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Beiträge zur Theorie der charakteristischen Funktionen

stochastischer Verteilungen

Von H. Loeffel, Zürich

Einleitung

In der Wahrscheinlichkeitsrechnung wird die Verteilung einer
stochastischen Variablen durch die zugehörige Verteilungsfunktion gegeben.

Die Fourier-Stieltjessche Transformierte dieser Funktion, die
sogenannte charakteristische Funktion ist durch A. Cauchy 11 jl) im Jahre
1853 eingeführt worden. In etwas abgeänderter Form erscheint sie
bereits früher als erzeugende Funktion von P. S. Laplace [2]. 1920 hat
dann P. Levy | BJ durch zwei fundamentale Sätze die Theorie der
eharakterislischen Funktionen verankert. Es sind dies die sogenannte
kevyscho Umkehrforniel und der Kontinuitätssatz. Dieser ist ein

nichtiges Hilfsmittel zur Lösung verschiedener Konvergonzfragen,
'^besondere des klassischen zentralen Grenzwertsatzes.

Die ursprüngliche Fassung dos Kontinuitätssatzes wurde von
h. Cramer, V. Glivenko und 1). Dugue dahin abgeändert, dass sio über
die Art der Konvergenz der Folge der charakteristischen Funktionen
keinerlei Voraussetzungen machten, hingegen über das Verhalten der
blrenzfunktion. So hat D. Dugue im Jahre 1955 bewiesen, dass es

gefügt, den llealtoil der (Jrenzfunktion als stetig im Nullpunkt
vorauszusetzen.

Auch in der sogenannten Arithmetik der Wahrscheinlichkeits-
Sesetze hat sich die Theorie der charakteristischen Funktionen als
b'uehtbar erwiesen. Hier handelt es sich darum, abzuklären, ob sich
eüio gegebene charakteristische Funktion als endliches oder unendliches
Produkt von charakteristischen Funktionen darstellen lässt. A. Khint-
chine hat zur allgemeinen Theorie einen wesentlichen Beitrag geleistet.

*) Siehe Literaturverzeichnis auf Seite 384.

22
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Von P.Levy stammt die geschlossene Darstellung einer charakteristischen

Punktion, die zur Klasse der unendlich teilbaren Wahrscheinlichkeitsgesetze

gehört. Die klassischen Verteilungen von Gauss und Poisson

wurden insbesondere von D. A. Baikov, PI. Gramer und D. Dug110

untersucht.
Es ist nun von grossem Interesse, zu wissen, wann eine vorgelegt0

Punktion eine charakteristische Funktion ist. S. Bochner hat bereits

1932 gezeigt, dass jede positiv-definitive Punktion, dio im Nullpunkt
den Wert 1 annimmt, eine charakteristische Punktion ist. Khintchm0

und Gramer stellten notwendige und hinreichende Bedingungen auf, di0

aber in der Praxis schwer anzuwenden sind. Zugänglichere Kriterien hh

spezielle Funktionsklassen stammen von J. Marcinkiewicz, A. Wintn01

und D. Dugue für analytische charakteristische Punktionen. E.Lukacs

und 0. Szäsz haben sich in letzter Zeit um die Diskussion eimger

rationaler charakteristischer Funktionen verdient gemacht. Endlich

soll noch die einfache hinreichende Bedingung von G. Pölya erwähnt

werden, wonach gewisse reelle, konvexe Funktionen (sogenannte Pölya"

funktionell) charakteristische Punktionen sind.

In der vorliegenden Arbeit behandeln wir eine Integraltransforina-
tion, die einer Gesamtheit von charakteristischen Punktionen eine neu0

charakteristische Funktion zuordnet. Diese wird von M. Loöve »Is

«gewichtete» charakteristische Funktion bezeichnet und spielt im 2U'

sammenhang mit gewissen Konvergenzsätzen abhängiger stochas tische1'

Variablen eine Bolle.
In einem ersten Teil wird die allgemeine Theorio begründet und

claim für die spezielle Gesamtheit der zu einer festen charakteristische11

Punktion im engern Sinne ähnlichen charakteristischen Punktione11

angewandt. Die von M. Girault in einem ganz andern Zusammenhang0

hergeleitete Integraltransformation einer charakteristischen FunktW11

erfährt eine eingehende Behandlung. Im folgenden wird die Giraultsch0

Transformation verallgemeinert. Dabei gelingt es, eine einparametrige
Schar (Scharparameter: 0<p<oo) von neuen Verteilungsfunktion011

