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Orthogonale Polynome
mehrerer Verinderlichen und ihre Anwendung
in der ein- und zweidimensionalen
Ausgleichsrechnung

Von Rudolf Hiisser, Bern

Einleitung

Statistische Beobachtungen oder Messungen sind stets mit Fehlern
behaftet. Um den storenden Einfluss eines sprunghaften Verlaufes aus-
zumerzen, fordert der Naturwissenschafter, insbesondere der Mathe-
matiker fiir die «wahren Werte» einen glatten Verlauf, wodurch die
allgemeine Grundtendenz unverfilscht und klar zum Ausdruck kommt.
Welches der gebrduchlichen Verfahren anzuwenden ist und wie dabei
vorgegangen wird, lehrt die Ausgleichsrechnung. Als besonders wertvoll
haben sich Ausgleichsansitze mittels orthogonaler Polynome erwiesen.
Letztere nehmen iibrigens nicht nur in der Theorie der Ausgleichsrech-
nung eine Vorrangstellung ein, sie finden ebenfalls bei Regressions-
problemen sowie bei der Analyse von Zeitrethen (Gliattung, Trend-
berechnung) Verwendung.

Die vorliegende Abhandlung befasst sich mit der Theorie der ortho-
gonalen Polynome. Es schien mir von Interesse, zwei Fragen abzukliren.
Einmal sollen die mathematischen Grundlagen iiber orthogonale Poly-
nome systematisch bearbeitet werden. Dabei gilt es, wichtige Eigen-
schaften aufzudecken sowie wesentliche Beziehungen und wechselseitige
Bindungen klarzustellen. Sodann ist darzutun, dass sich orthogonale
Polynome ihrer theoretischen wie praktischen Eigenschaften wegen fiir
die Ausgleichsrechnung gut eignen. Im Hinblick auf praktische Anwen-
dungen wurde eine moglichst einfache numerische Auswertung erstrebt.

Orthogonale Polynome sind naturgemiss von der Argumentenfolge
abhiingig; stets 1st darauf zu achten, ob kontinuierliche (stetig sich ver-
andernde) oder diskrete (nur in gewissen Stellen definierte) Argumente
vorliegen. Um eine Doppelspurigkeit in der Darstellung zu vermeiden,
bediente ich mich des Stieltjesschen Integralbegriffes.



Der erste Teil, welcher der n-dimensionalen Betrachtungsweise ge-
widmet 1st, enthélt zunichst die grundlegenden Begriffe und Defini-
tionen. Alsdann werden ein vollstdndiges Orthogonalsystem hergeleitet
sowie notwendige und hinreichende Bedingungen fiir die Bestimmung
der Koeffizienten der orthogonalen Polynome aufgestellt. Die Darstellung
des Ausgleichspolynoms durch orthogonale Polynome schliesst diese
Untersuchungen ab.

Im zwerten und dritten Teal erfolgt die Spezialisierung auf eine bzw.
zwel unabhidngige Verdnderliche. Nach der Entwicklung einer all-
gemeinen Liosung (Determinanten-Methode) werden, den Bediirfnissen
der Praxis Rechnung tragend, die Fille kontinuierlicher und diskreter
Argumente — letztere zusitzlich nach dem Gesichtspunkt &quidistant
bzw. nicht dquidistant — getrennt behandelt. '

Uberdies wird auf Vereinfachungen zur numerischen Auswertung
(Transformationen, Rekursionen, Tabellen) sowie auf zweckmissige
Rechenschemas eingetreten.

Die Ausgleichsansétze mittels orthogonaler Polynome und die damit
verbundenen Relationen wurden an einem Beispiel der flichenhaften
Ausgleichung mehrerer Sterbetafeln erprobt. In verdankenswerter Weise
stellte mir das Fidgenossische Statistische Amt fiir die neuesten Sterbe-
tafeln SM 1941/50 und 1948/58 die Grundzahlen vorzeitig zur Verfiigung.

1 Allgemeines

11  Grundsatzliches und Definition des Stieltjes-Integrals

Wir beschrinken uns durchwegs auf den m-dimensionalen eukli-
dischen Raum R, und betrachten darin einen Bereich B. Darunter ver-
stehen wir ein abgeschlossenes und beschriinktes Gebiet [3] 1).

Ordnet man jedem Punkt z ¢ B nach irgendeinem Gesetz eine be-
schrinkte Umgebung U(x) zu, dann lassen sich nach dem Uberdeckungs-
satz von Heine-Borel [3] stets endlich viele Punkte z; ¢ B, (1 = 1,2, .. .,])

!

derart auswéhlen, dass BcU U(x,;) ist. Nun verlangen wir, dass die
i=1
Umgebungen U(z,;) zu einem Mengenkorper 9t gehoren sollen, d.h. aus

1) Zahlen in eckigen Klammern [ ] bezeichnen die betreffende Nummer im
Literaturverzeichnis auf den Seiten 124 ff.
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U,V eI folgt: Uvu VeIl (Summe),
Un VeIt (Durchschnitt),
U—VeIt (Differenz)b).

:
Offensichtlich kann | U(z;) in endlich viele, paarweise disjunkte

i=1
Mengen X, X,, ..., X, €¢I zerlegt werden, sodass jede Menge U(zx;),
(i = 1,2, ...,1), Vereinigungsmenge von gewissen unter den X, ist.
Dabei heissen zwei Mengen X, und X, disjunkt, falls sie keinen gemein-
samen Punkt besitzen; d.h. falls X, n X, = 0 ist?).

Der Abstand zweier Punkte z,,z,€¢X ist 1im R, definiert als

=
W) = l/z (x,,—&;,)%s Wwenn x; , bzw. z, , (v =1, 2, ..., n) die
r=1

Koordinaten des Punktes x, bzw. x, sind.

Dann versteht man unter dem Durchmesser d[ X einer beschrinkten

Menge X das Supremum der Abstinde zweier Punkte z,,z,¢ X :
d[X] = Bup d(z,,z,).
zy,x9€¢ X

Aus o[ U(x)] << D mit D > 0, reell, folgt natiirlich auch 6[X | << D
fiir alle X, eU(x).

Wir nennen ein System von endlich vielen, paarweise disjunkten
Punktmengen X,,X,, ..., X, €M dann eine Uberdeckung Z von B,
wenn ”
BcUX,

p=1
1st, mit X nB=£0firalleu=1,2,...,m.
Zur Charakterisierung eines solchen Mengensystems fithren wir das
Feinheitsmass der Uberdeckung Z von B ein:
d[Z] = Max d[X,].
v=12...,m
Eine Uberdeckung Z* heisst feiner als Z, wenn jede Menge X, , ¢ von
Z* Teilmenge einer Menge X, von Z ist, fiir alle p = 1,2, ..., m;
v=1,2,...,n,. Insbesondere gilt dann 6[Z*] < §[Z].

1) Unter der Differenz U — V' verstehen wir die Menge derjenigen Punkte von
U, die nicht zu V gehéren: U —V = U n C(V), wenn C(V) die Komplementér-
menge von V ist.

2) 0 bedeutet hier die leere Menge.
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Schematisch dargestellt, besteht

Z* aus und 7 aus
Xl,l’ XI,Z’ X1,3’ “ e ey Xl,’ﬂ] C _X1
Xz,l, quz, X2,3, c e ey X2,n2 C Xz
me X PP PR C b
Wenn X, nicht ganz in B enthalten ist, bildet die Vereinigungs-
n
"
menge |J X, , moglicherweise eine echte Untermenge von X ,. Deshalb
r=1 y,
setzen wir Y, = X, — U X, ,; dann wird

r=1

Tl

X”:(UA ) Y, (u=1,2,...,m).

r=1
Schliesslich nennt man eine fiir alle X €9t definierte Funktion F'(X)
a) additiv auf I, falls aus X, X,eIN und aus X;n X, = 0 folgt:
F(XIUX2) = F(Xl) + F(X,),

b) von beschriankter Schwankung auf 9, falls eine reelle Zahl M
existiert, sodass aus

X, Xgs ooy XM, X,0X, =0, (gp=1,2, ...,m),

folgt: 2 jF } < B

Damit sind die zur Einfithrung des Riemann-Stieltjesschen Integral-
begriffes notwendigen Grundlagen zusammengestellt. Wir treffen nun die

Voraussetzungen:
1. B sei ein Bereich im euklidischen Raum F,.

2. M sel ein System von Punktmengen mit den folgenden Eigen-
schaften:

a) Mt bilde einen Mengenkdorper,

b) zu einem beliebigen Punkt xe B und gegebener reeller Zahl D >0
existiere eine zu I gehorige Umgebung U(z) mit dem Durch-
messer o[ U(x)] < D.



Auf Grund der vorstehenden Uberlegungen existieren endlich viele,
paarweise disjunkte Punktmengen X,,X,, ..., X, €M, die eine Uber-
deckung Z von B bilden und deren Durchmesser 6[X,] < D sind.

3. I'(X) sei eine fiir alle X, ¢t definierte, reelle Funktion, die auf
9t additiv und von beschrinkter Schwankung ist.

Ferner sei folgende « Randbedingung» erfillt ):

Zu jedem & > 0 existiert eine reelle Zahl D; > 0, sodass gilt:
Hat jede der (beliebigen) Mengen X,,X,, ..., X, einen Durch-
messer 6[ X] < D, und mindestens einen Punkt mit dem Rand von B
gemeinsam, sind ferner die Mengen Y,,Y,, ..., Y, €It paarweise dis-
junkt und ist Y, <X,, (s = 1,2, ...,7), dann wird >} F(Y,)| <e.
=1
4. p(x) se1 eine stetige Funktion des Punktes x € B.

In jeder der Mengen X, wihlen wir nun einen beliebigen Punkt
r,€(X,n B) und bilden die Summe

S p(z,) F(X,).

“:

[are

Dann gilt folgender

Hauwptsatz: Der Grenzwert

lim {j plz,) F(X,) = f o(z) dF (1.1)

D0 p=1 .B
wird Stieltjes-Integral von ¢(z) beziiglich F' iiber B genannt, existiert
und ist von der Art der Uberdeckung des Bereiches B durch die m
disjunkten Punktmengen X ,, wie auch von der Wahl der Punkte
z,€(X, n B) unabhiingig.

Existenz und Eindeutigkeit dieser Aussage wurden in der Original-
arbeit ?) bewiesen. Weitére theoretische und praktische Hinweise iiber
Stieltjes-Integralefindensichz.B.inden Untersuchungenvon M..Jacob[1],
A. Loewy [2], S.Saks [4], H.Schdrf [5] und J.F.Steffensen [6].

') Diese « Randbedingung» eriibrigt sich, wenn B selber zum Mengenkéorper I
gehort.

¥) Das Manuskript liegt im mathematisch-versicherungswissenschaftlichen
Seminar der Universitit Bern auf.
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12 Satz iiber orthogonale Funktionensysteme

Die allgemein giiltige Aussage dieses Abschnittes werden wir spéter?)
auf Polynome spezialisieren. Damit wird sich die Konstruktion der ortho-
gonalen Polynome wesentlich vereinfachen lassen, indem wir weder auf
das praktisch umstandliche Schmidtsche Orthogonalisierungsverfahren,
noch direkt auf die Orthogonalititsbedingungen angewiesen sein werden
(vgl. W.Gribner [20]).

Voraussetzungen.:

1. g;(2), (A=0,1,2, ...) seien im Bereich B definierte, reelle und
stetige Funktionen des Punktes zeB.

2. Die fiir den Bereich B, den Mengenkorper 9t und die Funktion F
auf den Seiten 58/59 aufgestellten Voraussetzungen 1. bis 3. seien erfiillt.

Dann existiert das Integral

~

/ pix) g (2)dF, (Ap=0,1,2...).
B
Defination:
Das Funktionensystem {g,(z)}, (A = 0,1, 2, .. .) heisst beziiglich F
im Bereich B orthogonal, wenn die Orthogonalititsbedingungen

_ 0, fir A< pu,
[ 9@ (@) ar | s S
B

L (1.9)
=0, #+ 0, fir 2 = pu erfiillt sind.

Behauptung:

Das Funktionensystem {g,(z)}, (A = 0,1,2, ...) ist im Bereich B
dann und nur dann orthogonal, wenn das Integral

J, = f[co @o(2) + ¢ @1(2) + . .. + 611 94 (2) + ¢y(2)]PdF  (1.8)

B
bei jedem Index [ ein « Extremumn»?) fiir ¢y =¢; =¢3= ... =¢;_; =0
annimmt, und falls

[lp@dF #0, 3=0,1,2,...) ist.

1) Abschnitt 13, Seite 63.
) Unter «Extremum» wird hier lediglich die Bedingung verstanden, dass

. . J .
samtliche ersten Ableitungen acl verschwinden (1.4). Offen bleibt die Frage, ob
A
es sich tatséchlich um ein Minimum oder Maximum im iiblichen Sinne handelt;
ihre Beantwortung hat in diesem Zusammenhang keine Bedeutung.



Beweis:

Soll das Integral .JJ, ein Extremum annehmen, miissen notwendiger-
weise dessen partielle Ableitungen nach den Koeffizienten ¢, fiir alle
A=0,1,2, ..., (I—1) verschwinden; d. h.

1 oJ, : .
9 2o [Copo®rte1@1@at - F e 1@+ @ @] dF = 0.

; ;

(1.4)

B

a) Dann: Wir setzen voraus, das Integral J, nehme fiircy = ¢, = ¢, =
= ... = ¢,y = 0 ein Extremum an. Dann muss gleichzeitig die
notwendige Bedingung (1.4) erfiillt sein. Diese reduziert sich auf

f%(-’r') @;(x) dF' = 0 fiir jeden Index I und fiir jedes 1 =0, 1, 2,
B

..., (I—=1); d.h. das Funktionensystem {g,(z)} ist orthogonal.

b) Nurdann: Ist das Funktionensystem | ¢,(x)} orthogonal, dann wird

1 oJ
b=, (A=0,1,2,...,1—1).

2 dc,
Dieser Ausdruck verschwindet wegen (1.4), wenn das Integral J,

ein Extremum annimmt. Da nach Voraussetzung o, =+ 0 ist, folgt:

¢,=0, (1=0,1,2,...,1—1).

13 Konstruktion eines vollstindigen Orthogonalsystems

Zuerst suchen wir ein vollsténdiges Polynomsystem, welches nach-
her so bestimmt wird, dass die Orthogonalititsbedingungen (1.2) er-
fiillt sind.

Defination.:

Ein linear unabhéngiges Polynomsystem heisst vollsténdig, wenn
jedes (beliebige) Polynom auf genau eine Weise als Linearkombination
der Polynome dieses Systems dargestellt werden kann; d.h. wenn das
System eine Basis des linearen Raumes aller Polynome ist.

Nun gibt es bei n Variablen z,, z,, ..., z, zu jedem Grad 2

so viele linear unabhéngige Polynome, als voneinander verschiedene
n

Potenzprodukte zi* - a3 - ... - al», mit > », = 4, vorkommen.
i=



62

Wir denken uns alle Potenzprodukte geordnet und erhalten z. B. fiir
n =1 je ein (entartetes) Potenzprodukt A-ten Grades (1 =0,1,2, ...),

A) Potenzprodukte A-ten

namlich 1; x,; 3; 3; ..., oder allgemein ( 1

Grades.

Tst m = 2, dann haben wir gemiss
. . 2 L TR 2 2 3.
1; o5 g5 @], T Ty, Ty; Tis Ty Tgy Ty Tas La3 o o
ein Potenzprodukt nullten Grades, zwei — ersten Grades, drei — zweiten

l—){:l) Potenzprodukte A-ten Grades.

Durch Induktion findet man, dass es bei » unabhéngigen Variablen
Zy, Ty, ..., &, INsgesamt

= ("T¢Y) (1.5

Grades, usw., oder allgemein (

voneinander verschiedene Potenzprodukte A-ten Grades und somit auch
p; linear unabhéngige Polynome A-ten Grades gibt.

In der vorstehenden Anordnung bezeichnen wir mit

Qv,g(xl3 mZ’ LR m’n) - Qv,g(m) 1)
das o-te Potenzprodukt »-ten Grades, (v =0,1,2, ...;0=1,2,...,p,).

Bedeutet P, u(@y, gy o 0oy &) =P, (7))

ein u-tes linear unabhingiges Polynom A-ten Grades
(A=0,1,2,...; u=1,2, ..., p,), welches nur die Potenzprodukte
&l2), (v=0,1,2,..., A—1;0=1,2,...;p,und v =13 =1, 8. .ot}
und zwar das letzte mit dem Koeffizienten 1 enthélt:

u

Py
Z A Ik g + .\:1 R.,J.O(',u,g Qi{.g(x) ’ lmt' L/'!Of',u,_u - 1! (1 6)

o=1

H
"N'_

dann bilden diese Polynome

(Pod@)ls (0= 0,1,2, .5 = 1,2, ..., p)

o

1) Um die Schreibweise nicht unnétig zu belasten, deuten wir die Abhéingigkeit
von den n unabhiéngigen Variablen z,, z,, ..., Ty im folgenden nur durch (), ()
bzw. P, u(z) an.
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ein vollstindiges, linear unabhéingiges System; denn unter den gemiss
(1.6) definierten P, () gibt es von jedem Grad A genau so viele linear
unabhéngige Polynome als voneinander verschiedene Potenzprodukte
dieses Grades vorkommen, sodass jedes (beliebige) Polynom eindeutig

nach
Fou(®), P (%), By (3), ..., B(2), ... (0=1,2...,p)

entwickelt werden kann.

