zt,h) d
e By dF(y) = @(B.tk) = g S— 7"R_l — — = 1.
e

Fine ndhere Untersuchung der Funktion ¢(R,tk) zeigt, dass
@(0,t,k) = 1 1st; die Ableitung ¢'(0,,k) nach R ist gleich dem negativen
erwartungsméssigen Gewinn A;' E{l}. Die Funktion ¢(R,tk) sinkt so-
mit fiir kleine positive Werte von R. Anderseits streben der Zahler und
der Nenner in der Quotientendarstellung von ¢(R,t,k) und auch der
Quotient selbst fiir grosse Werte von R gegen Unendlich. Daraus
folgt — da @(R,t,k) in R stetig ist —, dass es einen kritischen Argument-
wert B > 0 gibt, fiir den die Bedingung

g(Bik) = 1 erfillt ist.



Wird R so gewiihlt, so erhilt man fiir den Sicherheitsfaktor (1 A

den Ausdruck: o
In {14 [(e™e+0—1) f(z,t,h) de)
kit ‘

() R ; (29)
B [(z—kt) f(z,t,h) dx

kt
Fiir k = 0 erhélt man die Spezalformel:

= " co q1-h
In [1— }(fest(z) dz—l)
)
y Y, [P . — . 29’
+ Rt 59
Formel (29) ldsst sich umformen in
1— g1 +AEx d
14+ :fem' s(z) dz. (29")
V4

0
Fiir h = co geht Formel (29”) schliesslich iiber in

L4+ (1+)R = [e®s(z)dz, (20)
0

Die Formeln (29”) und (29"") sind in der kollektiven Risikotheorie
wohlbekannt. Aus ihnen lidsst sich bei gegebenem Zuschlagstaktor der
Ausgleichskoeffizient E bestimmen, welcher in der Formel fiir die Ruin-
wahrscheinlichkeit (26) bei einer gew6hnlichen Versicherung auftritt.
Damit ist aber gezeigt, dass Formel (29) die Verallgemeinerung der be-
kannten Ausdriicke (29”) und (29") fiir die gewohnliche Versicherung
auf den Fall der Uberschadenversicherung darstellt.

3. Nur negative Schadensummen

In einem Versicherungsbestand mit ausschliesslich negativen
Schadensummen (Lebensfallversicherung) konnen Verluste fiir den Ver-
sicherer nur entstehen, wenn zu wenig negative Schadensummen fillig
werden, d.h. wenn z. B. in einem Rentenversicherungsbestand zu wenig
Rentner sterben. Eine Uberschadendeckung muss daher bei negativem
Risiko so geordnet werden, dass die Summe der fillig werdenden nega-
tiven Schadensummen auf einen Mindestbetrag kt erginzt wird. Bei
negativem Risiko wiirde man somit besser von einer Unterschaden-
deckung sprechen.
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Eine solehe Deckung bei negativem Risiko miisste, wenn die falligen
Schadensummen mit dem positiven Vorzeichen genommen werden, den
Unterschaden | — kf—o  fir o< ki

decken, wofiir eine theoretische Nettoprimie von

kt

E{l,) = f (kt— ) f(z,t,h) d

0

erforderlich wiire, die wiederum mit einem Sicherheitsfaktor (1 ;1)
zu erhohen wire. Fiir den Sicherheitsfaktor ldsst sich durch eine dhn-
liche Ableitung wie beim positiven Risiko die Formel

Kkt
In {1 - f{eR("H)—l) f(z,t,h) dx
0

kt

R [ (kt— ) f(,t,h) d

1440 = (30)

herleiten, die gleich aufgebaut ist wie Formel (29), nur dass das Integra-
tionsintervall (kt,o0) ersetzt ist durch das Intervall (0,kf), was gewisser-
massen einer Vertauschung der Begriffe Uberschaden und Gewinn ent-
spricht.

Besteht fiir einen Versicherungsbestand mit ausschliesslich nega-
tivem Risiko eine Unterschadendeckung, so hitte der Krstversicherer
insgesamt folgende Belagtungen zu erbringen:

Risikoprimienausgabe fiir Erstversicherung ¢,
Priimie fiir Unterschadendeckung (1 -+ ;") E{l,,}.
Fillt die Summe dieser beiden Belastungen kleiner oder héchstens

gleich hoch aus wie die Schadengrenze kt, so wiirde der Erstversicherer
iiberhaupt kein Verlustrisiko mehr tragen.

4. Gemischte Schadensummen

Der Fall mit gemischten Schadensummen kann — wenn man vom
insgesamt tiberwiegenden Risiko ausgeht — auf die gleichen Formeln
wie die Ifille mit nur positivem oder nur negativem Risiko zuriick-
gefiihrt werden. Bei iiberwiegend positivem Risiko 1st z. B. der Fall
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eines negativen Gesamtschadens ohne weiteres in der zweiten Zeile von
Formel (24) enthalten und die Ausdehnung des Definitionsbereichs auf

negative Gesamtschiden spielt fiir die weiteren Entwicklungen keine
Rolle mehr.

5. Beispiele

In der nachstehenden Tabelle sind einige Sicherheitsfaktoren A

zusammengestellt, die sich auf folgende Annahmen stiitzen:

Erstes Beispiel (positives Risiko):

§lg) = €%} h = oo} R =0,

A,{CI,I in 9
k
t=1 t=10 t= 100

0,0 11 11 11
0.5 11 20 22
1,0 12 30 114
1,5 14 34 79
2,0 16 o7 49

Es zeigt sich, dass der Sicherheitsfaktor A' als Funktion der
Schadengrenze kt bei festem ¢ einen amonotonen Verlauf aufweist und
fiir ein bestimmtes k& einen Maximalwert erreicht. Dieser Verlauf des
Sicherheitsfaktors ist plausibel, weil der Erwartungswert des Uber-
schadens F{l,,} mit steigender Schadengrenze rasch sinkt, die zum
Ruin fiithrenden Schadenverldufe jedoch iiberwiegend in sich schliesst,
so dass ein fortgesetzt anwachsender Sicherheitsfaktor notwendig ist.
Bei hoher Schadengrenze verlieren anderseits die Uberschiiden
immer mehr an Gewicht im Verhéltnis zur Ausgleichsreserve mit festem
Anfangswert. Von einer bestimmten Schadengrenze an iiberwiegt dieser
den Sicherheitsfaktor dimpfende Einfluss, wodurch der geschilderte
Verlauf des Sicherheitsfaktors 4" zustande kommt. Zu beachten ist
allerdings, dass die in der obigen Tabelle zusammengestellten Sicher-
heitsfaktoren nach der in Kapitel F' geschilderten Naherungsmethode
von Esscher berechnet wurden und daher einen Approximationsfehler
enthalten, dessen genaue Grosse nur schwer feststellbar wiire.
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Zweites Beispiel:
Der standardisierte Gesamtschaden z sei normal verteilt, d.h.,
man hat 1

f(Z) = —VQ = (p(z),

— ¢
T
F(z) = f p(2) dz = D), mit z = oz 41,
—o0 kt = oa+t,
r—hkt = o(z—o).

Unter Beniitzung dieser besonderen Annahmen ergibt sich aus
Formel (29) der Ausdruck:

In {@(a) 4 9@ P=h)
¢(p)
1 AIII —_ e e 290_
Sy ey o T (290)
B R
o

Indernachstehenden Tabellesind einige Werte des Sicherheitsfaktors
2% zusammengestellt, welche sich auf die Spezialformel (29¢) stiitzen.

Sicherheitsfaktoren A5 in %,
Schadengrenze a
Ro=0,1 Ro=0,3 Ro=1
-0,5 4,0 12,8 49,8
0 44 14,1 59,2
0,5 45 14,4 63,9
1,0 4,2 13,8 62,1
1,5 3,9 12,5 55,7
2,0 11,1 48,0

Die nach der exakten Spezialformel (29¢) berechneten Sicherheits-
faktoren bieten ein weitgehend dhnliches Bild wie die im ersten Beispiel
nach der Approximationsmethode von Esscher berechneten Faktoren.