(die sogenannten p-Verteilungsfunktionen) herzuleiten. Diese erweis011

sich für 0 < p iL 1 als uniinoclal mit Vertex Null. Die sinngemäss®

Erweiterung der p-Verteilungen auf negative Werte des Parameter

liefert uns eine einfache Integraltransformation, die eine bestimm'0

Klasse von reellen Funktionen in Pölyafunktionen überführt. Ah

schliessend wird gezeigt, dass schwache, bzw. vollständige Konverg0112
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6mor Folge von Verteilungsfunktionen äquivalent ist mit schwacher
bzw. vollständiger Konvergenz derzugehörigonp-Verteilungsfunktioncn.
Ein Teil genannter Konvergenzaussage lässt sich alsdann wesentlich
Verallgemeinern.

Ein Teil clor Besultato der vorliegenden Arbeit wurde bereits in
Zl>vei Comptes-rcndus-Noten der Akademie von Paris veröffentlicht [12].

Es bleibt mir noch die angenehme Pflicht, meinem hochverehrten
Eehrer, Herrn Prof. Dr. W. Saxer, für die wortvollen Batschläge während
der Ausführung der Arbeit meinen herzlichsten Dank auszusprechen.

Ebensolchen Dank schulde ich auch den Herren Prof. Dr. E. Specker
(El'H), Prof. Dr. D. Dugue (Sorbonne) und Prof. Dr. M. Loöve
(University of California) für ihre Anregungen und ihr Interesse, das sio
8,11 meiner Arbeit bekundeten.

§ 1. Folgen von charakteristischen Funktionen

Bevor wir zum Thema dieses Paragraphen übergehen, seien noch
emige wichtige Definitionen vorausgeschickt.

definition I.
Unter einer allgemeinen Verteilungsfunktion F(x) verstehen wir

eüio nicht abnehmende, linksstotigo Punktion, wobei 0 ^F(x) 1 in
""-oo ig x ig +oo.

Aus obiger Definition folgt die Existenz der folgenden Grenzwerte:

F(x+ 0) lim F(x,) F(x—0) lim F(xt)
ifyi t x Xnix

F(-f-oo) lim F(x), F(—oo) limF(a;);
'£> -f CX5 X>~ — OO

* heisst ein Stetigkeitspunkt bzw. Unstetigkeitspunkt von F(x), je
Wehdem F(a;-f-0) -F(x- 0) 0 oder >0.

Für die Anwendungen besonders wichtig ist der Fall

F(- oo) 0, F(+ oo) l. (1.1)

^Eir nennen dann F(x) schlechthin Verteilungsfunktion.
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Definition II.
Unter der charakteristischen Punktion <p(z), die zur Verteilung61'

funktion F(x) gehört, verstehen wir die Fourier-Stieltjesscho
Transformierte bezüglich F(x):

-(-oo

q>(z) jf eKXdF(x), —oo < z < +°°-
— oo

Dabei ist der Rieinann-Stieltjessche Integralbegriff zugrunde gelegt-

Ist F(x) eine allgemeine Verteilungsfunktion, so nennen wir 9$
die allgemeine charakteristische Funktion.

Bekanntlich ist durch die allgemeine charakteristische Funktion

<p(z) die zugehörige allgemeine Verteilungsfunktion bis auf eine additiv0

Konstante bestimmt. Setzen wir aber fest, dass:

F{- oo) 0, (l-3)

so ist F(x) durch q>(z) eindeutig bestimmt.

In den nun folgenden Ausführungen handelt es sich, wenn nich'

besonders vermerkt, um gewöhnliche charakteristische Funktionen.

Zusammenstellung der wichtigsten Eigenschaften von <p(s)

ci) tp(z) ist eine stetige Funktion für — oo < z < -j-°°-

b) cp(0) 1, <p(—z) cp(z) für alle z, wobei wir unter cp(z) den kou

jugiert komplexen Wert von cp{z) verstehen.

c) | (piz) | 1
> —00 ^3 ^ ^ "h 00 •

ä) Eine charakteristische Funktion ist dann und nur dann reell, wer111

sie zu einer symmetrischen Verteilungsfunktion gehört [4, S-

e) Wenn <p(z) eine charakteristische Funktion ist, dann auch

für jede natürliche Zahl n.

f) Gehört (p(z) zu einem unendlich teilbaren Wahrscheinlichkcitsgese^'
dann ist [<y(^)]c für jede positive Zahl c eine charakteristische Fuök

tion.

cj) Die normierte Linearkomhination von charakteristischen FuB^
tionen ist wieder eine charakteristische Funktion. Ausführlich®1'



Soien <py(z), <pt{z), <pn(z) n charakteristische Punktionen, dann
ist auch t r \ n / x

0„{z) c, cp^z) + c2 ft{z) + + cn <pn(z)

n

mit c{ i> 0, i 1, 2, n und 1 eine charakteristische
t

Punktion, die zur Verteilungsfunktion Gn(x) gehört:

Gn(x) CyF^x) + c2Fa(x) + + c„Fn(x).

h) wenn <p(z) eine charakteristische Punktion darstellt, so gilt das¬

selbe für <p(z.a) wobei —oo < a <

tz 1.

