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Orthogonale Polynome
mehrerer Veränderlichen und ihre Anwendung

in der ein- und zweidimensionalen

Ausgleichsrechnung

Von .Rudoiff Hüsser, Bern

Einleitung

Statistische Beobachtungen oder Messungen sind stets mit Fehlern
behaftet. Um den störenden Einfluss eines sprunghaften Verlaufes aus-

zumerzen, fordert der Naturwissenschafter, insbesondere der Mathe-
matiker für die «wahren Werte» einen glatten Verlauf, wodurch die

allgemeine Grundtendenz unverfälscht und klar zum Ausdruck kommt.
Welches der gebräuchlichen Verfahren anzuwenden ist und wie dabei

vorgegangen wird, lehrt die Ausgleichsrechnung. Als besonders wertvoll
haben sich Ausgleichsansätze mittels orthogonaler Polynome erwiesen.

Letztere nehmen übrigens nicht nur in der Theorie der Ausgleichsrech-

nung eine Vorrangstellung ein, sie finden ebenfalls bei Regressions-

Problemen sowie bei der Analyse von Zeitreihen (Glättung, Trend-

berechnung) Verwendung.
Die vorliegende Abhandlung befasst sich mit der Theorie der ortho-

gonalen Polynome. Es schien mir von Interesse, zwei Fragen abzuklären.
Einmal sollen die mathematischen Grundlagen über orthogonale Poly-
nome systematisch bearbeitet werden. Dabei gilt es, wichtige Eigen-
schatten aufzudecken sowie wesentliche Beziehungen und wechselseitige
Bindungen klarzustellen. Sodann ist darzutun, dass sich orthogonale
Polynome ihrer theoretischen wie praktischen Eigenschaften wegen für
die Ausgleichsrechnung gut eignen. Im Hinblick auf praktische Anwen-

düngen wurde eine möglichst einfache numerische Auswertung erstrebt.
Orthogonale Polynome sind naturgemäss von der Argumentenfolge

abhängig ; stets ist darauf zu achten, ob kontinuierliche (stetig sich ver-
ändernde) oder diskrete (nur in gewissen Stellen definierte) Argumente
vorliegen. Um eine Doppelspurigkeit in der Darstellung zu vermeiden,
bediente ich mich des Stieltjesschen Integralbegriffes.
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Der erste Tel?, welcher der n-dimensionalen Betrachtungsweise ge-
widmet ist, enthält zunächst die grundlegenden Begriffe und Défini-
tionen. Alsdann werden ein vollständiges Orthogonalsystem hergeleitet
sowie notwendige und hinreichende Bedingungen für die Bestimmung
der Koeffizienten der orthogonalen Polynome aufgestellt. Die Darstellung
des Ausgleichspolynoms durch orthogonale Polynome schliesst diese

Untersuchungen ab.

Im zweiten imd driften Teil erfolgt die Spezialisierung auf eine bzw.
zwei unabhängige Yeränderliche. Nach der Entwicklung einer all-
gemeinen Lösung (Determinanten-Methode) werden, den Bedürfnissen
der Praxis Rechnung tragend, die Fälle kontinuierlicher und diskreter
Argumente - letztere zusätzlich nach dem Gesichtspunkt äquidistant
bzw. nicht äquidistant - getrennt behandelt.

Überdies wird auf Vereinfachungen zur numerischen Auswertung
(Transformationen, Rekursionen, Tabellen) sowie auf zweckmässige
Rechenschemas eingetreten.

Die Ausgleichsansätze mittels orthogonaler Polynome und die damit
verbundenen Relationen wurden an einem Beispiel der flächenhaften
Ausgleichung mehrerer Sterbetafeln erprobt. In verdankenswerter Weise
stellte mir das Eidgenössische Statistische Amt für die neuesten Sterbe-
tafeln SM 1941/50 und 1948/53 die Grundzahlen vorzeitig zur Verfügung.

1 Allgemeines

11 Grundsätzliches und Definition des Stieltjes-Integrals

Wir beschränken uns durchwegs auf den w-dimensionalen eukli-
dischen Raum und betrachten darin einen Bereich B. Darunter ver-
stehen wir ein abgeschlossenes und beschränktes Gebiet [3] *).

Ordnet man jedem Punkt a; e B nach irgendeinem Gesetz eine be-

schränkte Umgebung U(a;) zu, dann lassen sich nach dem Überdeckungs-
satz von Heine-Borel [3] stets endlich viele Punkte aq e B, (1 1,2, i)

z

derart auswählen, dass BcU ü(aq) ist. Nun verlangen wir, dass die
4 1

Umgebungen U(a^) zu einem Mengenkörper 9JÎ gehören sollen, d.h. aus

*) Zahlen in eckigen Klammern [ ] bezeichnen die betreffende Nummer im
Literaturverzeichnis auf den Seiten 124 ff.
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17,F 9JÎ folgt : Z7 u F e50î (Summe),
Z7 n F FDÎ (Durchschnitt),
77-Fe9JÏ (Differenz) i).

z

Offensichtlich kann U Z7(x,-) in endlich viele, paarweise disjunkte
1 1

Mengen Xj, Xg, X^9JÎ zerlegt werden, sodass jede Menge tZ(x^),

(i 1, 2, ..Ï), Yereinigungsmenge von gewissen unter den X^ ist.
Dabei heissen zwei Mengen X und X„ disjunkt, falls sie keinen gemein-
samen Punkt besitzen; d. h. falls X nX, 0 ist®).

Der Abstand zweier Punkte x^,Xg X ist im definiert als

d(xj,Xa) =|/2 (®i,r —'®a,»)" ' b^w. x^„ (v 1, 2, w) die

Koordinaten des Punktes x^ bzw. Xg sind.

Dann versteht man unter dem Durchmesser <3[X] einer beschränkten

Menge X das Supremum der Abstände zweier Punkte Xj,Xg « X :

<5[X] Supd(Xi,Xa).
Xi,X2 e X

Aus d[Z7(x)] < D mit /) > 0, reell, folgt natürlich auch <5[XJ < i)
für alle X^ D(x).

Wir nennen ein System von endlich vielen, paarweise disjunkten
Punktmengen Xj,Xg, X^eäff dann eine Überdeckung F von 7>,

wenn m

D c U X„
/i=i

ist, mit X^ n-ß^O für alle ,« 1,2, m.
Zur Charakterisierung eines solchen Mengensystems führen wir das

Peinheitsmass der Überdeckung F von B ein :

<5[F] Max <5[XJ.
ju l,2, ...,m

Eine Überdeckung F* heisst feiner als F, wenn jede Menge X^, efUl von
F* Teilmenge einer Menge X von F ist, für alle « 1,2, m;
r 1, 2, Insbesondere gilt dann <5[F

1) Unter der Differenz U — F verstehen wir die Menge derjenigen Punkte von
U, die nicht zu F gehören: U — F Un C(F), wenn C(F) die Komplementär-
menge von F ist.

2) 0 bedeutet hier die leere Menge.
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Schematisch dargestellt, besteht

Z* aus und Z aus

c

c X«

Wenn X^, nicht ganz in B enthalten ist, bildet die Yereinigungs-

menge U X^_„ möglicherweise eine echte Untermenge von X^. Deshalb
v=l

'

setzen wir Y^, X^ — U X^_„ ; dann wird

Schliesslich nennt man eine für alle X 901 definierte Funktion -F(X)

additiv auf 901, falls aus X^XaeÜJt und aus XjnXg 0 folgt:

von beschränkter Schwankung auf 90t, falls eine reelle Zahl M
existiert, sodass aus

Damit sind die zur Einführung des Blemaïm-StieZfy'mcfeew Integral-
begriffes notwendigen Grundlagen zusammengestellt. Wir treffen nun die

Foraiisseteww/en :

1. -B sei ein Bereich im euklidischen Baum B„.
2. $01 sei ein System von Punktmengen mit den folgenden Eigen-

Schäften :

aj 901 bilde einen Mengenkörper,

&^ zu einem beliebigen Punkt und gegebener reeller Zahl D > 0

existiere eine zu 9JÎ gehörige Umgebung I7(a:) mit dem Durch-
messer (5[U(a;)] < D.

F(X,uX,) =F(X,)+F(X,),

Xi,Xa, ..X„,é90î, X„nX„ 0, (^,r 1, 2, m),

folgt :

2|*py|;sM.
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Auf Grund der vorstehenden Überlegungen existieren endlich viele,

paarweise disjunkte Punktmengen X,,Xo, ..X„,«3R, die eine Über-

deckung Z von R bilden und deren Durchmesser d[XJ < D sind.

B. E(X) sei eine für alle X^ DIR definierte, reelle Funktion, die auf
SR additiv und von beschränkter Schwankung ist.

Ferner sei folgende «Randbedingung» erfüllt *):

Zu jedem e > 0 existiert eine reelle Zahl > 0, sodass gilt:
Hat jede der (beliebigen) Mengen Xj,Xj, X,. einen Durch-

messer d[X] I), und mindestens einen Punkt mit dem Rand von R
gemeinsam, sind ferner die Mengen Y,,Y,, Y^eSR paarweise dis-

r
junkt und ist Y^cX^,, (^u 1, 2, r), dann wird V E(YJ| < e.

/'=i
4. 90(0;) sei eine stetige Funktion des Punktes aieR.

In jeder der Mengen X wählen wir nun einen beliebigen Punkt
a; (X^ n R) und bilden die Summe

2>0ü,)*TO-
A<=1

Dann gilt folgender

Hawpteate: Der Grenzwert
m D*

lim 2^)^)= U(s)dF (1.1)

£

wird Stieltjes-Integral von 90(0:) bezüglich R über R genannt, existiert
und ist von der Art der Überdeckung des Bereiches R durch die m

disjunkten Punktmengen X wie auch von der Wahl der Punkte
^ -®) unabhängig.

Existenz und Eindeutigkeit dieser Aussage wurden in der Original-
arbeit 2) bewiesen. Weitere theoretische und praktische Hinweise über

Stieltjes-Integralefindensichz.B.indenüntersuchungenvonM.Jaco&[l],
M.Locwî/ [2], S.iSa/cs [4], H.Rc/fär/ [5] und J.R.<Sfe//ewsew [6J.

*) Diese «Randbedingung» erübrigt sich, wenn B selber zum Mengenkörper StR

gehört.
*) Das Manuskript liegt im mathematisch-versicherungswissenschaftlichen

Seminar der Universität Bern auf.



12 Satz über orthogonale Funktionensysteme

Die allgemein gültige Aussage dieses Abschnittes werden wir später*)
auf Polynome spezialisieren. Damit wird sich die Konstruktion der ortho-
gonalen Polynome wesentlich vereinfachen lassen, indem wir weder auf
das praktisch umständliche BcÄmfcfecÄe Orthogonalisierungsverfahren,
noch direkt auf die Orthogonalitätsbedingungen angewiesen sein werden

(vgl. fF.Grolmer [20]).

Forattsseteimgrew :

1. çh(a;), (A 0,1, 2, seien im Bereich B definierte, reelle und

stetige Funktionen des Punktes xeß.
2. Die für den Bereich B, den Mengenkörper 9JÎ und die Funktion F

auf den Seiten 58/59 aufgestellten Voraussetzungen 1. bis 3. seien erfüllt.

Dann existiert das Integral

/ 9h(®) (A,y. 0, 1, 2,
ß

De/mifwm:

Das Funktionensystem {^(a;)}, (A 0,1, 2, heisst bezüglich F
im Bereich B orthogonal, wenn die Orthogonalitätsbedingungen

r 0, für liu,f ç>.(a:) ç>„(a;) dF (1-2)J 0, für A /« erfüllt sind.

BeÄmtpfimp:

Das Funktionensystem {^(a:)}, (A 0,1, 2, ist im Bereich B
dann und nur dann orthogonal, wenn das Integral

/ Oo 9?o(z) + O <pi(x) + + O-i + 9>i(«)]® dF (1.3)

bei jedem Index Z ein «Extremum»^) für c„ Cg 0

annimmt, und falls

| [9h(®)]^F =£ 0, (A 0, 1, 2, ist.
ß

*) Abschnitt 13, Seite 63.
*) Unter «Extremum» wird hier lediglich die Bedingung verstanden, dass

sämtliche ersten Ableitungen -— verschwinden (1.4). Offen bleibt die Frage, ob
Sea

es sich tatsächlich um ein Minimum oder Maximum im üblichen Sinne handelt;
ihre Beantwortung hat in diesem Zusammenhang keine Bedeutung.
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Beweis:

Soll das Integral Jj ein Extremum annehmen, müssen notwendiger-
weise dessen partielle Ableitungen nach den Koeffizienten für alle
A 0,1, 2, ..(Z—1) verschwinden; d. h.

1 a/p
2 0Cj

[<k)9>o9G + Ci?>i?>;i + • • • + Ci-i<Pi-iWi + 9h] ^ 0-

(1.4)

a,1 Bann: Wir setzen voraus, das Integral Jj nehme für Cq Cj Cg

Cj_i 0 ein Extremum an. Dann muss gleichzeitig die

notwendige Bedingung (1.4) erfüllt sein. Diese reduziert sich auf

J ç>j(a:) dB 0 für jeden Index Z und für jedes A 0, 1, 2,
.B

(Z — 1); d.h. das Funktionensystem {«^(a;)} ist orthogonal,

frJ dann: Ist das Funktionensystem '^(a;) [ orthogonal, dann wird
1 aj,

A 0,1, 2, Z—1).
2 ce*

Dieser Ausdruck verschwindet wegen (1.4), wenn das Integral J,
ein Extremum annimmt. Da nach Voraussetzung er, =£ 0 ist, folgt:
c, 0, (A 0,l,2, ...,Z-1).

13 Konstruktion eines vollständigen Orthogonalsystems

Zuerst suchen wir ein vollständiges Polynomsystem, welches nach-
her so bestimmt wird, dass die Orthogonalitätsbedingungen (1.2) er-
füllt sind.

De/mih'on :

Ein linear unabhängiges Polynomsystem heisst vollständig, wenn
jedes (behebige) Polynom auf genau eine Weise als Linearkombination
der Polynome dieses Systems dargestellt werden kann; d.h. wenn das

System eine Basis des linearen Raumes aller Polynome ist.

Nun gibt es bei w Variablen 2^, ••, zu jedem Grad A

so viele linear unabhängige Polynome, als voneinander verschiedene

Potenzprodukte œj' • œj' • • a:*", mit V ^ A, vorkommen.
4 1
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Wir denken uns alle Potenzprodukte geordnet und erhalten z. B. für
n 1 je ein (entartetes) Potenzprodukt A-ten Grades (A 0,1,2,

nämlich 1; a^; a^; £cf ; oder allgemein Qj Potenzprodukte A-ten

Grades.

1st n 2, dann haben wir gemäss

1 • T" /y» • /V»2 /vi /v» /y»2 /y.3 2 /vi /vi2 /v»3
-L 0/2 j 1 «^2 ' 2 » 1 ' 1 2 » 1 *^2 » *^2 » * * *

ein Potenzprodukt nullten Grades, zwei — ersten Grades, drei — zweiten

Grades, usw., oder allgemein ^ ^
^
j Potenzprodukte A-ten Grades.

Durch Induktion findet man, dass es bei n unabhängigen Variablen
a:», or insgesamt

/»+(A-1>
'J (1.5)

voneinander verschiedene Potenzprodukte A-ten Grades und somit auch

P;, linear unabhängige Polynome A-ten Grades gibt.

In der vorstehenden Anordnung bezeichnen wir mit

Qv,eOl> • • •> <0 *)

das p-te Potenzprodukt r-ten Grades, (r 0,1,2,... ; p 1,2, p„).

Bedeutet ^, œj P^(a;) *)

ein ^-tes linear unabhängiges Polynom A-ten Grades

(A 0, 1, 2, ; j« 1, 2, p;,), welches nur die Potenzprodukte

$v,e(^ (" 0,1,2,..., A—1; p 1,2,.. ,,p„und r A; p 1,2,.. ,,p),
und zwar das letzte mit dem Koeffizienten 1 enthält :

A—1 Pv

**,.(*) + =1» (1-6)
v 0 p l 5=1

dann bilden diese Polynome

{P^(®)} » (A 0,1, 2, ; /* 1, 2, p^)

*) Um die Schreibweise nicht unnötig zu belasten, deuten wir die Abhängigkeit
von den re imabhängigen Variablen £2, • • •, ®h im folgenden nur durch Q,>,g(a;)

bzw. P^,^(a;) an.
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ein vollständiges, linear unabhängiges System; denn unter den gemäss

(1.6) definierten P^(x) gibt es von jedem Grad A genau so viele linear
unabhängige Polynome als voneinander verschiedene Potenzprodukte
dieses Grades vorkommen, sodass jedes (beliebige) Polynom eindeutig
nach

n» ' • • •, £•,.„(«), • • • 0» 1, 2, pj
entwickelt werden kann.

Damit die nach (1.6) definierten Polynome

{**.,(»)}> (A 0,1, 2, ; ,« 1,2, ...,p,)
ein vollständiges Orthogonalsystem bilden, müssen die Koeffizienten

jt,vS,e der betreffenden Polynome so bestimmt werden, dass nach (1.2)
die Orthogonalitätsbedingungen

r ^ 0, für A I oder « «,
g' 1^0, für A A und ,« /<,

(A,I 0,1, 2, ; ,«,jt 1, 2, bzw. pj), erfüllt sind.