% B
*

Die angegebenen Formeln und Beispiele geben eine erste Ubersicht
iiber die mit dem Ruinproblem bei Uberschadenversicherungen aut-
tretenden Fragen. Hier bietet sich noch ein weites Feld fiir weitere
Untersuchungen.
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E. Unterteilung nach Risikoverbidnden

In den bisherigen Untersuchungen wurde angenommen, der gesamte
Versicherungsbestand eines Versicherungstrigers bilde einen einzigen
Risikoverband. Im folgenden wird demgegeniiber vorausgesetzt, der
gesamte Versicherungsbestand zerfalle in » Risikoverbéinde. Grund-
sitzlich lassen sich die bisher abgeleiteten Formeln auf jeden einzelnen
Teilbestand anwenden. Fiir den Versicherungstriger stellt sich dann
die Frage, in welcher Weise sich eine solche Unterteilung auf sein Ge-
samtrisiko auswirkt.

Im folgenden wird angenommen, der Gesamtversicherungsbestand
zerfalle in n stochastisch unabhiingige Teilbestdinde mit den Charak-
teristiken

beolie  ore By .,
sz}, sq(®), -« . 8}, ... 8(T),
by gy wen By vws Hys

Bestehen Abhingigkeiten 1m Schadenverlauf zwischen einzelnen
Teilbestinden, so lassen sich diese nach dem in der Arbeit [2] dar-
gelegten Verfahren wenigstens i erster Néherung auf den Fall mit
stochastisch unabhéngigen Teilbestinden zuriickfiihren. Es werden des-
halb fiir einmal nur stochastisch unabhéingige Teilbestinde betrachtet.

1. Die Momente der Verteilungen des Gesamtgewinnes
und des Gesamtiiberschadens

Fir jeden Teilbestand seien in irgendeiner Weise die (Gewinn-
taktoren

Lk

festgesetzt worden. Man kann die Verteilung des Gesamtgewinnes
n
\' —_— i
-3
i=1

und die Verteilung des Gesamtiiberschadens

betrachten.
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Diese Verteilungen ergeben sich aus den entsprechenden Verteilungen
der einzelnen Risikoverbinde als Faltungsprodukte. Es ist

F(G) = F(Gy) »F(Gy) = ... «I'(G,)
und F(L) = F(L)) #F(Ly) % ... «F(L,).

Fiir die Erwartungswerte und Streuungsquadrate gelten die ein-
fachen Summenformeln

EG)

(G} wd E{L} = X E{L},

#i =

G = X G} und  py (L} = > u{L}.

li
-
=

I

Fiir die hoheren Momente liessen sich weitere Summenformeln auf-
stellen, welche vom vierten Grade an etwas komplizierter aufgebaut
wéren.

Will man beigpielsweise im Sinne von Prinzip II unter Ziffer 6,
in Kapitel A, eine Sicherheitsmarge in die Gesamtiiberschadenprimie
in der Hohe der a-fachen Streuung einrechnen, so kénnte man in jedem
- einzelnen Risikoverband die Sicherheitsmarge auf den o« -fachen Betrag
der zugehorigen Streuung ansetzen, wobei die Faktoren e; so zu withlen
sind, dass die Bedingung

n 'n o

Yol =« Sl
erfiillt ist. Diese Bedingung lésst sich auf unendlich viele Arten erfiillen.
Sollen z. B. alle «; gleich hoch angesetzt werden, so 1st

S
B
al/ > (L)

i=1
o —,

> VL
i=1
was fiir n gleiche Bestinde auf

; [0 4
% = V;L_

fiihren wiirde.
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2. Das Ruinproblem

In n stochastisch unabhingigen Risikoverbiinden werden die Uber-
schiidden getrennt ermittelt, jedoch stets einer gemeinsamen Uberschaden-
reserve belastet. Jeder Risikoverband leistet an die Uberschadenreserve
i jeder Abrechnungsperiode einen Beitrag von

Ez’ =il + }'Jl;ilti) E{Li} '

Es stellt sich dann die I'rage, wie die Sicherheitstaktoren A,Ifj ; an-
zusetzen sind, so dass die Majorante zur Ruinwahrscheinlichkeit (26)
einen gegebenen Wert erreicht.

Fiir die Losung dieser Frage geht man von Formel (27) aus und
mterpretiert y als Summe aller y, der einzelnen Risikoverbinde, d. h.,
es 1st N

¥ = E Y-

Es 1st dann, weil der Ausdruck links in Formel (27) die charak-
teristische Funktion der Verteilung F(y) darstellt, die sich bei der
Summierung der Variablen in ein Produkt umsetzt

L

L;
fe*R”dF(y) == ] fe“""’” aF(y,).
i1

—Co

Gleichung (27) geht somit in die allgemeinere Form

I;
17 f e Miap(y;) = 1. (32)
i=1

iiber.

Die Bedingung (82) lisst sich auf unendlich viele Arten erfiillen.
Die emnfachste Losung erhilt man, wenn man jeden Faktor des Pro-
duktes in Formel (32) links einzeln gleich Eins setzt, oder mit anderen
Worten, wenn man das Ruinproblem fiir jeden Risikoverband getrennt
16st, jedoch stets die gemeinsame Uberschadenreserve in Rechnung
stellt. Allen Losungen der Gleichung (32) gemeinsam 1st es — wenn die
Gewinnfaktoren k; fest gewithlt werden —, dass die Summe der Uber-
schadenquoten gleich gross ist wie bei der geschilderten einfachsten
Losung.
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F. Numerische Berechnung von Erwartungswerten
nach der Methode von Esscher

Die numerische Auswertung von Erwartungswerten von der Form

f p(kt—z) f(z,t,h) dx

oder

f(p(.b‘ﬂkt) f(z,t,h) dx

Kt
stosst auf fast uniiberwindliche Schwierigkeiten, hauptséchlich, weil in
den Formeln (1) und (7) fiir die Frequenzfunktion des Gesamtschadens
alle Faltungspotenzen s*7(z) fiir 1 <7 < co auftreten; die rekursive
Berechnung dieser Faltungspotenzen gestaltet sich dusserst miihsam
und grenzt schon bei verhiltnismissig niedricem Faltungsgrad fast ans
Unaustithrbare. Glicklicherweise lassen sich die in Frage stehenden
Erwartungswerte nach einer asymptotischen Ndherungsmethode aus-
werten, die erstmals von F. Esscher [5 | auf die Verteilungsfunktion F'(x,t)
erfolgreich angewendet worden ist. Im folgenden werden die nach der
Methode von Esscher sich ergebenden Niéherungsformeln hergeleitet,
welche fiir die numerische Berechnung der in dieser Arbeit auftreten-
den Erwartungswerte dusserst niitzlich, oft sogar unentbehrlich sind.

1. Allgemeine Formeln

Lis se1 §(z) = ecmf(a’)

So
eine transformierte Frequenzfunktion der Schadensumme z, deren

s :
Momente _" durch die Erwartungswerte
8
0

co

T ,CT

4, == }.SL e s(z) dx
0

gegeben seien. Uber den Transformationsparameter ¢ wird spiter pas-
send verfiigt. Zwischen den Faltungspotenzen von s(z) und s(z) besteht
die einfache Beziehung

s*(x) = sfe % s*(x).



Ersetzt man in der Formel (7) die Schadensummenverteilung s(z)
durch die transformierte Verteilung s(z) und substituiert man ausser-
dem an Stelle des Parameters ¢t den transformierten Parameter

so kann man die Frequenzfunktion (7) durch die Formel
f(z,th) = C(x) f(z.1h) (38)
darstellen, in der die Hilfsfunktion C(z) durch die Formeln

Clg) = c‘”(l—x(g‘ﬂ%l))_h fiir h == oo,

—ca—1(so-1)

(34)

= e fiir h = o

bestimmt ist. Die Funktion f( x,b,h) stellt eine transformierte Frequenz-
funktion des Gesamtschadens dar, die gleich aufgebaut 1st wie die Fre-
quenzfunktion f(x,t,h), nur dass s(x) und t ersetzt sind durch s(z) und 1.