Sei <py(z), q>2(z), <pn(z), eine unendliche Folge von
charakteristischen Punktionen. Dann ist auch

0(z) Cy Cpy(z) + -f Cn <Pn(Z) + (1 • 4)

eirie charakteristische Punktion, mit c, 2> 0, i 1, 2, n, und
Oo

v 00

,Cj ci 1, und gehört zur Verteilungsfunktion G(x) V, c; Ft(x).
,=ai ,=i

Beweis: 0{z) lim&n(z), wobei 0n(z) }
11*- oo i l2jci

®,,(Ä) ist aber nach g) für jedes n eine charakteristische Punktion. Da
I

ci <Pi(z) | <i c;, folgt nach dem Weierstraßschen Konvergenzsatz, dass

(1.4) gleichmässig in z gegen eine stetige Punktion 0(z) konvergiert.
Nach dem Kontinuitätssatz folgt endlich, dass 0(z) eine charakteristische
Funktion ist.

^Wendung:

Wenn <p(z) eine charakteristische Punktion ist, dann auch

0(z) exp [<p{z)~ 1] (1.5)

knd gehört zu einem unendlich teilbaren Wahrscheinlichkeitsgesetz.

Beweis: \ <p <p2 q>,

#(«) -. + -" + „r+---}-



Aus dieser Reihenentwicklung folgt dio Behauptung nach Eigenschaft

e) und Satz 1. Ausserdem gilt:

0(z) exp!
1

b>t(z))n> iärn 1>2'

wobei <p*(z) exp | [cp—1)1 für jedes n eine charakteristische Funktion

ist. Aus der Definition der unendlich teilbaren Gesetze folgt, das9

0{z) auch dazu gehört.

Beispiele: —co < a < -|-oo

cp(z) cos (az), 0{z) exp [cos (az) — 1],

cp(z) emz, 0{z) — exp \emz — 1], Poisson-Verteilung-

§ 2. Integraltransformation einer Gesamtheit

von charakteristischen Funktionen

Die eingangs behandelte Transformation einer unendlichen Folg0

von charakteristischen Funktionen durch Reihenbildung führt uns

notwendigerweise zur Transformation einer Gesamtheit von charak

teristischen Funktionen (abhängig von einem Parameter) durch Rfte

gration nach diesem Parameter.

Satz 1.

Voraussetzung:

a) <p(z,a.) ist für jeden Wert des Parameters a (a <i a ^ b) eine charak

teristische Funktion.

b) cp(z,ct) ist für jeden endlichen Wert von z eine stetige Funktion 1J]

der Variablen a.

c) V(a) ist eine nicht abnehmende, linksstetige beschränkte Funkti00

in [a,F|.

Wenn F(x,ct) die zu <p(z,a) gehörige Verteilungsfunktion darste'ft'

dann ist nach Definition:
-f- oo

(p(z,a.) j eKZdFx(x,a).
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b

Behauptung: 1 ('
^) F(t)-K(«)JyM<iF(ct) (2a)

a

•st auch cine charakteristische Punktion unci gehört zur Verteilungsfunktion

: b

G{x) m~v(t,jfFMdr(a>- (2-2)

a

Bevor wir den Beweis durchführen, sei noch vermerkt, class
M. Loeve [5] auf die Möglichkeit einer Transformation durch
Integration nach einem Parameter hingewiesen hat. Auf den nähern
Sachverhalt geht er aber nicht ein. In [5a] S. 379 hebt er allgemein die
Bedeutung solcher Untersuchungen (im Zusammenhang mit Grenzwertsätzen

abhängiger Variablen) hervor.

Betveis:

Für jedes feste z ist cp{z,a) nach Voraussetzung eine stetige Funktion

von a im Intervall [ct,b'\. .Deshalb existiert nach einem bekannten
Satze [6, S. 7J das Bieinann-Stieltjesscho Integral (2.1) und definiert
®me wohlbostimmte Funktion 0(z).