Damit die nach (1.6) definierten Polynome
{PL#(:‘U)}’ (2‘ - O’ 1’ 27 cees H = 1, Q" .. "p/'l)

ein vollstindiges Orthogonalsystem bilden, miissen die Koeffizienten
1.%,,, der betreffenden Polynome so bestimmt werden, dass nach (1.2)
die Orthogonalititsbedingungen

= 0, fir 4 . ode 0,
[P, (@) Py 5(a) dF e A hooder s g

P =+ 0, fir A =21 und p = pu,
(i =0,1,2,...; e = 1,2, ..., p, baw. p3), erfiillt sind.
Nun erhilt man aus der im Abschnitt 12 bewiesenen Aussage (1.3)
iiber orthogonale Funktionensysteme durch Spezialisierung auf die
Polynome P, ,(z) den
Satz:

Das vollstindige System der Polynome
1 Kot =01, iy = 139 uses 0
1st 1m Bereich B dann und nur dann orthogonal, wenn das Integral

1-1 P} k—1 12
Jl,k — f Lzo EICA,pPA,,u(m) + E CE,,u Z)l,,u(a:) + 1')1,]‘(53) dF (1 '8)
=0 pu= p=1
B

bei jedem Indexpaar (I,k) sein Extremum fiir ¢, , = 0
A=0,1,2,..,l-1;p=1,2,...,p3undA=4Lpu=12, ..., k—1)

annimmdt.

Da sich dieser Satz zur Bestimmung der Koeffizienten , o, , nicht
gut eignet, leiten wir aus ithm folgenden neuen Satz her:



Das vollsténdige System der Polynome

{PL#(Q})}, ()L ='0,1; 2 .55 uw = 1,9, -"PA)
1st 1m Bereich B dann und nur dann orthogonal, falls gilt

f [P, ,(2)]?dF = Extremum, (1.9)

mit der Nebenbedingung , ;, , = 11).

Zum Beweis dieses neuen Satzes geniigt es zu zeigen, dass dle beiden
Extremalprobleme (1.8) und (1.9) dieselbe Liosung besitzen.

P, ,(z) ist ein k-tes Polynom I-ten Grades mit dem hochsten Potenz-
produkt @, ,(x) und enthilt nach (1.6) alle in den vorhergehenden

Polynomen
y P/’l,,u(x) ’

(3i=0,1,2; .. 8=1; =015, .c.op, and A =¥ u=1,9, ..., k=1
auftretenden Potenzprodukte @, (). P, (x) und

-1 Pa

R, (z) = 22@1“ zu$)+20u ) + P ()

A=0pu=1
unterscheiden sich demnach nur durch die den Potenzprodukten @), ,(z),
(2= 0,1:2, . .y d—=1; 0 =112 sooypy und A = 1 =142, o wesilt—1)
zugeordneten Koeffizienten.

Somit ist die Menge der Funktionen R, (), welche dem Extremal-
problem (1.8) zugrunde liegt, identisch mit der Menge der Polynome, die
dem neuen Satz (1.9) entsprechen.

Da ausserdem fiir & — 0
(A=0,1,2,...,1—1; u=1,2,...,p,und A=1; p=1,2,...,k—1)
B, 4(x) = P 4(x)
wird, folgt die Aquivalenz der beiden Extremalprobleme unmittelbar.

Wir wissen jetzt, dass mindestens ein vollsténdiges orthogonales
Polynomsystem gemiiss Ansatz (1.6) existiert, welches auf Grund des
Extremalproblems (1.9) bestimmt werden kann. Es bedarf jetzt noch
des Nachweises, dass genau ein solches vollsténdiges System existiert.

1) In Ubereinstimmung mit (1.6) und zur Sicherstellung der Eindeutigkeit des
orthogonalen Polynomsystems fordern wir 2%,,, = 1, trotzdem die Bedingung
aacuu 7 0 fiir den Beweis des neuen Satzes ausreichen wiirde.
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Der lineare Raum aller Polynome sei mit P bezeichnet; dann

spannen die orthogonalen Polynome

Boas Piys Pras s Pips Bogs ooy Byps - By

fiir jedes Indexpaar (4,u) einen Unterraum ‘B, ' auf, der dadurch
entsteht, dass das Polynom P, ,(z) an P, , ; bzw. an Pa-1p, , (fiiru =1)
adjungiert wird. Alsoist B, , | bzw. Pa-1,, | eine Hyperebene von B, ,.
Auf dieser Hyperebene steht P, ,(z) senkrecht, und daraus folgt, dass
P, () bis auf einen skalaren Faktor bestimmt ist, da ja alle P, (x) 0
sind, wenn nur ,,«, , nicht verschwindet.

Die Nebenbedingung, wonach der Koeffizient des letzten mit-
zuberiicksichtigenden Potenzproduktes gleich eins sein miisse, legt auch
diesen noch offenen Faktor fest (vgl. Fussnote, Seite 64). Damit ist das
vollstindige System der orthogonalen Polynome eindeutig bestimmdt,
sodass es keine Rolle spielt, wie die Koeffizienten , «,, von P, (z)

explizit ermittelt werden.

u,0

14 Darstellung der Ausgleichspolynome
durch orthogonale Polynome

Nach Abschnitt 13 wissen wir, dass ein vollstindiges und — unter
Beriicksichtigung der Nebenbedingung , ,«, = 1 —eindeutig definiertes
Orthogonalsystem | P, ()} existiert.

Da sich jedes beliebige Polynom als Linearkombination der Poly-
nome irgendeines vollstindigen Systems, insbesondere also der ortho-
gonalen Polynome P, () darstellen lisst, rechtfertigt sich fiir die Aus-
gleichspolynome der Ansatz

-1 Pa
Zlh Z \jaﬂ.,u J.y( )+\ a’l,uI) () )‘ (110)
A=0 u=1 u—l

Mit dieser Relation, wo alle orthogonalen Polynome in aufsteigender
Reihenfolge der Grade A = 0, 1, 2, ..., (I—1) und von den orthogonalen
Polynomen [-ten Grades nur die k ersten, nimlich P, (), (u = 1,2, ... k),
beriicksichtigt werden, kommt zum Ausdruck, dass fiir die Ausgleichs-
polynome [-ten Grades in Abhingigkeit von den P, ,(x) insgesamt p,
Ansiitze bestehen. Deshalb dringt sich auch hier eine doppelte Indizie-

1) Im Sinne der frither eingefiihrten vereinfachten Schreibweise wird die Ab-
hiingigkeit von den n unabhiéngigen Variablen z,, z,, ..., x, lediglich durch
21 x(x1, Za,y - . ., Ty) = 21,4(2%) bW, w(zy, 29, . . ., Z,) = w(z) angedeutet.
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rung auf: z;,(z) bedeutet das k-te Ausgleichspolynom I-ten Grades

(k = 1,2, ..., p,) in den n unabhiingigen Variablen z,, ., ..., By
Zur Bestimmung der Koeffizienten a, , in (1.10) werden die Beob-

achtungswerte w(x) nach der Methode der Lleinsten Quadrate ausgeglichen.

[ler(@) —w(@)PdF = [ [w,4()]*dF = Minimum. ~ (1.11)

Unter Berticksichtigung von (1.10) findet man wegen der not-
wendigen Minimalbedingung, d.h. durch Nullsetzen der partiellen
Ableitungen nach den a5 ;,(1=0,1,2,...,1—1; #=1,2,...,p; und
A=1l u=1,2,...,k), die Gleichungen

1 Pa k :

f*— [2 Zaﬁu 2l Y‘OLEMl’”u(a:)—v,u(ar:) dF = 0. (1.12)
A=0pu=1 u=1

B

Infolge der Orthogonalitiitsbedingungen (1.7) reduziert sich dieser

Ausdruck auf fP' (2) [05.5 P 5(0) — w(@)] dF = 0,
woraus nach Vertauschung von I,ﬁ mit A,u folgt:

JPM .

it = b ,(?:QLQ 5 (1.18)
f[qu( )] 2 AF ST I SR S [
B

Wie schon die Schreibweise a, , andeutet, sind diese Koeffizienten
sowohl vom Grad [, als auch vom zweiten Index k des Ausgleichs-
polynoms 2, ,(x) unabhiingig und bleiben bei einer nachtriglichen
Anderung dieser Grossen invariant.

Ansatz (1.18) ist auch deshalb vorteilhatt, weil er direkt l6sbar ist,
eine Higenschaft, die auf die Orthogonalititsbedingungen zuriick-
zufithren ist. Ohne diese miisste ndmlich (1.12) nach den Koeffizienten
a, , aufgelost werden. Die Auflosung dieses linearen, inhomogenen
Gleichungssystems wére — wenn auch theoretisch sichergestellt — prak-
tisch recht umstiandlich. Der zur Ermittlung der Koeffizienten erforder-
liche Rechenaufwand wiirde deshalb bedeutend grosser austallen als bei
Beniitzung von (1.18). Uberdies wiren die Koeffizienten a, , = , ;a, ,
vom Grad [ und vom zweiten Index k des Ausgleichspolynoms z; ()
abhiingig und miissten bei allfilliger Anderung von I oder k vollstindig
neu berechnet werden.
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2 Eindimensionale Betrachtungsweise

21  Grundsatzliches und Definition des Stieltjes-Integrals

Die bisher allgemein gehaltenen Ausfiihrungen lassen sich wie folgt
auf den Fall einer unabhéingigen Variablen spezialisieren.

Der Bereich B reduziert sich auf ein abgeschlossenes und beschrink-
tes Intervall I = [a < o < b].

s geniigt fiir unsere Zwecke, jenen Mengenkdrper IR zu wihlen,
der von allen beschriinkten Intervallen erzeugt wird (9t besteht dann aus
allen Vereinigungsmengen von endlich vielen, beschriankten Intervallen).

Nun betrachten wir diejenigen Uberdeckungen Z von B, bei denen
die paarweise disjunkten Intervalle X, X,, ..., X, €I links offene,
rechts abgeschlossene, beschrinkte Intervalle sind (mit Ausnahme von

X,, das auch links abgeschlossen ist), fiir welche (U X, = B ist 1).
. 'u=1
Die zu einer solchen Uberdeckung Z gehorenden Intervalle X, seien in

der Reihenfolge ¢ = 1,2, ..., m von a nach b auf I angeordnet, sodass
X, =[xg,xy] und X, = (x,4,7,], (#=2,8,...,m),
mit
8[X,] = A2, 2,4) = |28,—C, 4,

gesetzt werden kann.

Dabei haben wir X, durch die entsprechenden Randpunkte z, ,
und z,, (@ = @, %, ..., T,, -+ ., Tpy, T, = b) gekennzeichnet, und
mit der runden bzw. eckigen Klammer wird die Eigenschaft von X,
links offen bzw. rechts abgeschlossen zu sein, charakterisiert.

Neben der Funktion F(X) definieren wir nun eine Funktion F*(z)

der reellen Variablen x wie folgt:
F*(a) = Flz, = aa], (a <z =<b)?.

Wegen der Additivitit von F wird
'P1(‘Yy.) — F[a”m_u] __F[a”m,u—l] = F*(CC#) —’F*(mp—l);

d.h. F und F* bestimmen einander eindeutig, sodass wir wie iiblich
F durchwegs durch F'* ersetzen konnen.

1) Da der Bereich B ein beschrinktes Intervall I ist und deshalb selbst zu I
gehort, tritt hier das Gleichheitszeichen auf (vgl. Fussnote, Seite 59).

%) Fiir z = a besteht [z, = a,x] aus dem Punkt a allein und gehort somit
ebenfalls zu M. Also ist F[z, = a,a] und damit F'*(a) auch definiert.



Die Funktion I'*(x) heisst von beschrinkter Schwankung auf I,
wenn fiir beliebige o =2y < 2, < ... <, = b gilt:

Z |F*(z,) —F*(z, )| < M.
pn=1

Schliesslich nimmt die Definition des Stieltjesschen Integrals einer

auf I definierten, stetigen Funktion ¢(z) mit der neuen Bezeichnung
folgende Gestalt an:
b

f p(2) AF(z) f P(2) aF = T X (&) [F(z,) —Flz, )] Y. @.1

i

D»0 =1
a

Dieser Grenzwert existiert und ist von der Art der Uberdeckung Z
des Intervalles I — [a = x = b] durch die m-Intervalle X , €I, wie
auch von der Wahl der Zwischenwerte (z, , < &, < x,] unabhiingig.

Ohne auf die weiteren Uberlegungen des ersten Kapitels einzutreten,
die nur eine spezialisierte Wiederholung des allgemeinen Falles wiiren,
seien doch folgende Tatbestinde erwiahnt.

1. Die Definition der Polynome Pl,w (xy,%9, - .., x,) reduziert
sich nach (1.6) auf den Ansatz:
/1

Pa) = 3, i 2+ 2.2)

r=0

. ; /A
mit o, ; = 1; denn es gibt jetzt VOIlJedGIIl Grad A nur noch p, = (A) =]

Potenzprodukt ,(z) = 2* und somit auch nur je ein linear unab-
hiingiges, orthogonales Polynom P;(x), weshalb auf zusitzliche Indizes
verzichtet werden kann.

o, stellt also fiir das Polynom A-ten Grades den Koeffizienten des
zur u-ten Potenz von x entarteten Potenzproduktes ¢),(x) = 2 dar.

2. Alle auftretenden Integrale existieren.
Wenn das System der Polynome | P;(x)}, (1 =0,1,2, ...) ortho-
gonal ist, miissen nach (1.7) die Orthogonalititsbedingungen

b du
». — 0, fir 1 u,
[Pyfa) P(2) dF{ G

£ s& O Hir 4 == g5,

(Au =0,1,2, ...) erfiillt sein.

: 2.3)

1) Wir lassen den Stern * bei I'* wieder weg, fassen jedoch F, wie allgemein
gebriuchlich, weiterhin als Funktion der reellen Variablen z auf.
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3. Die Polynome P,(z), (A = 0,1,2, ...) bilden ein vollstindiges
Orthogonalsystem, wenn die Koeffizienten o, , in (2.2) so bestimmt
werden, dass nach (1.9) gilt:

f [P;(z)]? dF = Extremum, (2.4)

mit der Nebenbedingung o, , =1, (1 =0,1,2, ...). Die nach dieser
Vorschrift konstruierten Orthogonalpolynome sind damit eindeutig
definiert.

4. Auch zur Darstellung eines beliebigen Ausgleichspolynoms als
Linearkombination orthogonaler Polynome beziehen wir uns auf die
friither gefundenen Erkenntnisse.

Nach (1.10) ergibt sich
?1
z(2) = ¥ a, b2, {=0,1,2 ..5) (2.5)
i=o

wenn die Polynome P,(z) ein vollstindiges Orthogonalsystem bilden.

Die noch unbekannten Koeffizienten a, konnen dann gemiss (1.13) mit

der Beziehung ,
[.I’Z(x) w(z) dF

a, = — , (A=0,1,2,...,] (2.6)

[ [Py(@)2dF

ermittelt werden, falls die Beobachtungswerte w(x) wieder nach der
Methode der kleinsten Quadrate ausgeglichen werden.

22 Determinanten-Methode

Zur Bestimmung der Koeffizienten «; , der Polynome P;(x) greifen
wir auf (2.4) und fordern

[

(2N

A

12
W _
S‘o oy, & J dF = Extremum.
”:




SRS ) [

Wird der quadratische Ausdruck entwickelt, dann ergibt sich unter
Beriicksichtigung der Abkiirzung

b
Cpyp = [ &+ aF (2.7)
das Extremalproblem ¢
A
20 Ej() C“H‘V %pu ®ap = Extremum, (a;,;==1).
u=0r=

Damit dieser Ausdruck extremal wird, miissen die partiellen Ab-
leitungen nach den unbekannten Grossen o« , verschwinden und wir
finden das aus A4 Gleichungen bestehende lineare, inhomogene (lei-
chungssystem

i1

S0, =—Cpyy (=0,1,2,...,4—1)  (2.8)
p=0

zur Bestimmung der 2 unbekannten Koetfizienten «; ,. Falls die aus der
linken Seite des Gleichungssystems (2.8) gebildete Koeffizientendeter-
minante D, von Null verschieden ist, existiert eine und nur eine Lidsung.

Diese lautet Dy(n)
== —p = - (2.9)
A
Dabei ergibt sich D,(u) aus D,, indem die u-te Spalte der Determinante
D, durch die Grossen auf der rechten Seite des Gleichungssystems (2.8)
ersetzt wird.

Die eindeutig bestimmten orthogonalen Polynome sind nun in der

Gestalt e
D
P(x) = D - w1 z*+ a2t (L=0,1,2,...) (2.10)
) =0 Da
darstellbar.

23 Beziehungen und Ansitze fiir die praktische Anwendung

Die Abkiirzung (2.7) gestattet, sowohl den Fall kontinuierlicher
wie auch jenen diskreter Argumente zusammenzufassen und eine all-
gemeingiiltige Liosung zu geben.

In diesem Abschnitt werden wir nun auf die wichtigsten Probleme
bei der Anwendung orthogonaler Polynome, wie sie sich in der Praxis
stellen, néher eintreten. Gleichzeitig sollen gewisse Beziehungen zu
anderweitig bekannten Ergebnissen hergeleitet werden.
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231 Kontinuierliche Argumente

Handelt es sich um eine Ausgleichung nach einer stetigen Gewichts-
tunktion g(x), so kann das Stieltjes-Integral (2.1)

b b
[e@)aF = [g(@) p(z) de

gesetzt werden, falls F(z) = J‘g(f) d¢ ist.