Is erweist sich als niitzlich, den Transformationsparameter ¢ so
zu wihlen, dass die Schadengrenze kt zum Erwartungswert des Scha-
dens z beziiglich der transtormierten Verteilung (x,f,h) wird ; dies fiihrt
auf die Bestimmungsgleichung

(e

[ ze® s(x) da ~
0 S ”
k= — (85)

1—; m(fe”s dx— ) 1—=2Go—1)

Nach Formel (35) erhilt man stets einen eindeutig bestimmten
Wert fiir den Transformationsparameter ¢, der einem gegebenen Wert
des Faktors k zugeordnet ist.

Es st c< 0 fir k<1,

ce=0 fuir k=1,
¢c>0 fiur k>1.

Die transformierte Verteilung ;(:c,f,h) 18t somit vollsténdig und eindeutig
bestimmt.



Durch dig Substitution
o :1‘;1‘{‘5]//;; =1

wird die transformierte Verteilung f(.:l:,f,h) standardisiert; die Hilfs-
variable & weist den Mittelwert Null und die Streuung Fins auf.

Fiir grosse ¢ folgt der standardisierte Gesamtschaden der aus der
transformierten Verteilung ?(m,i,h) sich ergebenden Normalverteilung
(13). Fiir endliche Werte von ¢ gilt unter bestimmten Voraussetzungen
nach Cramér [4] die Rethenentwicklung

f(ELh) = p(&) —
mlg,‘aé,_ (3)/ £
g1 o 7T

1/ u, ) 10wy

— L gl R e 26
2 (uf )7 &)+ ik (é) (36)

L/ ﬁé) 35 gy (g 280y
- L ] N e _,4__3) (B EY o o PP

5!(@2 e ) PO = o i 2a—3) 9O — g L e
~F s

bei der die jeweils in einer Zeile stehenden Glieder die gleiche Grossen-
ordnung in ¢t aufweisen. In Formel (36) bedeuten ¢(£) die Frequenz-
funktion der standardisierten Normalverteilung

o= L.

(P( ) VQ.?I e
und ¢"(&) die zugehérigen Ableitungen. Die Gréssen w, sind die Mo-
mente um den Mittelwert der transformierten Verteillung _f(a:,f,h) und
ergeben sich sinngemiiss aus den Formeln (9), indem ¢ und s(x) durch ¢
und s(z) ersetzt werden. Wird der Transformationsparameter ¢ nach
Gleichung (35) bestimmt, so wird die Schadengrenze kt zum Mittel-
wert der transformierten Verteilung f(az,f,k). Dieser Mittelwert geht
durch die Standardisierung in den Nullpunkt {iber. Dies erleichtert
die Auswertung der im folgenden darzustellenden Erwartungswerte
wesentlich.
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2. Die Esscherschen Funktionen

Fiir die weiteren Betrachtungen erweist es sich als niitzlich, die
Esscherschen Funktionen I (y) einzufithren. Diese sind durch das
Integral -

E () = [ & o8 ds (87)
0
definiert. Fiir r = s = 0 ergibt sich die Grundfunktion
1 1 1—-9(
Ew(y) = B(y) = — [ eVl = -—-(-"Q, (38)
Vo, V2x @)

0

die durch den von Laplace stammenden unendlichen Kettenbruch

am By — 3

dargestellt werden kann. Fiir grosse y gilt iiberdies die asymptotische
Entwicklung

Vj ) ) | L 1.8 1.8.5 n 1.8.56.7 (38b)

9t By) ~ ——- Sl T

gl y oy Y y°

Fiir negative y ist B(—y) = r"gy) - (350)
[/ 27 ¢(y)

Im Anhang IT ist die Funktion E(y) fiir den praktisch in Betracht
fallenden Bereich tabelliert.

Aus den Funktionen F(y) ergeben sich die weiteren Hsscher-
Funktionen durch die Rekursionsformel

dEn(s—n(? )

Biog(y) = — iy (39a)
oder allgemein
dl
B (3) = ——;—J’_@- (391)

12
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Daraus folgen die fiir die numerische Berechnung bequemen Re-
kursionsformeln fiir - =
E.(y) =27 B, ().

wobei zur Abkiirzung in den Funktionen E, () das Argument y weg-
gelassen wird.

Eoo ES Eoo Em = _yEoo + 1 Ezo = yEw + Eoo
12301 = yﬁjoo — En = yEm — Eoo Ez] = yEm * Qﬁw
Ep = Y B E12 - yﬁn — Em Ezz = yEm _ Q'E—ll
By = yﬁoz +1 By = yEm —Egp By = yE22 — 9K,
Eoz; === yEm; E14 = yE'ls_ Ens Em — yE23 — 2Els
Ena = yEm —3 EIS = yEm “ E'(m E% = yEm — 2E14
Eos = yEos EIG = yEls - Eos Ezs = yEzs o 2E15
E_m — yEOG +15 El? == ’IJE'm — Fne Ezv = ZIE% — 2E16
E{)s = yEm Em = ?]En “ Em' Ezs = yE27 T 21?17
Eog = yEos —105 E_'w == yEm — Eos Ezg == yE2s - 2Els
(40a) (40b) (40¢)

Die Funktionen F, (y) lassen sich auch in der Form

E,(y) = L5(y) Eoo(y) + Q,s(y) (41)
darstellen, worin P, (y) und @,,(y) Polynome in y sind. Fiir die hier
in Betracht kommenden Anwendungen sind jedoch die Rekursions-
formeln (40) bequemer, weil stets die ganze Folge der Funktionswerte
zu einem gegebenen Argumentwert y benotigt wird.

3. Die Berechnungsformeln von Esscher

Mit Hilfe der Reithenentwicklung (36) lassen sich die zu berechnen-
den Erwartungswerte unter Beniitzung der unter Ziffer 2 dargestellten
Esscherschen Funktionen in einer der numerischen Rechnung zugiing-
lichen Form darstellen. Je nachdem, wieviele Glieder der Reihenent-
wicklung (36) beniitzt werden, ergeben sich der Reihe nach die Ap-

proximationsformeln: Beniitzte Glieder Grossenordnung
in Formel (36) des Approximationsfehlers
Esscher 0 1. Zeile 2
Esscher I 1. und 2. Zeile !
Esscher II 1. bis 3. Zeile e

Esscher II1 1. bis 4. Zeile i
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Zu beachten ist, dass die Grossenordnung des Approximations-
fehlers von ¢ und nicht von ¢ abhiingt; da ¢ bei festem ¢ mit steigender
Schadengrenze kt anwichst und fiir k-~ oo ebenfalls unendlich gross
wird, so ist der Approximationsfehler in der Regel um so kleiner, je
hoher die Schadengrenze kt liegt. Darin liegt ein wesentlicher Vorzug
des Esscherschen Verfahrens, weil die Approximation gerade fiir hohe
k-Werte besonders heikel ist.

a) Verterlungsfunktion des Gesamtschadens

Geht man von Formel (33) fiir die Frequenzfunktion des Gesamt-
schadens aus und ersetzt man darin die transformierte Frequenzfunk-
tion f(z,t,h) durch die Reihenentwicklung (36), so ergibt sich

0
F(ktt,h) ~ C(kt) ‘ etV (@(E)ugﬁ (&) ... )dg, fir k<1,
0 iy | Vi Bs :
1 Fltth) ~ Ckt) | ¢ ((p(s)— gy P& ) ag fir k=1,
¥ ' |

worin mit g, die von den Momenten g, abhiingigen Koeffizienten (ohne

Zahlenfaktoren) von ¢"(&) in der Reihenentwicklung (36) bezeichnet

sind. Setzt man g
y = el

und fithrt man die Esscherschen Funktionen ein, so ergeben sich der

Rethe nach folgende Formeln:

Esscher 0:

F(ltth) ~ C(kt) {Eq(y)},  Tiir k<1, (a)
(42,0)
1 —F(ltth) ~ Ckt) {Bogly)},  fiir = 1. (b)
Esscher 1:

1
Flki,b,h) ~ C (ki) IE(,O(y) + 57 B E’D3(y)}, fir k<1, (a)
(42,1

1

1—F(ktt,h) ~ C(kt) {Em(y)— - 53}_«703(3,)}, fir k=1. (b)
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Hsscher 11:
F(ktth) ~ Ckt) |E f%,ﬂ; 54 ﬁ3
(Kt.t,h) ~ C(kt) \ Eoo(y) + 91 os(Y) + - Boay) + - Foe(y) (a)
(42,11)
3 B, 1082
(—F(tt) ~ Ot [Fnly) — £ Busls) + 4 Bust) + = Bt} )
Ksscher I11:

1052
mwm~vw{ﬁw+“%m>§ﬂww+6?%@+

1 280
oy o105 Eus(o) + o B Penl) 5 Bl @)
) ) _ (42,111)
1 F (R4 ~ O) {Bun(s) — 22 ) + 22 Boaly) 4+~ Bty —

35 2805

1
— 1 (Bs—108) Bus(y) — . Bofu e () — 5 B3} (b)

Die in den Gleichungen (30) und (29) auftretenden Hilfswerte
kt

f eBF0) f(x t h) dx
0

und

co

[0 fa ) dx
ki
lassen sich auf die Berechnungsformeln (42) zuriickfiithren. Beispiels-
weise 1st

i _ (43a)
feR(x""”f(x,t,h) dr ~ O(Iﬁt) f Ei/ 2 (c-R) ((P(E) . I,Bs (P(3)(§) C ) d&.

kt .0

Daraus folgt, dass der in Frage stehende Hilfswert durch die ent-
sprechenden Formeln (b) in den Gleichungen (42) dargestellt werden
kann, wenn man y durch

7=y—R)u (43b)

ersetzt.
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Beim Hilfswert =

feRU”’” flat,h) dx

0

ist entsprechend von den Formeln (a) auszugehen und y durch (43b)
zu ersetzen.

Besonders zu beachten ist, dass die dargelegten Berechnungsregeln
fiir die beiden Hilfswerte nur anwendbar sind, wenn beim erstgenannten
Hilfswert k& = 1 1st und beim zweiten Hilfswert k << 1. Ist diese Voraus-
setzung nicht erfiillt, so empfiehlt es sich, von den Formeln

kt oo 0

fg‘R(""‘”') f(x.t,h) dz + feR(I‘k”f(x,t,h) dz = feR(H‘”f(:c,t,h) dx
h kt 0
;/ o0 \ =R
— ¢ Kt {lfx(jeﬁ’" s(z)dz—1 )] ; Hir hskos,
b

[ee]

—t(Rk-F—l—fest(z)dz)
=g ’ . fir h = oo, (44)

auszugehen, beil denen in der ersten Zeile immer einer der beiden Sum-
manden links nach der Formel (42) und ithre Summe nach der Formel
(44) berechenbar 1st.

b) Die Erwartungswerte von Gewinn und Uberschaden

Fine analoge Ableitung wie bei der Verteilungsfunktion des Ge-
samtschadens fiihrt beim Erwartungswert des Gewinnes fiir k<< 1 zu
der nachstehenden Esscher-ITI-Formel.

kt

Elgy) = [ (t—2) (z.th) dz ~

0

=7 B 1042
~ O) )it | Buols) + £ Fualy) + £ Buat) + - P By +

- 280

_ 35 _ _ _
+ = (s~ 108s) B1s(y) 71 BafaLia(y) + o1 ﬁ§ ELo(y) ;. (45,1111&1)

-



— 182 —

Fiir k = 1 gilt ferner fiir den Erwartungswert des Ubeischadens
die nachstehende Esscher-ITI-Formel

E{l,} = f(m*k‘t) flzt,h) dz ~
Kt
B 1 1043
C(kt) Vﬂ‘z{ w(Y) — g‘ Eas(y) + - ﬁ Ey(y) + ﬁ Fis(y) —

1 280 \ .
Tl (Bs—1083) Ey5(y) — I /33/34 Byp(y)— 91 By By )J (45,111b)

Durch Weglassung von Gliedern ergeben sich die entsprechenden
Esscher-Formeln (45) niedrigeren Grades.

Sind Erwartungswerte des Gewinnes fiir & = 1 oder Erwartungs-
werte des Uberschadens fiir k < 1 zu berechnen, so ist vorerst der durch
die Formeln (45a) oder (45b) berechenbare Wert zu ermitteln; an-
schliessend ergibt sich der eigentlich gesuchte Wert aus der Umrech-
nungsformel (16).

¢) Zweites Moment der Verteilung des Gewinnes und des Uberschadens
s gelten folgende Esscher-III-Formeln:

Ziweites Moment des Gewinnes fiir k< 1:
It
EHM~mﬂ:iﬂM—@HW$Miww

0

~ C(kt) P—‘é {Ezo(y) s 1

Pa
3!

1()53
6!

;94

Eo(y) + - Eyu(y) 4 - Bog(y) +

o 85 _ _ 280 _,
+ — (B —1083) Eys(y) + - B3 s B () + g1 Ps Liog(y) (- (46,111a)

Zweites Moment des Uberschadens fiir k = 1:

ey
)
|
oy
=
I
—
)
l
iy
—
&
~
=
Pl
&

1083

Bt Baly) + " Baalt) —

o 5_ _ 280 ,
5y (B 108s) Eas(y) — 1 s fabioa(y) — 51 5 Ez'a(?f)} - (46,11IDb)
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Sind zweite Momente zu berechnen, die ausserhalb des Giiltigkeits-
bereichs der beiden Formeln (46) liegen, so ist unter Anwendung der
Umrechnungsformel (19) analog zu verfahren wie beim Krwartungs-
wert des Gewinnes und des Uberschadens.

* *
%

Die abgeleiteten Esscher-Formeln weisen den vor allem fiir die An-
wendungen gewichtigen Vorzug auf, dass sie an fast keine emnschriin-
kenden Bedingungen iiber die Schadensummenverteilung s(z) gebun-
den sind. Ferner lassen sich die Esscher-Formeln auch anwenden, wenn
die Schadensummenverteilung eine analytische Form aufweist, die eine
Integration in geschlossener Form nicht zuldsst oder wenn die Schaden-
summenverteilung sogar nur numerisch, ohne formelmissige Darstel-
lung, gegeben ist.

Die Esscher-Formeln sind vor allem niitzlich, wenn ¢ eine gewisse
Schranke (etwa t = 8) iiberschreitet. Fiir ganz kleine ¢ ist es in der Regel
ebenso einfach oder gar noch einfacher, eine exakte Berechnung durch-
zufithren, weil dann nur die verhéltnisméssig leicht berechenbaren
Faltungspotenzen niedrigsten Grades von s(z) bendtigt werden.

Noch nicht restlos geklirt ist die Frage, welche Genauigkeit mit
den verschiedenen Esscher-Formeln praktisch erreicht wird. Diese Frage
lisst sich wohl nur durch systematische Vergleichungen mit exakten
Funktionswerten hinreichend beantworten. Solche Untersuchungen
liessen sich durch die modernen Rechenautomaten auf elektronischer
Grundlage mit mehr Aussicht auf Erfolg durchfiihren als bisher.

G. Anwendungen

Bei der Anwendung des dargelegten Verfahrens der Risikogewinn-
Ermittlung muss man von den die Verteilung des Gesamtschadens be-
stimmenden Rechnungselementen ¢, s(x) und h ausgehen. Die erwartete
Schadenzahl ¢ und die Schadensummenverteillung s(x) erfassen den
Umfang und die Struktur des Versicherungsbestandes. Durch den
Schwankungsparameter h lassen sich schliesslich die Unsicherheit von ¢
und s(z) sowie allfillige Storungen des normalen Risikoablaufes (Ku-
mulrisiko usw.) beriicksichtigen. Von besonderer Bedeutung ist bel den
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meisten Anwendungen die Schadensummenverteilung s(z). Im folgen-
den werden daher vorerst einige diesbeziigliche statistische Erfahrungen
aus der Kinzelversicherung bei der Schweizerischen Lebensversiche-
rungs- und Rentenanstalt bekanntgegeben, die dank der in freundlicher
Weise erteilten Hrlaubnis hier mitgeteilt werden diirfen.