Dio w-te Itiemannsche Summe, die wir mit 0„(z) bezeichnen, heisst:

mit a0 a, an b und ai <L b{ 5S (.1, i — 0, 1, (n — 1).

®n(z) ist für jedes n eine charakteristische Funktion. Bezeichnen wir
•Uit ö das Maximum von (ai+1 — «J, i 0, 1, (rt — 1), so folgt:

0{z) lim &n(z). (2.4)
<5»-0

zu zeigen, class auch <&{z) eine charakteristische Funktion ist,
gefügt es auf Grund dos Kontinuitätssatzes, deren Stetigkeit im Null-
Punkt nachzuweisen.

Das heisst, es muss gelten:

lim 0(z) <ß(0) 1 oder lim [$(«)— 1] 0.
Z+- 0 Z>- 0
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Diese Delation bedeutet aber nichts anderes, als dass für eine beliebig6

Nullfolgo I2J:ö hm <?(«„) —1 0.

lim<P(z„) -1 lim ^ — 1] äV(a) lim j g
n*~ co n*- co y \U) y \P>) J n*-oo /

« a

,n" 9-(ci)"" ['(6)-n«)
Um den Grenzübergang ausführen zu können, benützen wir <IaS

Theorem von Lebesgue:

Sei die Punktionenfolge {</„(«)] in [a,b] gleichmässig beschränkt

und F(a) eine nicht abnehmende, beschränkte Punktion in \a,b |. Wen11

lim</H(a) g(a) für fast alle a([a,b], d.h. bis auf eine Menge vom
ü»-CO

F-Mass Null, dann gilt:
b b

lim f .</»(«) dU(a) (g(ct) dV(a). (2 •
ö)

«-°°« «

Dabei ist der Lebesgue-Stieltjessche Integralbegriff zugrunde gelegt"

Bemerkung:

Das Theorem von Lebesgue gilt nicht nur für ein Intervall, sondern

für eine allgemeine F-messbare Punktmenge Iß.

In (2.1) haben wir allerdings das Integral im lliemann-Stieltj60'
sehen Sinne genommen. Dieses existiert dann bekanntlich auch nö

Sinne von Lebesgue und hat den gleichen Wert.

Da \(p(zn,oß) \ 1 für n 1, 2, und n rgi a <i b, und

w(X,,a) — 1

lim gn(oß) lim n " ' g(a) 0

folgt:

n^V{b) F(a)
fär alle a

b b

lim 0n{z)—1 lim j gn(x) cZF(a) jOdF(a) 0;

0(z) ist also stetig im Nullpunkt und somit eine charakteristische Funk

tion, quod erat demonstrandum.
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Zur charakteristischen Punktion 95(2,5,-) gehört die Verteilungsfunktion

F(x,bi), die eindeutig bestimmt ist auf Grund von (1.1).
Deshalb ist der charakteristischen Punktion ®n(z) die folgende
Verteilungsfunktion zugeordnet:

\ n- 1

v„, v,, 2 [D(«i+1)-F(ut.)]. (2.6)
v (0) — v (aj j^o

Nach dem eben Bewiesenen strebt ®„(z) für jede a-Einteilung gegen
die charakteristische Funktion ®(z). Nach dem Kontinuitätssatz
konvergiert somit die Folge der zugehörigen Verteilungsfunktionen Gn(x)
für jede a-Einteilung gegen die Grenzverteilungsfunktion G(x). Diese
!st der charakteristischen Funktion ®(z) zugehörig. Mit andern Worten:
Sei x ein Stetigkeitspunkt von G(x), dann strebt die Biemannsche
Summe (2.6) für jede a-Einteilung gegen den wohlbestimmten Wert
G(x). Damit ist aber gezeigt, dass das Integral (2.2) für jeden
Stetigkeitspunkt von G(x) einen Sinn hat.

Bemerkung:

Satz 1 gilt auch für eine Gesamtheit von allgemeinen
charakteristischen Funktionen, für die gilt:

9?(0,a) c 1, für a ^ a <11 b.

Die zu <p(z,a.) gehörige allgemeine Verteilungsfunktion ist dann nach

(1.3) eindeutig bestimmt.

Beziehung zwischen den Momenten

Mit mia bezeichnen wir das i-te Moment des Wahrscheinlichkeitsgesetzes

F(x,tx) bezüglich des Nullpunktes:
|- CO

fx' üFJxa) (2.7)
—00

Boraussetzung:

Q>) mlix existiert für jedes a.t\_a,b] und i 1, 2, k [d.h. die
Integrale (2.7) konvergieren absolut].

b) mia ist F-integrierbar nach a für jeden Index i.
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Behauptung:

Es existieren auch clie Momente Mf clor transformierten Verteilung

G(x), und es gilt:

/-h."«- <2'8)

a

i= 1, 2, ..fc wenn & gerade; i 1, 2, ..(7c—1) wenn k ungerade.