Nun erhält man aus der im Abschnitt 12 bewiesenen Aussage (1.3)
über orthogonale Funktionensysteme durch Spezialisierung auf die

Polynome Pj ^(r) den

Sate:

Das vollständige System der Polynome

{P^(z)}, (A 0,1,2, ...;,« 1,2, ...,p^)
ist im Bereich B dann und nur dann orthogonal, wenn das Integral

!-l W 4-1

S S +P(,4(a:)
A=0 B 1 ju l

2

dF (1.8)

bei jedem Indexpaar (Z,fc) sein Extremum für 0

(A 0,1, 2, Ï—1; ,« 1, 2, p^und A Z; ,« 1, 2, fc—1)

annimmt.

Da sich dieser Satz zur Bestimmung der Koeffizienten nicht
gut eignet, leiten wir aus ihm folgenden wewen Sate her :



— 64 —

Das vollständige System der Polynome

(A 0,1,2, 1,2, ..»pj)
ist im Bereich B dann und nur dann orthogonal, falls gilt

Extremum, (1-0)

mit der Nebenbedingung 1 i).

Zum Beweis dieses neuen Satzes genügt es zu zeigen, dass die beiden

Extremalprobleme (1.8) und (1.9) dieselbe Lösung besitzen.

P[ fc(x) ist ein Zc-tes Polynom Z-ten Grades mit dem höchsten Potenz-
produkt Qj^(®) und enthält nach (1.6) alle in den vorhergehenden
Polynomen ^(A 0,1, 2, Z — 1; ^ 1,2, und A Z; ^ 1,2, Zc— 1)

auftretenden Potenzprodukte Q^(as). und

!~1 PA fc-1

A=0/W 1 1

unterscheiden sich demnach nur durch die den Potenzprodukten Q^^(®),

(A 0,1, 2, Z —1; 1,2, ...,pj und A Z; ^ 1,2, Zc— 1)

zugeordneten Koeffizienten.

Somit ist die Menge der Punktionen f?^(a:), welche dem Extremal-
problem (1.8) zugrunde liegt, identisch mit der Menge der Polynome, die

dem neuen Satz (1.9) entsprechen.

Da ausserdem für „ _ ^

(A 0,1, 2, Z—1 ; ^ 1,2,.. .,jq und A Z; /* 1, 2, Ze —1)

wird, folgt die Äquivalenz der beiden Extremalprobleme unmittelbar.

Wir wissen jetzt, dass mindestens ein vollständiges orthogonales
Polynomsystem gemäss Ansatz (1.6) existiert, welches auf Grund des

Extremalproblems (1.9) bestimmt werden kann. Es bedarf jetzt noch
des Nachweises, dass genau ein solches vollständiges System existiert.

D In Übereinstimmung mit (1.6) und zur Sicherstellung der Eindeutigkeit des

orthogonalen Polynomsystems fordern wir a,a«/«„u 1, trotzdem die Bedingung
a,a«/j,^ =f= 0 für den Beweis des neuen Satzes ausreichen würde.
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Der lineare Kaum aller Polynome sei mit bezeichnet; dann

spannen die orthogonalen Polynome
p p p p p p p

0,1 ' 1,1' 1,2 » l,pi > -1 2,1 ' 2,J>2 >

für jedes Indexpaar (A„m) einen Unterraum auf, der dadurch

entsteht, dass das Polynom P^(a;) an bzw. an ^Sa-up^ (für p 1)

adjungiert wird. Also ist *p^-i bzw. "pA-up^ eine Hyperebene von
Auf dieser Hyperebene steht Pj^j#) senkrecht, und daraus folgt, dass

P^(a:) bis auf einen skalaren Faktor bestimmt ist, da ja alleP, ^(a?) =£ 0

sind, wenn nur nicht verschwindet.
Die Nebenbedingung, wonach der Koeffizient des letzten mit-

zuberücksichtigenden Potenzproduktes gleich eins sein müsse, legt auch
diesen noch offenen Faktor fest (vgl. Fussnote, Seite 64). Damit ist das

vollständige System der orthogonalen Polynome eindeutig bestimmt,
sodass es keine Rolle spielt, wie die Koeffizienten von P^(®)
explizit ermittelt werden.

14 Darstellung der Ausgleichspolynome
durch orthogonale Polynome

Nach Abschnitt 13 wissen wir, dass ein vollständiges und - unter
Berücksichtigung der Nebenbedingung 1 - eindeutig definiertes

Orthogonalsystem }P^(®)} existiert.
Da sich jedes beliebige Polynom als Linearkombination der Poly-

nome irgendeines vollständigen Systems, insbesondere also der ortho-
gonalen Polynome P^(a:) darstellen lässt, rechtfertigt sich für die Aus-

gleichspolynome der Ansatz

i-l PA *

2 S «a,,A„(z) + 2 *)• (i •

A=0 1 l
Mit dieser Relation, wo aüfe orthogonalen Polynome in aufsteigender

Reihenfolge der Grade A 0,1, 2, (Z—1) und von den orthogonalen
Polynomen Z-ten Grades nur die fc erste«, nämlich P, («), (^m 1,2,... 7c),

berücksichtigt werden, kommt zum Ausdruck, dass für die Ausgleichs-
polynome 1-ten Grades in Abhängigkeit von den P^(ai) insgesamt p,
Ansätze bestehen. Deshalb drängt sich auch hier eine doppelte Indizie-

i) Im Sinne der früher eingeführten vereinfachten Schreibweise wird die Ab-
hängigkeit von den n unabhängigen Variablen Xj, Xj> x„ lediglich durch

> ®2» • • •» ®«) bzw. tr(xi, X2, x„) w(x) angedeutet.

5
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rung auf: Zj,j(a;) bedeutet das fc-te Ausgleichspolynom Z-ten Grades
(fc 1, 2, pj) in den w unabhängigen Variablen a^, aig,

Zur Bestimmung der Koeffizienten in (1.10) werden die Beob-

achtungswerte nach der MeZ/iode der /ctewisfenQwadrafe ausgeglichen.

| — w(a;)]^dF | Minimum. (1.11)
ß ß

Unter Berücksichtigung von (1.10) findet man wegen der not-
wendigen Minimalbedingung, d. h. durch Nullsetzen der partiellen
Ableitungen nach den ay ~, (I 0,1,2, ...,Z— 1; ^ 1,2, .,pj und

I Z; p 1, 2, fc), die Gleichungen

i-i pji %

S S + S —M®)
A=0^u=l ^=1

dF 0. (1.12)

Infolge der Orthogonalitätsbedingungen (1.7) reduziert sich dieser

Ausdruck auf
_ 0,

woraus nach Vertauschung von mit /,/.« folgt:

f ^(®) ^
^ 0,1,2, ...,Z^

J[^»?dK V=l,2, ...,p,

Wie schon die Schreibweise andeutet, sind diese Koeffizienten
sowohl vom Grad Z, als auch vom zweiten Index fc des Ausgleichs-
polynoms Z;^(a:) unabhängig und bleiben bei einer nachträglichen
Änderung dieser Grössen invariant.

Ansatz (1.13) ist auch deshalb vorteilhaft, weil er direkt lösbar ist,
eine Eigenschaft, die auf die Orthogonalitätsbedingungen zurück-
zuführen ist. Ohne diese müsste nämlich (1.12) nach den Koeffizienten

aufgelöst werden. Die Auflösung dieses linearen, inhomogenen
Gleichungssystems wäre - wenn auch theoretisch sichergestellt - prak-
tisch recht umständlich. Der zur Ermittlung der Koeffizienten erforder-
liehe Bechenaufwand würde deshalb bedeutend grösser ausfallen als bei

Benützung von (1.13). Überdies wären die Koeffizienten
vom Grad Z und vom zweiten Index fc des Ausgleichspolynoms Zj,^(a:)

abhängig und müssten bei allfälliger Änderung von Z oder Zc vollständig
neu berechnet werden.
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2 Eindimensionale Betrachtungsweise

21 Grundsätzliches und Definition des Stieltjes-Integrals

Die bisher allgemein gehaltenen Ausführungen lassen sich wie folgt
auf den Fall einer unabhängigen Variablen spezialisieren.

Der Bereich B reduziert sich auf ein abgeschlossenes und beschränk-
tes Intervall I [a a: 6].

Es genügt für unsere Zwecke, jenen Mengenkörper 9JI zu wählen,
der von allen beschränkten Intervallen erzeugt wird (SR besteht dann aus
allen Vereinigungsmengen von endlich vielen, beschränkten Intervallen).

Nun betrachten wir diejenigen Überdeckungen Z von B, bei denen
die paarweise disjunkten Intervalle X^, Xg, X^eSR links offene,
rechts abgeschlossene, beschränkte Intervalle sind (mit Ausnahme von

m

Xj, das auch links abgeschlossen ist), für welche (J X^, B ist *).
a=I

Die zu einer solchen Überdeckung Z gehörenden Intervalle X^ seien in
der Reihenfolge ^ 1, 2, m von a nach 5 auf I angeordnet, sodass

X, und X„ (a^,a;J, (/* 2, 3, m),

<5[X„] 5(Wi) Vil'
gesetzt werden kann.

Dabei haben wir X^, durch die entsprechenden Randpunkte a;^_,
und a;^, (a a:,,, Xj, a;„, a:,„ fr) gekennzeichnet, und
mit der runden bzw. eckigen Klammer wird die Eigenschaft von X^,
links offen bzw. rechts abgeschlossen zu sein, charakterisiert.

Neben der Funktion F(X) definieren wir nun eine Funktion F*(oi)
der reellen Variablen a; wie folgt :

F*(a;) F[a;„ a,a:], (a ^ a: 5^ fr) ^).

Wegen der Additivität von F wird

E(X„) =F[«,a;J-F[a,a:^J F*(®„)-F*(x^);
d. h. F und F* bestimmen einander eindeutig, sodass wir wie üblich
F durchwegs durch F* ersetzen können.

i) Da der Bereich B ein beschränktes Intervall 2 ist und deshalb selbst zu 9JÎ

gehört, tritt hier das Gleichheitszeichen auf (vgl. Pussnote, Seite 59).
*) Für x a besteht [x„ a,x] aus dem Punkt a allein und gehört somit

ebenfalls zu 9JZ. Also ist B[xo a,a] und damit B*(a) auch definiert.
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Die Funktion P*(a;) heisst von beschränkter Schwankung auf 9Jt,

wenn für beliebige a a^ <i a^ 5S £„, h gilt :

m

2|P*K)-P*0Vi)|^M.
^-1

Schliesslich nimmt die Definition des Stieltjesschen Integrals einer
auf 1 definierten, stetigen Funktion <y(a;) mit der neuen Bezeichnung
folgende Gestalt an:

Ö/mçp(a;) dP lim V [F(ag —F(x^)] *). (2.1)

f a

Dieser Grenzwert existiert und ist von der Art der Überdeckung Z
des Intervalles I [a <j a; <) 6] durch die m-Intervalle wie
auch von der Wahl der Zwischenwerte (a;^ < <1 a;J unabhängig.

Ohne auf die weiteren Überlegungen des erstenKapitels einzutreten,
die nur eine spezialisierte Wiederholung des allgemeinen Falles wären,
seien doch folgende Tatbestände erwähnt.

1. Die Definition der Polynome Pj„, (a^.a^, ...,£„) reduziert
sich nach (1.6) auf den Ansatz:

3l(®) S Ç,(®) 2 «i/. *" + 2)
v 0 ju 0

mit 1 ; denn es gibt jetzt von jedem Grad A nur noch L j 1

Potenzprodukt Q^(a;) a;* und somit auch nur je em linear unab-

hängiges, orthogonales Polynom P^a;), weshalb auf zusätzliche Indizes
verzichtet werden kann.

oc^ stellt also für das Polynom A-ten Grades den Koeffizienten des

zur /«-ten Potenz von a; entarteten Potenzproduktes Ç^(a:) a:'' dar.

2. Alle auftretenden Integrale existieren.
Wenn das System der Polynome jP^a;)}, (A 0, 1, 2, ortho-

gonal ist, müssen nach (1.7) die Orthogonalitätsbedingungen

r 1=0, für A yt «
P,(a;) P(a:) dP ^ (2.3)j | yfc 0, für A ,u,

(A„m 0,1, 2, erfüllt sein.

*) Wir lassen den Stern * bei F* wieder weg, fassen jedoch F, wie allgemein
gebräuchlich, weiterhin als Funktion der reellen Variablen a; auf.
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3. Die Polynome P^x), (/ 0,1, 2, bilden ein vollständiges
Orthogonalsystem, wenn die Koeffizienten in (2.2) so bestimmt
werden, dass nach (1.9) gilt:

/[P,(s)]»*F Extremum, (2-4)
a

mit der Nebenbedingung oc^; 1, (A 0,1, 2, Die nach dieser

Vorschrift konstruierten Orthogonalpolynome sind damit eindeutig
definiert.

4. Auch zur Darstellung eines beliebigen Ausgleichspolynoms als

Linearkombination orthogonaler Polynome beziehen wir uns auf die

früher gefundenen Erkenntnisse.

Nach (1.10) ergibt sich

*i(s) 2<L-Pa(*)> (* 0,1,2,...), (2.5)
A=0

wenn die Polynome P*(x) ein vollständiges Orthogonalsystem bilden.
Die noch unbekannten Koeffizienten können dann gemäss (1.13) mit
der Beziehung

I"P,(x) w(x) dF

j (A 0, 1, 2, Z) (2.6)

J K(x)]^F
a

ermittelt werden, falls die Beobachtungswerte w(x) wieder nach der
Methode der kleinsten Quadrate ausgeglichen werden.

22 Determinanten-Methode

Zur Bestimmung der Koeffizienten der Polynome P;,(x) greifen
wir auf (2.4) und fordern

6

2

dF Extremum.
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Wird der quadratische Ausdruck entwickelt, dann ergibt sich unter
Berücksichtigung der Abkürzung

<?,+,=
das Extremalproblem

jV+'dF (2.7)

S S «A,v Extremum, (a^ 1).
jw 0 v 0

Damit dieser Ausdruck extremal wird, müssen die partiellen Ab-

leitungen nach den unbekannten Grössen verschwinden und wir
finden das aus Â Gleichungen bestehende lineare, inhomogene Glei-

chungssystem

(* 0,1,2, ...,A-1) (2.8)
,,=o

zur Bestimmung der A unbekannten Koeffizienten Falls die aus der

linken Seite des Gleichungssystems (2.8) gebildete Koeffizientendeter-
minante von Null verschieden ist, existiert eine und nur eine Lösung.

Diese lautet p)
AfZ. (2.9)
D, ^ '

Dabei ergibt sich D^(^t) aus indem die ^t-te Spalte der Determinante
durch die Grössen auf der rechten Seite des Gleichungssystems (2.8)

ersetzt wird.

Die eindeutig bestimmten orthogonalen Polynome sind nun in der
Gestalt ,_i r>

P^œ) V ^ a;" + (A 0, 1, 2, (2.10)
a=o D*

darstellbar.

23 Beziehungen und Ansätze für die praktische Anwendung

Die Abkürzung (2.7) gestattet, sowohl den Fall kontinuierlicher
wie auch jenen diskreter Argumente zusammenzufassen und eine all-
gemeingültige Lösung zu geben.

In diesem Abschnitt werden wir nun auf die wichtigsten Probleme
bei der Anwendung orthogonaler Polynome, wie sie sich in der Praxis
stellen, näher eintreten. Gleichzeitig sollen gewisse Beziehungen zu
anderweitig bekannten Ergebnissen hergeleitet werden.
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231 Kontinuierliche Argumente

Handelt es sich um eine Ausgleichung nach einer stetigen Gewichts-

funktion gf(cc), so kann das Stièltjes-Integral (2.1)
Ô ft

I" </>(x) dF J</(x) <p(x) dz
a a

a:

gesetzt werden, falls F(x) ist-
a

231.1 Orthogonale Polynome

Nach dieser Anpassung des Stieltjes-Integrals an die kontinuier-
liehen Argumente bedienen wir uns des im Abschnitt 22 dargelegten
Verfahrens zur Herleitung der orthogonalen Polynome. Aus (2.7)
folgt dann:

C,, j as''<7(2:) da:, falls gr(as) in [a SÏ x fe] stetig ist.
a

Kann auf eine Gewichtsfunktion </(x) verzichtet werden, setzt man
(?(as) 1. Dann stellt (2.7) das gewöhnliche Piemewmsc/ie Integral der

//-ten Potenz von x dar : 6

0,-J (2.11)

a

Diese Werte sind in die Determinanten der Gleichung (2.9) einzusetzen
und führen dann auf die Lösungen (2.13).