1. Schadensummenverteilungen aus der Lebensversicherung

Die Schadensummenverteilung s(x) bezieht sich nicht auf die sta-
tistisch nur schwer erfassbaren versicherten Schadensummen, sondern
auf die falligen Schadensummen. Fiir die empirische Bestimmung der
Schadensummenverteilung geht man daher von den binnen einer be-
stimmten Zeitspanne féllig gewordenen Schadensummen aus, ordnet
diese nach steigenden Schadensummen und bildet daraus die Verteilung
der Schadensummen. Derartige empirische Schadensummenverteilungen
wurden aus den in cen Jahren 1935, 1945 und 1955 fiillig gewordenen
Schadensummen im Bestande der grossen Finzel-Kapitalversicherungen
(ohne Volksversicherungen) des Schweizergeschéftes der Schweize-
rischen Lebensversicherungs- und Rentenanstalt abgeleitet. Fiir das
Jahr 1955 wurde iiberdies je eine Verteilung mit und ohne Beriicksich-
tigung der Sonderleistungen aus den obligatorischen Zusatzversiche-
rungen fiir Unfalltod und Tod nach langdauernder Krankheit (im fol-
genden «uk-Leistungen» genannt) aufgestellt. In analoger Weise wurde
die Verteilung der negativen Schadensummen im Einzel-Rentenbestand
Schweiz fiir das Jahr 1955 bestimmt.

Die fiir das Jahr 1955 ermittelten Verteilungen sind auf der folgen-
den Seite graphisch dargestellt. Alle Verteillungen weisen im ganzen
gesehen ein dhnliches Bild auf und gehéren zum asymmetrisch glocken-
férmigen oder J-formigen Typus. Die im unteren Ast ausgeprigten
Unregelmissigkeiten bei den aus der Einzel-Kapitalversicherung ab-
geleiteten Verteilungen sind in erster Linie eine Folge davon, dass
die runden Versicherungssummen von Fr. 5000 und Fr. 10 000 vor-
herrschen.
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Die wichtigsten statistischen Masszahlen aller fiinf Verteilungen
sind in der nachstehenden Ubersicht festgehalten.

Beobachtete Schadensummenverteilung
Finzel- Kapitalversicherungen Tinzel-
Renten-
1955 ver-
1935 1945 ohne mit  |sicherung
wl-Leistungen 1955
Anzahl der filligen
Schadensummen 466 476 514 523 9%
mittlere Schadensumme
S, in sFr. 5009 3404 5660 7111 7204
absolute Summen-
streuung /5] in sFr. 7222 5151 7626 8786 9667
relative Summen-
streuung ]/S:S? in 9, 144 151 135 124 134
1

Die mattlere Schadensumme 1st in der FEinzel-Kapitalversicherung
1m Jahrzehnt 1935-1945 um etwa 1/, gesunken; dies ist wohl eine Folge
des Riickgangs der Neuproduktion in den dreissiger Jahren und auch
des Riickgangs der Sterblichkeit, welche die Sterbefille immer mehr
in die oberen Altersklassen zuriickdringte, wo die Risikosummen mit
Riicksicht auf das big dahin gebildete Deckungskapital immer kleiner
werden. Die grossen Neuzugiinge der Nachkriegsjahre sowie der ver-
mehrte Abschluss von Risiko-Todesfallversicherungen haben bis zum
Jahre 1955 die mittlere Schadensumme sogar iiber das urspriingliche
Niveau hinaussteigen lassen. Durch den obligatorischen Einschluss der
uk-Leistungen ergab sich eine weitere Erh6hung der mittleren Schaden-
summe um rund 259%,. Bemerkenswert ist, dass die relative Summen-
streuung in allen vier Verteilungen aus der Iinzel-Kapitalversicherung
ungetihr gleich geblieben ist; die Abweichungen liegen iiberdies 1m
Bereich von zufilligen Schwankungen. Die in Finheiten der jeweiligen
mittleren Schadensumme dargestellten Schadensummenverteilungen
sind somit in den letzten zwel Jahrzehnten trotz der mmzwischen ein-
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getretenen Verdnderungen (Vergrosserung der Versicherungsbestinde,
Sterblichkeitsverbesserung, Umstellung der Reserve auf neue Rech-
nungsgrundlagen, Einschluss der uk-Leistungen usw.) im wesentlichen
unverindert geblieben. Die in der kollektiven Risikotheorie iibliche
Annahme einer gleichbleibenden Summenstruktur findet damit ihre
praktische Bestitigung. Nicht gleich geblieben ist allerdings das Sum-
menniveau, was sich auf die Hohe der erforderlichen Sicherheitsreserven
auswirkt.

Bemerkenswert ist, dass die Verteilung der negativen Schaden-
summen aus der Kinzel-Rentenversicherung im Jahre 1955 eine grosse
Ahnlichkeit mit der gleichzeitig beobachteten Verteilung der positiven
Schadensummen aus der [inzel-Kapitalversicherung mit Einschluss
der wk-Leistungen aufweist. Dies zeigt sich unter anderem darin, dass
die mittlere Schadensumme und die relative Summenstrenung nahezu
ibereinstimmen.

Die im folgenden behandelten Beispiele gehen von der analytischen
Schadensummenverteilung

aoc e—az ;L,ncui

fld) = -—---1-1—(0() (47)

aus ([-Verteilung), die nahe mit den in der Lebensversicherung be-
obachteten Verteilungen iibereinstimmt. Diese Verteilungen weisen
stets eine mittlere Schadensumme I |z} = S, = 1 auf; die als einziger
Parameter auftretende Grosse o 1st mit der relativen Summenstreaung
o durch die einfache Beziehung

g = o

verbunden. Die mitgeteilten Erfahrungszahlen aus der Lebensversiche-
rung wiirden etwa « = }, d.h. einer relativen Summenstreuung von
rund 1409, entsprechen; diese Annahme wiirde auf die y*-Verteilung
mit emmem Kreiheitsgrad fithren. Die in der Sachversicherung weit
grosseren Summenstreuungen lassen sich durch entsprechende Wahl
des Parameters o beriicksichtigen.

Die Verteilung (47) weist den fiir die Anwendungen wesentlichen
Vorteil auf, dass sie in einfacher Weise integriert und gefaltet werden
kann, was fiir nicht zu grosses ¢ eine exakte Auswertung der Erwartungs-
werte erlaubt. Die Anwendung der Methode von Esscher wird iiberdies
erleichtert, weil die Hilfszahlen s, sich in expliziter Form als Funktion
von o und ¢ darstellen lassen.
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2. Untersuchungen iiber die Hohe der Gewinnfaktoren

a) Nur positwe Schadensummen

Die nachstehenden Beispiele stiitzen sich auf folgende Annahmen:
Schadensummenverteilung: s(z) =¢*; S;=1; o =1,
Schwankungsparameter: h = co (homogener stochastischer Prozess),

t" = 1,2¢, (d.h. erwartungsmissige Tarif-
marge = 16,679, der Nettopriamie t');

Tarifniveau:

Sicherheitsmarge in der Uberschadenquote:

Prinzip 1 keine,
109, der Uberschadenstreuung,
Ausgleichskoeffizient R = 0,1.

Prinzip II
Prinzip III
In der untenstehenden Tabelle sind die auf Grund der genannten

Annahmen sich ergebenden Gewinnfaktoren &’ fiir einige Werte von ¢
zusammengestellt, die sich auf die natiirliche Gewinnformel

g=kt—z stiitzen.
Tabelle 1
Gewinnfaktor k' in 9, nach Prinzip
t t'
I 1I II1
0 0 17
1 1.2 34 11 17
10 12,0 87 82 Fi
50 60,0 98,1 974 95,7
100 120,0 99,4 99,2 98,5
o co 100 100 100

Die erwartete Schadenzahl ¢ (d.h. die transformierte theoretische
Nettoprimie) kann als Mass der Bestandesgrosse verwendet werden.
Es zeigt sich somit, dass die Gewinnfaktoren k&’ mit wachsendem Be-
stand ansteigen. Nach Prinzip I ist k" im theoretischen Grenzfall t = 0
gleich der angenommenen Tarifmarge von 179, und wichst mit stei-
gendem ¢ bis auf 1009, im Grenzfall eines unendlich grossen Bestandes.
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Der Grenzwert von 1009%, wird fiir { = 100 mit k' = 99,49 schon
fast erreicht.