@
231.1 Orthogonale Polynome

Nach dieser Anpassung des Stieltjes-Integrals an die kontinuier-
lichen Argumente bedienen wir uns des im Abschnitt 22 dargelegten
Verfahrens zur Herleitung der orthogonalen Polynome. Aus (2.7)

folgt dann: 4 _ o
g, = fa:“ g(x)dz, falls g(x) In [a < z < b] stetig 1st.

Kann auf eine Gewichtsfunktion g(x) verzichtet werden, setzt man
g(x) = 1. Dann stellt (2.7) das gewohnliche Riwemannsche Integral der
u-ten Potenz von z dar: b
pht+1__ gurtl
C,= | g%dz = — —. (2.11)
w41

a
Diese Werte sind in die Determinanten der Gleichung (2.9) einzusetzen
und fithren dann auf die Losungen (2.13).

Erwiinscht ist aber eine allgemeine, formelmissige Darstellung der
Koeffizienten «; , und damit auch der Polynome P;(x). Da sich die De-
terminanten-Methode hierzu nicht gut eignet, 16sen wir das Extremal-
problem (2.4) nach W. Griobner [20] mit Hilfe der Variationsrechnung

und finden T

_ : N TPREEPRY WAy
Nach eimigen Umformungen gewinnt man fiir diese verallgemeinerten
Legendre-Polynome die Beziehung (2.12)

o = S S OEEIC Jeomor e
A

wobei die geschweifte Klammer den Koeffizienten o, , entspricht.



Wertetabelle:

Ly(a) =

Be) = —g(at+b)+2

By(z) = ¢ (a®+4ab+b%) — (a+b) x + 2?

Py(z) = — 35 (@®+9a2b 4 9ab?>+ b3 + 2 (a®+3ab+ b3 z
— 3 (et b) 2Pt o?

P,(z) = 5 (a*+16a3b + 364202+ 16 ab® 4 b%) (2.13)
— 2 (a4 6a2b+ 6ab2+b%) x4 3 (3024 8ab+ 3b?) x?
—2(a + b) 234 2*

Fy(x) = — 4} (a®+ 25a%b 4+ 100a2b% + 100a2b® + 25 a bt - b°)

+ 2 (a*+10a3b 4 200262+ 10abd®4- V) x
— 2( S+ 5a%b+5ab?+ ) 2 + 2 (2a% 4 5ab -+ 2b7) 2?
(a+8) ot + 0?

............................

4:.

miu

Zufolge der Normierungsbedingung o, , = 1 ist die Eindeutigkeit
der auf diese Weise ermittelten orthogonalen Polynome sichergestellt
(vgl. auch Seite 65). Somit spielt es keine Rolle, ob die Koeffizienten
o, , nach der Determinanten-Methode (2.9) oder nach der Formel (2.12")
ermittelt werden.

Durch die Setzung @ = —b = 1 gewinnt man aus (2.12)

Al d

Py(z) = o] — (@17, (@14

Das 1st — abgesehen von einem konstanten Faktor — die bekannte
Formel von Rodrigues fiir die Legendre-Polynome

A
welche u. a. von W. Schob [38] zur Losung von Ausgleichsproblemen
verwendet wurde.
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Geht man, umeinen Vergleich mit der allgemeinen Theorie der Ortho-
gonalpolynome anzustellen, von der erweiterten Definitionsbeziehung

(2.12) gl
Hio) = 5 g W@F@] G=012..) @19

aus, dann gilt nach F.G.Tricomy [40] folgender Satz:

Die Funktion H,(z), gebildet mit

(b—z) (z—a), fir Ja‘<oo, }b‘<oo,
f(z) = z—a, fiir la| <o, b =oo,
]', flj]’: ——a,:b:og’

und einer Belegungsfunktion ¢(z) im Intervall [a,b], ist dann und nur
dann ein Polynom vom Grad 4 in f(z), wenn ¢(x), abgesehen von
multiplikativen Konstanten oder einfachen Abszissentransformationen,
gegeben ist durch

l (b—2)f (x—a)?, mit > —1, y>—1 fiir \a? < o0, ]bl < oo,
g(z) = e (x—a)P, mit f > —1 fir ;a}<oo, b = oo,

e 2, fir —a="0= co.

Ist dies der Fall, so sind die Polynome H,(x) beziiglich der Belegungs-
funktion g(x) orthogonal.

Durch entsprechende Wahl der Parameter findet man aus H,(z) die
bekannten «klassischen orthogonalen Polynomen, insbesondere jene von
Jacobi tiir —a = b = 1; f(z) = (1—2z) (1 4 2), g(x) = (1—x)? (1 + 2)?,
und daraus die weiteren Spezialfiille, die nach

(Gegenbauer (oder ultrasphirisch)  fir =y,
T'schebyscheff (im engern Sinne)  fiir f=y= 4+ und
Legendre iy B =y =0

benannt werden. Ferner erhilt man die Polynome von
Laguerre fir a =0, b=oc0; f(z) =z, g(z) == 2°

und jene von

x2

Hermite fir —a =b = oco; f(z) =1, g(x) =e¢ 2.
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231.2 Ausgleichsansiitze

Die Ausgleichung der Beobachtungswerte w(z) bietet nun fiir kon-
tinuierliche Argumente keine weiteren Schwierigkeiten. Nach (2.5) lasst
sich jedes Polynom als Linearkombination der P;(x) darstellen und die
Koeffizienten a, lauten nach (2.6)

b
sz(a:) w(z)dx
iy == -2 —, (2.17)

b

| @)z

a

wenn die stetige Gewichtsfunktion g(x) vernachlissigt werden kann.

232 Diskrete Argumente

Wenn die unabhéingige Variable nur der endlich vielen, diskreten
Werte z,, 0 =1,2, ..., m)mit a = 2, < z; < z,, = b fahig ist, gilt
nach (2.1)

b
f ¢(z) dF = BH; 2199(5#) [F(z,) —F(z, 4] = E—_%‘M [F(x) —F(z4)] .-

14
Sobald niimlich das Feinheitsmass §[2] < x;—x, ;| << D wird, ergibt
die Summation keinen zusiitzlichen Beitrag mehr bei einer weiteren
Verfeinerung; denn

F(‘/'E,u) —F(xf_a—l,) - O’ fir 215;__1 =l ‘,E,u—l §_ .Q:.u g Z;.

Weil nur die diskreten Argumente z; definiert sind, lassen wir die
Ziwischenwerte z, | < &, < x; mit z; zusammenfallen und setzen, um
auch hier den Zusammenhang mit den fritheren Ausfithrungen zu wahren,

F(z) = > g(z), (@< &, =2 =D). (2.18)

P g
Ti=x

Damit ist F(x;) —F(z, ,) = g(z;), und fiir jede stetige Funktion
p(x) gilt:



Auch fiir diskrete Argumente wollen wir den Fall g(x) = 1 niher
betrachten und finden &

f o) dF — iw(wi)-

a

Was die weitere Behandlung anbetrifft, so nehmen wir — entspre-
chend den Bediirfnissen der Praxis — eine Zweiteilung vor. Unterschie-
den werden die beiden Fille «nicht dquidistanter» und «dquidistanter»
Argumente.

232.1 Diskrete, nicht dquidistante Argumente

Wir setzen voraus, die auszugleichenden Beobachtungswerte w(x))

seien in unregelmiissigen Abstéinden entsprechend den Argumenten
G= Ty < Byl s S Wl 1 es < B, =0 gogeben,

Unter Beriicksichtigung der im Abschnitt 22 dargelegten Methode
werden wir das Orthogonalsystem der Polynome ’,(x) nach (2.10) auf-
suchen und gleichzeitig die Ansiitze fiir die eigentliche Ausgleichung
herleiten. Wegen der Unbestimmtheit der Argumente z; wird sich die
gesuchte formelmiissige Darstellung einerseits auf rekursive Beziechungen
beschriinken miissen, anderseits werden die darauf gegriindeten Aussagen
sehr allgemein sein, sodass sie fiir alle moglichen — also fiir kontinuier-
liche 1) wie auch fiir diskrete — Argumentfolgen gelten.

232.11 Orthogonale Polynome
Aus (2.7) folgt wegen (2.18)

0, = .\j::f glz;) = 2 z g(x) (2.19)
oder, falls g(x) = 1 1st: C, = 2 ral (2.19%)

xT

Nun erweitern wir die Definition der Abkiirzung (2.7) auf
Crp= D, 2*P(2), (4=0,1,2,...,4). (2.20)

i

Fiir 4 = 0 wird Py(z) = 1 und C, , stimmt wieder mit C, nach (2.19")
iiberein.

1) Bei kontinuierlichen Argumenten wiire die Summation Y} durch das Integral
T
f ... dx zu ersetzen.
a
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So wie sich jedes beliebige Polynom nach den Polynomen des voll-
standigen Orthogonalsystems entwickeln lisst, kann auch jede Potenz 2*

als Linearkombination der orthogonalen Polynome dargestellt werden;
d. h.
ot = ZAM: W), mif 4y, =1, (A=0,1,2; ...}, (8.21)

Daraus gewinnt man
Pa(az)ﬁ—EA“ ) (®) + 2, (2.22)

und das ist bereits eine erste Rekursionsbeziehung in den orthogonalen
Polynomen selbst. Die neu auftretenden Koeffizienten A, , bestimmen
sich unter Beriicksichtigung der Orthogonalititsrelationen

= 0, fir 4 ,

S Py(x) P, (x) st (2.23)

=£ ; fiir 4 = 8,
aus (2.21) nach Erweiterung mit P (z) und nach Summation iiber alle
vorkommenden Argumente zu

z x* P‘u(m) c,
dad

T SmEr T e,

x

A, —0,1,2,...,4). (2.24)

Damit konnen die 4, , durch die Grossen C; , ausgedriickt werden,
welche ihrerseits der Rekursionsgleichung

pu—1
¢ w Cl%—uaoﬁ—ZOA.u,vGA,v’ (f“ =012, ..., 2"—1)’ (2-25)

gentigen.

Anderseits bestehen auch fiir die Koeffizienten «; , im allgemeinen
Ansatz P,(x) einfache Rekursionsbeziehungen. Das Gleichsetzen von
(2.2) mit (2.22) fiihrt durch Koeffizientenvergleich auf

a1
g == — P A e (=0, 1,8, ... =1}, (2.26)

y=u .
mit o ; = 1.

Die orthogonalen Polynome F;(x) lassen sich also entweder nach
(2.2) unter Mitberticksichtigung von (2.26) oder nach (2.22) mit (2.24)
und (2.25) ermitteln. Beide Rekursionsverfahren sind gleichwertig und
setzen nur die Kenntnis der Nullmomente C,,, (v =0,1,2,...,22),
voraus.
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232.12  Ausgleichsansiitze

Fiir die Koeffizienten a, im Ausgleichspolynom (2.5) fanden wir die
Bestimmungsgleichungen (2.6) oder
" 1
DV Py () w(x)

= M:
al — = — — =

SIE@E O

x

L (A=0,1,2,...,0. (2.27)

Die verwendete Abkiirzung

M7 = > Py(z) w(z) (2.28)
erweist sich als vorteilhaft ; denn sie kann mit (2.22) aus den als bekannt
vorausgesetzten Grossen M, — E () (2.29)

x

rekursiv hergeleitet werden gemdss
A
M; = M,—> 4,,M,. (2.30)

pn=0
Ist schliesslich das Ausgleichspolynom z,(z) in der Potenzreihenform
1
gy =" b, 1" (2.81)

A=0

gesucht, dann ergibt sich durch Gleichsetzen von (2.5) mit (2.31) und

durch Koeffizientenvergleich der geordneten Potenzen von z die Be-

ziechung 1

b, = _\_lay o, ;e (2.82)
frpem

232.13 Schema der numerischen Auswertung

Es gelingt uns jetzt, alle wiinschenswerten Unterlagen fiir das Auf-
suchen des Ausgleichspolynoms z,(z) zu beschaffen, wenn nur die Null-
momente C,, . fir A=0,1,2,...,l; 4u=0,1,2, ..., nach (2.20)
und die Grundgrossen M,, (1 =10, 1, 2, ..., [) nach (2.29) gegeben sind.

P.G.Guest hat in seinen Veroffentlichungen [22-24] mehrmals auf
die Vereinfachungen hingewiesen, die mit der vorstehenden Rekursions-
methode erzielt werden kénnen, wenn fiir die praktischen Berechnungen
ein verallgemeinertes Dooluttle-Schema beniitzt wird [15] 1).

1) Zwischen diesem «Rekursionsverfahren» und der Matrizen-Inversion bzw.
der Auflésungsmethode von Doolittle fiir Gleichungssysteme besteht eine enge
Bindung. Ist namlich die Koeffizientenmatrix des linearen Gleichungssystems
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Danach berechnet man (vgl. Schema I) mit den €, , , nach (2.24)
die 4, , und nach (2.25) die C; ,. Gemiiss (2.22) oder mit den &, , nach
(2.2) und (2.26) ergeben sich die orthogonalen Polynome P;(z). Mit den
M, bestimmt man nach (2.30) die M} sowie nach (2.27) die a, und dar-
aus (sofern erforderlich) in Verbindung mit den «; , nach (2.32) die b, ;.
Das Ausgleichspolynom z,(x) erhélt man schliesslich aus den a, in Ver-
bindung mit den P;(x) nach (2.5) oder aus den b, ; nach (2.31).

Schema [
Cz-o-ua
: M,
I\ I
(2.25) (2.24) (2.30)
b g A, (2.80) = M
(2.25)
\\
(2.26) (2.22) (2.27)
~

8 4

Dhp =(2.2) Py(x) . a3
\ [ e

A @5 @85/

Schema II zeigt das Vorgehen fiir eine Ausgleichung 4. Grades;
es ist jedoch beliebig erweiterungstihig. Die erste Vorspalte gibt die
Operation an, die auf der betreffenden Zeile auszufiihren ist. Damit
diese Vorschriften besser verstindlich sind, wurde jede Zeile numeriert
(vgl. Vorspalte 2). Die zweitletzte Kolonne dient der Kontrolle, ob die
Rechnungen richtig ausgefiihrt worden sind. -

(2.8) wie in unserem Falle symmetrisch, dann lisst sich die dargelegte Rekursions-
Methode immer mit Erfolg anwenden. Fiir weitere Angaben sei auf S. Rushton [37],
R. Zwrmiithl [T] und auf J. Waishart and T'. Metakides [44] verwiesen.
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Das Feld in der linken unteren Hélfte von Schema II bleibt im
Doolittle-Schema gewohnlich leer, da dort die Nullrelationen stehen
wiirden. Es 1st jedoch vorteilhaft, darin nach (2.26) die Rekursions-
beziehungen fiir die Koeffizienten o, , vorzumerken; denn die Ermitt-
lung der o, , verliuft mit Ausnahme derjenigen Felder, die nur die
Grosse — A, , enthalten, parallel mit dem iibrigen Rechenschema.

Falls die Koeffizienten b, ; in (2.31) benéotigt werden, bestimmt
man diese gemdéiss (2.32). Wieder empfiehlt sich die Anlage eines Schemas
wie z. B.

Schema 111
GO = bo’g
+aypar=bio ay = by
+ ag,0 g = bag | + a2,1 ag = bay g = by g

+ g0 ag = b3

+ogq a3 = by

- ag g ag = by o

az = by 3

+ og0 g = by

+ag,1 g = by

+otg 9 ag = by

+ oy g ay=by3

Ay = b4,4

232.14 Beurteilung der Giite der Ausgleichung

Die in der letzten Kolonne von Schema II eingetragenen Grossen
gestatten eine erste Beurteilung der Giite der Ausgleichung. Der mittlere
Fehler der Ausgleichung durch ein Polynom I-ten Grades betrigt ndmlich

[i(2)]% (2.83)

wobei sich die auftretende Summe am zweckmissigsten durch nach-
stehenden Ansatz berechnet ,

S @) = > [w@)]2— > a, M;.

T x =0

(2.84)

Die Verbesserung der Ausgleichung, die durch Beriicksichtigung eines
weiteren — um einen Grad erhohten — orthogonalen Polynoms erzielt

wird, betrigt somit
sk

> [, (2)]2— 2] [ 44(®)]* = @101 M7 44

T
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Nach G.J.Ladstone [29] wird das Resultat, das mit einem Aus-
gleichspolynom (I 4 1)-ster Ordnung erzielt wird, dann als besser be-
trachtet als bel Verwendung eines Polynoms [l-ter Ordnung, wenn

L2, < I} ist. (2.35)

Mit jedem Schritt kénnen wir damit den Stand der Ausgleichung
iiberblicken und wenn notig weitere Polynome hoheren Grades mit-
beriicksichtigen. Zur abschliessenden Beurteillung der Giite der Aus-
gleichung wird es jedoch notig sein, weitere Kriterien heranzuziehen [ 8],
worauf wir aber nicht niher eintreten kénnen.

232.2 Diskrete, dquidistante Argumente

Die Beobachtungswerte w(x) liegen jetzt zu den m diskreten Argu-
menten a, a+h, a+2h, ..., a+(m—1)h
vor. Zur Vereinfachung empfiehlt sich die Transformation

s e 2.36
=5 (2.36)

sodass die neue Variable die natiirlichen Zahlen 0,1,2, ..., (m—1)
durchliuft.