Erwünscht ist aber eine allgemeine, formelmässige Darstellung der
Koeffizienten und damit auch der Polynome P^(x). Da sich die De-
terminanten-Methode hierzu nicht gut eignet, lösen wir das Extremal-
problem (2.4) nach IF. Grô'lmer [20] mit Hilfe der Variationsrechnung
und finden j j

Nach einigen Umformungen gewinnt man für diese verallgemeinerten
Lef/cndre-Polynome die Beziehung ^ 12')

Pj(x) V I *
2 (^") + ") " a'"" (6— o)*-»l x",

(2Aj ^lv/U-W V-/P '
J

wobei die geschweifte Klammer den Koeffizienten entspricht.
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7FerfefabeMe :

3>(*) 1

P^cr) — !(a + 6) + a;

Pa(a;) ^-(a^ + 4afc + 5®) — (a + &) ®

AO®) — i/o («® + 9a®6 + 9a5®4- 5®) + -f-(a® + 3a6 + 5®) a;

— y (a 4- 5) a:® 4" a;®

P^s) ^-(o«+16a®& + 36a2fc2 + 16a&® + fc4) (2.13)

— y(a® + 6 a® 5 4" 6ab® + &®) ® (3a®-)- 8a?>-(- 36®) a:®

— 2 (a 4- &) 4 ^
Pg(x) —Y5Y(a®4- 25(45 -j- 100a®5® + 100a®5®-|- 25a5*4- 6®)

+ -^-((4+10 a®5+ 20 a® 5® 4*10^5®-)-5*) ®

— -§-(a®+ 5a®5 + 5a5® + 5®) a;® + -^-(2(1®+ 5a5 + 25®) ce®

— -|-(a + ^) ®*4-

Zufolge der Normierungsbedingung 1 ist die Eindeutigkeit
der auf diese Weise ermittelten orthogonalen Polynome sichergestellt
(vgl. auch Seite 65). Somit spielt es keine Rolle, ob die Koeffizienten

nach der Determinanten-Methode (2.9) oder nach der Formel (2.12')
ermittelt werden.

Durch die Setzung a —5 1 gewinnt man aus (2.12)

Das ist - abgesehen von einem konstanten Faktor - die bekannte
Formel von Eodrigwes für die Legfewdre-Polynome

âèr <*•">

welche u. a. von FF. /SWiö5 [38j zur Lösung von Ausgleichsproblemen
verwendet wurde.
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Geht man, um einen Vergleich mit der allgemeinen Theorie der Ortho-

gonalpolynome anzustellen, von der erweiterten Definitionsbeziehung
(2.12) ^

^(*) [</(*) /V)], (A 0,1, 2 (2.16)

aus, dann gilt nach F. G.Tncomi [40J folgender Safe:

Die Funktion I2j,(x), gebildet mit

f (£> — rc) (m—o), für |a| < oo, &|<oo,
/(x) | x — a, für | a 1 < oo, fr oo,

I 1, für — a fr oo,

und einer Belegungsfunktion p(x) im Intervall [a,b], ist dann und nur
dann ein Polynom vom Grad A in /(x), wenn p(x), abgesehen von
multiplikativen Konstanten oder einfachen Abszissentransformationen,
gegeben ist durch

I (6 — x)"(x — a)'', mitß > —1, y > —1 für [ci < oo, jfr| < oo,

q(x) <J (® — mit/8> — 1 für |a|<oo, 5 =oo,

e 2 für _ a h oo.

Ist dies der Fall, so sind die Polynome IF,(x) bezüglich der Belegungs-
funktion p(x) orthogonal.

Durch entsprechende Wahl der Parameter findet man aus lî^(x) die
bekannten «klassischen orthogonalen Polynome», insbesondere jene von

Jacofo für —a — & 1 ; /(x) (1 —x) (1 + x), p(x) (1 — x)" (1 + x)^,

und daraus die weiteren Spezialfälle, die nach

Gepewfrawer (oder ultrasphärisch) für /? y,
Tsc/ie&pscTse// (im engern Sinne) für /? y + ~ und

Lepewdre für /S y 0

benannt werden. Ferner erhält man die Polynome von

Lapwerre für a 0, &=oo; /(x)=x, p(x)=e""*x^
und jene von

_
Z2

Hermife für —a & oo; /(x) 1, p(x) e *
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231.2 Ausgleichsansätze

Die Ausgleichung der Beobachtungswerte w(a;) bietet nun für kon-
tinuierliche Argumente keine weiteren Schwierigkeiten. Nach (2.5) lässt
sich jedes Polynom als Linearkombination der P^(x) darstellen und die
Koeffizienten % lauten nach (2.6)

&

J"b,(x) w(a:) da:

- (2.17)

J
a

wenn die stetige Gewichtsfunktion gr(ae) vernachlässigt werden kann.

232 Diskrete Argumente

Wenn die unabhängige Variable nur der endlich vielen, diskreten
Werte a^, (i 1, 2, m) mit a a^ a:^ ^ 6 fähig ist, gilt
nach (2.1)

/m m

Ç)(®) dF lim v [P(ag — 2 9>K) [P(^) — *"(«<-i)] •

Z)*-0 ^=1 i 1
»

Sobald nämlich das Feinheitsmass <5[Z] ^ ja;; — a:;_J <D wird, ergibt
die Summation keinen zusätzlichen Beitrag mehr bei einer weiteren

Verfeinerung; denn

0. für av-1 < ^ a„ ^ a,.

Weil nur die diskreten Argumente a^ definiert sind, lassen wir die
Zwischenwerte a:,-„; < f; a?; mit «,• zusammenfallen und setzen, um
auch hier den Zusammenhang mit den früherenAusführungen zu wahren,

2 ' (" ® &) • (2-18)

Damit ist F(a;,)—P(®i_i) </(#<)> und für jede stetige Punktion
p(a) gilt:

&

/Ç>(S) dF 2 ^(®i) P(^i) ' (« ^ ^ &) •

i l
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Auch für diskrete Argumente wollen wir den Fall #(®) 1 näher
betrachten und finden a/m2^-)-

a

Was die weitere Behandlung anbetrifft, so nehmen wir - entspre-
chend den Bedürfnissen der Praxis - eine Zweiteilung vor. Unterschie-
den werden die beiden Fälle «nicht äquidistanter» und «äquidistanter»
Argumente.

232.1 Diskrete, nicht äquidistante Argumente

Wir setzen voraus, die auszugleichenden Beobachtungswerte w(a^)
seien in unregelmässigen Abständen entsprechend den Argumenten

« aq < #2 < < 27 < <0-^ 6 gegeben.

Unter Berücksichtigung der im Abschnitt '22 dargelegten Methode
werden wir das Orthogonalsystem der PolynomeP,(x) nach (2.10) auf-
suchen und gleichzeitig die Ansätze für die eigentliche Ausgleichung
herleiten. Wegen der Unbestimmtheit der Argumente 27 wird sich die

gesuchte formelmässige Darstellung einerseits auf rekursive Beziehungen
beschränken müssen, anderseits werden die darauf gegründeten Aussagen
sehr allgemein sein, sodass sie für alle möglichen - also für kontinuier-
liehe i) wie auch für diskrete - Argumentfolgen gelten.

232.11 Orthogonale Polynome

Aus (2.7) folgt wegen (2.18)

<?„ 2 <3(27) 2 2:"2(2) (2.19)

oder, falls g(®) 1 ist: <7 Vi'. (2.19')
X

Nun erweitern wir die Definition der Abkürzung (2.7) auf

V (^ 0, 1, 2, A). (2.20)
X

Für ^ 0 wird i),(x) 1 und stimmt wieder mit Cj nach (2.19')
überein.

i) Bei kontinuierlichen Argumenten wäre die Summation 2 durch das Integral
r

J da: zu ersetzen,
a
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So wie sich jedes beliebige Polynom nach den Polynomen des voll-
ständigen Ortbogonalsystems entwickeln lässt, kann auch jede Potenz a;*

als Linearkombination der orthogonalen Polynome dargestellt werden;
d. h. a

s* 2 mit =1, (A 0, 1, 2, .)• (2.21)
,u 0

Daraus gewinnt man

*a(®) — 2 A* ^(®) + (2 • 22)
(U=0

und das ist bereits eine erste Rekursionsbeziehung in den orthogonalen
Polynomen selbst. Die neu auftretenden Koeffizienten ^4^ bestimmen
sich unter Berücksichtigung der Orthogonalitätsrelationen

_ f — 0, für AS^)WL„ (2-23)
x l =/= 0, fur A /.t,

aus (2.21) nach Erweiterung mitP„(x) und nach Summation über alle
vorkommenden Argumente zu

2 **W c

a:

Damit können die durch die Grössen ausgedrückt werden,
welche ihrerseits der Rekursionsgleichung

^ C« 0, 1, 2 A—1), (2.25)
v 0

genügen.

Anderseits bestehen auch für die Koeffizienten im allgemeinen
Ansatz P^(ai) einfache Rekursionsbeziehungen. Das Gleichsetzen von
(2.2) mit (2.22) führt durch Koeffizientenvergleich auf

^ (/M 0, 1, 2, A—1), (2.26)

mit oc^ 1.

Die orthogonalen Polynome P^(œ) lassen sich also entweder nach

(2.2) unter Mitberücksichtigung von (2.26) oder nach (2.22) mit (2.24)
und (2.25) ermitteln. Beide Rekursionsverfahren sind gleichwertig und
setzen nur die Kenntnis der Nullmomente C„„, (j> 0,1, 2, 2A),
voraus.
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232.12 Ausgleichsansätze

Für die Koeffizienten im Ausgleichspolynom (2.5) fanden wir die

Bestimmungsgleichungen (2.6) oder

VP,(£)w>(;r) „
a, -* r— -, —-, (A 0, 1, 2, ..I). (2.27)* 2 [WP

Die verwendete Abkürzung

Mr 2A(®)«(®) (2-28)
X

erweist sich als vorteilhaft ; denn sie kann mit (2.22) aus den als bekannt

vorausgesetzten Grössen ^ x*w(x) (2.29)
X

rekursiv hergeleitet werden gemäss

M* (2.30)
,,=o

Ist schliesslich das Ausgleichspolynom 2,(x) in der Potenzreihenform

(2-31)
A=0

gesucht, dann ergibt sich durch Gleichsetzen von (2.5) mit (2.31) und
durch Koeffizientenvergleich der geordneten Potenzen von a; die Be-

ziehung
(2-32)

232.13 Schema der numerischen Auswertung

Es gelingt uns jetzt, alle wünschenswerten Unterlagen für das Auf-
suchen des Ausgleichspolynoms z,(a:) zu beschaffen, wenn nur die Null-
momente für A 0,1, 2, Z; ,« 0,1, 2, i nach (2.20)
und die Grundgrössen (A 0, 1, 2, nach (2.29) gegeben sind.

P.G.Gwesf hat in seinen Yeröffenthchungen [22-24] mehrmals auf
die Vereinfachungen hingewiesen, die mit der vorstehenden Rekursions-
methode erzielt werden können, wenn für die praktischen Berechnungen
ein verallgemeinertes Dootötfe-Schema benützt wird [15] *).

i) Zwischen diesem «Rekursionsverfahren» und der Matrizen-Inversion bzw.
der Auflösungsmethode von Doolittle für Gleichungssysteme besteht eine enge
Bindung. Ist nämlich die Koeffizientenmatrix des linearen Gleichungssystems
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Danach berechnet man (vgl. Schema I) mit den Ca+,u,o nach (2.24)
die ^4^ und nach (2.25) die C^. Gemäss (2.22) oder mit den nach

(2.2) und (2.26) ergeben sich die orthogonalen Polynome P^a;). Mit den
bestimmt man nach (2.30) die M* sowie nach (2.27) die und dar-

aus (sofern erforderlich) in Verbindung mit den nach (2.32) die b,^.
Das Ausgleichspolynom ^(a:) erhält man schliesslich aus den in Ver-
bindung mit denP,(x) nach (2.5) oder aus den b;^ nach (2.31).

Schema I

I \(2.25) (2.24)

»

(2.24)

(2.25)
-(2.30)-

\
I \(2.26) (2.22)

I

(2.30)

i
AfT

Schema II zeigt das Vorgehen für eine Ausgleichung 4. Grades;
es ist jedoch beliebig erweiterungsfähig. Die erste Vorspalte gibt die

Operation an, die auf der betreffenden Zeile auszuführen ist. Damit
diese Vorschriften besser verständlich sind, wurde jede Zeile numeriert
(vgl. Vorspalte 2). Die zweitletzte Kolonne dient der Kontrolle, ob die

Rechnungen richtig ausgeführt worden sind.

(2.8) wie in unserem Falle symmetrisch, dann lässt sich die dargelegte Rekursions-
Methode immer mit Erfolg anwenden. Für weitere Angaben sei auf S. BitsWon [37],
ß. ÜhwmwW [7] und auf J. IPisharf ami T.Mefafcwfes [44] verwiesen.
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Sc/iema II

(1) Q),o O'l.u 1 '2,0 1
3,0 0*4,0 Mo Mj Si V îl)2(x)

^)-Co,o (2) 1 -41,0 42,0 43,0 44,0 «0 S2 -fflo Mg

(2) C2,0 C"ä,0 C4.0 0*5,0 Mi S3 2 «0(3)

(4) ~^41,0 -4i,o Qi,o -41,0^2,0 -41,0 I's.o -4i,o 04,0 -41,0 MS $4

+ (5) «1,0 C'1,1 ^2,1 £3,1 0*4,1 MÎ S5

(5):Ci,i (6) 1 -42,1 -43,1 44,1 «1 Se -ai Mi

(7) c'4,0 Cô.o 06,0 Ma £7 v MJ(œ)

(1)-(-.42,O) (8) -^2,0 -42,0 ^2,0 -42,0 C3.0 -42,0 04,0 -42,0 MS Ss

(9) -A24 ai,o "^2,1 -42.1 C24 -42,1 C34 -42,1 C44 -42,1 Mi Sg

+ (10) «2.0 «2,1 C2,2 ^3,2 C'4,2 MS S10

(lO):Ca,2 (H) 1 43,2 44,2 «2 S11 -02 Ma

(12) 0*6,0 ' 7,0 Mg Sl2 2«1(®)

"H-4O) (13) -^3,0 -43,o Cs,o -43,0 C'4,0 -43,0 MQ Sis

• (-^3,1) (14) -•43,1 «1,0 -43,1 -43,1 C34 -4s,i C4J —4 3,1 MÎ S14

(15) -43,2 «2,0 -43,2 «2,1 -4s,2 -43,2 0*3,2 -4,3,2 04,2 -43,2 Ma S15

+- (16) «3,0 «3,1 «3,2 1 *3,3 04,3 MS s 16

^6):C,,3 (17) 1 44,3 «3 S*17 -«3 MS

(18) 08,0 M4 Sis 2 «i(«)

^•M^) (19) —44,0 -44,0 O4,o -44,o MS Si»
X

(20) -44,1 «1,0 "-44,1 -44,1 C44 -44,I MS S20

(21) -44,2 «2,0 -44,2 «2,1 -44,2 -44,2 04,2 -44,2 MS S21

(22) -44,3 «3,0 -44,3 «3,1 -44,3 «3,2 -44,3 -44,3 0*4,3 -44,3 MS S'22

"+• (23) «4,0 «4,1 «4,2 «4,3 04,4 M: S23

(24) 1 ££4 S24 —Cf'4 -ZV/4



— 80 —

Das Feld in der linken unteren Hälfte von Schema II bleibt im
Doofölfe-Schema gewöhnlieh leer, da dort die Nullrelationen stehen
würden. Es ist jedoch vorteilhaft, darin nach (2.26) die Bekursions-
beziehungen für die Koeffizienten vorzumerken ; denn die Ermitt-
lung der verläuft mit Ausnahme derjenigen Felder, die nur die
Grösse —Hj, enthalten, parallel mit dem übrigen Bechenschema.

Falls die Koeffizienten 6;^ in (2.31) benötigt werden, bestimmt
man diese gemäss (2.32). Wieder empfiehlt sich die Anlage eines Schemas
wie z. B.

Schema III
Co 1*0,0

+ «1,0 «1 1*1,0 «1 1*1,1

+ «2,0 ®2 1*2,0 + «2,1 ®2 1*2,1 «2 ^2,2

+ «3,0 ®3 — &3,0 + «3,1 ®3 1*3,1 + «3,2 ®3 1*3,2 ®3 — 1*3,3

+ «4,0 ®4 1*4,0 + 1*4,1 ^4 ^4,1 + «4,2 ®4 1*4,2 + «4,3 ®4 1*4,3 £ II o-
P-

232.14 Beurteilung der Güte der Ausgleichung

Die in der letzten Kolonne von Schema II eingetragenen Grössen

gestatten eine erste Beurteilung der Güte der Ausgleichung. Der mittlere
Fehler der Ausgleichung durch ein Polynom 1-ten Grades beträgt nämlich

y- y S N®)—*ï(®)F _*;_i SN®)?' (2.33)
777- / 1 £ 777 / J. £

wobei sich die auftretende Summe am zweckmässigsten durch nach-

stehenden Ansatz berechnet

2 K(®)F 2 N®)p- 2 (2-34)
x x A=0

Die Verbesserung der Ausgleichung, die durch Berücksichtigung eines

weiteren - um einen Grad erhöhten - orthogonalen Polynoms erzielt

wird, beträgt somit

2 K(®)P—2 K+i(®)P «i+i-^+i-
X X
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Nach G. J. Lùfsfowe [29] wird das Besultat, das mit einem Aus-

gleichspolynom (Z —)— l)-ster Ordnung erzielt wird, dann als hesser be-

trachtet als bei Verwendung eines Polynoms Z-ter Ordnung, wenn

< L; ist. (2.35)

Mit jedem Schritt können wir damit den Stand der Ausgleichung
überblicken und wenn nötig weitere Polynome höheren Grades mit-
berücksichtigen. Zur abschliessenden Beurteilung der Güte der Aus-

gleichung wird es jedoch nötig sein, weitere Kriterien heranzuziehen [8J,

worauf wir aber nicht näher eintreten können.