Nach den Prinzipien II und III, die mit einer Sicherheitsmarge
in der Uberschadenquote rechnen, fiillt der Gewinnfaktor k" durchwegs
niedriger aus als nach Prinzip I, bei dem keine solche Sicherheitsmarge
eingerechnet wird. Grosse Unterschiede ergeben sich vor allem fiir
kleine Werte von t, d.h. fiir kleine Versicherungsbestinde. Bemerkens-
wert 1st, dass bel den hier getroffenen Annahmen nach Prinzip II die
Gewinnfaktoren k' fiir kleine Bestiinde kleiner und fiir grosse Bestinde
grosser ausfallen als nach Prinzip III.

Die Gewinnfaktoren nach Prinzip 111 gehen von einem Ausgleichs-
koeffizienten R = 0,1 aus, was — wenn man die Néherungsformel fiir

die Ruinwahrscheinlichkeit
plu) = "

beniitzt — auf R In ()
Ny —_= — —
u

fihrt. Die Annahme B = 0,1 entspricht etwa einer Ruinwahrscheinlich-
keit y(u) von 19, und einer Ausgleichsreserve von 50 mittleren Schaden-
summen. In der nachstehenden Tabelle sind einige Variationen iiber
den Ausgleichskoeffizienten E zusammengestellt. Die angegebenen
Gewinnfaktoren stiitzen sich im iibrigen auf die gleichen Annahmen
wie in der Tabelle 1; lediglich fiir die erwartete Schadenzahl wird durch-
wegs der feste Wert ¢ = 50 beniitzt.

Tabelle 2
Ruinwahrscheinlichkeit y(w) )

" 0 Gewinnfaktor k'
R 1% | 1% e
Ausgleichsreserve *) 0
0,1 46 69 95,7
0,05 92 138 97,4
0,01 460 690 97,9
0,005 920 1380 98,0
0 co o0 98,1

(Prinzip 1)

*) in Vielfachen der mittleren Schadensumme
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In der nachstehenden Tabelle 3 sind weitere Gewinnfaktoren nach
Prinzip III fiir ¢t = 50 angegeben, welche die Auswirkungen verschie-
dener Variationen der relativen Summenstreuung und des Schwan-
kungsparameters h veranschaulichen. Der Ausgleichskoeffizient R ist
durchwegs zu R = 0,1 angesetzt worden, und die Schadensummenver-
teilung gentigt stets der I-Verteilung (47).

Tabelle 3
Relative Gewinnfaktor k' in 9 fiir
Summenstreuung
o h = o h = 100 k== 50
0 99 99 98
1 96 94 92
1,1 94 89 82
1,2 75 43 —

Die Tabelle 3 zeigt — was zu erwarten war —, dass die Gewinn-
faktoren k' abnehmen, je grosser die relative Summenstreuung o ist
und je kleiner der Unsicherheitsparameter i angenommen wird. Varia-
tionen der Summenstreuung ¢ wirken sich verhéltnisméssig stirker aus
als beim Schwankungsparameter h.

Fiir ¢ = 1,2 ergeben sich unverhéltnisméssig kleine Gewinnfak-
toren; in der Kolonne A = 50 konnte sogar iiberhaupt kein Wert mehr
eingesetzt werden. Dies ist eine Folge davon, dass die ber Prinzip 11
vorgesehene Sicherheitsmarge in der Uberschadenquote eine minimale
Tarifmarge erheischt, die bei der hier getroffenen Annahme (1" = 1,2¢),
fiir 0 = 1,2 und h = 50, nicht erreicht wird. Einige Werte dieser mini-
malen Tarifmarge sind in der nachstehenden Tabelle 4 zusammen-
gestellt. Diese ergeben sich aus den Formeln (29) fiir den Sicherheits-
zuschlag A" bei einer Schadengrenze k — 0 (gewéhnliches Ruinproblem)
fiir den Ausgleichskoeffizienten B = 0,1.

Die in der Tabelle 4 eingetragene punktierte Linie grenzt das Ge-
biet der Werte von ¢ und y ab, welche bei einer Tarifmarge von hoch-
stens 20 9, der theoretischen Nettoprimie ¢ eine sinnvolle Gewinnformel
nach Prinzip III fiir B = 0,1 ergeben. Der in Tabelle 3 nicht beriick-
sichtigte Wert fiir b = 50 und o = 1,2 liegt bereits ausserhalb dieses
Grebietes.
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Tabelle 4
Minimale Tarifmarge ],(I)H in 9, von t fir
Relative t
Summenstreuung L=
a

0 0.5 1,0 2,0
0 5 8 11 18
0,5 7 10 13 20
1,0 11 14 18 26
15 20 24 28 37
2,0 36 41 46 60
3,0 192 215 245 338

Bei grossen Werten der relativen Summenstrenung ¢ und des Dis-
persionsexzesses y ist unter Umstinden eine weit grossere Tarifmarge
erforderlich als die in den Tabellen 1 bis 3 angenommene Marge von
209,. Solche Félle kommen insbesondere in der Sachversicherung prak-
tisch vor.

b) Nur negative Schadensummen

Bei Lebensfall- und Rentenversicherungen hat der Versicherungs-
triger ein negatives Risiko zu decken, bet dem die Rollen des Versicherten
und des Versicherungstriigers gegeniiber der positiven Risikodeckung
gewissermassen vertauscht erscheinen. Der Versicherer zahlt dem Ver-
sicherten laufend eine Risikoprimie und erhilt als Gegenleistung im
Todesfall des Versicherten das freigewordene Deckungskapital. Man
kann daher von emer negativen Risikopriémie und einer negativen
Schadensumme oder kurz von einem negativen Risiko sprechen.

Gewinn ergibt sich bei negativem Risiko, wenn die Summe der
fallig gewordenen negativen Schadensummen eine gewisse Grenze iiber-
steigt. Die natiirliche Gewinnformel bei negativem Risiko lautet daher

g=z—k't.

Fiir die nachstehenden Beispiele werden die gleichen Anmahmen be-
niitzt, wie fiir die Beispiele mit positivem Risiko in Tabelle 1. Lediglich
die Beziehung zwischen ¢ und ¢ wird abgeéindert in ¢t = 1,2¢" oder
t" = 0,833t, damit sich eine Tarifmarge zugunsten des Versicherers ergibt.
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Tabelle 5

Jewinnfaktor k' in 9 nach Prinzip

f t'
1 It II1

0 0
1 0,83 317 384 342
10 8,33 124 131 135
50 41,67 103 106 116
100 83,33 101 103 105
co o 100 100 100

Wihrend bei positivem Risiko die Gewinnfaktoren k" mit steigen-
dem t anwachsen, ergeben sich bei negativem Risiko fallende Faktoren.
Bei kleinen Versicherungsbestéinden kénnen die Gewinnfaktoren %’
mehrere hundert Prozente erreichen. Dies 1st verstindlich, weil 1mn sol-
chen Fillen nur selten Schadenfille auftreten, so dass die meisten Ver-
sicherungsjahre dem Versicherungstriager Verlust bringen. Die nur in
einzelnen Jahren auftretenden Gewinne miissen dann grosstenteils zur
Deckung der Verluste in den iibrigen Jahren reserviert bleiben.

Fiir grosse Versicherungsbestinde nihert sich der Gewinnfaktor &’
von oben her dem Grenzwert von 100 %,. Bei positivem Risiko nihern
sich die Gewinnfaktoren %" von unten her der gleichen Grenze.