232.21 Orthogonale Polynome

Wie im Falle kontinuierlicher Argumente greifen wir auf die 1m
Abschnitt 22 hergeleitete Determinanten-Methode zur Ermittlung der
orthogonalen Polynome. Nach (2.19) und (2.19") sowie unter Beriick-
sichtigung von (2.36) ist

C

m—1

o= > & glf),

=0

iy

oder ohne Gewichtsfunktion
m—1

c, = S & (2.87)
£=0

Diese gewohnlichen Potenzsummen fiihren, in die Determinanten (2.9)
eingesetzt, auf eine Liosung in der Form

A
‘l)/'l(s): Eaj,,p Eﬂs 05,1‘1:1, (120, 1, 2, ...). (2.38)

u=0
6
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Es eriibrigt sich nidher darauf einzutreten, da auch hier — wie bei konti-
nuierlichen Argumenten — eine explizite, formelmissige Darstellung der
orthogonalen Polynome P,(&) gefunden werden kann. Wir verweisen
auf die grundlegenden Untersuchungen von P.L.Tschebyscheff [41],
R.A.Fisher [16] und F.E.Allan [12] und beziehen uns auf die von
H.Grossen [21] zusammengestellten Krgebnisse.

Nicht von der Extremalbedingung (2.4), sondern von den Ortho-
gonalititsbedingungen selbst ausgehend, ldsst sich nach einfachen aber
langwierigen Uberlegungen zeigen, dass die orthogonalen Polynome in
der Form

w0 = (LT e
A

dargestellt werden konnen.

Wertetabelle:

Po(‘f) =1

B{f}) = —g(m—1) + &

B8) = Lme—8m+2)—(m—1) & + £

Py§) = — L (mP—6m2+11m—6) - (6m2—15m 4 11) &
—gm—1) &+ & (2.89")

P,(&) = -5 (mt—10m3 4 35m2—50m + 24)
— 12mP—9Im2 4+ 1Tm—10) £+ 1+ (Im?—21m +17) &
—2(m—1) 84 &

Py(&) = — oLy (m5—15m* 4 85m3—225m? + 2T4m —120)
+ a5 (15m*—105m3 - 365m2 —525m -+ 274) &
— 2 (mP—4m?+8m—5) £+ 3 (4m>—9m + 8) &
==+ &

..........................

Nicht unerwihnt bleibe, dass die Koeffizienten dieser Polynome
mit den nach der Determinanten-Methode berechenbaren Werten «;, ,
iibereinstimmen. Die anderweitig in der Literatur verwendeten Ansitze
P, (&) konnen zufolge der im Abschnitt 13 nachgewiesenen Eindeutigkeit



des vollstindigen Orthogonalsystems hichstens um eine multiplikative
Konstante ¢, von (2.39) abweichen, d. h.

Pa(‘f) = ¢, Py(§). (2.40)
Fiir ¢, setzten z. B.
(22)!
P.L. Tschebycheff [41] f; = TR
: : : (24)!
A.C. Aatken [10, 11, G.J. Ladstone [29], W.Ruchti [36] ¢, = AN
F.E. Allan [12]. R.T.Burge [14], R.A.Fisher [16],
H.Grossen [21], H.Kreis [28], E.S. Pearson and
H.O. Hartley, [35] g3 = 1.
1 m
P.Lorenz [30-32] wihlte ¢, so, dass — D\ [P&)]2 = 1 wird.
m i=o

232.22 Ausgleichsansiitze

Zur Ausgleichung der Beobachtungswerte w(£) bildet man nach (2.5)

1
248 = W P8, d=10,5% .«i}s (2.41)
i=o .
Aus (2.6) bzw. (2.27) findet man fiir die Koeffizienten a,
> Py(8) w(§)
L. T— (2.42)

TUSEer

Verwendet man an Stelle der einheitlich normierten Polynome P,(&) die
mit einer beliebigen anderen Konstanten multiplizierten Polynome P,(&)
nach (2.40), dann wird das Ergebnis der Ausgleichung nicht beeinflusst,
da sich der Faktor ¢, wieder wegkiirzt. In der Praxis kann deshalb ¢,
immer so gewithlt werden, dass z. B. die Polynomwerte P°,(&) ganz-
zahlig ausfallen.

24 Eigenschaften der orthogonalen Polynome

Die Orthogonalitiitsergenschaften der Polynome P;(z) bzw. P,(£) sind
durch deren spezielle Konstruktion sichergestellt, sodass es sich eriibrigt,
hierauf niher emnzutreten.
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Bei kontinuierlichen (z) und diskreten, dquidistanten Argumenten
(&) existieren wertvolle Rekursionsbeziehungen in der Form

Py =P P —yP,, (2.43)

mit
(A—1)% (g—b) a7
Y= 4@a—1)(22—8) (2.43)

fiir kontinwierliche Argumente z und

. (}'_1)2 [m2__(l_1)2] 7
Y= e D@L (2-45%)

fiir diskrete, dquidistante Argumente &.

Die Unbestimmtheit der diskreten, dquidistanten Argumente ver-
unmoglicht — wie frither erwihnt — eine explizite, formelméssige Dar-
stellung der Polynome P,(z) und damit auch das Auffinden geeigneter

einfacher Rekursionsbeziehungen. Hier gilt lediglich der allgemeine An-
satz (2.22).

Von entscheidender Bedeutung fiir die praktische Anwendung der
orthogonalen Polynome sind die Symmetrieergenschaften bei kontinuier-
lichen und diskreten, dquidistanten Argumenten. Es zeigt sich nimlich,
dass die Polynome gerader Ordnung axialsymmetrisch und jene un-
gerader Ordnung zentral — oder punktsymmetrisch sind in bezug auf den
Intervallmittelpunkt, d. h. es gilt .

P(a+b—zx) = (—1)* P,(x) (2.44)
fiir kontinwierliche Argumente und
P(m—1—¢§) = (=1)'Py(&) (2.44")

fiir diskrete, dquidistante Argumente.

Transformiert man die unabhéngige Variable gemdss
b m—1
o — x_f“_;“ und §% = §—= (2.45)

dann treten die Symmetrieeigenschaften noch deutlicher in Erscheinung,
indem jetzt fiir (2.44) und (2.44")

Dy(—a*) = (—1)" Py(z*) (2.46)
ic P,(—£%) = (=1 P(&¥) (2.46')

gesetzt werden kann.
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Erst durch diese Symmetrieeigenschaften wurde es moglich, gut
ausgebaute, rationelle Tabellen anzulegen. Im weitern ist beachtens-
wert, dass die Grossen €, nach (2.7) fiir ungerade u verschwinden.
Dies gilt fiir kontinuierliche und diskrete, 4quidistante Argumente und
vereinfacht die Berechnung der orthogonalen Polynome nach der
Determinanten-Methode bedeutend.

Nun zeigt sich, dass die orthogonalen Polynome bei diskreten, nicht
dquidistanten, in bezug auf ihren Mittelpunkt aber symmetrisch ge-
legenen Argumenten analoge Symmetrieeigenschaften wie in den beiden
vorerwihnten Féllen besitzen. Transformiert man néamlich die Argu-

mentenfolge z,, z,, ..., z, geméiss
e _ 1 =
w?:mi—a}, mit T = — > B (2.47)
m ;=1
dann gilt 3
¢ =N m,:u = 0, f?r 1 = ungerade, (2.48)
B e =+ 0, fiir u = gerade.

Setzen wir diese (/,-Werte in die Determinanten des Ansatzes (2.9) ein,
so wird Dy _ ;

. . # [ =0, iir +u = ungera e, (2.49)
' D, |0, fir A4 u = gerade;

d. h. die orthogonalen Polynome P’(z7) weisen bei diskreten, nicht
dquidistanten, jedoch symmetrisch gelegenen Argumenten entweder
nur gerade oder nur ungerade Potenzen von z} auf, je nachdem der Grad
A gerade oder ungerade ist. Daraus folgt unmittelbar die Behauptung

Py—af) = (—1)"Py(x7). (2.50)

1

Auch diese Symmetrieeigenschaften fiithren zu merklichen Verein-
fachungen fiir die numerische Auswertung.

25 Numerische Auswertung

Grundsitzlich konnen die orthogonalen Polynome immer mit dem
nach der Determinanten-Methode (vgl. Abschnitt 22) aufgezeigten
Verfahren ermittelt werden. Dies wird vor allem dann vorteilhaft sein,
wenn zur Auflésung des linearen, inhomogenen Gleichungssystems (2.8)
moderne, leistungstihige Rechengerite zur Verfiigung stehen.
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Die «Methode der Rekursiony, wie sie im Abschnitt 232.1 dargelegt
wurde, beruht ebenfalls auf den Gleichungen (2.8) und ist im wesent-
lichen eine Weiterentwicklung der Determinanten-Methode im Hinblick
auf deren praktische Anwendung. Das angegebene Rechenschema 11
(Seite 79) diirfte besonders dann rasch und sicher zum Ziele fithren, falls
die numerische Auswertung mittels einfacher Rechenmaschinen zu er-
folgen hat.

Fiir konkrete Beispiele verweisen wir auf die Literaturangaben
(Seiten 124 ff.) sowie auf die Ausfithrungen im Abschnitt 35.

251 Kontinuierliche Argumente

Dank der formelmissigen Darstellung (2.12) lassen sich die ortho-
gonalen Polynome durch Spezialisierung des Intervalls [a,b] auf das
vorhandene (endliche) Beobachtungsintervall sofort angeben. Die
Setzung @« = —b = 1 deckt — wie wir frither erkannten — die enge
Bindung zu den tabellierten Legendre-Polynomen ,P,(z) auf.

Nach (2.14) und (2.15) gilt némlich

j S

94
1 dt |

1
JPya) = @=11 = () B@. @5

Fiir kontinuierliche Argumente verweisen wir auf folgende be-
kannten

Tabellen der Legendre- Polynome

Autor Argumentbereich Grad 4 | Genauigkeit

1. a) K.Hayashi [26] 0 (0,01) 1,00 {1 (1) 8 |5-23 Stellen

b) K.Hayashy [25] 0 (0,01) 1,00 |1 (1) 10 | 5 Stellen
2. K.Jahnke-F.Fmde [27] 0 (0,01) 1,00 |1 (1) 7 |4 Stellen
3. F.Tolke [39] |—1,000 (0,001) 4-1,000| 1 (1) 10 | 4 Stellen

Im «Index of mathematical tables» weisen 4. Fletcher, J.C.P. Miller
and L. Rosenhead [18], auf weitere Tabellenwerke hin, welchen stets die
gleichen Legendre-Polynome zugrunde liegen, allerdings fiir verschieden
feine Intervallunterteilungen und fiir Polynome verschiedener Grade mit
unterschiedlicher Genauigkeit.
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Mit Hilfe dieser tabellierten Polynomwerte lisst sich die Ausglei-
chung miihelos durchfiihren. Es ist lediglich der Umrechnungsfaktor
1 (24 .

94 ( yl ) in (2.51) zu beriicksichtigen.

252  Diskrete, dquidistante Argumente

Fiir diskrete, dquidistante Argumente sind nachstehende Besonder-
heiten erwdhnenswert :

1. Zur Vereinfachung der numerischen Auswertung liegen die
orthogonalen Polynome weitgehend tabelliert vor.

Tabellen der orthogonalen Polynome

Literatur- AERIL e Grad

Autor o 8 Argumente 5

verzeichnis A

m
. Mfken ™), « + & 5 5 « 3 10 4 (1) 25 1(1)5
2. Anderson and Houseman . . 13 3 (1) 104 1 ()5
3 Birge. -« 5 5+ 5 & 3 s 14 2 (1) 30 1 (1)5
4. Fisher and Yates . . . . . 17 3(1) 75 1(1)5
O Grem s : + 2 5 @ 5 ow 5 w 19 7(2) 21 1(1)3
6. a) Lorenz . . . . . . .. 30 1 (1) 60 115
b) Lorenz . . . . . . . . 31 1 (1) 80 1(1)6
T. BPareto o : w i 5 & & 4.5 s 34 4 (1) 25 1(1)8
8. Pearson and Hartley. . . . 35 3 (1) 52 1(1)6
9. Van der Reyden. . . . . . 42 5 (1) 52 1(1)9
1) Differenzen-Tabellen: A% P; (£)|s_p

Weitere Angaben kénnen dem Buch von A. Fletcher, J.C. P. Miller
and L. Rosenhead [18] entnommen werden.

Der Symmetrieeigenschaften (2.44), (2.44"), (2.46) und (2.46")
wegen enthalten simtliche Tabellen nur die Polynomwerte fiir die posi-
tiven oder negativen Argumente.

Wiéhrend in neuen Tabellenwerken, wie in denjenigen von 4nderson
and Houseman [13], Burge [14], Fisher and Yates [17], Pearson and
Hartley [85] und Van der Reyden [42], die multiplikativen Konstan-
ten so gewihlt sind, dass die tabellierten Polynomwerte ganzzahlig
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ausfallen, arbeitete Lorenz [30 31| mit der einheitlichen Normierung
\L‘ P (& =%
) m 5* [ ]
und erhielt Dezimalbriiche, die er auf fiinf Stellen genau angab.

2. Die Berechnung der Koeffizienten a; in (2.41) erfordert gemiss
(2.42) die Kenntnis der Summe

m—1

L P(&%) w(E). (2.52)

x__m1
Er= T

Unter Beriicksichtigung der Symmetrieeigenschaften (2.46") lisst sich
(2.52) fiir m = gerade in der Gestalt

m—l m—i
2 P [EE)(E*) = Z P,(£%) [w(&*) 4 (—1)*w(—£&%)]  (2.58)
g1 =3
und fiir m = ungerade in der Form
m—1 m—1 (2.58")
2 2
> Pye*) w(&*) = D) Py(&*) [w(E*) 4 (— 1) w(—E%)] 4 P,(0) w(0)
5*:_??"":1, =l

b1

darstellen. Es empfiehlt sich deshalb, eine Tabelle der Summen
w(&*) 4 w(— &*) wie auch der Differenzen w(&*) — w(— &%) anzulegen;
je nachdem ob A gerade oder ungerade 1st, findet der eine oder andere
Ansatz Verwendung. Der Nenner von a,, d.h. > [P,(§%)]? ist fiir die
tabellierten Polynomwerte bekannt. &

8. Die vorlaufige Beurteilung der Giite der Ausgleichung kann —
analog wie im Falle diskreter, nicht dquidistanter Argumente — sehr
einfach vollzogen werden. Nach (2.33), (2.34) und (2.27) betrigt der
mittlere Fehler der Ausgleichung durch ein Polynom I-ten Grades

1 1 1
2= S uEn)E = oy > [w(EN)]2— Dl ] DI [PA(EM)] (2.54)
m—1—1 = —=-1% =0

Darin ist nur noch die Summe der Quadrate der Beobachtungswerte
unbekannt, deren FErmittlung keinen grossen Mehraufwand darstellt.
Nach dem Kriterium (2.35) kann der Stand der Ausgleichung sofort
iiberblickt werden, bevor auch nur ein einziger ausgeglichener Wert be-
rechnet wird.
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3 Zweidimensionale Betrachtungsweise

31 Grundsitzliches und Definition des Stieltjes-Integrals

Die Ausfiihrungen des ersten Kapitels bilden wiederum die Grund-
lage fiir den zweidimensionalen Fall. Nach Moglichkeit werden iiberdies
die bel emner unabhéngigen Variablen gefundenen Frgebnisse mit-
beriicksichtigt.

Wir legen unseren Betrachtungen jenen Mengenkoérper It zu-
grunde, der von allen beschriinkten, achsenparallelen Rechtecken X,

e
erzeugt wird; es gilt dann BclJ X,,.
n=1
Ist der Bereich B selber ein achsenparalleles Rechteck, so kann man

sich (vgl. Fussnote auf Seite 67) auf solche Bereiche beschrinken, fiir die

m
B=UX . st
p=1
Bei einer Verfeinerung der Uberdeckung treten dann keine Y-Mengen auf.
Das Feinheitsmass einer Uberdeckung Z von B ist die Grosse
o[Z] = Max o[X,],

u=1,2,...,m
wo der Durchmesser o[ X | die Linge einer Diagonalen des Rechtecks
X, darstellt.

Der Grenzwert

lim > g(z,)F(X,) = f(p(m) dF (8.1)

heisst Stieltjes-Integral von @(z) beziiglich F' iiber B, existiert und ist
von der Art der Uberdeckung Z des Bereiches B durch die m beschrink-
ten, paarweise disjunkten und achsenparallelen Rechtecke X, wie auch
von der Wahl der Punkte x,¢X, n B unabhiingig.

Spezialisieren wir die weiteren Uberlegungen des ersten Kapitels
auf den Fall von zwei unabhéngigen Variablen z, = z und z, = y,
dann lassen sich die Hauptergebnisse wie folgt zusammenfassen:

1. Die Polynome P, (xz,y) lauten nach (1.6)
A=l w
Pz,y(”:’y) Zzu o, L Y +Zu%e i 9+$A”J: (3.2)

p=0
mit e, , = = 1.



Es gibt jetzt von jedem Grad » wieder mehrere, némlich

i (vi—l) = » -} 1 voneinander verschiedene Potenzprodukte

Qv,g('T’y) = z"* yg, (Q =0,1,2, ..., 7’)'
' Mit dieser neuen Bezeichnungsweise bedeutet ¢), ,(z,y) nicht mehr —
wie friither auf Seite 62 — das p-te Potenzprodukt »-ten Grades, vielmehr
stellt das Symbol das spezifische Potenzprodukt x”7¢ % dar, wo o die
p, =v+1 Werte p = 0,1, 2, ..., » durchliuft.

¢

Analog bedeutet P, (x,y) jenes der insgesamt p, = A+ 1 mog-
lichen Polynome A-ten Grades, welches als letztes Potenzprodukt
¥y enthilt, und ,,«,, ist der Koeffizient des Potenzproduktes
2" % y® im Polynom P, (z,y).