232.2 Diskrete, äquidistante Argumente

Die Beobachtungswerte w(x) liegen jetzt zu den m diskreten Argu-
menten

a, a + a + M, a + (m— l)/t

vor. Zur Vereinfachung empfiehlt sich die Transformation

£ — a
I — - -, (2.36)

/i

sodass die neue Variable die natürlichen Zahlen 0,1, 2, (m—1)
durchläuft.

232.21 Orthogonale Polynome

Wie im Falle kontinuierlicher Argumente greifen wir auf die im
Abschnitt 22 hergeleitete Determinanten-Methode zur Ermittlung der

orthogonalen Polynome. Nach (2.19) und (2.19') sowie unter Berück-
sichtigung von (2.36) ist

C„ S ^-9(1).
f=o

oder ohne Gewichtsfunktion
m—1

(2.37)
4=0

Diese gewöhnlichen Potenzsummen führen, in die Determinanten (2.9)
eingesetzt, auf eine Lösung in der Form

**(*) 2 «„ 1, (A 0, 1, 2, (2.38)
A"=0
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Es erübrigt sich näher darauf einzutreten, da auch hier - wie bei konti-
nuierlichen Argumenten - eine explizite, formelmässige Darstellung der

orthogonalen Polynome P^(f) gefunden werden kann. Wir verweisen
auf die grundlegenden Untersuchungen von P. L. Tsc/te&i/sc/ie// [41],
P.M.Pisfter [16] und P.P. Mßcm [12] und beziehen uns auf die von
P.Grossen [21] zusammengestellten Ergebnisse.

Nicht von der Extremalbedingung (2.4), sondern von den Ortho-
gonalitätsbedingungen selbst ausgehend, lässt sich nach einfachen aber

langwierigen Überlegungen zeigen, dass die orthogonalen Polynome in
der Form

p-ra=^fî")cue')Q ^
dargestellt werden können.

Werfeta&eZZe:

ü>(f) 1

Pi(l) =-i(m-l) + f
Pg(f) y(m®— 3m-f-2) — (m— l)f-)-£®
Pg(f) ——6m®-f-llm— 6)+^-(6m®— 15m-)-ll)|

— f(m—l)f»+f» (2.39')

P,i(f) yj-(m4—10m®-|-35m®— 50m + 24)

— y (2m®— 9m® -)- 17m—10) £ -f- (9m® — 21 m -f-17)

— 2(m — 1) £®-f- £*

Pg(|) —^-(w®—15m4-|-85m®—225m® + 274m—120)

-f- -j|g(15m*— 105m® + 365m® — 525m-(- 274) £

— y(m®—4m®-)-8m — 5) £®-)--§-(4m®—9m-)-8) £®

— y(m— 1) + £®

Nicht unerwähnt bleibe, dass die Koeffizienten dieser Polynome
mit den nach der Determinanten-Methode berechenbaren Werten
übereinstimmen. Die anderweitig in der Literatur verwendeten Ansätze

Pa(f) können zufolge der im Abschnitt 13 nachgewiesenen Eindeutigkeit
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des vollständigen Orthogonalsystems höchstens um eine multiplikative
Konstante von (2.39) abweichen, d. h.

Pr(f) <hP,(£). (2-40)

Für Cj setzten z. B.

P.L. Tschefr?/c/ie// [41]

A.G.Aifken [10, 11], G.J.Lidstone [29], IF. Pncldi [36]

(2A)!

ü!

w
(A!)®

F.L.Aßan [12]. P. T.Pin/e [14], P.^4.Pisiier [16],
P.Grossen [21], iL Kreis [28], P.P. Pearson and

iL 0. Larde?/, [35] 1.
2 m—1

P. Lorenz [30-32] wählte c, so, dass — V [Pi(£)P 1 wird.
m |=o

232.22 Ausgleichsansätze

Zur Ausgleichung derBeobachtungswerte w(|) bildet man nach (2.5)

(2 0,1,2,...). (2.41)

Aus (2.6) bzw. (2.27) findet man für die Koeffizienten

2^(*)«(0

Verwendet man an Stelle der einheitlich normierten Polynome P^(|) die

mit einer beliebigen anderen Konstanten multiplizierten Polynome P^(|)
nach (2.40), dann wird das Ergebnis der Ausgleichung nicht beeinflusst,
da sich der Faktor wieder wegkürzt. In der Praxis kann deshalb
immer so gewählt werden, dass z. B. die Polynomwerte P^(|) ganz-
zahlig ausfallen.

24 Eigenschaften der orthogonalen Polynome

Die OrfhogonaHfäteetgenscha/iew der Polynome P^a;) bzw. P^(£) sind
durch deren spezielle Konstruktion sichergestellt, sodass es sich erübrigt,
hierauf näher einzutreten.
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Bei kontinuierlichen (z) und diskreten, äquidistanten Argumenten
(I) existieren wertvolle Pe/cwraowsbeziieAwM/OT in der Form

Pj Pl i\-l y ^A-2 ' • 43)

(A—1)® (a—6)®
y —-— — — (2.43')' 4(2A —1)(2A —8)

^ '

für kontinuierliche Argumente a: und

M—l)«rm»—(A—1)*1
y -4 i J

(2.43")' 4(2A— 1) (2A — 3)
^ '

für diskrete, äquidistante Argumente f.
Die Unbestimmtheit der diskreten, äquidistanten Argumente ver-

unmöglicht - wie früher erwähnt - eine explizite, formelmässige Dar-
Stellung der Polynome Pj(a;) und damit auch das Auffinden geeigneter
einfacher Rekursionsbeziehungen. Hier gilt lediglich der allgemeine An-
satz (2.22).

Von entscheidender Bedeutung für die praktische Anwendung der

orthogonalen Polynome sind die S^mmefneeigew.sc/ia/fen bei kontinuier-
liehen und diskreten, äquidistanten Argumenten. Es zeigt sich nämlich,
dass die Polynome gerader Ordnung axialsymmetrisch und jene un-
gerader Ordnung zentral - oder punktsymmetrisch sind in bezug auf den

Intervallmittelpunkt, d. h. es gilt

P,(o + &-s) (— l)*Pa(s) (2.44)

für kontinuierliche Argumente und

P,(m-1_0 (_1)*P,(D (2.44')

für diskrete, äquidistante Argumente.
Transformiert man die unabhängige Variable gemäss

a+b m—1
£* a: und £* | (2.45)

2 2

dann treten die Symmetrieeigenschaften noch deutlicher in Erscheinung,
indem jetzt für (2.44) und (2.44')

(-l)'A(z*) (2-46)

(-l)*P,(f®) (2.46')

gesetzt werden kann.



85

Erst durch diese Symmetrieeigenschaften wurde es möglich, gut
ausgebaute, rationelle Tabellen anzulegen. Im weitern ist beachtens-

wert, dass die Grössen (7 nach (2.7) für ungerade verschwinden.
Dies gilt für kontinuierliche und diskrete, äquidistante Argumente und
vereinfacht die Berechnung der orthogonalen Polynome nach der
Determinanten-Methode bedeutend.

Nün zeigt sich, dass die orthogonalen Polynome bei diskreten, nicht
äquidistanten, in bezug auf ihren Mittelpunkt aber symmetrisch ge-

legenen Argumenten analoge Symmetrieeigenschaften wie in den beiden

vorerwähnten Fällen besitzen. Transformiert man nämlich die Argu-
mentenfolge aq, aq, aq, gemäss

^ m
a;* aq — a; mit ® — y aq (2.47)

m -rj
dann gilt „r- _ V I 0, fur ungerade,

^ A * [ 0, für |tt gerade.

Setzen wir diese Cj,-Werte in die Determinanten des Ansatzes (2.9) ein,
so wird

_ AG") [ 0, für ungerade,

I)., | =£ 0, für /l + ,« gerade ;

d. h. die orthogonalen Polynome Pj(aq) weisen bei diskreten, nicht
äquidistanten, jedoch symmetrisch gelegenen Argumenten entweder

nur gerade oder nur ungerade Potenzen von a;* auf, je nachdem der Grad
A gerade oder ungerade ist. Daraus folgt unmittelbar die Behauptung

(-1AA). (2.50)

Auch diese Symmetrieeigenschaften führen zu merklichen Verein-

fachungen für die numerische Auswertung.

25 Numerische Auswertung

Grundsätzlich können die orthogonalen Polynome immer mit dem
nach der Determinanten-Methode (vgl. Abschnitt 22) aufgezeigten
Verfahren ermittelt werden. Dies wird vor allem dann vorteilhaft sein,

wenn zur Auflösung des linearen, inhomogenen Gleichungssystems (2.8)
moderne, leistungsfähige Rechengeräte zur Verfügung stehen.
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Die «Methode der Rekursion», wie sie im Abschnitt 282.1 dargelegt
wurde, beruht ebenfalls auf den Gleichungen (2.8) und ist im wesent-
liehen eine Weiterentwicklung der Determinanten-Methode im Hinblick
auf deren praktische Anwendung. Das angegebene Rechenschema II
(Seite 79) dürfte besonders dann rasch und sicher zum Ziele führen, falls
die numerische Auswertung mittels einfacher Rechenmaschinen zu er-

folgen hat.

Für konkrete Beispiele verweisen wir auf die Literaturangaben
(Seiten 124 ff.) sowie auf die Ausführungen im Abschnitt 35.

251 Kontinuierliche Argumente

Dank der formelmässigen Darstellung (2.12) lassen sich die ortho-
gonalen Polynome durch Spezialisierung des Intervalls [a,fr] auf das

vorhandene (endliche) Beobachtungsintervall sofort angeben. Die
Setzung a —h 1 deckt - wie wir früher erkannten - die enge
Bindung zu den tabellierten Pegrewdre-Polynomen ^P^(x) auf.

Nach (2.14) und (2.15) gilt nämlich

Sä <*•">

Für kontinuierliche Argumente verweisen wir auf folgende be-

kannten

Ta&eden der Legrewdre-PoZt/nome

Autor Argumentbereich Grad A Genauigkeit

1. If.Haj/asTii [26]
ftj A. Pat/asTd [25]

2. F. Ja/mfce-F.Fmde [27]
3. F. Töfte [39]

0 (0,01) 1,00
0 (0,01) 1,00
0 (0,01) 1,00

—1,000(0,001) +1,000

1 (1) 8

1 (1) 10
1 (1) 7

1 (1) 10

5-23 Stellen
5 Stellen
4 Stellen
4 Stellen

Im « Index of mathematical tables » weisen A. Pfefc/ier, J. G. P. Affiler
and P. PosenÄead [18], auf weitere Tabellenwerke hin, welchen stets die

gleichen Legendre-Polynome zugrunde liegen, allerdings für verschieden
feine Intervallunterteilungen und für Polynome verschiedener Grade mit
unterschiedlicher Genauigkeit.
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Mit Hilfe dieser tabellierten Polynomwerte lässt sich die Ausglei-
chung mühelos durchführen. Es ist lediglich der Umrechnungsfaktor

—j (^) in (2.51) zu berücksichtigen.

252 Diskrete, äquidistante Argumente

Für diskrete, äquidistante Argumente sind nachstehende Besonder-
heiten erwähnenswert :

1. Zur Vereinfachung der numerischen Auswertung liegen die

orthogonalen Polynome weitgehend tabelliert vor.

Ta&eZZen der orZ/iot/onaZen PoZt/nome

Autor Literatur-
Verzeichnis

Anzahl der

Argumente
m

Grad

/

1. Aitken *) 10 4 (1) 25 1 (1) 5

2. Anderson and Houseman 13 3 (1) 104 1 (1) 5

3. Birge 14 2 (1) 30 1 (1) 5

4. Fisher and Yates 17 3 (1) 75 1 (1) 5

5. Gram 19 7 (2) 21 1 (1) 3

6. a) Lorenz 30 1 (1) 60 1 (1) 5

b^ Lorenz 31 1 (1) 80 1 (1) 6

7. Pareto 34 4 (1) 25 1 (1) 8

8. Pearson and Hartley.... 35 3 (1) 52 1 (1) 6

9. Van der Reyden 42 5 (1) 52 1 (1) 9

1) Differenzen-Tabellen : zBP;i(l)||=o

Weitere Angaben können dem Buch von M.FZeZc/ter, J. (7. P.MiZZer
and L. PosewZiead [18] entnommen werden.

Der Symmetrieeigenschaften (2.44), (2.44'), (2.46) und (2.46')
wegen enthalten sämtliche Tabellen nur die Polynomwerte für die posi-
tiven oder negativen Argumente.

Während in neuen Tabellenwerken, wie in denjenigen von Anderson
and Fonseman [13], Pirpe [14], Fisher and YaZes [17], Pearson and

HarZZet/ [35] und Fan der Pei/den [42], die multiplikativen Konstan-
ten so gewählt sind, dass die tabellierten Polynomwerte ganzzahlig



ausfallen, arbeitete Lorenz [30, 31 ] mit der einheitlichen Normierung

-*
1

m

und erhielt Dezimalbrüche, die er auf fünf Stellen genau angab.

2. Die Berechnung der Koeffizienten in (2.41) erfordert gemäss

(2.42) die Kenntnis der Summe
m—1

V P,(|*) «,(£*). (2.52)

2

Unter Berücksichtigung der Symmetrieeigenschaften (2.46') lässt sich

(2.52) für m =- gerade in der Gestalt
m—1 m—1

V P,(f*)«,(£*) V P,(f*) [«,(£•) +(- -1)V -f*)] (2.53)

r=|
und für m ungerade in der Form

w—1 m—1 (2.53

v p,(f*)«(!*) à^*)Nf*) + (-i)*w(-f*)]+PA(0)w(0)

darstellen. Es empfiehlt sich deshalb, eine Tabelle der Summen

«'(I*) +tc(—I*) wie auch der Differenzen */>(£*) -w>(—£*) anzulegen;
je nachdem ob A gerade oder ungerade ist, findet der eine oder andere
Ansatz Verwendung. Der Nenner von a^, d.h. ^ [^a(£*)P ist für die

tabellierten Polynomwerte bekannt.

3. Die vorläufige BeMrfelfrtngr der Gwte der Mrtsgdeic/iww/ kann -
analog wie im Falle diskreter, nicht äquidistanter Argumente - sehr
einfach vollzogen werden. Nach (2.33), (2.34) und (2.27) beträgt der
mittlere Fehler der Ausgleichung durch ein Polynom i-ten Grades

— S MHP S H£*)P— S «a S [**(£*)]*• (2-54)
m—/ — Ii# m—/—1 /To

Darin ist nur noch die Summe der Quadrate der Beobachtungswerte
unbekannt, deren Ermittlung keinen grossen Mehraufwand darstellt.
Nach dem Kriterium (2.35) kann der Stand der Ausgleichung sofort
überblickt werden, bevor auch nur ein einziger ausgeglichener Wert be-

rechnet wird.
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3 Zweidimensionale Betrachtungsweise

31 Grundsätzliches und Definition des Stieltjes-Integrals

Die Ausführungen des ersten Kapitels bilden wiederum die Grund-
läge für den zweidimensionalen Fall. Nach Möglichkeit werden überdies
die bei einer unabhängigen Variablen gefundenen Ergebnisse mit-
berücksichtigt.

Wir legen unseren Betrachtungen jenen Mengenkörper 9J1 zu-

gründe, der von allen beschränkten, achsenparallelen Rechtecken V
m

erzeugt wird ; es gilt dann ßc (J Y^.
#«=1

Ist der Bereich B selber ein achsenparalleles Rechteck, so kann man
sich (vgl. Fussnote auf Seite 67) auf solche Bereiche beschränken, für die

m

B U ist.
^=i

Bei einer Verfeinerung der Überdeckung treten dann keineY-Mengen auf.

Das Feinheitsmass einer Überdeckung Z von B ist die Grösse

d[Z] Max d[YJ,
/*=1, 2, ..m

wo der Durchmesser <3[YJ die Länge einer Diagonalen des Rechtecks

Y^, darstellt.

Der Grenzwert
m Z*

lim N>(agF(Y„) <p(x) dF (3.1)
D>-0 ^ 1 J

ß

heisst Stieltjes-Integral von y(x) bezüghch F über B, existiert und ist
von der Art der Überdeckung Z des Bereiches B durch die m beschränk-

ten, paarweise disjunkten und achsenparallelen Rechtecke Y wie auch

von der Wahl der Punkte e V^ n B unabhängig.

Spezialisieren wir die weiteren Überlegungen des ersten Kapitels
auf den Fall von zwei unabhängigen Variablen Xj x und
dann lassen sich die Hauptergebnisse wie folgt zusammenfassen:

1. Die Polynome 7\,,(x,i/) lauten nach (1.6)

**,(3.0) 22 y® + 2 ««#.* y® + y"> @ • 2)
r=0 o 0 ß=0

mit 1.
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Es gibt jetzt von jedem Grad r wieder mehrere, nämlich

voneinander verschiedene Potenzprodukte

Q»,e(*>!/) 2/®> (e 0,1, 2, ..r).
Mit dieser neuen Bezeichnungsweise bedeutet nicht mehr -

wie früher auf Seite 62 - das g-te Potenzprodukt r-ten Grades, vielmehr
stellt das Symbol das spezifische Potenzprodukt af~® p® dar, wo g die

p„ r —]— 1 Werte g 0, 1, 2, r durchläuft.