Beiveis:

Da die ersten k Momente des durch (p{z,a) repräsentierten Wahr"

scheinlichkeitsgesetzes existieren, hat bekannthch <p{z,a) die folgende

Taylor-Entwicklung:

<p(z,a) 1 + i ml>a z -m^a
*

+ + ik mkflL ^ iwjz), (2-9)

wobei noch gilt: lim eoa(z) 0, für alle a [a,b]. (2.9 a)

z*~ 0

Durch Integration nach a folgt nun:

[7(h)-7(a) G].
b

&{?) cjf^dV^
a

b b bbdV(a) +izJml adV(a) + + %k J7rikAclV(a.) + zkJcoa(z) dV(*)

a a a

Zk

l + iA1z + + ik - Ak -f- zk ß(z), (2.1°)
kl

wobei

Ai $
I mi,adV(a) und ü(z) j coa(z) dV(«)'

Nach (2.9a) und dem Theorem von Lebesgue folgt ausserdem1

lim Q(z) 0.
Z+-0
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Nach ß. Fortet [7] wissen wir:

Hat eine charakteristische Funktion die Form:

0(z) 1 + iALz + +ik Ak -F ^Ü{z),
kl

mit reellen A{ und Q{z)-- 0, wenn z-*- 0, so folgt die Existenz der
(k~ 1) ersten Momente (bezüglich des Nullpunktes) M{. Wenn k gerade
ist, existiert auch Mk und es gilt: b

M' Ä' r(b)-V(a)jm'-äVi")- q'e'"'
a

In einem zweiten Beweis ändern wir die Voraussetzung b) ab, indem
wir jetzt fordern:

<p(z,a) i 1, 2, k (2.11)
dz

ist eine F-integrierbare Funktion in a für jecles 2, \z\^Q.
Mit Hilfe dieser neuen Voraussetzung lässt sich die Falluntorscheidung k
gerade bzw. ungerade, umgehen.

Beiveis: Wir führen zuerst einige Abkürzungen ein.

8 8

dzh
<HZ) #*(«)>

dann folgt: cpk{0,a) ikmk &k(Q) ik Mk, U| <1 q

b

^i(2) — i I dV(c8) lim
*

0 / h*. o 0

q>(z+h,<x) — q>(z,a) -fiM 17(a).

Sei nun {/tn} eine beliebige Nullfolge für n--oo, dann gilt:

(p(z+hn,<x)—<p(z,a.)
lim — 93i(;Sf)a) ^im ?«(a) ~ ^ *ur a^e a j
n»-co '\i n*-oo

Ausserdem ist ] gn(a) [ ^ Kx für a « [a,b]; somit folgt nach dem Theorem
Von Lebesgue: b

®i(z)— ^ I äV(a) 0.
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Mit der gleichen Beweismethode kommt man sukzessive bis zur fc-ten

Ableitung und erhält endlich:

0k(z) p'J <pk(z,«-)äV(a),

a

oder wenn wir z 0 setzen:
0

Mk l j mk,adv(a.), q.e.d.

a

§ 3. Beweis eines Satzes von Bochner

Satz 1 von § 2 kann auf unendliche a-Intervalle wie folgt
verallgemeinert werden:

Voraussetzung:

a) F(oc) ist eine nicht abnehmende, linksstetige, beschränkte Punktion
in a ig a rg oo.

b) (p{z,a) ist für jedes a«[a,oo] mit Ausnahme von abzählbar vielen

eine charakteristische Punktion. Dabei dürfen die Ausnahmewerte

nicht mit den Unstetigkeitsstellen von F(a) zusammenfallen.

c) cp(z,a) ist für jedes z eine stetige Punktion in a.

Behauptung:

Es ist auch oo

(3'1)

a
eine charakteristische Punktion.

Beioeis:

Man kann leicht zeigen, dass das Integral (3.1) für jedes feste £

existiert und somit den Grenzwert von Riemannschen Summen
darstellt. Diese sind charakteristische Punktionen, denn bei der Einteilung
des a-Intervalles können die Zwischenpunkte b{ (at ig üj :g ai+1) s°

gewählt werden, dass sie nicht mit den Ausnahmewerten unter b)
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zusammenfallen. Weiter ist nach dem Theorem von Lebesguo &(z)
"wiederum eine stetige Punktion im Nullpunkt. Damit folgt obige
Behauptung.