Nach Prinzip I ergeben sich die niedrigsten I"aktoren; die bei den
Prinzipien II und IIT eingerechnete Uberschaden-Sicherheitsmarge
tithrt — insbesondere fiir kleine ¢t — zu hoheren Gewmnfaktoren £'.

Bemerkenswert ist es, dass bei negativem Risiko die Gewinnfak-
toren sich weiter von dem fiir beide Risikoarten geltenden Grenzwert
von 1009, entfernen. Fiir das negative Risiko sind somit bei der Ge-
winnermittlung verhiltnismissig grossere Uberschadenquoten in Rech-
nung zu stellen als fiir das positive Risiko. Dies st eine Folge davon,
dass die Frequenzfunktion des Gesamtschadens vor dem Grenzwert von
1009, hoher verliuft als nach dem Grenzwert.

* *
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Die angegebenen und besprochenen Beispiele vermdgen wohl emnen
ersten Uberblick zu geben iiber die Auswirkungen der vorgeschlagenen
Prinzipien fiir eine risikotheoretisch begriindete Gewinnermittlung und
den bei der Anwendung dieser Methode auftretenden Problemen. Die
beniitzten Modelle der kollektiven Risikotheorie erlauben es in ver-
hiltnisméssig einfacher Weise, die besonderen Verhiltnisse von Ver-
sicherungsbesténden hinsichtlich Bestandesgrosse, Summenstruktur,
Kumulrisiko usw. zu berticksichtigen; je nach den konkreten Verhilt-
nissen kann eine geeignete Gewinnformel konstruiert werden; die dann
auftretenden Gewinnfaktoren kénnen eindeutig bestimmt werden.

Die geschilderten risikotheoretischen Methoden lassen sich nicht
nur auf die Gewinnermittlung an sich, sondern auch auf die Gewinn-
vertellung bei Gruppen- und anderen Kollektiv-Versicherungen an-
wenden. Fiir derartige Anwendungen sei auf die Arbeit [3] verwiesen,
in der auch einige Untersuchungen tiber die Stabilitit der Gewinne —
je nach den angewendeten Gewinnformeln — dargestellt sind.

Anhang 1

A. Modelle, welche auf die verallgemeinerte Verteilung (7) fithren

1. Schwankende Schadenswahrscheinlichkeiten

Die feste erwartungsmiissige Schadenzahl ¢ wird ersetzt durch eine
verdnderliche Schadenzahl tq, worin der Faktor q eine zufillige Variable
1st, welche der Prithérverteilung

hh eth gk—l dq

dH(q) = 0

folgt. Die Verteilung (7) ergibt sich aus der Verteilung (1) vermittels
der Beziehung

f(xh) = [dH(q) f(z.tq).

Fiir b = oo geht die Verteilung (7) in die Verteilung (1) iiber.
13
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2. Wahrscheinlichkeitsansteckung

Die aus dem Urnenschema mit Wahrscheinlichkeitsansteckung
bei einheitlicher Schadensumme von Polya-HEggenberger abgeleitete
Verteilung lautet im Fall der seltenen Kreignisse:

Had) = t(t+d) (t+24) m_(tti(x—l)d)“'

z!(1+d) ¢

Setzt man fiir den Ansteckungskoeffizienten

t
d= A (= Dispersionsexzess),

so ergibt sich nach einigen Umformungen die auf feste Schadensummen
vereinfachte Formel (7).

3. Mehrfache Schadenfille bei einem Schadenereignis

Durch ein Schadenereignis werden m verschiedene Schadenfille
ausgelost (z.B. m Schiden bei einem Hagelwetter oder m Policen bei
einem Todesfall). Die Wahrscheinlichkeit vonm Schadenfillen bei einem
Ereignis sei durch die Verteilung

_ 1 1 ¥ "
= mdrn = [m]

mit dem Mittelwert

< %
Simfm) = 1

gegeben. Bei fester erwartungsméssiger Zahl der Schadenereignisse und
unter Annahme der oben genannten Verteilung fiir die mehrfachen
Schadenereignisse ergibt sich fiir die Verteilung des Gesamtschadens z
die Verteilung (7), wenn wiederum

“=y

gedeutet wird.
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4. Veriinderung der Schadensummenverteilung

Die Verteilung des Gesamtschadens bei festen Schadenswahr-
scheinlichkeiten (Formel (1))
) zr

e A L
fad) = > 5 ),
r=0 T
mit den Elementen
2 o tln (14 ;Q
y
d
un _( ) B 1 s.: P ]TS*T(;L')
In(l+y) =14y

ist identisch mit der verallgemeinerten Verteilung

B0 r 1h
e T

=\ t+nh| [t+h
mit den Elementen ¢,5(x) und k. Daraus lisst sich schliessen, dass bel
Anwendung der verallgemeinerten Verteilung im Rahmen von an sich
festen Schadenswahrscheinlichkeiten das Risiko mitberiicksichtigt ist,
dass die Rechnungselemente ¢t und s(z) sich bis zu den in den obigen
Formeln gegebenen Grenzen éndern konnen.

5. Nicht hinreichend bekannte Schadenswahrscheinlichkeiten

Bei nicht hinreichend bekannter Schadenswahrscheinlichkeit ist
man gezwungen, die Prémie mehr oder weniger gefiihlsmissig zu
schitzen. Bei diesem Vorgehen muss man die Moglichkeit von Fehl-
schitzungen in Kauf nehmen. Rechnet man beispielsweise mit der
falschen Préimie {q an Stelle der richtigen Priimie ¢ und nimmt man an,
der relative Fehler g folge der Primirverteilung unter Ziffer 1, so erhilt
man fiir die Verteilung des Gesamtschadens 2 die Formel

fath) = [aH(g) f(zig.),

welche gemiss Interpretation 1 auf die verallgemeinerte Verteilung (7)
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fiithrt. In diesem Fall hat h den Charakter eines Unsicherheitsparameters,
der je nach dem Grad der Unsicherheit bei der Primienabschitzung
passend festzusetzen ist.

B. Verinderliche Schadensummenverteilungen

s kommt vor, dass die Schadensummenverteilung s(x) sich mehr
oder weniger sprunghaft &ndert. Solche Schwankungen koénnen ent-
weder fiir sich allein oder auch in Verbindung mit Schwankungen in
den Schadenswahrscheinlichkeiten auftreten. Beispielsweise konnen
folgende Modellfille auftreten:

Fall I:

Fall I1:

Fall I11:

Fall IV:

Der feste Erwartungswert ¢ wird ersetzt durch einen schwan-
kenden Erwartungswert ¢, wobei der Faktor ¢ der Primér-
verteilung unter A 1 folgt. Die Schadensummenverteilung
bleibt fest. Dieser Fall tiithrt auf die verallgemeinerte Vertei-

lung (7).

Der Erwartungswert ¢ bleibt fest. Die einzelnen Summen z
der Schadensummenverteilung werden ersetzt durch propor-
tional schwankende Summen zq, wobei der Faktor ¢ der Pri-
mirverteilung
mm e~mq qm—l dq
dH(m) = ————

folot.
T'm) -

Sowohl der Erwartungswert ¢ als auch die Schadensummen «
sind schwankend. Die Schwankungen erfolgen unabhdingig
voneinander nach den Primérverteilungen unter A 1 und B II.

Wie Fall III; die relativen Schwankungen des Erwartungs-
wertes ¢ und der Schadensummenverteilung s(x) geniigen
beide der gleichen Priméarverteilung und erfolgen parallel za-
einander, das heisst, der Erwartungswert ¢ und die Schaden-
summe z gehen gleichzeitig in tq und xq iiber.