Analog bedeutet P^(£,p) jenes der insgesamt p^ A + 1 mög-
liehen Polynome A-ten Grades, welches als letztes Potenzprodukt

^ enthält, und ist der Koeffizient des Potenzproduktes
af~® p® im Polynom P^(®,p) •

2. Alle auftretenden Integrale existieren. Wenn das oben definierte
System der Polynome P^(®,p), (A 0,1, 2, ...;/< 0,1, 2, A)

orthogonal ist, gilt nach (1.7)

j>,„m; 2; j <»•«

für alle A,v 0, 1, 2, ; p,g 0, 1, 2, A bzw. r.

3. Die Polynome P^^(a;,p), (A 0, 1, 2, ; ^ 0, 1, 2, A)

bilden dann ein vollständiges Orthogonalsystem, wenn die Koeffizienten

a,v<Ve in (3 • 2) so bestimmt werden, dass nach (1.9) gilt :

J Extremuni, mit 1. (3.4)
ß

Diese Forderung gewährleistet eine eindeutige Ermittlung der Poly-
nome P^(ai,p).

4. Bilden die PolynomeP^ ^(a;,p), (A 0,1,2,= 0,1,2, A)

ein vollständiges Orthogonalsystem, dann lässt sich nach (1.10) jedes
beliebige Ausgleichspolynom 2^(3;,p) eindeutig als Linearkombination
entsprechender Polynome dieses Orthogonalsystems darstellen, nämlich

Z-l A /c

2 S + 2 (3-5)
A=0 /i 0 /i 0

Hier ist ^(a;,p) ein Polynom mit nicht verschwindendem Koeffizienten
des «höchsten» Potenzproduktes p''.
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Die Koeffizienten ergeben sich nach (1.13) zu

B /A 0, 1, 2, \ /Q P\
^A,m /* o * ' *

| [P^a^dF V 0,1,2,

wobei die Beohachtungswerte iü(a;,i/) wieder nach der Methode der

kleinsten Quadrate (1.11) ausgeglichen werden.

32 Determinanten-Methode

Die Koeffizienten der Polynome P^(a;,j/) in (3.2) werden

so bestimmt, dass die Extremalbedingung (3.4) erfüllt ist. Dabei ist es

zweckmässig die Abkürzung

JV^dF ,<7„ (3.7)

zu verwenden. ^

Um der Forderung (3.4) Genüge zu leisten, müssen notwendiger-
weise die partiellen Ableitungen nach den unbekannten Koeffizienten

A,r<*,u,e verschwinden.

Unter Berücksichtigung der Nebenbedingung 1 erhält

man nach wenigen Umformungen das aus ^ + /« Gleichungen

bestehende lineare, inhomogene Gleichungssystem
A—1 v (U-l

^i i v + A,v^,u,o ^i A,A^/<«o A-fZ^u-f-m > (^ * ^)
t> 0 0 0 0

mit Z 0, 1, 2, (A— 1) und Z A

m 0, 1, 2, Z m 0, 1, 2, (^ — 1).

Die | + /-< unbekannten Koeffizienten lassen sich aus die-

sem Gleichungssystem (3.8) eindeutig bestimmen, falls die linksseitige
Koeffizientendeterminante Zt, nicht verschwindet.

Geht J\„(r,£>) aus dadurch hervor, dass die mit „(7 beginnende
Spalte durch die auf der rechten Seite des Gleichungssystems (3.8)
stehenden Grössen ersetzt wird, dann gilt

IX „(r,p)
a,„°W n ' (A 0, 1, 2, ; /x 0, 1, 2, A). (3.9)
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Mit den so bestimmten Koeffizienten ^„a hat man mittels der Defi-
nitionsbeziehung (3.2) eine eindeutige Darstellung der orthogonalen
Polynome gefunden.

Der grosse Vorteil dieses Lösungsverfahrens besteht darin, dass

es nicht nur für jeden Bereich B, sondern allgemein, d. h. sowohl für
kontinuierliche, als auch für diskrete Argumente gültig ist; denn der

zur Bestimmung der „C massgebende Ansatz (3.7) erschliesst alle

Möglichkeiten.

33 Beziehungen und Ansätze für die praktische Anwendung

331 Kontinuierliche Argumente

Das Stieltjes-Integral (3.1) lässt sich auch als

<p(x,y) dB
i?

schreiben, wenn der Punkt a; e B die Koordinaten (a:,j/) besitzt. Damit
ist gleichzeitig die Abhängigkeit der stetigen Punktion 99 von den

beiden Variablen ai und ?/ angedeutet.

Handelt es sich um eine Ausgleichung nach einer in £ und 1/ stetigen
Gewichtsfunktion (ji(a;,y), dann kann für

J 9>(z,?/) dB J Jfif(a;,î/) çs(a;,î/) da; dt/
ß ß

gesetzt werden, falls
F(X„) J J <?(a;,?/) da; dt/

ist für jedes Rechteck X Ïft, das zur Überdeckung Z von B gehört.

331.1 Orthogonale Polynome

Wir stützen uns zunächst auf die im Abschnitt 32 dargelegte
Determinanten-Methode und erhalten aus (3.7) für kontinuierliche
Argumente

^=/j>Vd,d,, (3-10)
ß

falls auf eine Gewichtsfunktion verzichtet werden kann.
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Substituiert man (3.10) in den im Ansatz (3.9) vorkommenden

Determinanten, dann sind die Entwicklungskoeffizienten a,„a formal
bestimmt.

Um nun zu einer expliziten Darstellung zu gelangen, muss der

Integrationsbereich B näher festgelegt werden. Stimmt dieser beispiels-
weise mit dem achsenparallelen Rechteck B [a <( z <( b ; c^î/^d]
überein, dann wird

& d b x d

„Ce =/( y® dy da; dz J y<>dy
/I C '/I ' ' /I

oder
,C, <v*<V (3.11)

Das Doppelintegral (3.10) lässt sich in diesem speziellen Fall als das

Produkt zweier gewöhnlicher Integrale darstellen, die nach (2.11) mit
(in z) und C (in y) bezeichnet werden können. Jetzt sind auch die

Koeffizienten ^„a explizit berechenbar und führen gemäss (3.2) auf
Polynome, die identisch sind mit jenen in (3.12").

Man kann sich fragen, ob es möglich sei, für die Koeffizienten^„selbst - und damit auch für die orthogonalen Polynome P^(;r,y) - eine

direkte formelmässige Darstellung zu finden. Da schon zur Ermittlung
der Grössen „Cg nach (3.10) der Bereich B explizit angegeben werden

muss, drängt sich eine Spezialisierung auf gewisse einfache Bereiche

auf, wobei das achsenparallele Rechteck auch hier eine besondere Aus-

nahmestellung einnimmt. Wie im eindimensionalen Fall bedienen wir
uns der Variationsrechnung zur Lösung des Extremalproblems (3.4).
Mit Hilfe der Riemarmsckew Reduktionsformel (M.Osfrotrski [3]) für
kanonische Bereiche finden wir nach JF. Gröbner [20] folgende für den

Rechtecksbereich ß [a <( z <( 7 ; e <( y <( d] gültige Darstellung
(3 12")

n ,,\ i y*-/» „ i ye '
P, (z,?/) y- [(z — a) (z — b)F"~'* [(y— c) (y— d)l

(2A—2y)! dz ** ^ " (2y)! d?/ ' ^ ^

A.„(*,y) =A-»P:(2/). (3.12')

Die zweidimensionalen, ortkoyonalen Polynome P^,^(x,y) entarten
nack diesem bemerkenswerten Resnltaf in das Prodnkt der eindimensionalen

Polynome P^(z) nnd P*(y), /alls der Bereick B ein Beckteck ist nnd
kontinnierlicke ^Irynmente rorlieyen.
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Nachstehend seien die ersten Ansätze zusammengestellt.

*o.o(®>2/) 1

^i,o(®>2/) — i(® + ^) + ®

A,i(^'2/) —|(c + ^) + 2/

^2,o(^>?/) =i(®® + 4a^ + ^) —+ + (3.12")

i(« + &) (c + d) — |(c + d) a:—-£-(a + b) t/ + xy
-^2,2(^2/) i(^+ 4cd + d*) — (c + d) î/ + 2/2

A,o(^>?/) ~-^-(a®+9a®fe + 9ab^ + b®) + -§--(a^ + Safc + b®) a:

— -f-(a + &) a;^ + a:®

Nun liegt die Vermutung nahe, dass die für kontinuierliche Argu-
mente erkannte Auszeichnung der Rechtecksbereiche auch für beliebige
Argumente zutreffen dürfte. Es soll deshalb bereits an dieser Stelle

gezeigt werden, dass die fundamentale Beziehung (3.12') allgemeine
Gültigkeit besitzt und zwar unter folgenden

Forawssetewngen :

1. Der Bereich B sei ein Rechteck,

2. dB dP^dP^, (z. B. dF dxdy),
3. dP> 0.

«,„(*!<> P-IS)

ist ein Polynom A-ten Grades in x und /t-ten Grades in y mit dem Koeffi-
zienten 1 für das höchste Potenzprodukt cc*

Be/iawpfwi<7e?j:

1. Die Polynome {B;i,„(a:,2/)}, (A 0, 1, 2, 0, 1, 2, A)

bilden ein vollständiges Orthogonalsystem auf B.

2. Für die nach (3.2) definierten Polynome R^(a:,?/) gilt:
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.Beweis:

1. Das Polynomsystem{ist auf B orthogonal; denn gemäss
Definition (3.13) und (2.3) gilt für alle A 0,1, 2, 0,1,2, A

/ f B„(^,2/) dB JJP,(O:)P^)B:(2/)P*(I/)^^
ß

*
ß

{/-P,(s)P(^) dB,} { /Pfa)P*(2/) dP„)
und somit ^ ^

/ /•
1 0. für A =£ r oder p,f B^a;,*/) B,„(a,y) dP ' ^ (3-14)

" I 0, iur / r und /« p.

Zum Nachweis der FoZfetäfjdw/fce^ des von den orthogonalen Poly-
nomen B^a:,?/) erzeugten Systems genügt es zu zeigen, dass jedes

Potenzprodukt ad ?/' eindeutig als Linearkombination der Polynome

B^(x,i/) dargestellt werden kann; denn ein (beliebiges) Polynom ist aus
endlich vielen solchen Potenzprodukten zusammengesetzt.

Nach (2.21) lässt sich jede Potenz ad eindeutig als Linearkombina-
tion der eindimensionalen Polynome P„(a;), (j> 0,1, 2, A), eines

vollständigen Orthogonalsystems darstellen :

ad 2^,P».
v —0

Analog gilt für ?/" ^
2/"

£? —0

und daraus folgt durch Produktbildung

®V 2 E P*(y),
v 0 o=0

oder

®V S 2
j» 0 o 0

was zu beweisen war.

2. Wir wissen jetzt, dass die Polynome B^„(a;,y), (A 0, 1, 2, ;

(M 0, 1, 2, A) ein vollständiges Orthogonalsystem bilden. In
B^,^(a:,î/) kommen - wie in /'^(.-r,:/) - nur die Potenzprodukte
Qo.o. Qi,o> Qi.i > • • •> vor (vgl. Bemerkungen zu (3.2), Seite 90) und

zwar das letzte mit dem Koeffizienten 1. Im Abschnitt 13 wurde gezeigt,
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dass es nur ein System orthogonaler Polynome mit diesen Eigenschaften
gibt. Somit stimmen die beiden Systeme vollständig überein und die

Bichtigkeit der 2. Behauptung

ßji-„,^>2/) (3 • 15)
ist ebenfalls bewiesen.

Mit (3.13), (3.14) und (3.15) ist der Nachweis erbracht, dass unter
den genannten Voraussetzungen stets die Zerlegung

P» (3.16)
möglich ist.

IFenn also der Berefc/i B em acfesenparalfefes Becldeclc wwd

dF dF,, dF„ sotide dF > 0 ist, dawn fcönnew dfe •zwetdimewsiowalew
x z/

orf/iogowalen Polynome P^(a;,y) /nr frelfelnge Mrgretmenf/olyen sfete als

Prodnfcl der &efden eiwdfrnewsfonalew Polynome Pj_„(&) nnd P^(y) dar-

geslelll teerden.

Diese Tatsache hat eine wesentliche Verminderung des Bechen-
aufwandes zur Folge, lässt sich doch das Problem der Ausgleichung von
Beobachtungswerten über einem achsenparallelen Eechtecksbereich auf
den eindimensionalen Fall zurückführen.

331.2 Ausgleichsansätze

Jedes Ausgleichspolynom 2j^(ic,y) kann nach (3.5) als Linear-
kombination der P^(a:,y) dargestellt werden mit

f ^(^2/) M>(«>2/) ^ dy

• (3.17)
J fô.„(s,y)]*dsdy

i?

für A 0, 1, 2, 1; y 0, 1, 2, le <i Z,

wenn die Gewichtsfunktion y(a:,y) 1 gesetzt wird.

Bei Kechtecksbereichen sind die zweidimensionalen orthogonalen
Polynome P^(a;,y) gemäss (3.16) bzw. (3.12') durchwegs durch das

Produkt P^(a:) P*(y) zu ersetzen, was zu beachtlichen Vereinfachungen
führt.
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332 Diskrete Argumente
m

Liegen nur zu den endlieh vielen X V rt,- diskreten Argumenten
t l

(a^j/y), (* 1> 2, ..m; j 1,2, n-) auszugleichende Be-

obachtungswerte w(x,-,t/y) vor, dann ergibt sieh durch Spezialisierung
nach (8.1)

/JV rw ni
ç>(®) dF lim 2 ç>(œ„)F(X„) V V 0(®<,t/,.)

D*-0 1 i 1 / 1

wenn F(X^) 2 gesetzt wird.
(zj,V;)e.Xp

Wie bei der eindimensionalen Betrachtungsweise nehmen wir die

Zweiteilung «nicht äquidistante» und «äquidistante» Argumente vor.

332 .1 Diskrete, nicht äquidistante Argumente

Der Unbestimmtheit der vorliegenden Argumente a;^ (a^,t/,-),
(i 1, 2, m; 1, 2, Wj.) wegen handelt es sich im wesent-
liehen darum, die für das Aufsuchen der orthogonalen Polynome und der

Ausgleichsansätze massgebenden Rekursionsbeziehungen herzuleiten.

332.11 Orthogonale Polynome

Um das Gleichungssystem (8.8) ohne umständliche Determinanten-
berechnungen auszuwerten, werden die Grössen

vCg I V < « yj (3.18)

s

^ für flf(œ,y) 1, (3.18')

unter Berücksichtigung von (3.2) wie folgt erweitert

(3-19)

(v 0, 1, 2, 2 — 1 ; g 0, 1, 2, r und r 2; g 0,1,2, ...,,«).

Dadurch geht in ^0^,0 über.



— 98 —

Wird (3.2) nach a:*"'' y aufgelöst, findet man durch Iteration für
A 0,1, 2, ; ^ 0,1, 2, A die Darstellung

®*~" 2/" 2 2 A.s + E ^,„(«.!/) > (3 • 20)
r=0 0 0 e=0 mit 1-

Unter Beachtung der Orthogonalitätsbedingungen

^ 1 0, für A y v oder « y p,
„ (3-21)

1 y 0, für A r und ^ p,

folgert man aus der umgeformten Relation (3.20) ,g gg.

— E S Ë A,e(«y) + a:^"" y,
v=oe=o e=o

nach Erweiterung mit P„,*(a:,2/) und Summation über alle Argumente
für die Koeffizienten *,„-<4 (dabei wurde ^ wieder durch r und r durch

p ersetzt) die Beziehung
^g ^E s*"" yP^(a,y) „ /„<fî IV * D

^ y _ ^ JAj C^(A—l); r==A^
V „,e E[^».«(®'»)]® -Ä ' Vp^r; p y

Z,î/

Die hier auftretenden Grössen ^„C genügen, wie man durch Einsetzen

von (3.22) in (3.19) erkennt, den Rekursionsbeziehungen
v—1 X o—1

A,v^u,g A+V,0^V+ @,0 ^ i y i
V,X^J>,T A,x^u,r y*^t v,v^e,r A,v^u,r> (B 24)

d. h. die Polynome P^(a:,î/) lassen sich rekursiv bestimmen, wenn nur
die Nullmomente „,oPg,o ihr r 0, 1, 2, 2A; p 0, 1, 2, 2/,<

gegeben sind.
Auch zwischen den Koeffizienten besteht eine einfache

Bindung. Man erhält nach Gleichsetzen von (3.2) mit (3.22) durch
Koeffizientenvergleich die Ansätze

(3-25)
v A-l x ji—1

A,v^u,g A,v^/U,r ^ i y* i
A,x*^^,r x,v^r,g y* i A,J>^T,{>

r=o x=v + l r=0 r=0

mit r 0,1, 2, A— 1 ; p 0, 1, 2, r
und

i
A,A"^^,r A,A^t,(?> ^

mit p 0,1, 2, — 1.



99 —

Wie im eindimensionalen Fall haben wir damit die beiden gleich-
wertigen Kekursionsverfahren (3.22) mit (3.28) und (3.24) sowie (3.2)
in Verbindung mit (3.25) und (3.25') kennen gelernt.

332.12 Ausgleichsansätze

Die im Ausgleichspolynom (3.5) auftretenden Koeffizienten
lauten gemäss (3. G)

2j X(^>ZZ) w(K?j)

r/> ; V ' (3.26)
E DaE^'ZZ)] A,A<X

(A <i Z— 1; ^ <( A und / Z; /t <1 Zc), mit (/(a:,?/) 1.