Anwendung:

S. Bochner hat in [8] ohne Beweis angegeben, dass jede Funktion
der folgenden Gestalt eine charakteristische Funktion ist:

H(z) exp [— z2g(\z\)], g(z)
dV(a)

7? + a2

"wobei F(a) Bedingung a) erfüllt.

Beweis:

(3.2)

exp

Wir setzen:

-1
z2 -f- a2

dV(a, exp _[7(oo)_7(0)] +

V (oo) — 7(0) h,
d V (a)

1 +
8" ]l¥).

somit folgt:

Bekanntlich ist

H(z) oxp [k[h(z)—1]}.

1

(3.3)

cp{z,c£)

1 +

für 0 < a <1 oo eine charakteristische Funktion, die zum Typus der

sogenannten Laplace-Verteilung gehört. (p{z,ct) ist für alle z eine stetige
Funktion in a (0 ^ a ^ oo), wenn wir 93(0,0) 1 definieren. Es ist
deshalb erlaubt, Formel (3.1) anzuwenden, und wir finden, dass h(z) eine
charakteristische Funktion ist.

Nach (1.5) ist auch H(z) eine charakteristische Funktion, denn

exp [/«(«) — 1] gehört zu einem unendlich teilbaren Wahrscheinlichkeitsgesetz,

quod erat demonstrandum.

H(z) kann auch dann noch eine charakteristische Funktion sein,
"Wenn k-*~ 00, sofern dabei H(z) eine im Nullpunkt stetige Funktion ist.
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Dies ist der Fall für: F(a) av, 0 < p < 2;

dV(a) pa^da; r or1
d(Z) P I O 2

lh'>
Z" + CT

a (dayl>0; I da ^ I existiert, da 3 — p > 1;
/ 22 + «2 '

2 =j= 0; f a^1

22 -f- a:

1 r ap
da < I da

2 _L «2 o >

z*p

da
ausserdem: z2g(z)-*Q, wenn z-^0; denn lim /

"V 1+c

nach dem Satz von Lebesgue, da lim 0 für alle

1 + ("V 0<a^i-

Spezialfall:

(z) exp
da

1 +

F(a) a.

exp arc tg( ]
1^1 exp

Dies ist die charakteristische Funktion, welche zur sogenannten Cauchy-

Verteilung gehört.

§ 4. Transformation von Girault

Wir gehen aus von Formel (2.1) und setzen:

9o(z,a) cp(z • a), F(a) a, a 0, b — 1. (4.1)

Dies ist offenbar erlaubt, denn cp(z • a) ist eine in z und a stetige Funktion-

0{z) I <p{z • a) da - - I <p{u) du. (4.2)
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Die zu 0(z) gehörige Verteilungsfunktion G(x) berechnet sich nach
(2.2) wie folgt:

G(x) F[ Ida.
a,

(4.3)

(4.2) wurde von M. Girault in [9] mit Hilfe einer zweidimensionalen
Wahrscheinlichkeitsverteilung hergeleitet.

Satz 1.

Die Transformation (4.2) ist ein-eindeutig und aus 0(z) tp(z)

folgt (p{z) 1 und umgekehrt.

Beioeis: z

a) Sei 0{z) — I
<p} (u) du I <p2(u) du,

dann folgt für z 0

0 he J[<pL(u) — (p2(u)) du,

und durch Differentiation nach der obern Grenze 2:

0 EH cp^z) — <p2(z)

Für 2 0 ist aber: «^(O) <p2(0) (Z>(0) 1, q. e. d.

b) Sei <p(z)
1

ip(u) du,

für z ={= 0 ist die rechte Seite der Gleichheit differenzierbar, somit
auch die linke; es folgt:
<P{z) z<p'(z) -\- (p{z), dann folgt <p'{z) 0 für alle z =£ 0, d. h.

<p(z) G= cp(0) 1.