2. Alle auftretenden Integrale existieren. Wenn das oben definierte
System der Polynome P, ,(z,), (A=10,1,2, ...;0=0,1,2,...,4)
orthogonal ist, gilt nach (1.7)

[=0, fiir 2 v oder u =~ o,
f u(2:7) w"’”y)dplq&o, fir A=v» und u = p,

fir alle A, =20,1,2, ...; u,0=0,1,2, ..., 2 bzw. ».

(3.8)

8. Die Polynome P, (z,y), (A=0,1,2, ...; 0 =0,1,2, ..., 2)
bilden dann ein vollstindiges Orthogonalsystem, wenn die Koetfizienten

1% 10 (3.2) s0 bestimmt werden, dass nach (1.9) gilt:

f[PM(a:,y)]zdF = Extremum, mit ,«, , = 1. (3.4)
B

Diese Forderung gewihrleistet eine eindeutige Ermittlung der Poly-
nome P, #(:c,y).

4. Bilden die Polynome 7’ ,(2,y),(A=0,1,2,...;4=0,1,2,..., )
ein vollstindiges Orthogonalsystem, dann ldsst sich nach (1.10) jedes
beliebige Ausgleichspolynom z, ,(z,y) eindeutig als Linearkombination
entsprechender Polynome dieses Orthogonalsystems darstellen, nimlich

T

1

[/
[

Zz,k(x’?/) == Az 0 93 Y) Z A1, lu ,Y) . (3.5)

N
Il

0 p=0

-~

Hier ist z, ;(x,y) ein Polynom mit nicht verschwindendem Koeffizienten

des «hochsteny Potenzproduktes z' /.
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Die Koeffizienten a, , ergeben sich nach (1.13) zu

[ Py (9) w(z,y) dF

B (l:O,l,Q, )
[ [Pz )] dF p=0,1,2,...,2

B

(3.6)

a’l.,u =

wobei die Beobachtungswerte w(zx,y) wieder nach der Methode der
kleinsten Quadrate (1.11) ausgeglichen werden.

32 Determinanten-Methode

Die Koeffizienten , ,«,  der Polynome I’ (z,y) in (3.2) werden
so bestimmt, dass die Extremalbedingung (3.4) erfiillt 1st. Dabei ist es
zweckmissig die Abkiirzung

p?0 45,9 —
fJ, yYdF = C, (3.7)
zu verwenden. B
Um der Forderung (3.4) Geniige zu leisten, miissen notwendiger-
weise die partiellen Ableitungen nach den unbekannten Koeffizienten

an%ue Verschwinden.

. S i . .
Unter Beriicksichtigung der Nebenbedingung ;,x, , = 1 erhilt

. 1 ;
man nach wenigen Umformungen das aus (1—2'_ )—{—u Gleichungen

bestehende lineare, inhomogene Gleichungssystem

i1 __1:1 pu—1
S-é _/\_1 v+lOQ+m l,va,u,g + E() 1+IO£_)+m l.ila,u.g - Ml-l—lO,u-}—m’ (38)
r=0p0=0 o=
mt [=0,1,2,:..,(A—1) und =24
m= 0,12 si5: 4 m=20,1,2, ..., (u—1).

Die ()' ; 1) -+ p unbekannten Koetfizienten ; ,a, . lassen sich aus die-

sem Gleichungssystem (3.8) eindeutig bestimmen, falls die linksseitige
Koeffizientendeterminante D, , nicht verschwindet.

Geht D, (v,0) aus D, , dadurch hervor, dass die mit ,C, beginnende
Spalte durch die auf der rechten Seite des Gleichungssystems (3.8)
stehenden Grossen ersetzt wird, dann gilt

pil,y ('V,Q)

L‘Va'#ve e d D

K=l 1 D el =100 15 %5 wuvyd)s (09
iz

At



.

Mit den so bestimmten Koeffizienten ; o,  hat man mittels der Defi-

nitionsbeziehung (3.2) eine eindeutige Darstellung der orthogonalen
Polynome gefunden.

Der grosse Vorteil dieses Liosungsverfahrens besteht darin, dass
es nicht nur fiir jeden Bereich B, sondern allgemein, d. h. sowohl fiir
kontinuierliche, als auch fir diskrete Argumente giiltig 1st; denn der
zur Bestimmung der ,C, massgebende Ansatz (3.7) erschliesst alle
Moglichkeiten.

33 Beziehungen und Ansitze fiir die praktische Anwendung

331 Kontinuierliche Argumente
Das Stieltjes-Integral (3.1) lasst sich auch als
[g(z,y) ar
B

schreiben, wenn der Punkt z ¢ B die Koordinaten (z,y) besitzt. Damit
1st gleichzeitig die Abhingigkeit der stetigen Funktion ¢ von den
beiden Variablen x und y angedeutet.

Handelt es sich um eine Ausgleichung nach einer in z und y stetigen
Gewichtsfunktion ¢(z,y), dann kann fiir

Jol@y) dF = [ [ ga.y) play) de dy
B B

gesetzt werden, fallg
F(X,) = [g(ey)dedy
X

"
ist fiir jedes Rechteck X, €I, das zur Uberdeckung Z von B gehort.

331.1 Orthogonale Polynome

Wir stiitzen uns zunichst auf die 1im Abschnitt 32 dargelegte
Determinanten-Methode und erhalten aus (3.7) fiir kontinuierliche

Argumente .
,ngffw ¢y dz dy, (8.10)
B

falls auf eine Gewichtsfunktion verzichtet werden kann.
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Substituiert man (3.10) in den im Ansatz (3.9) vorkommenden
Determinanten, dann sind die Entwicklungskoeffizienten ; ,«, , formal
bestimmt.

Um nun zu einer expliziten Darstellung zu gelangen, muss der
Integrationsbereich B niher festgelegt werden. Stimmt dieser beispiels-
weise mit dem achsenparallelen Rechteck R = [a <z <b; ¢ < y < d]
iiberein, dann wird

b

L, :fb‘fm”“g Ydydr = {fa:"g d;x} {fdye dy}

a

oder .
0, =10C,,0C,. (3.11)

Das Doppelintegral (3.10) liasst sich in diesem speziellen Fall als das
Produkt zweier gewohnlicher Integrale darstellen, die nach (2.11) mit
C, , (in z) und C:‘ (in y) bezeichnet werden konnen. Jetzt sind auch die
Koeffizienten , o, , explizit berechenbar und fiihren gemiss (3.2) auf

Polynome, die identisch sind mit jenen in (3.12").

Man kann sich fragen, ob es moglich se1, tiir die Koeffizienten ; o, ,
selbst —und damit auch fiir die orthogonalen Polynome P, (z,y) — eine
direkte formelmissige Darstellung zu finden. Da schon zur Ermittlung
der Grossen ,C, nach (3.10) der Bereich B explizit angegeben werden
muss, dringt sich eine Spezialisierung auf gewisse einfache Bereiche
auf, wobe1 das achsenparallele Rechteck auch hier eine besondere Aus-
nahmestellung einnimmt. Wie im eindimensionalen Fall bedienen wir
uns der Variationsrechnung zur Lisung des Extremalproblems (3.4).
Mit Hilfe der Riemannschen Reduktionsformel (A.Ostrowsks|3]) fir
kanonische Bereiche finden wir nach W.Grébner [20] folgende fiir den
Rechtecksbereich R = [a < & < b; ¢ < y < d] giiltige Darstellung

) (3.12)
A—p)!  d 7
Pa,p(x,y) — “(:2%_:2‘), d;,{;; [(a"—-&) ($—b)]l_" (;u) !' dyﬁ [(y—c) (Z/—d)]
oder P, (z.5) = P,_(2) PX(y). (3.12)

Dre zwerdvmensionalen, orthogonalen Polynome P, (x,y) entarten
nach diesem bemerkenswerten Eesultat vn das Produkt der esndvmensionalen
Polynome P, ,(x) und 1):(y), falls der Bereich B ein Rechteck ast und
kontinuierliche Arqumente vorliegen. :



Nachstehend seien die ersten Ansétze zusammengestellt.

Foolz,y) = 1

BFo(z,y) = —5(a+b) +a

Pi(zy) =—5(+d)+y

on(ac y) = +(a*+4ab+ b — (a+b) z + 22 (3.12")
Byy(x,y) = fla+b)(c+d)—ylc+d) z—3(a+b)y+ ay

Byo(y) = ¢ (P+dod+d)—(c+d) y+ y*

Py o(z,y) = — 5 (0*+9a?b 4 9ab® 4 b3) + 3 (a® +3ab+4-b?) x

- —‘z—(a—kb) x? 4 28

--------------------------

Nun liegt die Vermutung nahe, dass die fiir kontinuierliche Argu-
mente erkannte Auszeichnung der Rechtecksbereiche auch fiir beliebige
Argumente zutreffen diirfte. Es soll deshalb bereits an dieser Stelle
gezeigt werden, dass die fundamentale Beziehung (3.12") allgemeine
Giiltigkeit besitzt und zwar unter folgenden

Voraussetzungen:

1. Der Bereich B se1 ein Rechteck,
2. dF = dF,dF,, (z.B.dF = dxdy),
8. dff = 1
Defination:
/ R, (z.9) = Pa) PX(y) (3.13)

ist ein Polynom A-ten Grades in z und p-ten Grades in y mit dem Koeffi-
zienten 1 fiir das héchste Potenzprodukt ? y*.

Behauptungen:

1. Die Polynome {R, ,(z,9)},(A=0,1,2, ...;4=0,1,2, ..., 1)
bilden ein vollstindiges Orthogonalsystem auf B.

2. Fiir die nach (3.2) definierten Polynome P, (x,y) gilt:
PI,y(q’.?y) e RA—,u,,u(I’y) $



Beweis:

1. Das Polynomsystem {12, ,(x,y)} ist auf B orthogonal; denn gemiss
Definition (3.13) und (2.3) gilt fiir alle A=0,1,2, ...; 4 =0,1,2, ..., 4

f { R, (@) B, (2,y) dF = f fP,I(:c (z) Pi(y) P*( y)dF, dF, =

= { [Bio) By | [ Pr) Poly) dF,)

und somit

. e O ’ f-- Z’ d ,
f [ RA'”(.T,’ZJ) Rv,g(m’y) dF ' a :’é v oder ,u :,& Q
B

3.14
| 0, fir A = » und pu = o. (8.14)

Zum Nachweis der Vollstindigkeit des von den orthogonalen Poly-
nomen R, (z,y) erzeugten Systems geniigt es zu zeigen, dass jedes
Potenzprodukt 2 y* eindeutig als Linearkombination der Polynome
R, (z,y) dargestellt werden kann; denn ein (beliebiges) Polynom ist aus
endlich vielen solchen Potenzprodukten zusammengesetzt.

Nach (2.21) liisst sich jede Potenz z* eindeutig als Linearkombina-
tion der eindimensionalen Polynome P,(z), (v = 0,1, 2, ..., 1), eines
vollsténdigen Orthogonalsystems darstellen:

A

ot = > 4,,L(x).
r=0
Analog gilt fiir y”
g — A%, PEy),
9—0

und daraus folgt durch Produktbildung

A p
zty = ;6 “_;(J(A , Ay ) P(x) Py(y),
oder v; Q;
Sy = 33 (44, 450 Byofat),
v=0p0=

was zu bewelsen war.

2. Wir wissen jetzt, dass die Polynome R, (z,y), (A=0,1,2, ...;
w=0,1,2, ..., 1) ein vollstindiges Orthogonalsystem bilden. In
R, ,.(x,y) kommen — wie in P (z,y) — nur die Potenzprodukte
Q0.0 @105 @it -+ +» @1p . VO (vgl. Bemerkungen zu (3.2), Seite 90) und
zwar das letzte mit dem Koeffizienten 1. Im Abschnitt 13 wurde gezeigt,



s, B8

dass es nur ein System orthogonaler Polynome mit diesen Eigenschaften
gibt. Somit stimmen die beiden Systeme vollstindig iiberein und die
Richtigkeit der 2. Behauptung

Rﬁ.—u.u(fc’y) = Pz,y(m:y) (3 15)
1st ebenfalls bewiesen.

Mit (3.13), (3.14) und (3.15) 1st der Nachweis erbracht, dass unter
den genannten Voraussetzungen stets die Zerlegung

. y Pﬂ,,u(x’y) — Pﬂ.‘p(a:) P:(y) (3‘]‘6)
moglich ist.

Wenn also der Bereich B ewn achsenparalleles Rechteck wund
dF = dF, dF, sowie dF' =0 ast, dann kinnen die zwerdvmensionalen
orthogonalen Polynome P, (x,y) fiir beliebige Argumentfolgen stets als
Produkt der beiden eindvmensionalen Polynome P, (x) und Pz(y) dar-
gestellt werden.

Diese Tatsache hat eine wesentliche Verminderung des Rechen-
aufwandes zur Folge, ldsst sich doch das Problem der Ausgleichung von
Beobachtungswerten iiber einem achsenparallelen Rechtecksbereich auf
den eindimensionalen Fall zuriickfiihren.

331.2 Ausgleichsansiitze

Jedes Ausgleichspolynom z,,(x,y) kann nach (3.5) als Linear-
kombination der P, (z,y) dargestellt werden mif

[ [Prtay) w(ay) dz dy
B
L W e LT
! | [ [Pauz )] dz dy
B

fiir 2=0,1,2, ..., u=0,1,2, ..., k<1,

(8.17)

wenn die Gewichtsfunktion g(z,y) = 1 gesetzt wird.

Bei Rechtecksbereichen sind die zweidimensionalen orthogonalen
Polynome P, ,(z,y) gemiss (3.16) bzw. (3.12") durchwegs durch das
Produkt P,_,(z) P(y) zu ersetzen, was zu beachtlichen Vereinfachungen
fiihrt.
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332 Diskrete Argumente

m
Liegen nur zu den endlich vielen N = ' n; diskreten Argumenten

=1
T, = (z,y;), 0 =1,2,...,m;7=12,...,n,;) auszugleichende Be-
obachtungswerte w(z,,y;) vor, dann ergibt sich durch Spezialisierung

nach (3.1)

2 o
J o ar —tim S (a5 = 35 S aten) otz
P D»0 =1 i=1j=1
wenn F(X,) = > g(z,,y;) gesetzt wird.
(x50 X,

Wie bei der eindimensionalen Betrachtungsweise nehmen wir die
Ziweiteilung «nicht dquidistante» und «dquidistante» Argumente vor.

332.1 Diskrete, nicht dquidistante Argumente

Der Unbestimmtheit der vorliegenden Argumente x, = (2;,9;),
(t=1,2,...,m;7=1,2,...,n,) wegen handelt es sich im wesent-
lichen darum, die fiir das Aufsuchen der orthogonalen Polynome und der
Ausgleichsansiitze massgebenden Rekursionsbeziehungen herzuleiten.

332.11 Orthogonale Polynome

Um das Gleichungssystem (3.8) ohne umstindliche Determinanten-
berechnungen auszuwerten, werden die Grossen

0, = f 2ty dF = g(x,y;) @0y (3.18)
zi.Yj
B
oder A g " - /
G, = ;E' xR, fiir g(z,y) = 1, (3.18")

unter Beriicksichtigung von (3.2) wie folgt erweitert

C,o = S\ 2"y P, (a), (3.19)

A u,0
5 LY
(== 0,1, 8y s s b=130=10,1; 8y s us; yOid v =420 =0, 1,9, . s . ;)

Dadurch geht ,C, in ,,C,, iiber.
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Wird (3.2) nach a** " aufgeldst, findet man durch Iteration fiir
A=0,1,2, ...; 0=0,1,2, ..., 2 die Darstellung

l_# #_2211:14;19 !y +211Anglo(xy) (3 20)
Eg=_ mit ,,4, , = 1.
Unter Beachtung der Orthogonalitdtsbedingungen
= 0, fir A 5= » oder u + p,
Z Pl,y(a:’y) ‘Pv,g(a;’y 0. fii o (3 * 21)
x,y # , Iur A=19 und n = 0,

folgert man aus der umgeformten Relation (3.20) (8.22)

v

A—
P (xy) = ZZ o (T3Y) — Z“ el TsY) + ¥y,

nach Erweiterung mit P, (z,5) und Summation iiber alle Argumente

tiir die Koeffizienten , 4 o (dabei wurde » wieder durch » und 7 durch
o ersetzt) die Beziehung (3.99)
v "y ,
g H LY 0, rmms e=d)
i 2 [Pv,e(x’y)]g v,vOg,g 0 =7; o u
T,y

Die hier auftretenden Grossen ; ,C, , gentigen, wie man durch Finsetzen

von (3.22) in (3.19) erkennt, den Rekursionsbeziehungen

o—1

-1 x
A,vC :A+v,ocu+g,0_“ > 2 v ¢ “S‘v,v‘{j‘e,r MC#,T’ (3.24)

n.0 Vo 0,7 Aan HsT P
x=071=0 =0

d. h. die Polynome P, ,(z,y) lassen sich rekursiv bestimmen, wenn nur
die Nullmomente ,,C,, fir v=10,1,2, ...,24; 0=0,1,2, ..., 2u
gegeben sind.