Sind die Werte ^ Z/'''^(^>î/) (3.27)

bekannt, so genügen die Hilfsgrössen

A-&C E AX>ZZ) »(®>ÏZ) (8.28)
X,?/

den Kekursionsgleichungen

am: aM„- V v^X-E «X aMJ, (3.29)
r=0o=0 e=0

für 1 0,1,2,..., (Z — 1);,« 0,1,2,..., A und Â Z; ,« 0,1,2,...,?c.

Zur Darstellung des Ausgleichspolynoms 2;,j(^,ZZ) nach aufsteigen-
den Potenzprodukten wird

*ijfc(®»y) S E lA#. ®*~" ZZ" + S iA,. Zi" (3-30)
A=0 /u 0 //=0

mit (3.5) gleichgesetzt, und es ergeben sich dann durch Koeffizienten-
vergleich nachstehende Delationen

A Z-l V Ä

1,A^J| — E ^A.o A,A«e,^+ E E ®».e i,A% + E U°W' (3-31)
p-A< v=A+l(?=0 o=0

(/* <; a ^ z—l),

i.A..« 2«U 0" ^). (3.31')
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Die Ausgleichspolynome £j^(a;,t/) können auf zwei Arten ermittelt
werden, nach (3.5) mit (3.2) und (3.26) einerseits und (3.30) mit (3.31)
und (3.31') anderseits; für die Auswertung müssen nur die „,oCg,o>

(f Ai 21, p 2,«) und die (r <S A, g <i ,«) gegeben sein.

332 .13 Schema der numerischen Auswertung

Um die numerische Auswertung einfach und übersichtlich zu ge-
stalten, bedient man sich mit Vorteil der beiden Bechenschemas IV
und V auf den Seiten 102/103 und 104 (vgl. auch die analogen Schemas II
und III im eindimensionalen Fall, Seiten 79 und 80).

332.14 Beurteilung der Güte der Ausgleichung

Die letzte Spalte des Schemas IV dient einer ersten Beurteilung
der Güte der Ausgleichung. Wie im Abschnitt 232.14 bildet man

it*=4 s H®.»)—*«(«.»)]*=4 s [«I• 32)
/ z,2/ / z,2/

mit / Anzahl Freiheitsgrade.

Für achsenparallele Bechtecksbereiche und für w fest gilt bei-

spielsweise :

M- — H(fe+1)

I Z(Z-fl)
mn— j 1- (/c +1)

I 2

n
'

2

m
'

2

(2m—n—3), für m > n,

(2n — m—1), für m A) n.

Zahl
der Parameter

Zusatzbedingung dafür, dass /ver-
schwindet, wenn (Z,fc) die grösst-
mögliehen Werte annimmt:

|=(w, »-!), für m > w,(W (to-1,to-1), für mgri.

Wegen (3.5) und (3.26), sowie unter Berücksichtigung der

Orthogonalitätsbedingungen (3.21) ist

2 Kfc(®>2/)f 2 K®»»)]® (SSX-X+S»
lA=0/U 0 ^ 0

(3.33)

M
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Wird an Stelle des Ausgleichspolynoms bzw. ,(a:,y) das

nächst höhere Polynom 2,,*+i(a;,t/) bzw. +i,o(£C,2/) zur Ausgleichung
verwendet, dann beträgt die dadurch erzielte Verbesserung nach (8.33)

—= «ijfc+i X+i'
oder *» *«

2 <i(^2/) — S «i+i.o (+i^o •

X,î/ X,t/

Die Berücksichtigung des nächst höheren Ausgleichspolynoms
ist dann sinnvoll, wenn nach dem verallgemeinerten Kriterium von
G. J. Lidstowe (2.35)

i?,*+ibzw. (3.34)

ausfällt. Es kann sich hier natürlich nicht um eine endgültige Beurteilung
der Güte der Ausgleichung handeln, dazu müssen weitere Kriterien
herangezogen werden. Trotz dieses Vorbehaltes ist es aber dank (3.34)
möglich, einen ersten Überblick über den Stand der Ausgleichung zu
gewinnen, der umso wertvoller ist, als dazu keine ausgeglichenen Werte
erforderlich sind.

332.2 Diskrete, äquidistante Argumente

Die Argumente (a^t/-), (i 1,2, m; 1,2, w^) liegen
regelmässig in der (x,t/)-Ebene verteilt, d. h.

a^ a, a + k, a + 2k, a + (w—l)k,
t/,- c, c + k', c + 2k', c + (rij—l)k';

sie gehen durch die Transformationen

— a — c
I,- ——— und (3.35)

in die Punkte des Einheitsgitters

Ii 0,1, 2, (m—1); 0,1, 2, («j—1) über.

Sind zu jedem |-Wert immer gleichviele ry-Werte vorhanden, dann
ist W| eine nicht mehr von | abhängige, feste Zahl w^ w, und dem
Bereich L' entspricht ein achsenparalleles Rechteck. Zur Vereinfachung
der Darlegungen beschränken wir uns im folgenden ausschliesslich auf
Rechtecksbereiche.
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(1) 0,060,0 1,0^0,0 1,0^1,0 2,O6'O,0 2,oCl,0 2,OF>,0 0M0 o^o Si V K:"(.r,;/)

(1) • 0,(A),0 (2) 1 1,0^0,0 i,o^41,0 2,0^0,0 2,0-4l,0 2,0-42,0 "0,0 «2 -*0,0 o-^o

(1) • ("l,o-40,o)

(3)

(4) -i,o-4o,o

2,0^0,0

-i,o-4o,o l.oCo.O

2,oCl,0

"1,0-4(1,0 l,oC'l,0

3,0^0,0

"1,0-40,0 2,0^0,0

3,061,0

~l,0-4o,0 2,flCl,0

3.0^-2,0

~i,o-4o,o 2,062.0

1M0

"i,o-4o,o 0^0

53

54

2! «o!o(''.?/)
a:,y

+ (5) 1,0*0,0 1,1^0,0 1,1^1,0 2,lCo,0 2,lCl,0 2,1^2,0 i-MS S#

(5) : 1,1^0,0 (6) 1 1,1^1,0 2,l-4o,0 2,1-41,0 2,1-42,0 *1,0 Se -«1,0 1-34(1

(U • ("i,o-4i,o)

(7)

(8) "i,o-4i,o

2,0^2,0

-1,0^-1,0 1,0^1,0

3,oCl,o

"1,0-41,0 2,oO>,0

3,0^2,0

~l,0-4i,0 2,0^1,0

3,0^-3,0

~l,0-4l,0 2,0^-2,0

iMi
~i,o-4i,o o-34o

S7

Sg

2 *i?o< '',//)
a:, y

(5) ' ("1,1-41,0) (9) "l,l-4l,0 1,0*0,0 — 1,1^1,0 ~i,i-4i,o i,iCi,o -I,I-4I,O 2,160,0 ~l,l-4l,o 2,1^1,0 ~l,l-4l,0 2,1^-2,0 ~i,i-4i,o iAfS So

+ (10) 1,0*1,0 1,1*1,0 1,161,1 2,lC'o,l 2,1^1,1 2,1^-2,1 iMÎ S10

(10) : i,A,i (11) 1 2,l-4o,l 2,l-4l,l 2,1-42.1 «1,1 Su "*i,i 1-34Î

(') * ("2,o-4o,o)

(12)

(13) "2,0-4o,0

4,0^0,0

"2.0-4o,0 2,0^0,0

4,0^1,0

~2,0-4o,0 2,0^1,0

4,0^-2,0

~2,0-4O,0 2,0^-2,0

2M0

"2,o-4o,o o34o

S12

Si 3

2 «I!I(®»Î/)
a;,y

(5) * ("2,1-4 0,0) (14) "2,1-4O,0 1,0*0,0 "2,l-4o,0 "2,l-4o,0 2,1^0,0 ~"2,l-4o,0 2,lCl,0 ~2,1-4O,0 2,1^-2,0 "2,I-4O,O I34O Su
(10) (~2,l-4o,l) (15) "2,l-4o,l 1,0*1,0 "2,1-4O,1 1,1*1,0 "2,l-4o,l "2,1-4O,1 2,1^0,1 ~2,1-4O,1 2,1^1,1 ~2,l-4o,l 2.162,1 ~2,I-4O,I IMÎ Si 5

+ (16) 2,0*0,0 2,1*0,0 2,1*0,1 2,2^0,0 2,2^1,0 2../-2.0 2^4(1 Sie

('6) -2,2Co,0 (17) 1 2,2-4l.O 2,2-42,0 "2,0 Si 7 "*2,0 2-34O

(1) ("2,0-4l,o)

(18)

(19) "2,0^1,0

4,0^2,0

"2,0-41,0 2,0^1,0

4,o6'3,0

~~2,O-4I,O 2,06*2,0

2M1

"2,0-41,0 QMQ

Sis

S19

2 «2?o(®. !/)
a:,y

(5) • (-2,1^1,0) (20) "2,l-4l,0 1,0*0,0 -2,l-ll,0 ~2,1^1,0 2,1^1,0 ~2,i-4I,O 2,16-2,0 "2,1-4I,0 1M0 S*20

(10). (-2,1^1,1) (21) "2,l-4l,l 1,0*1,0 "2,l-4l,l 1,1*1,0 "2,l-4l,l "2,1-41,1 2,1^1,1 ~2,l-4l,l 2,16-2,1 "2,1-4I,1 1M1 S2I

(16) • (-2,2^1,0) (22) "2,2-41,0 2,0*0,0 "2,2-4l,0 2,1*0,0 "2,2-4l,0 2,1*0,1 "2,2-4l,0 "2,2-4I,O 2,2^1,0 ~2,2-4l,0 2,26-2,0 ~2,2-4I,0 2M0 S22

+ (23) 2,0*1,0 2,1*1,0 2,1*1,1 2,2*1,0 2,2^1,1 2,26*2,1 2MÏ S23

(23) : 2,261,1 (24) 1 2,2-42,1 *2,1 ^24 "*2,12M1

(1) • (-2,0^2,0)

(25)

(26) "2,0-42,0

4,O6*4,O

"2,0-42,0 2,062,0

2^2
"2,0-42,0 oA4o

525

526

2 «2?l(®,î/)
a:,y

(5) • (-2,1^2,0) (27) "2,1-42,0 1,0*0,0 "2,1-42,0 "2,1-42,0 2462,0 "2,1-42,0 l-34($ S27

(10) • (-2,1^2,1) (28) ""2,1^2,1 1,0*1,0 "2,1-42,1 1,1*1,0 "2,1-42,1 "2,1-42,1 2,162,1 "2,1-42,1 1M1 S28

(16) • (-2,2^2,0) (29) "2,2-42,0 2,0*0,0 "2,2^2,0 2,1*0,0 "2,2-42,0 2,1*0,1 -2,2^2,0 "2,2-42,0 2,262,0 "2,2-42,0 2MS S29

(23) • (-2,2^2,1) (30) "2,2-42,1 2,0*1,0 "2,2^2,1 2,1*1,0 "2,2^2,1 2,1*1,1 "2,2-42,1 2,2*1,0 "2,2-42,1 "2,2-42,1 2,262,1 "2,2-42,1 2^1 S30

+ (31) 2,0*2,0 2,1*2,0 2,1*2,1 2,2*2,0 2,2*2,1 2,262,2 2-^2 S31

(31) =2,2^,2 (32) 1
*2,2 S32 "*2,2 2-342

1

1

1 1

1

1 1

1
1

1
1

' '

'
1 1

1 1

1
1

1
1

1 S «2?2(®>î/)
1 x,!/ 1

1
1



«0,0 0,0^0,0

Sc/iema F

+ 1,0«0,0 «1,0 1,0&0,0 «1,0 1,1^0,0

+ 1,0*1,0 «1,1 1,0^1,0 + 1,1*1,0 «1,1 1.1&1.0 «i,i i,ibi,i

+ 2,0*0,0 «2,0 2,0^0,0 + 2,1*0,0 «2,0 2,1^0,0 + 2,1*0,1 «2,0 2,lVl «2,0 2,2^0,0

+ 2,0*1,0 «2,1 2,0^1,0 + 2,1*1,0 «2,1 2,1^1,0 + 2,1*1,1 «2,1 =2,1^1,1 + 2,2*1,0 «2,1 2,2^1,0 «2,1 — 2,2^1,1

+ 2,0*2,0 «2,2 2,0^2,0 + 2,1*2,0 «2,2 2,1^2,0 + 2,1*2,1 «2,2 2,1^2,1 + 2,2*2,0 «2,2 2,2^2,0 + 2.2*2,1 «2,2 2,2^2,1 «2,2 2,2^2,2
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332.21 Orthogonale Polynome

Nach (3.18) und (3.18') gilt

^ 2 2/" 0(®,!/) 2 • 36)
z.y f.r;

oder ohne Gewichtsfunktion
m—1 n-1

^ 2 2 2 21" • (3 • 36')
x y £=0 77=0

Mit diesen Grössen könnten die Koeffizienten ,a„oc^„ der orthogonalen
Polynome P^„(|,tj) nach der Determinanten-Methode (3.9) ermittelt
werden. Diesen Arbeitsgang kann man sich ersparen, wenn man be-

denkt, dass nach (3.16) für Eechtecksbereiche die Bindung

A„(^) Pjfo) (3-37)

besteht, woP^(|) bzw. P*(tj) die gemäss (2.39) definierten eindimen-
sionalen orthogonalen Polynome darstellen.

Die ersten Ansätze lauten :

Po,o(<^) 1

Pi,o(£>»?) — |(m —1) + |
Pi,i(£»»y) — à (—i) + i
Pa.oCf.l) J (m*- 3m + 2) - (m -1) £ + £* (3.37')

^2,i(£.l) i(m—1)(»—1)—-J(»—1)£ —-J-(m—ljrç + lrç
^2,a(f>l) i(«® — 3n + 2) — (« — 1)J7 + ^
Pg^od,??) — jV(wi®—6m^4-.llm—6) + (6m®—15m+ 11) |

— -f (m—1) |®+ £®

332.22 Ausgleichsansätze

Zur Berechnung der Koeffizienten im Ausgleichspolynom

+*(£+) 22 Pt-,(D p»+ix.* ^-.(^) %) > (3 • 38)
A=0jU 0 /U=0

(1 0, 1,2, ; fc 0, 1, 2, 1), bildet man nach (3.26) und (3.16)

2 2^(^*(i)®(^)
» - ' " (3.39)

IN"h [PA-,(i)]n i2 '
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34 Eigenschaften der orthogonalen Polynome
für Rechtecksbereiche

Die orthogonalen Polynome zweier Veränderlicher P^/.x,î/) lassen

sich - wie verschiedentlich erwähnt - nach (3.16) als Produkt der beiden

orthogonalen Polynome eiwer Variablen P^(œ) und P*(t/) darstellen,
falls der Bereich ß ein achsenparalleles Rechteck und die Punktion E
so beschaffen ist, dass PF V: 0 und dE dE^. dE,, ist.

Abgesehen von der sehr allgemeinen für beliebige Argumente und
Bereiche ß gültigen Rekursionsbeziehung (3.22) ergeben sich für Recht-
ecksbereiche spezifische Bindungen zwischen den orthogonalen Poly-
noinen zweier Veränderlichen.

Um im folgenden die beiden Varianten kontinuierlicher

[a<( Ergib; c A ;/ A £Î] und diskreter, äquidistanter *) Argumente
[£ 0, 1, 2, (m — 1); 0, 1, 2, (n—1)] gleichzeitig er-
fassen zu können, bedienen wir uns einer .vereinfachten Bezeichnungs-
weise. Es bedeuten P. orthogonale Polynome in zwei Veränderlichen
und P, bzw. P* solche in einer Veränderlichen; welcher Natur die Ar-
gumente sind, bleibt dabei offen.

In (3.40) ersetzt man P^o — f a durch die anderweitig gefun-
dene Rekursionsbeziehung (2.43) und erhält für 0 <i A— 2; A (> 2

341 Herleitung von Rekursionsbeziehungen

Wegen P^(®) P^,o(«,») und P*(t/) P„.„(a;,y)

gilt nach (3.16) neben

auch
P^(®.») P^(®)
P^(®.?/) Pa^,»(u?/)P^,„(.I',?/)-

(3.40)

^ * (3.41)

oder, anders gruppiert

(8.41')

*) Nach (3.35) auf transformiert.
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Dabei ist (A—//—-1)® (a — fr)®

' 4 [2(1 ,«)-!] [2(1-/*)-3]
nach (2.43') für kontinuierliche Argumente a: oder

_ (1—/t—l)®[m*—(1—/*.—1)*]
i ~ 4 [2(1—M) — 1] [2(1—/i) -3]

nach (2.43") für diskrete, äquidistante Argumente f.
Die beiden Ansätze (3.41) und (3.41') unterscheiden sich äusserlich

für 0 < ^ < 1 — 2, sind aber vollständig gleichwertig.

Um auch für /t 1 — 1 oder /< — 1 einfache Eekursionen zu be-

sitzen, substituieren wir P* in (3.40) und finden auf analoge
Weise für 2 <(/<<( A ; 1(2:2

A,1 -1 -^2^A-2,/»-2 (3.42)

oder, anders zusammengefasst

-^2V/i,0• (3 42

Nun bedeutet (/r — 1)" (c — d)®

® ~ 4(2,tt—1) (2/7—3)

nach (2.43') für kontinuierliche Argumente ?/ oder

^ (l» 1)® [W® (/* 1)®]
®

4(2,«—1) (2/r —3)

nach (2.43") für diskrete, äquidistante Argumente

Trotz der formalen Verschiedenheit, speziell für 2<,«<A, sind

auch (3.42) und (3.42') miteinander äquivalent.
Vorerwähnte Beziehungen stellen recht praktische Rekursionen

dar, mit denen alle Polynome höheren Grades bestimmt werden können,
falls ausser P^ 1 auch noch P, P^ und Pg^ bekannt sind.