Nach (4.3) liisst sich G(x) explizit berechnen. Dabei machen wir die
X

Variablensubstitution u, so dass die Fallunterscheidung x > 0 und
a

x < 0 nötig ist.
CF(u)

x I du, x > 0
/ ul

G(x)

F(u)-xl' „ du, x < 0

(4.4)
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Aus der Darstellung (4.4) ersieht man ohne weiteres, dass G(x) für all0

x =£ 0 stetig ist. Dagegen kann G(x) im Nullpunkt eine Unstetigked

hahen, weim F(x) daselbst auch eine hat. Noch präziser:

G(+0) F(+0), G(-0) =F(-0). (4.ß)

Beweis:

Wir beschränken uns auf den Beweis der ersten Gleichheit, da

derjenige für dio zweite ganz analog verläuft.

x > 0, G(x) x 'm du -= x

/ du du
F(A + 0) +1 2

I ir J
A

i 1 \ "i

Sei A fest und strebe x gegen + 0:

G(+0) F(/i + 0) für jedes A>0, wenn auch A-*~ +0,
so erhält man: G(+0) ^F(-f-O), andererseits gilt aber:

G(x) 2^ x F{x + 0)
du

F(® + 0).

Für x - +0 G(+0) ^N(+0), q. o. d.

Verhalten im Unendlichen

(4.2) gilt auch im Falle, dass <p(0) F(oo)--F( — oo) -/= 1, und wir

erhalten:
G(+<*) F(+<*>), G(-oo) F(-oo). (4-c)

Den Beweis können wir uns schenken, da er sich wieder durch elem011'

tare Abschätzungen ergibt.
Wenn <p(0) 1, kann man leicht die folgenden UngleichitogeIJ

herleiten:
a; > 0, 1 ^ G(x) ^ F(x + 0);

x<0, 0 ^G(x) ^, F(x-0).
Die Kurve G(x) verläuft somit für x > 0 immer oberhalb der Kur^6

F(x) und für x < 0 immer unterhalb derselben.
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Untersuchung der ersten Ableitung

Sei £>0 ein Stetigkeitspunkt von F(x), dann gilt:
oo

('Flu) Fix) G(x)—F(x)
G'(x) V (lu~ J - • (4-8)

J u2 x x
X

An einer Stelle x, wo P(a;-|-0) =£ F(x — 0), existiert eine Bechts- bzw.
Linksableitung. Wir kennzeichnen sie mit «+ » bzw. «—» unci erhalten:

G(x)-F(x+0) G(x) —F(x—Q)
UJx) (rjx) (4.8 a)

x x

Für x < 0 erhält man die gleichen Beziehungen wie unter (4.8) bzw.
(4.8a).

Im übrigen ist G'(x) für x > 0 eine nicht zunehmende und für x < 0
eine nicht abnehmende Punktion von x.

Beweis für x>0:
oo oo

vn CF(u) F(x) ('F(u) F(x-\-A)±0, G'(x)-G'(x + A) \'-du--y'-\ \'du + \r'-J u x J tr x-\-A
x x+A

«+J

s
CF(u) F(x) F(x+A)> F(x) A xF{x+A)-(x+A)F{x)

J u2 x x-j-A ~x(x-f-A)^~ x{xA-A)
X

%F(x-\-A) — xF(x) F(x-\-A)—F(x)
x(x-\- A) x-j-A ~

Verhalten der Ableitung im Nullpunkt

Wir untersuchen die Eechtsableitung im Nullpunkt, die wie folgt
definiert ist:

('Flu)
x -y-du-F(+0)

G(x) — G(+0) iG+(0) hm - - hm — -
X a»-+0

oo

- lim
^+0 J U2

X
23
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G'+(0) existiert dann und nur dann, wenn

l

F(u)-F(+ Q)_du (49)
ul

existiert. 0

Im folgenden werden notwendige und hinreichende Bedingungen für die

Verteilungsfunktion F(x) angegeben, damit das Integral (4.9) existiert.

Behauptung: f{u) F{u) _F{+Q) q(m) ; für u_ +0; (4.10)

ist eine notwendige Bedingung für die Existenz von (4.9).

Beweis:

Nach Voraussetzung gibt es zu einem e > 0 ein <5 > 0 derart, dass

für alle a< b < <5:
h

j«>
a

Sei nun 0 < s < r und r 3 s < <5, dann gilt unter Benützung der

Tatsache, dass f(u) eine nicht abnehmende Funktion ist:

^ ['/(«) 7
/(*) fdu f(s) /r\ f{s) 1 f(s)

£> du> log log3 > '
J ul r J u 3 s \sj 3 s 8 £

8 8

q. e. d.

Bemerkung:

(4.10) ist keine hinreichende Bedingung, wie das Beispiel

u
/(«) if— r

I l°g u \

sofort zeigt.