Auch zwischen den Koeffizienten ; «,  besteht eine einfache
Bindung. Man erhilt nach Gleichsetzen von (3.2) mit (3.22) durch
Koeffizientenvergleich die Ansétze

(8.25)
v A-1 x n—1
i 0
A,va,u,g — Z‘ A VA,u r pp%r, o ZJ IIKA;J,T M,vat 0 ‘\_; a, /". Wt l,lvat,g
=0 n=v-+17=0 =0
mith a0 Q1R oupdisly p=01,9; .
und et
. -y
AP pe = D aadur 4% (L0, = 1) (3 25
T=p

mit 0= 0,12, u—"1;
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Wie im eindimensionalen Fall haben wir damit die beiden gleich-
wertigen Rekursionsverfahren (3.22) mit (3.23) und (3.24) sowie (3.2)
in Verbindung mit (3.25) und (3.25) kennen gelernt.

332.12 Ausgleichsansitze

Die 1m Ausgleichspolynom (3.5) auftretenden Koeffizienten a, ,
lauten gemiss (3.6)

ZI 1 A ,u(a: y W(fﬂ y) M*

A
By = s ol 3.26
o [l (L y ] 21C e

Asl—1; Mgl und A =1; p<k), mt glzy =1.
Sind die Werte M, = > o** y* w(x,y) (8.27)
.Y
bekannt, so geniigen die Hilfsgrossen
M, = > P, (z,y) w(z,y) (3.28)

T, ?f
den Rekursionsgleichungen

>

-1 » u—1
My = M, — ST‘(,) Z{)**”A o M, }J 1id e My, (8.29)

fiir 2=0,1,2, ..., 1—1); 2 =0,1,2, ..., Aund 4 =1; 4 =0,1,2, ..., k.

Zur Darstellung des Ausgleichspolynoms ¢, ,(z,y) nach aufsteigen-
den Potenzprodukten wird

1 2 k
N\ A—pp o N l=p o p ¢
2ix(Ty) = 2 > 1l TR Y+ _\_ l,lbk,u Ty (3.30)
A=0 u=0 p=0

mit (3.5) gleichgesetzt, und es ergeben sich dann durch Koeffizienten-
vergleich nachstehende Relationen

A -1 »
I.Abk.,lt = v a’ﬂg Alorg.u_'_ \-‘ Eavcﬁ ;)O(‘Q.u_{_\” aln [ﬂagy’ ('3 31)
0= ,u ES A-{-ln 0 0=0
k=i=s1-1),
k
b, = D0, 1%, B=K). (3.81")
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Die Ausgleichspolynome z, ,(x,y) konnen auf zwei Arten ermittelt
werden, nach (3.5) mit (3.2) und (3.26) einerseits und (3.30) mit (3.81)
und (3.31) anderseits; fiir die Auswertung miissen nur die , ,C
(» =24, o =< 2u) und die M,, (v < 4, 0 =< p) gegeben sein.

0,07

332.13 Schema der numerischen Auswertung

Um die numerische Auswertung einfach und iibersichtlich zu ge-
stalten, bedient man sich mit Vorteil der beiden Rechenschemas IV
und V auf den Seiten 102/103 und 104 (vgl.auch die analogen Schemas IT
und IIT im eindimensionalen Fall, Seiten 79 und 80).

332.14 Beurteilung der Giite der Ausgleichung

Die letzte Spalte des Schemas IV dient einer ersten Beurteilung
der Giite der Ausgleichung. Wie im Abschnitt 232.14 bildet man

1 1
LYy = X\ [w(z,y) —zu(zy)]* = 7 > [z, (3.32)

[ = zy
mit f = Anzahl Freiheitsgrade.

Fiir achsenparallele Rechtecksbereiche und fiir n = fest gilt bei-
spielsweise:

ll+1 N
= mn— { —( 22 + (k —H)} = (2m—n—38), fir m > n,
: 1(1+1)
m
= mn—[_ —]—(k+1)}_2(2n—m—1), fir m < n.
Zahl Zusatzbedingung dafiir, dass f ver-
der Parameter schwindet, wenn (1,k) die grosst-
ayu moglichen Werte annimmt:

= (n,n-1), fiir m > n,

Lk
L408) = (m-1,m-1), fur m < n.

Wegen (3.5) und (3.26), sowie unter Beriicksichtigung der
Orthogonalititsbedingungen (3.21) ist (3.83)
K

-1 A
2 [“z,k(m’y)]z = 2 [10(5’3’?/)]2* { ¥ E @pp AM:: =5 E A EMT} -
Yy
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Wird an Stelle des Ausgleichspolynoms z, ,(z,y) bzw. z; ,(x,y) das
niichst hohere Polynom ¢, ;. ,(z,y) bzw. 2, (z,y) zur Ausgleichung
verwendet, dann betrigt die dadurch erzielte Verbesserung nach (3.33)

9 2 s

oder et Pl
2 2 - *
Z u!,l(m,y) _E uHLO(m,y) = 0141,0 l+1M’0 .
T,y I,y’

Die Beriicksichtigung des nichst hoheren Ausgleichspolynoms
ist dann sinnvoll, wenn nach dem verallgemeinerten Kriterium von
G.J. Ladstone (2.35)

Li o <Li; bzw. L o <Li, (3.34)

ausfillt. Es kann sich hier natiirlich nicht um eine endgiiltige Beurteilung
der Giite der Ausgleichung handeln, dazu miissen weitere Kriterien
herangezogen werden. Trotz dieses Vorbehaltes ist es aber dank (3.34)
moglich, einen ersten Uberblick iiber den Stand der Ausgleichung zu
gewinnen, der umso wertvoller ist, als dazu keine ausgeglichenen Werte
erforderlich sind.

332.2 Diskrete, dquidistante Argumente

Die Argumente (z;,y,), ¢ = 1,2,...,m; j = 1,2, ...,n;) liegen
regelméssig in der (z,y)-Ebene verteilt, d. h.
x, =a,a+h,a+2h, ..., a+(m—1)h,
Y; = ¢ ¢+ B,e+210, ..., ¢4+ (n;—1)I;

sie gehen durch die Transformationen

‘Ei — ,E’},—i und n; = 97————07 (3.35)
h ! h

in die Punkte des Einheitsgitters
=012 ...,(m—1); ,=0,1,2,...,(n,—1) iiber.

Sind zu jedem & Wert immer gleichviele - Werte vorhanden, dann
1t n, eine nicht mehr von & abhiingige, feste Zahl n, = n, und dem
Bereich B entspricht ein achsenparalleles Rechteck. Zur Vereinfachung
der Darlegungen beschrinken wir uns im folgenden ausschliesslich auf
Rechtecksbereiche.
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— 102 — Schema v
M 0,0C0,0 1.0C0,0 1.001,0 2,0C0,0 2,0C1,0 2,002,0
(1) :0,0C0,0 2 1 1,040,0 10410 2,040.0 2,041,0 2,042,
®) 2,0C0,0 2,0C1,0 3,0C0,0 3,0C1,0 3.002,0
D+ (~1,0400) | @ —1.040,0 —1,040,0 1,0C0.0 | —1.040,0 1.0C1,0 | =1,040,0 2,0C0,0 ~1.040,0 20010 | =1,040.0 2.0C2.0
i (5) 1,0%0,0 1,1C0,0 1,1C1,0 2.1Co,0 2,1C1,0 2,1Ca.0
(5):1,1C0,0 (6) 1 11410 2,140,0 i 2,141, 2,14320
() 2,002,0 3,0C1,0 3,002,0 3,003,0
1)+ 10d10 | 8 —1,041,0 =1.041.0 1.001,0 | —1,041,0 2,0C0,0 ~1,041,0 2,001,0 | =1,041,0 2,0C2,0
(5) 11410 | O] —11410 1,0%0,0 ~1.141,0 ~1.141.0 11010 | =114 1.0 2,1C0,0 “1141,0 21010 | —1,141.0 2.1Co0
+ (10) 1,004,0 1,101,0 11011 2,1C0,1 2.101,1 2.102,1
(10):1,1Cy1 | (11) 1 2,140,1 21411 21421
(12) 1,0C0,0 4,0C1,0 4,002,0
(1) + (=2,040,0 | (13) —2,040,0 —2.040,0 2,0C0,0 =2,040,0 2,0C1,0 | —2.040,0 2.0C2,0
(5)+ (=2,140,0) | (14) | —2.140,0 1,0%0,0 —2,140,0 —2,140,0 2,1C0,0 =2,140,0 21C1,0 | —2.140,0 2.1Ca0
(10) + (=9,140,1) | (15) | —2.140.1 1,0%1,0 | —2.140,1 1,1%1,0 —2.140,1 —2.140,1 2,1C0,1 ~2,140,1 21011 | —2.1401 21051
+ (16) 2,0%0,0 2,1%0,0 2,1%0,1 2,2C0,0 2.2C1.0 22020
(16) :9,0C00 | (17) 1 2,241, 2,242,0
(18) 4,002,0 14,0030
D) - (~2,041,0) | (19 —2,041.0 =2,041,0 2.001,0 | =2,041,0 2,0C2,0
(6) - (=2,141,0) | (20) | —2,141,0 1,0%0,0 —2,1411,0 21410 2.1C1,0 | —2.141,0 2,1Ca0
(10)+ (=2,041,1) | (21 | —2041,1 1,0%1,0 | 2141, 1,1%1,0 —9,141,1 21411 21011 | —21diy 21001
(16) - (—2,241,0) | (22) | —2.241,0 2.0%,0 | —2241.0 21%0.,0 | —2,241,0 2,1%0,1 —2.241,0 22440 22010 | —2,241,0 22050
+ (23) 2,0041,0 2,1%41,0 2,1%41,1 2,2001,0 2,201,1 2,200,1
(23):02011 | (29) 1 2,242,1
(25) 14,0010
1)+ (=2,042,0) | (26) —2,042,0 —2,042,0 2,0C2,0
(5)+ (—o,142,0) | 27) | —2,1d2,0 1,0%0,0 —2,142,0 —2,142,0 21020
(10) - (=2,142,1) | (28) | —21d21 1,0%1,0 | —2,14d2,0 11%00 —2,1421 —2,1421 21051
(16) - (=2,242,0) | (29) | 22420 2.0%.0 | —2242,0 21%0,0 | —2,2420 2,1%0,1 —2.2490 —2,2420 22020
(23)+ (~2,042,1) | (B0) | —g2421 20%1.0 | —22421 21210 | —22d21 21%1 | —22421 22%10 —2,242 1 —2,9451 29Cs 4
+ (31) 2,002,0 2,192,0 2,1%2,1 2,202,0 2,209, 1 22052
(B1) 192020 | (32) 1

oMy = oMy | Sy > w¥(z,y)
z,y .
ag,0 Sy —ag,0 oMy
1M Sy X uglo(r,y)
¥ x,
—1,0400 oMo § Sy y
1Mo Ss
a1,0 Sg —ay,0 1Mp
1My S; X ugo(,y)
b * &€,
—~1,041,0 oMo | Ss v
k
—1,141,0 1My | Sy
My Sto
agq Sty —ayq (M
v,
oM Sta 2uci(r,y)
* 3 &,
—2,040,0 oMy | Sz | Y
—2,140,0 1My 1 Sy
*
21401 1My § S5
* iy
2M Stg
as,0 Stz —ag,0 oM
oM Sis | Xugl(z.y)
T* &,y
—2,041.0 oMo § Sig v
*
—2,141,0 1Moy | Spo
o *
—214d11 1My § Sgy
22410 2My § Sos
oM Soy
a1 Say —ag,y oM
oMy Sos > “2?1(3":7J)
* &5
—2,042,0 oMy | Sog 4
*
2,120 1My | So;
*
21491 1My Sog
*
—2,242,0 2My | Say
A A *
—2.249.1 oMy | Sy
*
oMy Ssy
;
as,o Ssa —ag, 2Mp

N ()
Y




@p,0 = 0,000,0

+1,0%0,0 @1,0 = 1,0b0.0

at,0=1,1bo,0

Schema V

+1,0%1,0 @1,1 = 1,0b1,0

+1.101,0 01,1 =1,1b1,0

ai,g =1,1b1,1

+2,0%0,0 @2,0 = 2,000,0

+2,1%0,0 @2,0 = 2,100,0

+2,1%0,1 42,0 = 2,1b0,1

a0 = 2,2b0,0

+92.,0%1,0 2,1 = 2,0b1,0

~+2,1%1,0 G2,1 =2.1b1,0

+9,1%1,1 (2,1 =2,1b1,1

~+2,90%1,0 2,1 = 2,2b1,0

1 = 2,9b1,1

+2,0%2,0 @2,2 = 2,002,0

+2,1%2,0 @2,2 = 2,1b2,0

+9,1%2,1 d2,2=2,1ba 1

+9,9%9,0 @a,9 = 29b3 o

+9,9%9,1 @29 = 29b3 1

a9 =23.9bs o

V0T
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332.21 Orthogonale Polynome
Nach (3.18) und (3.18") gilt

Cu= T o™y glen) = S €7 gk, (3.36)
T,y M
oder ohne Gewichtsfunktion
m—1 n—1
10#22:5*“};7#:%5‘%2)77”. (3.36")
A = n=

Mit diesen Gréssen konnten die Koeffizienten ; ., der orthogonalen
Polynome P, (&m) nach der Determinanten-Methode (3.9) ermittelt
werden. Diesen Arbeitsgang kann man sich ersparen, wenn man be-
denkt, dass nach (3.16) fiir Rechtecksbereiche die Bindung

P, (&m) = Py_(8) Pi(n) (3.87)

besteht, wo P,_,(&) bzw. P*( ) die gemiss (2.39) deﬁmerten eindimen-
sionalen orthogonalen Polynome darstellen. .

Die ersten Ansitze lauten:

Poolém) = 1

P o(ém) = —g(m—1)+ £

Piaén) = —5(n—1)+19

P, (&m) = L (mP—8m+42)—(m—1) &4 £ (3.87")

1

FsalEm) = lm—1) p—1} —5{n—1) §— 3 (m—3) -1 En

Pyo(ém) = ¢(P—3n+2)—(n—1)n +

Pyo(&m) = — 5 (mP—6m2 4 11m—6) + L (6m2—15m +11) &
—3(m—1) &4 £°

----------------------------

332.22 Ausgleichsansiitze

Zur Berechnung der Koeffizienten a; , im Ausgleichspolynom
-1 4

2l,k('§’?7) == E E a; o i‘.—,u(‘f) P*(n) —I_ v ai ,uP—,u(g) P*( )’ (338)

A=0 u=0

1=0,1,2,...;k=0,1,2, ...,1, blldet man nach (3.26) und (3.16)
' ; DV Py (&) Pi(m) w(é,m)
TS PO S [

a, (3.39)
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34 Eigenschaften der orthogonalen Polynome
fiir Rechtecksbereiche

Die orthogonalen Polynome zweter Veréinderlicher P, (z,y) lassen
sich — wie verschiedentlich erwihnt — nach (3.16) als Produkt der beiden
orthogonalen Polynome ewner Variablen P, (x) und P:( y) darstellen,
falls der Bereich B ein achsenparalleles Rechteck und die Funktion F
so beschaffen 1st, dass dF = 0 und dF — dF, dF ist.

341 Herleitung von Rekursionsbeziehungen

Abgesehen von der sehr allgemeinen fiir beliebige Argumente und
Bereiche B giiltigen Rekursionsbeziehung (3.22) ergeben sich fiir Recht-
ecksbereiche spezifische Bindungen zwischen den orthogonalen Poly-
nomen zweier Verinderlichen.

Wegen Py (x) = P,_, o(x,y) und Pt(y) =P, (o4
gilt nach (3.16) neben

1 1)}.,,u($’y) - 1);[_‘“(.’13) P:(y) (3 40)
aucn ) . .
I)X,F(a:’y) - I)Z-,u,()('cc’y) I),u,,u(a:’y) .

Um im folgenden die beiden Varianten kontinuierlicher -
[a<2'<b; c<y<d] und diskreter, dquidistanter 1) Argumente
[£=0,1,2, ..., (m—1); n=0,1,2, ..., (n—1)] gleichzeitig er-
fassen zu konnen, bedienen wir uns einer vereinfachten Bezeichnungs-
weise. s bedeuten P, , orthogonale Polynome in zwei Veriinderlichen
und P, bzw. P solche in einer Verdnderlichen; welcher Natur die Ar-
gumente sind, bleibt dabe1r offen.

In (3.40) ersetzt man P,_, , = P, , durch die anderweitig gefun-
dene Rekursionsbeziehung (2.43) und erhilt fir 0 <y <1—2; 1 =2

Py =Po,,—K 1)242,;1. (3.41)
oder, anders gruppiert

D _ D §
Iﬁ.,y =1 A—p—1,0 }),u+1,,u “

KiPy yaof

D]
Pt

(3.41")

1) Nach (3.35) aut &, transformiert.
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Dabeiist .. (A—p—1)* (@)
o 4[2(1~;¢)—1][ (A—u)—3]

nach (2.43") tiir kontinuierliche Argumente z oder
(A—u—1)2 [m2-(l——u—1)2]

Ry ==
AR —w) —1] [2(—p) 3]
nach (2.43") fiir diskrete, dquidistante Argumente &.

-

Die beiden Ansiitze (3.41) und (3.41") unterscheiden sich dusserlich
fiir 0 <<u <2 —2, sind aber vollstindig gleichwertig.

Um auch fiir 4 = A—1 oder u = A einfache Rekursionen zu be-

sitzen, substituieren wir P, = P:‘: in (3.40) und finden auf analoge
Weise fir 2 u < 4; A =2
Pry=P Py — K Py, s (3.42)

oder, anders zusammengefasst

1)1,,; = Pz_(,himP

p—1,u—1

Nun bedeutet . (uﬂl) (c—d)?