342 Symmetrie-Eigenschaften

Auf Grund der Symmetrie-Eigenschaften der orthogonalen Poly-
nome einer Variablen lassen sich auch die Verhältnisse bei den zwei-
dimensionalen Polynomen rasch überblicken. Wird nämlich durch
die Transformationen (2.45) der Ursprung in den Intervall-Mittel-
punkt verlegt, so sind gewisse Vereinfachungen möglich. Insbesondere
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verschwinden die bei der Determinanten-Methode eingeführten Null-
momente (3.10) bzw. (3.18') für kontinuierliche und diskrete, äqui-
distante Argumente, falls mindestens A oder /t ungerade ist.

Dadurch reduziert sich natürlich der Bechenaufwand zur Ermitt-
lung der Koeffizienten ^-„oc da die meisten Elemente der Determinanten
(3.9) Null werden.

Wie im eindimensionalen Fall gelten dann für die transformierten
Variablen mit Berücksichtigung von (2.46) und (2.46') nach (3.16) die

Symmetriebeziehungen :

*U-,+)
*U+ -) (-l)^U+,+). (3.43)

M)^U+>+)-
An Stelle der Argumente a;*, //* oder £*, ??* wurde nur deren Vor-

zeichen gesetzt, sodass (3.43) für kontinuierliche und für diskrete
äquidistante Argumente beansprucht werden kann.

35 Numerische Auswertung

Ein praktisches Beispiel über die Konstruktion einer schweizerischen
Sterbefläche möge die vorangehenden theoretischen Darlegungen ver-
deutlichen. Es sei aber auch auf eine Abhandlung von P. Lorenz [33]
verwiesen, in welcher eine Selektionssterbetafel für Invalidierte mittels
zweidimensionaler orthogonaler Polynome ausgeglichen wurde.

351 Problemstellung und Grundlagen

Die gewöhnlichen Sterbetafeln (auch Periodensterbetafeln ge-
nannt) geben für eine bestimmte Beobachtungsperiode die Mortalität
einer Personengesamtheit nach Geschlecht und Alter wieder. Bekannt-
lieh verändert sich aber die Sterblichkeit mit der Zeit. Die Frage ist
daher berechtigt, welcher Gesetzmässigkeit die Mortalität der Ge-

schlechter in Abhängigkeit vom Alter a; und von der Zeit < unterliegt.
Betrachtet man die amtlichen schweizerischen Volkssterbetafeln

als Stichproben für gewisse Zeitpunkte, dann kann mit Hilfe der zwei-
dimensionalen Ausgleichsrechnung eine diesen Werten bestangepasste
Fläche, die sogenannte Sterbefläche über der arf-Ebene konstruiert
werden.
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Als Grundlage für unsere Untersuchungen wählen wir die rohen,

einjährigen Sterbenswahrscheinlichkeiten für Männer, und zwar für das

Altersintervall 20 a; <( 70 und für die in Tabelle 1 zusammengestellten
acht schweizerischen Volkssterbetafeln.

Die m 51 diskreten Altersargumente a: 20, 21, 70 liegen
äquidistant im Abstand 1 auseinander, während die w 8 diskreten

Argumente in der Richtung der Zeitachse f 0; 6,5; ; 72,5 nicht
äquidistant sind. In der a;<-Ebene bilden die erwähnten Argumente ein

rechteckiges Punktgitter, sodass nach der imAbschnitt 331.1 bewiesenen

Aussage (3.16) die zweidimensionalen orthogonalen Polynome
in das Produkt der beiden eindimensionalen Polynome und P*(t)
zerlegt werden können.

Die rechnerische Arbeit Hesse sich weiter vereinfachen, wenn die

nicht äquidistanten Argumente in der Zeitrichtung wenigstens sym-
metrisch liegen würden in bezug auf einen Mittelpunkt. Dann käme man
nämlich zufolge der Symmetrie-Eigenschaft (2.50) mit der halben An-
zahl von Polynomwerten P*(t) aus.

Durch unwesentliche, für praktische Belange nicht ins Gewicht
fallende Korrekturen der Zeitargumente kann die gewünschte Sym-
rnetrie erzwungen werden. Die <-Argumente (Tabelle 1, Spalte 3) gehen
somit in die korrigierten t* (Spalte 4) über; letztere transformieren wir
weiter gemäss Ansatz ^*^«7 -,

GrrmdZagfen

1

Sterbetafel
SM

Tafel-
mitttelpunkt

Argumente

t È* f - 37,5
* 5

(1) (2) (3) (4) (3)

1876/80 1.7.1878 0 2,5 — 7

1881/88 1.1.1885 6,5 7,5 — 6

1889/00 1.1.1895 16,5 17,5 — 4

1901/10 1.1.1906 27,5 27,5 — 2

1921/30 1.1.1926 47,5 47,5 2

1931/41 1.7.1936 58,0 57,5 4

1941/50 1.1.1946 67,5 67,5 6

1948/53 1.1.1951 72,-5 72,5 7
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352 Bestimmung der orthogonalen Polynome

Analog wie für die Zeitargumente üben wir auf die Altersargumente
a; die Transformationen (2.36) und (2.45) aus und erhalten

£=.r — 45; (3.45)

die neue Argumentenfolge erschliesst jetzt den Bereich —25 (1) +25.
Im Tabellenwerk Pearson and Partie?/ [35] sind die PolynomwerteP^d)
tabelliert für die 26 äquidistanten Argumente £ —25, —24, 0

und für die Grade A — /t — 1,2, ...,6. Vermöge der Symmetrie-
Eigenschaften (2.46') sind die Polynomwerte auch für positive f-Argu-
mente bekannt.

Zur Ermittlung der (nur von der Zeit abhängigen) orthogonalen
Polynome P*(r) stützen wir uns auf das im Abschnitt 232.1 dargelegte
Verfahren.

Tab. 2 zeigt die Berechnung der Nullmomente Cy„ (r 0, 2,4, 6, 8) ;

für ungerade r verschwindet gemäss (2.48).

Bereckmm?/ der IVhIZmomewfe C, g

2
r T° P P T®

(i) (2) (3) (Ü (5) (6)

2 1 4 16 64 256

4 1 16 256 4 096 65 536
6 1 36 1296 46 656 1 679 616

7 1 49 2401 117 649 5 764 801

V
—J

4 105 3969 168 465 7 510 209

+0 22 © II CO Q
CO © II to O Q,o 7938 Cß,o 336 930 Cg,o 15 020418

Diese C„p-Werte setzen wir in Schema II (Seite 79) ein, und
daraus ergeben sich die Koeffizienten a*

„ der gesuchten orthogonalen
Polynome #i-i

+ (3-46)

speziell also
P*(r) 1

Pf(r) r
P*(r) -'f+r* (3-46')
P*(r) - f t + T®

P*/V\ — M6_Î88 _ 85 705 _2 r _4
4 \ / — 1617 1 617 ~T~ '
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Wie dies für diskrete, äquidistante Argumente üblich ist, stellen

wir auch die Werte für die Polynome (3.46') in einer Tabelle zusammen.

PoZynomwerte c* P*(r)

3
T p;« 4P.*(r) 2 P» r-p;w
(i) (2) (3) (4) (5)

— 7 — 7 91 — 19G 16 408

— 6 — G 39 27 — 17 223

— 4 — 4 — 41 218 — 15 602

— 2 — 2 — 89 169 16 417

T
*

S

210

1

38 808

4

230 460

5
2

2 157 588 972

1617
20

Die eingetragenen Polynomwerte sind mit dem Paktor c* multi-
pliziert. Diese Konstante hat bekanntlich keinen Einfluss auf die

Ausgleichung und wurde jeweils so gewählt, dass die Polynomwerte
möglichst klein, aber noch ganzzahlig ausfallen.

353 Bestimmung der Ausgleichspolynome

Nach (3.5) und (3.16) gilt

S 2 + S > (3-47
A=0 /i 0 /i=0

{ r

— iv ru /mW i\M >>*. ,i-.i (3.48)

Die Berechnung der Koeffizienten nach (3.48) erfordert die
Kenntnis der Summen

(3-49)
£=—25 r

wo unter V die Summation über die Argumente r + 2, + 4, + 6, + 7
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zu verstehen ist. Zufolge der Symmetrieeigenschaften für äquidistante
Argumente (2.46') sowie für nicht äquidistante, aber symmetrisch
gelegene Argumente (2.50) lässt sich (3.49) - analog wie (2.52) im
eindimensionalen Fall - mit den Hilfsgrössen

«M, ± T) + (-1)*-"M(+ I, ± T)

^ w(±l,-T) + (-l)"«(±f,+r)
[w(-|,-T) + (-l)*-"«'(+f-T)] +

+ (-1)" N-£> + t) + (-l+"w(+ f, + T)]
wie folgt darstellen

+25 +25

v v s'^(-^)^)^:(^-,)+
l=-25 T f=+l T

+ S'^(0)^(-T)^; (3-51)
r

dabei bedeutet jetzt V' die Summation über die positiven Argumente

t +2, +-4, +6, +7.

•Je nachdem ob A—^ und /t gerade oder ungerade sind, bilden die

Hilfsgrössen (3.50) «reine» oder «gemischte» Summen und Differenzen.
Es empfiehlt sich deshalb, passende Summen- und Differenzentabellen
anzulegen. Über deren schematische Anordnung orientieren nach-
stehende Übersichten, die in zwei- (Fälle aj und 1+ bzw. vierfacher
Ausführung (Fälle a^) bis d^l) anzufertigen sind.

ffil/stjro'ssew

A —= gerade (Summen) fej A —/t ungerade (Differenzen)

4
— 7 — 6 — 4 — 2 2 4 6 7 -J

r

— 25

— 24

— 1

0

V
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ffil/s<?rô'ssew Zl* (zl^)
al A—,a gerade, ,u gerade
bj A — ^ ungerade, ^ gerade
cj A — ,u gerade, // ungerade
(il A — ,m ungerade, ,« ungerade

— 7 — 6 — U — 2

— '25

-—24

— 1

0

Die Koeffizienten können nun in einem einzigen Arbeitsgang
berechnet werden und lauten:

«o o
1 839,112 745 «3,0 0,122 295 «4,2 — 0,000 383

«i,o 99,573 575 «3,1 — 0,020 590 «4,3 " 0,001 883

— 90,553 035 «3,2 ~ — 0,056 712 «4,4 0,000 535

«2,o 1,277 506 «3,3 ~ 0,029 896 «5,0 0,000 832

«2,i — 2,831 024 «4,0 " 0,003 911 «5,1 — 0,000 122

«2,2 — 0,644 073 «4,1 — 0,003 247

Die Frage, bis zu welchem Grad das Ausgleichspolynom (3.47) an-
zusetzen ist, wurde in erster Näherung mit dem Kriterium von Lid-
steme (3.34) beurteilt ; wir entschieden uns, die Ausgleichung mit dem
zweiten Ausgleichspolynom fünften Grades %,i(l,r) durchzuführen.
Die gefundenen ausgeglichenen Sterbenswahrscheinlichkeiten - im
folgenden auch mit g(as,f) bezeichnet - sind für die ausgewählten Alter
20, 25, 70 in Tabelle 6 den beobachteten (unausgeglichenen) und
den amtlich ausgeglichenen Werten gegenübergestellt.

Aus den vorliegenden Zahlen tritt deutlich die starke Abnahme
der Mortalität mit der Zeit hervor. Die mit orthogonalen Polynomen
nach dem zweidimensionalen Ansatz (3.47) ausgeglichenen Werte
weichen naturgemäss stärker von den Beobachtungswerten ab, als die

jeweils für bestimmte Zeitabschnitte mechanisch ausgeglichenen amt-
liehen Werte; doch darf die Ausgleichung als gut bezeichnet werden.

8
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jEm/äÄnge Sterbenswa/irsc/ieinHcJi/ceiien g(x,t) /ür Männer

6 SM 1876/80 SM 1881/88 SM 1889/00 SM 1901/10 SM 1921/30 SM 1931/41 SM 1941/50 SM 1948/53

Alter
Beobachtete (unausgeglichene) Werte

(i) (2) (3) (4) (5) (6) (7) (8) (9)

20 0,00 680 0,00 606 0,00 573 0,00 517 0,00 370 0,00 319 0,00 244 0,00163
25 876 772 661 548 399 349 274 188
30 964 871 731 628 429 358 281 205
35 1117 1086 903 772 482 425 307 228
40 1292 1246 1121 1010 637 520 381 319

45 0,01 543 0,01 549 0,01 507 0,01 320 0,00 908 0,00 767 0,00 591 0,00 511
50 2103 1 961 1930 1837 1369 1 143 876 794
55 2 696 2 609 2 552 2 471 1942 1 681 1447 1334
60 3 759 3 796 3 592 3 679 2 798 2 641 2 241 2 020
65 5 615 5 267 5176 4 976 4 346 3 952 3 376 3169
70 8 369 7 993 7 586 7 328 6 477 6 092 5 520 5138

Mit zweidimensionalen orthogonalen Polynomen ausgeglichene Werte

20 0,00 715 0,00 643 0,00 547 0,00 481 0,00 348 0,00 277 0,00 228 0,00 223

25 840 763 654 572 404 315 249 237

30 947 866 746 649 438 325 235 211

35 1 093 1 013 887 776 524 384 266 227

40 1 309 1231 1105 986 694 527 377 321

45 0,01 616 0,01 546 0,01 424 0,01 300 0,00 971 0,00 773 0,00 587 0,00 512

50 2 058 1996 1882 1752 1 380 1 148 919 820

55 2 718 2 663 2 553 2 413 1 984 1 707 1423 1293
60 3 744 3 693 3 577 3 415 2 899 2 559 2 200 1941
65 5 373 5 317 5175 4 970 4 319 3 888 3 427 3199
70 7 956 7 878 7 680 7 399 6 541 5 982 5 377 5 073

Mechanisch ausgeglichene Werte (Amtliche Sterbetafeln)

20 0,00 720 0,00 635 0,00 567 0,00 516 0,00 365 0,00 325 0,00 236 0,00163
25 841 742 648 556 394 343 275 192

30 973 858 724 620 412 339 268 202

35 1104 1057 907 754 486 413 300 238

40 1 312 1255 1140 983 643 527 386 330

45 0,01 555 0,01 524 0,01 486 0,01 308 0,00 921 0,00 761 0,00 590 0,00 497

50 2 086 1984 1 917 1788 1344 1133 914 821

55 2 682 2 574 2 554 2485 1950 1728 1424 1 338

60 3 793 3 701 3 550 3 543 2 843 2 579 2196 2 035

65 5 457 5 264 5176 5 042 4 258 3 964 3 383 3168
70 8 006 7 814 7 557 7 393 6 491 5 963 5 418 5 076
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354 Interpolation, Extrapolation und Generationensterbetafeln

Dank der flächenmässigen Darstellung (3.47) der Sterblichkeit im
Altersintervall «20, 70» und für die Zeit von 1878 bis 1951, kann
für jeden beliebigen Punkt (|,t) innerhalb dieses Bereiches die ein-

jährige Sterbenswahrscheinlichkeit berechnet werden /HnterpotatfowJ.
Für die noch zu erörternden Generationensterbetafeln benötigten wir
mehrere interpolierte Werte, die allgemein zur Zufriedenheit aus-

gefallen sind.

Bedeutungsvoller als die Berechnung von Zwischenwerten ist die

EHrapotatiow. Die Sterbefläche ist sowohl hinsichtlich des Alters- wie
auch des Zeitargumentes erweiterungsfähig. Für die Alter über 70

erhielten wir gute, für die Alter unter 20 erwartungsgemäss schlechte
Werte.

Zeitlich lohnt sich vor allem, die Extrapolation in die Zukunft zu
prüfen. Hier machte sich für den Zeitraum 1951-1986 eine eigenartige
Erscheinung bemerkbar, indem in den Altern cc <i 45 bald einmal
Verzerrungen der einjährigen Sterbenswahrscheinlichkeiten auftraten.
Selbst eine neue Abgrenzung des Basisbereiches - Altersintervall
«25, 75» und neue Sterbetafeln SM 1921/30, 1929/32, 1931/41,
1939/44, 1941/50 und 1948/53 - vermochte dieses seltsame Verhalten
nicht zu beheben. Es scheint demnach, dass sich Schwingungen in den

untern Altern des Basisbereiches durch die zeitliche Extrapolation mit
zweidimensionalen orthogonalen Polynomen in höhere Altersstufen
fortpflanzen. Bei der Beurteilung des mutmasslichen künftigen Ver-
laufes der Sterblichkeit ist also Vorsicht geboten. Für die Alter a; > 45

konnten immerhin die extrapolierten Sterbenswahrscheinlichkeiten bis
1986 bedenkenlos zur Konstruktion von Generationensterbetafeln für
ausgewählte Jahrgänge verwendet werden.

Eine Generationensferbeta/et misst - im Gegensatz zur Perioden-
Sterbetafel - das tatsächliche Absterben einer gleichaltrigen Personen-

gesamtheit in der Zeit. Sie erfordert deshalb die Kenntnis der ein-

jährigen Sterbenswahrscheinlichkeiten zu Zeitpunkten, die sich über
mehrere Jahrzehnte erstrecken.