In diesen vier Modellfillen geniigen die beiden ersten Momente der
Verteilung des Gesamtschadens den nachstehenden Formeln (Annahme

S, = 1).
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Fall Erwartungswert Streuungsquadrat
1 t t(Sz + %)
, 1
11 t S, (1 + )
m,
S
111 t t(32 +o+ 2)
m
1 S,(h+2) (h+1 h+1) (4h+ 6
v 1+ ) gBall 2) (-l - ylht-d) (dh=-0)
h / h?
Transformation der Rechnungseinheit im Fall IV 2* = — m~1
1=
h

- t s B2 4h+6)

Pt T

Alle vier Fille fiithren im Vergleich zum klassischen Modell
(Streuungsquadrat = ¢S,) zu einer irhdhung des Streuungsquadrates,
und zwar am stirksten beim Fall IV. Grundsitzlich ist die Streuungs-
formel in allen vier Féllen gleich aufgebaut. Man kann daher in erster
Néherung lediglich mit dem Fall I rechnen, den Schwankungspara-
meter h jedoch so festsetzen, dass die Streuung den «richtigen» Wert
annimmt. Die verallgemeinerte Verteilung (7) folgt dann in erster Néhe-
rung der «richtigen» Verteilung.

Eine derartige Vereinfachung beriicksichtigt allerdings nur die
Streuung und vernachlissigt allfillige Unterschiede in den hoheren
Momenten. Solche Unterschiede, die sich gegebenenfalls auf Grund
komplizierterer Modelle abschéitzen lassen, konnen durch emne passende
Transformation der Schadensummenverteilung s(z) beriicksichtigt wer-
den. Beigpielsweise konnte s(x) so transformiert werden, dass die beiden
ersten Momente ithren Wert beibehalten, das dritte Moment jedoch
passend erhoht wird. Auf diese und dhnliche Weise lisst sich die Ver-
teilung des Gesamtschadens x wohl stets mit Hilfe der verallgemeinerten
Verteilung (7) hinreichend genau anndhern. Damit ist nicht nur eine
realistische Erfassung der gegebenen Verhiltnisse gewihrleistet, sondern
es wird auch ein Formelapparat der praktischen Anwendung zugefiihrt,
welche fiir diese Zwecke gerade noch einfach genug ist.



Anhang IT

Tafel der Esscher-Funktion E(y)

10° E(y)
Y
0 1 2 3 4 5 6 7 8 9
-1.4 244 928 248 796 252 743 256 772 260 885 265 084 269 371 273 748 278 218 282 783
-1.3 210 262 213 425 216 652 219 944 223 302 226 728 230 223 233 788 237 426 241 138
-1.2 181 803 184 408 187 064 189 771 192 531 195 344 198 212 201 137 204 120 207 161
-1.1 158 281 160 441 162 641 164 883 167 167 169 493 171 862 174 277 176 738 179 247
-1.0 138 714 140 516 142 351 144 219 146 120 148 055 150 026 152 034 154 079 156 161
-0.9 122 334 123 847 125 386 126 952 128 546 130 167 131 817 133 496 135 205 136 944
-0.8 108 538 109 815 111114 112 435 113779 115 146 116 536 117 949 119 386 120 847
-0.7 96 848 97 933 99 036 100 157 101 297 102 456 103 634 104 831 106 047 107 282
-0.6 86 888 87 815 88 757 89 714 90 686 91 673 92 676 93 695 94 730 95 781
-0.5 78 353 79 150 79 959 80 780 81 613 82 459 83 318 84190 85 075 85 974
-0.4 71 001 71 689 72 387 73 095 73 813 T4 542 75 282 76 033 76 795 77 568
-0.3 64 636 65 233 65 838 66 451 67 073 67 704 68 345 68 995 69 654 70 322
-0.2 59 096 59 616 60 143 60 678 61 221 61 771 62 328 62 893 63 466 64 047
-0.1 54 253 54 709 55171 55 639 56 114 56 595 57 082 57 576 58 076 58 583
-0.0 50 000 50 401 50 808 51 220 51 637 52 059 52487 52 920 53 359 53 803
0.0 50 000 49 604 49 212 48 825 48 443 48 066 47 694 47 325 46 962 46 603
0.1 46 248 45 897 45 551 45 209 44 871 44 536 44 206 43 880 43 558 43 239
0.2 42 924 42 613 42 305 42 001 41 700 41 403 41 109 40 819 40 532 40 248
0.3 39 968 39 690 39 416 39 144 38 876 38 611 38 349 38 089 37 833 37 579
0.4 37 328 37079 36 834 36 591 36 351 36113 35 878 35 645 35415 35 187
0.5 34 962 34 739 34 518 84 300 34 084 33 870 33 659 33 449 33 242 33 037
0.6 32 834 32 633 32434 32 237 32 043 31 850 31 659 31470 31 283 31 097
0.7 30 914 30 732 30 552 30 374 30 198 30 023 29 850 29 679 29 509 29 342
0.8 29 175 29 010 28 847 28 686 28 526 28 367 28 210 28 054 27 900 27 747
0.9 27 596 27 446 27 298 27 150 27 005 26 860 26 717 26 576 26 435 26 296
1.0 26 157 26 021 25 886 25 751 25 618 25 486 25 355 25 226 25 097 24 970
1.1 24 844 24 719 24 595 24 472 24 350 24 229 24 109 23 991 23 873 23 756
1.2 23 640 23 526 23 412 23 299 23 187 23 076 22 966 22 857 22 749 22 641
1.3 22 535 22 429 22 325 22 221 22 118 22 016 21 914 21 814 21 714 21 615
1.4 21 517 21 420 21 323 21 228 21133 21 038 20 945 20 852 20 760 20 669
1.5 20 578 20 488 20 399 20 310 20 223 20135 20 049 19 963 19 878 19 793
1.6 19 709 19 626 19 543 19 461 19 380 19 299 19 219 19 139 19 060 18 982
1.7 18 904 18 827 18 750 18 674 18 598 18 523 18 449 18 375 18 301 18 228
1.8 18 156 18 084 18 018 17 942 17 871 17 802 177382 17 663 17595 17 527
1.9 17 460 17 393 17 326 17 260 17194 17129 17 065 17 000 16 937 16 873
2.0 16 810 16 748 16 686 16 624 16 563 16 502 16 441 16 381 16 322 16 262
2.1 16 203 16 145 16 087 16 629 15 972 15915 15 858 15 802 15 746 15 691
2.2 15 636 15 581 15 526 15 472 15419 15 365 15 312 15 259 15207 15155
2.3 151038 15 052 15 001 14 950 14 900 14 849 14 800 14 750 14 701 14 652
2.4 14 603 14 555 14 507 14 459 14 412 14 365 14 318 14 271 14 225 14179
2.5 14138 14 088 14 042 13 998 13 953 13 908 13 864 13 820 13777 13 734
2.6 18 690 13 647 13 605 13 562 13 520 13 478 13 437 13 895 13 354 13 313
2.7 18 273 13 232 13192 13152 13112 18072 13 033 12 994 12 955 12 916
2.8 12 878 12 840 12 802 12 764 12 726 12 689 12 652 12 615 12 578 12 541
2.9 12 505 12 469 12 433 12 397 12 361 12 326 12 290 12 255 12 221 12 186
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— 200 —

10* E(y)
Y

3| 12 151 | *816 | *498 | *196 | **908 | 10 635 | 373 | 124 | *886 | *659
4009 441 | 233 | 033 |*841 | *657 | 08 480 | 810 | 147 | *990 | *838
5007 692 | 551 | 415 | 284 | 157 ] 07 034 | *916 | *801 | *690 | *582
606 478 | 877 | 279 | 184 | 091 | 06 002 | *914 | *830 | *747 | *667
70105 589 | 513 | 440 | 368 | 298 | 05 229 | 163 | 098 | 034 | *973
804 912 | 853 | 796 | 740 | 685 | 04 631 | 579 | 527 | 477 | 428
904 380 | 833 | 287 | 242 | 198 | 04 154 | 112 | 070 | 030 | *990

Yy 10° E(y) Yy 10° E(y)

10.0 03 951 20.0 01 990

11.0 03 597 25.0 01 593

12.0 03 302 30.0 01 328

13.0 03 051 40.0 00 997

14.0 02 835 50.0 00 798

15.0 02 648 100.0 00 399

1
Yoo jl:
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Fiir weitere Literaturangaben sei auf die Arbeit [4] und den Literaturbericht
iiber die kollektive Risikotheorie (Blitter der Deutschen Gesellschaft fiir Versiche-
rungsmathematik 1956, Band IIT) verwiesen.
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