—K,P, ,,P

n—2,0-2"
27 4Qu—1) (2u—3)
nach (2.43") fiir kontinuierliche Argumente y oder
n =1}
R, = [ ) ]
4 (‘)/a—l) (..,u—J)
nach (2.43") fir diskrete, dquidistante Argumente 7.

Trotz der formalen Verschiedenheit, speziell fiir 2 <<y << 4, sind
auch (3.42) und (3.42") miteinander dquivalent.

Vorerwéihnte Beziehungen stellen recht praktische Rekursionen
dar, mit denen alle Polynome hoheren Grades bestimmt werden kénnen,
falls ausser Py, =1 auch noch P, P, und P,, bekannt sind.

342 Symmetrie-Eigenschaften

Aut Grund der Symmetrie-Eigenschaften der orthogonalen Poly-
nome einer Variablen lassen sich auch die Verhéltnisse bei den zwei-
dimensionalen Polynomen rasch iiberblicken. Wird namlich durch
die Transformationen (2.45) der Ursprung in den Intervall-Mittel-
punkt verlegt, so sind gewisse Vereinfachungen maglich. Insbesondere
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verschwinden die bei der Determinanten-Methode eingefiihrten Null-
momente (3.10) bzw. (8.18') fiir kontinuierliche und diskrete, dqui-
distante Argumente, falls mindestens 4 oder p ungerade ist.

Dadurch reduziert sich natiirlich der Rechenaufwand zur Ermitt-
lung der Koeffizienten , o, ., da die meisten Elemente der Determinanten
(83.9) Null werden.

Wie im eindimensionalen Fall gelten dann fiir die transformierten
Variablen mit Beriicksichtigung von (2.46) und (2.46") nach (3.16) die
Symmetriebeziehungen:

Py (=) = ()P (+,4),
Py(+,=) = (=1 (), il
P (=) = D By

An Stelle der Argumente z*, y* oder &, #* wurde nur deren Vor-
zeichen gesetzt, sodass (3.43) fiir kontinuierliche und fiir diskrete
dquidistante Argumente beansprucht werden kann.

35 Numerische Auswertung

Ein praktisches Beispiel iiber die Konstruktion einer schweizerischen
Sterbefliche moge die vorangehenden theoretischen Darlegungen ver-
deutlichen. Es sei aber auch auf eine Abhandlung von P. Lorenz [33]
verwiesen, in welcher eine Selektionssterbetafel fiir Invalidierte mittels
zweidimensionaler orthogonaler Polynome ausgeglichen wurde.

351 Problemstellung und Grundlagen

Die gewdhnlichen Sterbetafeln (auch Periodensterbetafeln ge-
nannt) geben fiir eine bestimmte Beobachtungsperiode die Mortalitéit
einer Personengesamtheit nach Geschlecht und Alter wieder. Bekannt-
lich verdndert sich aber die Sterblichkeit mit der Zeit. Die Frage ist
daher berechtigt, welcher Gesetzmaissigkeit die Mortalitit der Ge-
schlechter in Abhéngigkeit vom Alter x und von der Zeit ¢ unterliegt.

Betrachtet man die amtlichen schweizerischen Volkssterbetafeln
als Stichproben fiir gewisse Zeitpunkte, dann kann mit Hilfe der zwei-
dimensionalen Ausgleichsrechnung eine diesen Werten bestangepasste
Fliche, die sogenannte Sterbefliche iiber der xt-Ebene konstruiert
werden.
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Als Grundlage fiir unsere Untersuchungen wihlen wir die rohen,
einjihrigen Sterbenswahrscheinlichkeiten fiir Ménner, und zwar fiir das
Altersintervall 20 < 2 << 70 und fiir die in Tabelle 1 zusammengestellten
acht schweizerischen Volkssterbetafeln.

Die m = 51 diskreten Altersargumente xz = 20, 21, ..., 70 liegen
daquidistant 1m Abstand 1 auseinander, wihrend die n — 8 diskreten
Argumente in der Richtung der Zeitachse t = 0; 6,5; ...; 72,5 nicht
dquidistant sind. In der z¢-Ebene bilden die erwdhnten Argumente ein
rechteckiges Purktgitter, sodass nach derim Abschnitt 331.1 bewiesenen
Aussage (3.16) die zweidimensionalen orthogonalen Polynome P, (z,f)
in das Produkt der beiden eindimensionalen Polynome P,_ (z) und Pﬁ(t)
zerlegt werden konnen.

Die rechnerische Arbeit liesse sich weiter vereinfachen, wenn die
nicht dquidistanten Argumente in der Zeitrichtung wenigstens sym-
metrigch liegen wiirden in bezug auf einen Mittelpunkt. Dann kéime man
namlich zufolge der Symmetrie-Eigenschaft (2.50) mit der halben An-
zahl von Polynomwerten Pz(t) aus.

Durch unwesentliche, fiir praktische Belange nicht ins Gewicht
fallende Korrekturen der Zeitargumente kann die gewiinschte Sym-
metrie erzwungen werden. Die t-Argumente (Tabelle 1, Spalte 3) gehen
somit in die korrigierten ¢* (Spalte 4) {iber; letztere transformieren wir

welter gemiss Ansatz %375
B o~ e, (8.44)
5
Grundlagen
1
Argumente
Sterbetafel Tafel-
SM mitttelpunkt 975
' t * gm0
5
(1) (2) (3) (@) (5)
1876/80 1.7.1878 0 2,5 —q
1881/88 1.1.1885 6,5 7,5 —6
1889/00 1.1.1895 16,5 17,5 —4
1901/10 1.1.1906 27,5 27,6 — 2
1921/30 1.1.1926 47,5 47.5 2
1931/41 1.7.1936 58,0 57,5 4
1941/50 1.1.1946 67,5 67,5 6
1948/53 1.1.1951 72,5 72,5 7
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352 Bestimmung der orthogonalen Polynome

Analog wie fiir die Zeitargumente iiben wir auf die Altersargumente
z die Transformationen (2.36) und (2.45) aus und erhalten

= gz —45; (3.45)

die neue Argumentenfolge erschliesst jetzt den Bereich —25 (1) -+ 25.
Im Tabellenwerk Pearson and Hartley[35]sind die PolynomwerteP,_,(&)
tabelliert fiir die 26 &quidistanten Argumente & = —25,—24, ..., 0
und fiir die Grade A—p = 1,2, ...,6. Vermége der Symmetrie-
Eigenschaften (2.46") sind die Polynomwerte auch fiir positive &-Argu-
mente bekannt.

Zur Ermittlung der (nur von der Zeit abhéngigen) orthogonalen
Polynome P;‘:(r) stiitzen wir uns auf das im Abschnitt 232.1 dargelegte
Verfahren.

Tab.2 zeigt die Berechnung der Nullmomente C, ; (v = 0,2, 4, 6, 8);
fiir ungerade » verschwindet C, ; gemiss (2.48).

Berechnung der Nullmomente C,

2

T 70 72 74 26 78

(1) (2) (8) (4) (5) (6)

2 1 4 16 64 256

4 1 16 256 4 096 65 536

6 1 36 1296 46 656 1679 616

7 1 49 2401 117 649 5764 801

b 4 105 3969 168 465 7510 209
Coo=2Y| Cyo=28|Cs0=210| Cyp = TI38 |Cg,o= 336930 Cg,0 = 15020418

Diese O, ,-Werte setzen wir in Schema II (Seite 79) ein, und
daraus ergeben sich die Koeffizienten oc:v der gesuchten orthogonalen

Polynome ' it
P = Sl v+ .40
speziell also w=
Pix) =7
Py = =0+ .46
Pi(r) = — 187418
Pl(v) = o288 __ 85705 ;2 | 4
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Wie dies fiir diskrete, dquidistante Argumente iiblich ist, stellen
wir auch die Werte fiir die Polynome (3.46") in einer Tabelle zusammen.

Polynomwerte ct Pt(l‘)

3 * Tk A * 3
¥ Pi(7) 4 P,(7) 2 Py(r) 187 Pl(z)
(1) (2) (3) (4) (8)
—1 —1 91 — 196 16 408
—6 —6 39 27 — 17223
—4 —4 — 41 218 — 15 602
—2 —2 — 89 169 16 417
S [Pa)P 210 38 808 230 460 2 157 588 972
T
. 1 1 25

Die eingetragenen Polynomwerte sind mit dem Faktor ¢, multi-
pliziert. Diese Konstante hat bekanntlich keinen Einfluss auf die
Ausgleichung und wurde jeweils so gewihlt, dass die Polynomwerte
moglichst klein, aber noch ganzzahlig ausfallen.

353 Bestimmung der Ausgleichspolynome

Nach (3.5) und (3.16) gilt

=3 L
2467 = > D4y, P8 Pu@) + D a,,, P (8) Pu(r), (8.47
/1—0;; 0 u=0
mit S NP8 Ph(r) (&)
a, =t (8.48)

N WO TR P IR
Die Berechnung der Koeffizienten a; , nach (3.48) erfordert die
Kenntnis der Summen

+25

N SVP, (&) Ph(r) w(éT), (3.49)

£f—25 T

wo unter E die Summation iiber die Argumente v = 2, +4, +6, +7

T
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zu verstehen ist. Zufolge der Symmetrieeigenschaften fiir dquidistante
Argumente (2.46") sowie fiir nicht dquidistante, aber symmetrisch
gelegene Argumente (2.50) lisst sich (3.49) — analog wie (2.52) im
eindimensionalen Fall — mit den Hilfsgrossen

Apy = w(—§& + 0+ (1) w(4 & +7)
A::w(%—&,——;) + (—D*w(+ & +7)
Aa(Ay,) = [w(=§& —7)+(— )H‘W(+E —u}4

+ (—1)¥ [w(—& + 1) + (1) w(+ & +7)]

(3.50)

wie folgt darstellen

+25 +25
5};‘2;%-”(6)132‘:@)10(&, 21;’11 &) Ph(— )AZ(AHH

+ SV PO Pin) 47 3.51)
dabei bedeutet jetzt >/ die Summation iiber die positiven Argumente
J 2 p g

T = —I_Q) +4’ +6) _;7'

Je nachdem ob A—p und u gerade oder ungerade sind, bilden die
Hilfsgrossen (8.50) «reine» oder «gemischte»y Summen und Differenzen.
Es empfiehlt sich deshalb, passende Summen- und Differenzentabellen
anzulegen. Uber deren schematische Anordnung orientieren nach-
stehende Ubersichten, die in zwei- (Fille a) und b)) bzw. vierfacher
Ausfithrung (Fille a) bis d)) anzufertigen sind.

Hilfsgrossen A;_,

a) A—p = gerade (Summen) b) A—u = ungerade (Differenzen)

§ e

—7 | —6 | —4 | —2 2 4 6 i

« b4
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Hilfsgrossen A7(4,,)

a) 2—u = gerade,
b) 2—u = ungerade,
¢) A—u = gerade,

p = gerade
pu = gerade
g = ungerade

d) A—p = ungerade, u — ungerade

. - sl -

Die Koeffizienten a, , konnen nun in einem einzigen Arbeitsgang
berechnet werden und lauten:

a,, = 1839,112 745 g, = 0,122 295 ay, = — 0,000 383
a, = 99,578 575 a5, = — 0,020 590 a,, = 0,001 883
a,, = — 90,553 035 gy = — 0,056 712 a,, = 0,000 535
ayy = 1,277 506 gy = 0,029 896 s, — 0,000 832
4y, = — 2,831 024 a,,= 0,003 911 a5, = — 0,000 122
ty, = — 0,644 073 g, = — 0,003 247

Die Frage, bis zu welchem Grad das Ausgleichspolynom (3.47) an-
zusetzen ist, wurde in erster Niherung mit dem Kriterium von Lid-
stone (3.34) beurteilt; wir entschieden uns, die Ausgleichung mit dem
zweiten Ausgleichspolynom fiinften Grades z;,(&,7) durchzutiihren.
Die gefundenen ausgeglichenen Sterbenswahrscheinlichkeiten — im
folgenden auch mit g(x,t) bezeichnet — sind fiir die ausgewithlten Alter
20,25, ..., 70 in Tabelle 6 den beobachteten (unausgeglichenen) und
den amtlich ausgeglichenen Werten gegeniibergestellt.

Aus den vorliegenden Zahlen tritt deutlich die starke Abnahme
der Mortalitit mit der Zeit hervor. Die mit orthogonalen Polynomen
nach dem zweldimensionalen Ansatz (3.47) ausgeglichenen Werte
weichen naturgemiiss stirker von den Beobachtungswerten ab, als die
jeweils fiir bestimmte Zeitabschnitte mechanisch ausgeglichenen amt-
lichen Werte; doch darf die Ausgleichung als gut bezeichnet werden.

8
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Einjihrige Sterbenswahrscheinlichkeiten q(z,t) fiir Minner

6 SM 1876/80[SM 1881/88|SM 1889/00|SM 1901/10{SM 1921/30{SM 1931/41|SM 1941/50|SM 19418/53
Alter

Beobachtete (unausgeglichene) Werte

(1) (2) 3) (4) (5) (6) (7 (8) (9)

20 | 0,00 680 0,00 606|0,00573|0,00 517 | 0,00 370|0,00319|0,00 244 { 0,00 163
25 876 772 661 548 399 349 274 188
30 964 871 731 628 429 358 281 205

35 1117 1 086 903 772 482 425 307 228
40 1292 1246 1121 1010 637 520 381 319

45 10,01 543 0,01 549 0,01 507 | 0,01 320| 0,00 908 | 0,00 767 | 0,00 591 | 0,00 511
50 2103 1961 1930 1837 1369 1143 876 794
55 2 696 2609 2552 2471 1942 1681 1447 1334
60 3759 3796 3592 3 679 2798 2 641 2241 2020
65 5615 5267 5176 4976 4 346 3 952 3376 3169
70 8 369 7993 7586 7328 6477 6 092 5520 5138

Mit zweidimensionalen orthogonalen Polynomen ausgeglichene Werte

20 (0,00715(0,00643|0,00547|0,00481|0,00348|0,00277|0,00 228 | 0,00 223
25 840 763 654 572 404 315 249 237
30 947 866 746 649 438 325 235 211
35 1093 1013 887 T76 524 384 266 227
40 1309 1231 1105 986 694 527 377 321

45 |0,01616|0,01 546 | 0,01 424 | 0,01 300 | 0,00 971 | 0,00 773 0,00 587 | 0,00 512
50 2058 1996 1882 1752 1380 1148 919 820
55 2718 2663 2553 2413 1984 1707 1423 1293
60 3744 3 693 3577 3415 2899 2559 2200 1941
65 5373 5317 5175 4970 4319 3 888 3427 3199
70 7956 7878 7680 7399 6 541 5 982 5377 5073

Mechanisch ausgeglichene Werte (Amtliche Sterbetafeln)

20 |0,00720|0,00635|0,00 567 | 0,00 516|0,00 365 | 0,00 325 | 0,00 236 | 0,00 163

25 841 742 648 556 394 343 275 192
30 973 858 724 620 412 339 268 202
35 1104 1057 907 754 486 413 300 238

40 1312 1255 1140 983 643 527 386, 330

45 10,01 5550,01 524 | 0,01 486 | 0,01 308 | 0,00 921 | 0,00 761 | 0,00 590 | 0,00 497
50 2 086 1984 1917 1788 1344 1133 914 821
55 2682 2574 2554 2485 1950 1728 1424 1338
60 3793 3701 3 550 3 543 2843 2579 2196 2085
65 5457 5 264 5176 5042 4 258 3 964 3383 3168
70 8 006 7814 7557 7393 6491 5 963 5418 5076
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354 Interpolation, Extrapolation und Generationensterbetafeln

Dank der fliichenmiissigen Darstellung (3.47) der Sterblichkeit im
Altersintervall «20, 70» und fiir die Zeit von 1878 bis 1951, kann
fiir jeden beliebigen Punkt (&,7) innerhalb dieses Bereiches die ein-
jihrige Sterbenswahrscheinlichkeit berechnet werden (Interpolation).
Fiir die noch zu erirternden Generationensterbetafeln benotigten wir
mehrere interpolierte Werte, die allgemein zur Zufriedenheit aus-
gefallen sind.

Bedeutungsvoller als die Berechnung von Zwischenwerten ist die
Extrapolation. Die Sterbefliche 1st sowohl hinsichtlich des Alters- wie
auch des Zeitargumentes erweiterungsfihig. Fiir die Alter iber 70
erhielten wir gute, fiir die Alter unter 20 erwartungsgemiss schlechte
Werte.

Zeitlich lohnt sich vor allem, die Extrapolation in die Zukunft zu
priifen. Hier machte sich fiir den Zeitraum 1951-1986 eine eigenartige
Erscheinung bemerkbar, indem in den Altern z << 45 bald einmal
Verzerrungen der einjihrigen Sterbenswahrscheinlichkeiten auftraten.
Selbst eine meue Abgrenzung des DBasisbereiches — Altersintervall
«25, T5» und neue Sterbetafeln SM 1921/30, 1929/32, 1931/41,
1939/44, 1941/50 und 1948/53 — vermochte dieses seltsame Verhalten
nicht zu beheben. Es scheint demnach, dass sich Schwingungen in den
untern Altern des Basisbereiches durch die zeitliche Extrapolation mit
zweldimensionalen orthogonalen Polynomen in hohere Altersstufen
fortpflanzen. Bei der Beurteillung des mutmasslichen kiinftigen Ver-
laufes der Sterblichkeit ist also Vorsicht geboten. Fiir die Alter z > 45
konnten immerhin die extrapolierten Sterbenswahrscheinlichkeiten big
1986 bedenkenlos zur Konstruktion von Generationensterbetafeln fiir
ausgewihlte Jahrginge verwendet werden.