Zur Darstellung einer Generationensterbetafel beziehen wir uns
auf die Ausführungen im Lehrbuch E. [45] und definieren :

g(a;,t) Wahrscheinlichkeit einer a;-jährigen Person, im Zeitabschnitt
t/t -|-1 zu sterben.
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g(x,Z— x + x) g(x,0 + x) Wahrscheinlichkeit einer im Zeitpunkt
0 f—x geborenen, nunmehr x-jährigen Person, im Zeit-
abschnitt t/t +1 zu sterben.

Mit Hilfe der auf den Geburtszeitpunkt 0 bezogenen einjährigen
Sterbenswahrscheinlichkeiten g(.r,0 -|- x) konstruiert man die Über-

lebensordnungen
X—1

Z(aj,0 + x) Z(O,0) 17 [i — g(A,0 + A)]. (3.52)

Die Generationensterbetafel Z(as,0 + x) gibt das «wahre» Absterben
einer Generation wieder, indem auf die Nulljährigen 1(0,0) des Jahr-

ganges 0 schrittweise die Sterblichkeit der Zeitabschnitte 0/0 -f-1,
0-1-1/0 + 2, usw., einwirkt.

Zwischen den oben definierten Wahrscheinlichkeiten g(x,t) und
g(x,0 + x) besteht die Bindung

g(x,0+x) g(x,t—x+x) g(x,f); (8.53)

demnach genügt es, die Ansätze für g(x,<) zu kennen.

In unserem Beispiel gilt insbesondere

g(x,f) +i(f,T).
Nach (3.52) in Verbindung mit (3.53) können wir damit die Ge-

nerationensterbetafel Z(x,0+x) aufbauen.

Wir gehen von den in Tabelle 6 angegebenen, ausgeglichenen
einjährigen Sterbenswahrscheinlichkeiten g(x,t) für den Basisbereich

«20,70» aus, interpolieren die fehlenden Zwischenwerte und be-

rechnen die erforderlichen extrapolierten Werte (Alter und Zeit). Unter
Berücksichtigung der Zuverlässigkeit der zeitlichen Extrapolation be-

trachten wir die Generationen der Jahrgänge 0 1875, 1885, 1895,

1905, 1915 und beschränken uns auf die Ermittlung der ausgeglichenen
Sterbenswahrscheinlichkeiten nach (3.47) *) für die Alter x 20, 25,

90.

Die jeweils zwischen g(x,t) und g(x+5,f+5) gelegenen vier Werte

g(x+r,f+r), mit r 1, 2, 3, 4, wurden nach der von IF. JFegmwlfer [43]
vereinfachten oskulatorischen Interpolationsformel berechnet.

h Grundlagen: gemäss Ansätzen auf Seite 113; nach (2 39j,
sofern nicht bereits im Tabellenwerk Pearson and HarÜeiy [35] vorhanden; P*(r)
nach (3 .46'), falls nicht schon in Tabelle 3 (Seite 111) enthalten.
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g(x+r,f-Fr) g(x,f) + (j) dg(x,i)-+- (^) <5*g(x,f) + Q d®g(x,<), (B.54)

mit

5g(x,<) 0,200zlg(x—5,«—5) + 0,120z]2g(x—5,f—5) —0,016zHg(x—5,f—5)

2g(x,#) 0,040 zFg(.r—5,1—5) — 0,016 zl®g(a;—5,1—5)

®g(x,l) 0,024Zl®g(x—5,f—5)

und

Zl g(x—5,1—5) g(x,t)—g(x—5,1—5)

Hg(x—5,1—5) z1[z1g(.r -5,1-5)] g(x+5,l+ 5) — 2g(x,f)-f-g(x—5,1—5)

für x 20, 25, 90 (Alter der Generation)
1 0 + x (0 1875, 1885, 1895, 1905, 1915)

r 1, 2, 3, 4 (Zwischenwerte).

Für die beiden Randintervalle (21 <i x ^ 24 und 86 <i x <1 89)

beruht die in Tabelle 7 zusammengestellte Generationensterblichkeit
auf einer graphischen Ausgleichung.

Nach (3.52) konstruieren wir Überlebensordnungen für x 2> 20

gemäss x-i
l(x,0+x) 1(20,0) 7J [i_g(A,0+A)], (3.52')

A=20
mit 1(20,0) 100 000.

Die einjährigen Sterbenswahrscheinlichkeiten (Tabelle 7), be-

sonders aber die daraus hergeleiteten Generationensterbetafeln bzw.

Überlebensordnungen (Tabelle 8) bekunden die grosse Bedeutung der
säkularen Sterblichkeitsabnahme. Danach erreichten von 100 000

zwanzigjährigen Männern der im Jahre 1875 geborenen Generation
etwas mehr als die Hälfte das 65. Altersjahr. Dasselbe Alter erleben

bereits zwei Drittel des Jahrganges 1895 und sogar drei Viertel der
Generation 1915. Ferner starben mehr als ein Viertel aller zwanzig-
jährigen Männer der Generation 1875 vor dem 54. Altersjahr, während
der Jahrgang 1915 rund elf Jahre später — etwa im Alter 65 - diesen

Zustand erreicht.
Schliesslich sei noch auf eine Besonderheit in den Sterbenswahr-

scheinlichkeiten hingewiesen; diese nehmen für die Generationen nach
1895 ein immer ausgeprägteres relatives Minimum an, welches sich im
Laufe der Zeit vom Alter 30 (Generation 1895) auf. das Alter 34 (Gene-
ration 1915) verlagert.
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Geweraticmensfer&eta/eZn /ür die JaTmjäwgfe

Einjährige Sterbens-

7
Alter x g(x,1875+x) g(x,1885 + x) q(x,1895+-x) g(x,1905+x) ç(x,1915+x)

(i) (2) (3) (4) (5) (6)

20 0,00 547 0,00481 0,00418 0,00 348 0,00 277

21 556 488 425 350 280

22 569 49S 432 353 281

23 584 510 439 356 280

24 599 524 445 358 278

25 0,00 612 0,00 533 0,00 449 0,00 358 0,00 275

26 621 538 449 354 269

27 627 541 446 347 260

28 633 542 443 339 251

29 640 545 439 331 242

30 0,00 649 0,00 549 0,00438 0.00 325 0,00 235

31 660 555 439 322 231

32 671 561 440 318 226

33 685 569 442 316 224

34 700 579 446 317 224

35 0,00 719 0,00 592 0,00 453 0,00 320 0,00 227

36 740 608 463 326 233

37 763 625 475 335 242

38 789 645 489 346 254

39 818 668 507 360 269

40 0,00 851 0,00 694 0,00 527 0,00 377 0,00 287

41 887 724 551 397 309

42 925 756 577 421 334

43 967
'

791 607 447 363

44 1013 830 640 477 395

45 0,01 064 0,00 873 0,00 677 0,00 512 0,00 431

46 1118 919 717 549 471

47 1175 969 761 590 515

48 1238 1023 808 635 563

49 1306 1083 861 684 615

50 0,01 380 0,01 148 0,00 919 0,00 739 0,00 673

51 1461 1219 985 800 735

52 1545 1294 1 057 867 801

53 1637 1375 1 134 938 872

54 1737 1464 1214 1014 950

— 119 —

0 157-5, 2555, 2505, 20Ö5 wwZ 2025

Wahrscheinlichkeiten g(a:,0+a;)

Alter x g(x,1875 + x) g(x,1885+x) g(x,1895+x) g(x,1905+x) g(x,1915+x)

(i) (2) (3) (4) (5) (8)

55 0,01 849 0,01 563 0,01 293 0,01 093 0,01 037
56 1969 1 671 1361 1169 1130
57 2 097 1785 1421 1243 1229
58 2 235 1909 1487 1325 1336
59 2 388 2 046 1 575 1423 1454
60 0,02 559 0,02 200 0,01 701 0,01 547 0,01 586
61 2 744 2 368 1869 1700 1728
62 2 941 2 546 2 070 1 874 1 880
63 3155 2 741 2 295 2 067 2 045
64 3 393 2 957 2 537 2 278 2 228

65 0,03 659 0,03 199 0,02 789 0,02 504 0,02 433
66 3 948 3 464 3 044 2 739 2 682
67 4 257 3 746 3 306 2 985 2 930
68 4 592 4 054 3 587 3 250 3 211
69 4 963 4 395 3 897 3 544 3 479

70 0,05 377 0,04 777 0,04 249 0,03 876 0,03 760
71 5 827 5192 4 635 4 239
72 6 307 5 637 5 048 4 628
73 6 829 6120 5 498. 5 052
74 7 402 6 652 5 994 5 519

75 0,08 038 0,07 243 0,06 547 0,06 041
76 8 726 7 885 7147 6 637
77 9 461 8 570 7 789 7 275
78 10 255 9 312 8 485 7 942
79 11 123 10125 9 247 8 634

80 0,12 078 0,11 020 0,10 090 0,09 389
81 13108 11988 11 001
82 14 205 13 019 11 973
83 15 386 14131 13 021
84 16 668 15 339 14162

85 0,18 068 0,16 661 0,15 413
86 19 487 18175 16 722
87 21103 19 798 18 201
88 22 822 21 513 19 833
89 24 711 23 324 21 519

90 0,26 728 0,24 865 0,23 197
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GeneraZiowensterbeZa/e£n /ür cfe Ja/wgräwge

Überlebensordnungen

8
Alter x Z(x,1875+x) Z(x,1885+x) Z(x,1895+ ®) Z(x,1905+x) Z 6.".1915 x

(i) (2) (3) (4) (5) (6)

20 100 000 100 000 100 000 100 000 100 000

21 99 453 99 519 99 582 99 652 99 723

22 98 900 99 033 99 159 99 303 99 444

23 98 337 98 540 98 730 98 953 99 164

24 97 748 98 038 98 297 98 600 98 887

25 97 150 97 524 97 860 98 247 98 612

26 96 547 97 004 97 420 97 896 98 341

27 95 941 96 482 96 983 97 549 98 076

28 95 334 95 960 96 550 97 211 97 821

29 94 724 95 440 96 122 96 881 97 576

30 94109 94 920 95 701 96 560 97 339

31 93 488 94 399 95 281 96 247 97 111

32 92 861 93 875 94 863 95 937 96 886

33 92 225 93 348 94 446 95 632 96 667

34 91 593 92 817 94 028 95 329 96 451

35 90 952 92 280 93 609 95 027 96 235

36 90 298 91 733 93 185 94 723 96 016

37 89 630 91 176 92 753 94 414 95 793

38 88 946 90 606 92 313 94 098 95 561

39 88 244 90 021 91 861 93 772 95 318

40 87 522 8!) 420 91 396 93 435 95 062

41 86 777 88 800 90 914 93 083 94 789

42 86 008 88 157 90 413 92 713 94 493

43 85 212 87 490 89 891 92 323 94177

44 84 388 86 798 89 346 91 910 93 835

45 83 533 86 078 88 774 91 472 93 465

46 82 644 85 326 88 173 91 003 93 062

47 81 720 84 542 87 541 90 504 92 624

48 80 760 83 723 86 875 89 970 92 147

49 79 760 82 866 86 173 89 398 91 628

50 78 719 81 969 85 431 88 787 91 064

51 77 632 81 028 84 645 88 131 90 451

52 76 498 80 040 83 812 87 426 89 787

53 75 316 79 005 82 926 86 668 89 067

54 74 083 77 918 81 985 85 855 88 291
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0 1575, 7555, 1595, 1,955 u?uZ 1915

i(x,0+a:)

Alter x Z(x,1875+x) Z(x,1885+x) Z(x,1895 + ®) Z(x,1905 + x) Z(x,1915+ x)

(i) (2) (3) (-6 (5) (ß)

55 72 797 76 777 80 990 84 984 87 452
56 71 451 75 577 79 943 84 055 86 545
57 70 044 74 315 78 855 83 073 85 567
58 68 575 72 988 77 734 82 040 84 515
59 67 042 71 595 76 57!) 80 953 83 386
60 65 441 70 130 75 372 7!) 801 82 174
61 63 767 68 587 74 090 78 567 80 871
62 62 017 66 963 72 706 77 231 79 473
63 60 193 65 258 71 201 75 784 77 979
64 58 294 63 469 69 567 74 217 76 384
65 56 316 61 592 67 802 72 527 74 683
66 54 255 59 622 65 911 70 710 72 866
67 52113 57 557 63 904 68 774 70 911
68 49 895 55 401 61 792 66 721 68 834
69 47 604 53 155 59 575 64 552 66 623

70 45 241 50 819 57 253 62 265 64 306
71 42 809 48 391 54 821 59 851 61 888
72 40 314 45 879 52 280 57 314
73 37 771 43 292 49 641 54 662
74 35 192 40 643 46 911 51 900

75 32 587 37 939 44 100 49 036
76 29 968 35 191 41 212 46 074
77 27 353 32 417 38 267 43 016
78 24 765 29 638 35 286 39 886
79 22 225 26 879 32 292 36 718

80 19 753 24 157 29 306 33 548
81 17 367 21 495 26 349 30 398
82 15 091 18 918 23 451
83 12 947 16 455 20 643
84 10 955 14130 17 955

85 9 129 11 963 15 412
86 7 480 9 969 13 037
87 6 022 8 158 10 857
88 4 751 6 542 8 881
89 3 667 5 135 7 119

90 2 761 3 937 5 587
91 2 023 2 958 4 291
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4 Zusammenfassung

Die systematische Bearbeitung der orthogonalen Polynome sowie
die Untersuchungen hinsichtlich ihrer Anwendung in der Ausgleichs-
rechnung haben sich als aufschlussreich erwiesen. Die allgemeine Be-

trachtungsweise in « Veränderlichen vermittelt eine vollständige Über-
sieht über die grundlegenden Eigenschaften. Die Spezialisierung auf eine
oder zwei Veränderliche erschliesst sodann weitere spezifische Bezie-

hungen und Bindungen. Nachstehende Hauptergebnisse dürften den
Theoretiker wie den Praktiker interessieren.

1. Die Einführung des Stieltjesschen Integralbegriffs verbürgt eine

einheitliche, allgemeine Darstellung der Theorie orthogonaler Polynome
und deren Verwendung in der Ausgleichsrechnung.

2. Ohne auf die eigentlichen Orthogonalitätsbedingungen ange-
wiesen zu sein, lassen sich auf Grund des vollständigen Orthogonal-
systems, das im Abschnitt 13 konstruiert wurde, die Koeffizienten der

orthogonalen Polynome durch eine passende Extremalbedingung (1.9)
eindeutig bestimmen. Diese Tatsache liegt später der Determinanten-
Methode zugrunde, ein Verfahren zum Aufsuchen orthogonaler Poly-
nome, das sich besonders gut für den Einsatz von programmgesteuerten,
elektronischen Kechengeräten eignet.

3. Sowohl für kontinuierliche wie für diskrete, äquidistante Argu-
mente lassen sich im ein- und zweidimensionalen Eall - bei letzterem
für den Bechtecksbereich - explizite forinelmässige Darstellungen der

orthogonalen Polynome angeben (Ansätze (2.12), (2.12'), (2.39); (3.12),
(3.37)). Dabei tritt die Bindung zu den klassischen orthogonalen Poly-
nomen im allgemeinen und zu den Legendre-Polynomen im speziellen
deutlich hervor.

4. Im Falle diskreter, nicht äquidistanter Argumente führen die

Bekursionsbeziehungen (Ansätze (2.22), (2.24), (2.25); (3.22), (3.23)
und (3.24)) auf ein handliches Bechenschema zur Bestimmung der

orthogonalen Polynome; gleichzeitig ist damit eine vorläufige, mit
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fortschreitender Rechnung parallel laufende Beurteilung der Güte der

Ausgleichung verbunden, ohne dass hierzu die ausgeglichenen Werte
bekannt sein müssen.

5. Wird das Ausgleichspolynom als Linearkombination der ortho-
gonalen Polynome eines vollständigen Systems angesetzt, so sind die

zugehörigen Entwicklungskoeffizienten vom Grade des gewählten Aus-

gleichsansatzes unabhängig. Der Orthogonalitätshedingungen wegen ent-
arten nämlich die zugrundehegenden Bestimmungsgleichungen (1.13).

6. Für Ausgleichsprobleme in zwei unabhängigen Veränderlichen
verdient die Behandlung des Rechtecksbereiches besondere Beachtung.
In diesem Falle gilt die bemerkenswerte Aussage ((3.12'), (3.16)),
dass die zweidimensionalen orthogonalen Polynome in das Produkt der

entsprechenden eindimensionalen orthogonalen Polynome zerfallen.
Dieses fundamentale Ergebnis gewährleistet den rationellen Einsatz der

für eine Veränderliche gültigen Beziehungen und Ansätze.

7. Zur Erstellung tabellarischer Unterlagen erweisen sich die Eigen-
Schäften der auf die Veränderlichen £ und transformierten ortho-
gonalen Polynome als sehr wertvoll; zufolge der Symmetrie (2.46),
(2.46') und (3.43) brauchen die Polynomwerte nur für die eine Hälfte
des Argumentbereiches angegeben zu werden. Dem Praktiker dürften
ferner das spezielle Auflösungsverfahren für diskrete, nicht äquidistante
Argumente (Abschnitte 232.1 und 332.1), die ausgewiesenen Rekur-
sionsbeziehungen, sowie die Ausführungen über die numerische Aus-

wertung nützlich sein.
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