Eine Generationensterbetafel misst — im Gegensatz zur Perioden-
sterbetafel — das tatsiichliche Absterben einer gleichaltrigen Personen-
gesamtheit in der Zeit. Sie erfordert deshalb die Kenntnis der ein-
jahrigen Sterbenswahrscheinlichkeiten zu Zeitpunkten, die sich iiber
mehrere Jahrzehnte erstrecken.

Zur Darstellung einer Generationensterbetafel beziehen wir uns
auf die Ausfithrungen im Lehrbuch E. Zwinggr [45] und definieren:

q(x,t) = Wahrscheinlichkeit einer z-jihrigen Person, im Zeitabschnitt
t/t 41 zu sterben.
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q(zt—2+2) = q(z,0+2x) = Wahrscheinlichkeit einer im Zeitpunkt
) = t— x geborenen, nunmehr z-jihrigen Person, im Zeit-
abschnitt ¢/t - 1 zu sterben.

Mit Hilte der aut den Geburtszeitpunkt 0 bezogenen einjihrigen
Sterbenswahrscheinlichkeiten ¢(z,0 + z) konstruiert man die Uber-

lebensordnungen
z—1

lz,0+z) = 1(0,0) [T [1—q(A0+2)]. (3.52)

A=0
Die Generationensterbetafel I(z,0 + z) gibt das «wahre» Absterben
einer (Generation wieder, indem auf die Nulljihrigen [(0,0) des Jahr-
ganges () schrittweise die Sterblichkeit der Zeitabschnitte 0/0 1,
0+1/0+2, usw., einwirkt.
Ziwischen den oben definierten Wahrscheinlichkeiten q(x,f) und
q(z,0 + x) besteht die Bindung

qz,0+2) = qlz,t—z+2) = q(z,i); (3.58)

demnach geniigt es, die Ansétze fiir ¢(z,t) zu kennen.
In unserem Beigpiel gilt insbesondere
Q(x’t) — 25,1(‘5!7) :

Nach (3.52) in Verbindung mit (3.53) konnen wir damit die Ge-
nerationensterbetafel I(x,0-+x) autbauen.

Wir gehen von den in Tabelle 6 angegebenen, ausgeglichenen
einjihrigen Sterbenswahrscheinlichkeiten ¢(z,t) fiir den Basisbereich
«20, 70» aus, interpolieren die fehlenden Zwischenwerte und be-
rechnen die erforderlichen extrapolierten Werte (Alter und Zeit). Unter
Berticksichtigung der Zuverldssigkeit der zeitlichen FExtrapolation be-
trachten wir die Generationen der Jahrginge 6 — 1875, 1885, 1895,
1905, 1915 und beschriinken uns auf die Ermittlung der ausgeglichenen
Sterbenswahrscheinlichkeiten nach (3.47) Y) tiir die Alter z = 20, 25,

.y 90.

Die jeweils zwischen ¢(x,t) und q(z-+5,t+5) gelegenen vier Werte
q(z—+r,t+7r), mit r = 1, 2, 3, 4, wurden nach der von W. Wegmiiller 45|
vereinfachten oskulatorischen Interpolationsformel berechnet.

) Grundlagen: a; , gemiss Ansitzen auf Seite 113; 1°;_,(§) nach (2 39,
sofern nicht bereits im Tabellenwerk Pearson and Hartley [35] vorhanden; 17%(t)
nach (3.46"), talls nicht schon in Tabelle 3 (Seite 111) enthalten.
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e+, = gl + (1) da(ed) + (2) s+ (5) Paled), (354
mib
S(ad) = 0,200 Aq(z—5 ,1—5) + 0,120 A2q(z—5 ,t—5) — 0,016 Aq(z—5,t—5)

S(dd) = 0,040 A2g(x—5,t—5)— 0,016 A3q(z—5,1—5)
Sq(z.t) = 0,024 A3q(z—5 ,t—5)
und

Aq(z—bH,1—b) = q(z,t) —q(x—5 ,1—5)
12g(z—5 ,t—b5) = A[Aq(x—5,t—5)] = q(z+5,t+5) —2q(=,t) + g(x—5,1—5)
fiir r = 20,25, ...,90 (Alter der Generation)
t=0+2z (0 = 1875, 1885, 1895, 1905, 1915)
r=1,2 8, 4 (Zwischenwerte).

Fiir die beiden Randintervalle (21 < z < 24 und 86 < z < 89)
beruht die in Tabelle 7 zusammengestellte Generationensterblichkeit
auf einer graphischen Ausgleichung.

Nach (3.52) konstruieren wir Uberlebensordnungen fiir z = 20
germass a1

x,0+z) = 1(20,0) [ [1—q(4,0+2)], (3.52")
o mit 1(20,0) — 100 000.

Die einjihrigen Sterbenswahrscheinlichkeiten (Tabelle T), be-
sonders aber die daraus hergeleiteten Generationensterbetafeln bzw.
Uberlebensordnungen (Tabelle 8) bekunden die grosse Bedeutung der
sikularen Sterblichkeitsabnahme. Danach erreichten von 100 000
zwanzigjihrigen Minnern der im Jahre 1875 geborenen Generation
etwas mehr als die Hilfte das 65. Altersjahr. Dasselbe Alter erleben
bereits zwei Drittel des Jahrganges 1895 und sogar drei Viertel der
Generation 1915. Ferner starben mehr als ein Viertel aller zwanzig-
jihrigen Ménner der Generation 1875 vor dem 54. Altersjahr, wihrend
der Jahrgang 1915 rund elf Jahre spiter — etwa im Alter 65 — diesen
Zustand erreicht.

Schliesslich sel noch auf eine Besonderheit in den Sterbenswahr-
scheinlichkeiten hingewiesen; diese nehmen fiir die Generationen nach
1895 ein immer ausgeprigteres relatives Minimum an, welches sich 1m
Laufe der Zeit vom Alter 30 (Generation 1895) auf das Alter 34 (Gene-
ration 1915) verlagert.
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Finjihrige Sterbens-

7:\lter z | q(2,18754 )| q(2,1885+ ) | q(2,1895+ ) | q(2,1905+ ) | (219154 )

(1 () (3) (4) (5) (6)

20 0,00 547 0,00 481 0,00 418 0,00 348 0,00 277
21 556 488 425 350 280
22 569 498 432 353 981
23 584 510 439 356 280
2% 599 524 445 358 278
25 0,00 612 0,00 533 0,00 449 0,00 358 0,00 275
26 621 538 449 354 269
27 627 541 446 347 260
28 633 549 443 339 251
29 640 545 439 331 242
30 0,00 649 0,00 549 0,00 438 0,00 325 0,00 235
31 660 555 439 322 231
32 671 561 440 318 226
33 685 569 449 316 294
34 700 579 446 317 294
35 0,00719 0,00 592 0,00 453 0,00 320 0,00 227
36 740 © 608 463 326 233
37 763 625 475 335 249
38 789 645 489 346 254
39 818 668 507 360 269
40 0,00 851 0,00 694 0,00 527 0,00 377 0,00 287
41 887 724 551 397 309
42 9925 756 577 421 334
43 967 "791 607 447 363
44 1013 830 640 477 395
45 0,01 064 0,00 873 0,00 677 0,00 512 0,00 431
46 1118 919 717 549 471
47 1175 969 761 590 - 515
48 1238 1023 808 635 563
49 1306 1083 861 684 615
50 0,01 380 0,01 148 0,00 919 0,00 739 0,00 673
51 1461 1219 985 800 735
52 1545 1294 1057 867 801
53 1637 1375 1134 938 872
54 1737 1464 1214 1014 950
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0 = 1875, 1885, 1895, 1905 und 1915
wahrscheinlichkeiten ¢(z,0-4-x)

Alter = | q(2,18754 ) | q(x,1885+ ) | ¢(x,1895+ ) | q(2,1905-+z) | q(2,1915+x)
(1) (2) 3) (4) (5) (6)
55 0,01 849 0,01 563 0,01 293 0,01 093 0,01 037
56 1969 1671 1361 1169 1130
57 2097 1785 1421 1243 1229
58 2235 1909 1487 1325 1336
59 2 388 2 046 1575 1423 1454
60 0,02 559 0,02 200 0,01 701 0,01 547 0,01 586
61 2744 2368 1869 1700 1728
62 2941 2546 2070 1874 1880
63 3155 2741 2295 2067 2045
64 3393 2957 2537 2278 2228
65 0,03 659 0,03 199 0,02 789 0,02 504 0,02 433
66 3948 3464 3044 2739 2 682
67 4257 3746 3306 2985 2930
68 4592 4054 3587 3250 3211
69 4963 4395 3897 3544 3479
70 0,05 377 0,04 777 0,04 249 0,03 876 0,03 760
71 5827 5192 4635 4239
72 6 307 5637 5048 4628
73 6 829 6120 5498 5052
T4 7402 6 652 5994 5519
75 0,08 038 0,07 243 0,06 547 0,06 041
76 8726 7885 7147 6 637
77 9461 8570 7789 7275
78 10255 9312 8485 T 942
79 11123 10125 9247 8 634
80 0,12078 0,11 020 0,10 090 0,09 389
81 13108 11 988 11001
82 14205 13019 11973
83 15 386 14131 13021
84 16 668 15339 14162
85 0,18 068 0,16 661 0,15413
86 19487 18175 16 722
87 21103 19798 18201
88 22 822 21 513 19833

89 24711 23 324 21 519
90 0,26 728 0,24 865 0,23 197
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Uberlebensordnungen
8
Alter = | (o,1875--a) | [(e,1885+2) | (218954 ) | 1(2.1905-+) | U(2,1915+ 2)

(1) () (3) (4) (5) (6)

20 100 000 100 000 100 000 100 000 100 000
21 99 453 99 519 99 582 99 652 99 723
22 98 900 99 033 99 159 99 303 99 444
23 98 337 98 540 98 730 98 953 99 164
24 97 748 98 038 98 297 98 600 98 887
25 97 150 97 524 97 860 98 247 98 612
26 96 547 97 004 97 420 97 896 98 341
27 95 941 96 482 96 983 97 549 98 076
28 95 334 95 960 96 550 97 211 97 821
29 94 724 95 440 96 122 96 881 97 576
30 94 109 94 920 95 701 96 560 97 339
31 93 488 94 399 95 281 96 247 97 111
32 92 861 93 875 94 863 95 937 96 886
33 92 225 93 348 94 446 95 632 96 667
34 91 593 92 817 94 028 95 329 96 451
35 90 952 92 280 93 609 95 027 96 235
36 90 298 91 733 93 185 94 723 96 016
37 89 630 91 176 92 753 94 414 95 793
38 88 946 90 606 92 313 94 098 95 561
39 88 244 90 021 91 861 93 772 95 318
40 87 522 89 420 91 396 93 435 95 062
41 86 777 88 800 90 914 93 083 94 789
42 86 008 88 157 90 413 92 713 94 493
43 85 212 87 490 89 891 92 323 94 177
44 84 388 86 798 89 346 91 910 93 835
45 83 533 86 078 88 774 91 472 93 465
46 82 644 85 326 88173 91 003 93 062
47 81 720 84 542 87 541 90 504 92 624
48 80 760 83 723 86 875 89 970 92 147
49 79 760 82 866 86 173 89 398 91 628
50 78719 81 969 85 431 88 787 91 064
51 77 632 81 028 84 645 88 131 90 451
52 76 498 80 040 83 812 87 426 89 787
53 75 316 79 005 82 926 86 668 89 067
54 74 083 77 918 81 985 85 855 88 291
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0 = 1875, 1885, 1895, 1905 und 1915

Iz,0-+x)

Alter @ | I(2,1875+z) | I(2,1885+x) | 1(2,1895 4 ) | 1(2,1905+4 ) | I(2,1915+z)
1) @) (3) (4) (5) (6)
55 72797 76 777 80 990 84 984 87 452
56 71 451 75 577 79 943 84 055 86 545
57 70 044 74 315 78 855 83 073 85 567
58 68 575 72 988 77 734 82 040 84 515
59 67 042 71 595 76 579 80 953 83 386
60 65 441 70 130 75 372 79 801 82174
61 63 767 68 587 T4 090 T8 567 80 871
62 62 017 66 963 72706 77 231 79 473
63 60 193 65 258 71 201 75 784 77 979
64 58 294 63 469 69 567 74 217 76 384
65 56 316 61 592 67 802 72 527 T4 683
66 54 255 59 622 65911 70 710 72 866
67 52113 57 557 63 904 68 774 70911
68 49 895 55 401 61 792 66 721 68 834
69 47 604 53 155 59 575 64 552 66 623
70 45 241 50 819 57 253 62 265 64 306
71 42 809 48 391 54 821 59 851 61 888
72 40 314 45 879 52 280 57 314
73 37771 43 292 49 641 54 662
74 35192 40 643 46 911 51 900
75 32 587 37939 44100 49 036

76 29 968 35191 41 212 46 074
77 27 353 32 417 38 267 43 016
78 24 765 29 638 35 286 39 886
79 22 225 26 879 32 292 36 718
80 19 753 24 157 29 306 33 548
81 17 367 21 495 26 349 30 398
82 15 091 18918 23 451
83 12 947 16 455 20 643
84 10 955 14 130 17 955
85 9129 11 963 15 412
86 7 480 9 969 13 037
87 6 022 8158 10 857
88 4751 6 542 8 881
89 3 667 5135 7119
90 2761 3937 5587
91 2023 2 958 4291
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4 Zusammenfassung

Die systematische Bearbeitung der orthogonalen Polynome sowie
die Untersuchungen hinsichtlich ihrer Anwendung in der Ausgleichs-
rechnung haben sich als aufschlussreich erwiesen. Die allgemeine Be-
trachtungsweise in n Veriinderlichen vermittelt eine vollstindige Uber-
sicht iiber die grundlegenden Figenschaften. Die Spezialisierung auf eine
oder zwel Verdnderliche erschliesst sodann weitere spezifische Bezie-
hungen und Bindungen. Nachstehende Hauptergebnisse diirften den
Theoretiker wie den Praktiker interessieren.

1. Die Einfithrung des Stieltjesschen Integralbegriffs verbiirgt eine
einheitliche, allgemeine Darstellung der Theorie orthogonaler Polynome
und deren Verwendung in der Ausgleichsrechnung.

2. Ohne auf die eigentlichen Orthogonalitéitsbedingungen ange-
wiesen zu sein, lassen sich auf Grund des vollstindigen Orthogonal-
systems, das im Abschnitt 13 konstruiert wurde, die Koeffizienten der
orthogonalen Polynome durch eine passende Extremalbedingung (1.9)
eindeutig bestimmen. Diese Tatsache liegt spiter der Determinanten-
Methode zugrunde, ein Verfahren zum Aufsuchen orthogonaler Poly-
nome, das sich besonders gut fiir den Einsatz von programmgesteuerten,
elektronischen Rechengeréiten eignet.

3. Sowohl fiir kontinuierliche wie fiir diskrete, dquidistante Argu-
mente lassen sich im ein- und zweidimensionalen Fall — bei letzterem
fiir den Rechtecksbereich — explizite formelméssige Darstellungen der
orthogonalen Polynome angeben (Ansétze (2.12), (2.12"), (2.39); (3.12),
(3.37)). Dabei tritt die Bindung zu den klassischen orthogonalen Poly-
nomen 1m allgemeinen und zu den Legendre-Polynomen im speziellen
deutlich hervor.

4. Im Falle diskreter, nicht dquidistanter Argumente fithren die
Rekursionsbeziehungen (Ansitze (2.22), (2.24), (2.25); (3.22), (3.23)
und (3.24)) auf ein handliches Rechenschema zur Bestimmung der
orthogonalen Polynome; gleichzeitig st damit eine vorldufige, mit
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fortschreitender Rechnung parallel laufende Beurteilung der Giite der
Ausgleichung verbunden, ohne dass hierzu die ausgeglichenen Werte
bekannt sein miissen.

5. Wird das Ausgleichspelynom als Linearkombination der ortho-
gonalen Polynome eines vollstindigen Systems angesetzt, so sind die
zugehorigen Entwicklungskoeffizienten vom Grade des gewéhlten Aus-
gleichsansatzes unabhingig. Der Orthogonalititsbedingungen wegen ent-
arten namlich die zugrundeliegenden Bestimmungsgleichungen (1.13).

6. Fiir Ausgleichsprobleme in zwei unabhiingigen Verénderlichen
verdient die Behandlung des Rechtecksbereiches besondere Beachtung.
In diesem Falle gilt die bemerkenswerte Aussage ((3.12"), (3.16)),
dass die zweidimensionalen orthogonalen Polynome in das Produkt der
entsprechenden eindimensionalen orthogonalen Polynome zerfallen.
Dieses fundamentale Ergebnis gewiihrleistet den rationellen Einsatz der
tiir eine Verdnderliche giiltigen Beziehungen und Ansiitze.

7. Zur Erstellung tabellarischer Unterlagen erweisen sich die Kigen-
schaften der auf die Veréinderlichen & und # transformierten ortho-
gonalen Polynome als sehr wertvoll; zufolge der Symmetrie (2.46),
(2.46") und (3.43) brauchen die Polynomwerte nur fiir die eine Hélfte
des Argumentbereiches angegeben zu werden. Dem Praktiker diirften
ferner das spezielle Auflosungsverfahren fiir diskrete, nicht dquidistante
Argumente (Abschnitte 232.1 und 832.1), die ausgewiesenen Rekur-
sionsbeziehungen, sowie die Austithrungen iiber die numerische Aus-
wertung niitzlich sein.
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