Dagegen ist die folgende Bedingung hinreichend:

/(«) 0(m1+*), tt—+0, e > 0. (4.H)

Folgerung:

Die Existenz von F'+(0) genügt nicht für diejenige von G+(®)'

Analoge Besultate wie die obigen gelten für die Linksableitung G-(d)'
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Definition:

Dio Verteilungsfunktion F(x) heisst unimoclal mit Vertex a, wenn
D(x) konvex ist für x < a und konkav für x>a.
Satz 2.

Einem beliebigen Wahrscheinlichkeitsgesetz F(x) wird durch die
Integraltransformation (4.4) ein neues Gesetz G(x) zugeordnet, das
unimodal mit Vortex Null ist.

In diesem Zusammenhang sei auch auf die Arbeit [9a, S. 157]
verwiesen.

§ 5. Anwendungen und Beispiele zur Giraultsehen
T ransformation

G. Pölya [10] hat gezeigt, dass jede Funktion cp{z) mit den folgenden

Eigenschaften eine charakteristische Funktion ist:

9o{z) ist eine reelle, stetige Funktion für —oo 0 <] 00;

99(0) 1, 9p(—z) 9i(z), lim 9o{z) 0; - (5.1)

99(2) konvex für z > 0;
°°

lim <p(z) 0 kann durch dio weniger einschränkende Bedingung
2*-00

<p{z) 0, für z > 0, (5.1a)
ersetzt werden.

Denn wenn 9?(z) dio Bedingungen (5.1) erfüllt, dann ist <p(z) eine
charakteristische Funktion und somit auch alle Funktionen der Gestalt:

p tp(z) -f- q mit f > 0, q > 0 und p-\-q 1.

Bemerkung:

Eine Funktion, die (5.1) bzw. (5.1a) erfüllt, nennen wir eine
•Pölyafunktion und die zugehörige Wahrscheinlichkeitsverteilung eine

fölyaVerteilung.

Aus der letzten Forderung in (5.1) folgt bekanntlich, dass <p(z)

(mit eventueller Ausnahme des Nullpunktes) eine Hechts- bzw. Links-
Ableitung besitzt.
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Satz 1.

Wenn <p(z) eine Pölyafunktion ist, dann auch &(z) j q>(u)

Beiveis: o

zq>(z)- l<p{u)du

z> 0, </>'(-) ---- - ö2 < 0, <1>\ (0)
99+1

•

zl r %

Durch eine kleine Rechnung erhält man für die Rechtsableitung v°n

®"+(z)
2

22 <p'+ — a<p + I <p{u) du^j ^ 0

Für &'L(z) ergibt sich ein entsprechender Ausdruck.

f

(siehe Figur)*

Wir geben nun eine Klasse von unimodalen Pölyafunktionen »u*

1

<p(z,a)

Beweis:
1+ «

()<a<l. (5.2)

2 > 0, cp'{z) — a (1 + zya'1 < 0, (p"(z) a (a +1) (1 + z)'"'2 > 01

Im weitern existiert eine Darstellung der Form:
Z

l C
cp(z) I ip(u)du,

wobei ip(u) eine charakteristische Funktion ist, denn für z>0 gi^'

v(z) [z(p{z)}'
dz

z 1
- (1 ')

1
</(*">'

(i+z)'\ i+zj (i+^r
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9{z,a) ist aber eine Pölyafunktion für 0 <i a :£ 1, denn es gilt:

g(z,a) ^ 0, g'(z) < o, g" (z) > 0.

f(z) ist somit als Produkt von zwei charakteristischen Funktionen wieder
eine charakteristische Funktion, quod erat demonstrandum.

Graphische Methode für die Giraultsche Transformation im Falle
einer verallgemeinerten Binominalverteilung

Die Verteilungsfunktion F(x), die zu einer verallgemeinerten Bi-
nomialverteilung gehört, ist durch folgenden Ausdruck gegeben:

P(x)

0 x <; l>i

p[, < x <: b2

i
E vi' bi<x^ bi+i
k=l

l\
1

V v'k bt<x^ 0

E Vk + Vo. 0 < x ^ «X

k=l

v'k> °, k l, ...,l

pk > 0, k 0, r

E vi + E Vk =1
/c=i k=0

E Vk + E Vk > «< < ® ^ ai+l
k=l 0

J r—1

E Pfc + E Vk > ar-1 <x^ar
fc= 1 &=0

1, x > ar (5.3)

Zur Bestimmung der transformierten Verteilungsfunktion G(:r) gehen
^vir aus von den Formeln (4.4):

G(a;) 0, für x<ib1.
X

b^x^bz, G(x)
2

clu (~x) (fr ~ ~x Vi'

' P1
®(a;) ist eine Gerade mit der Steigung m[

h
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m[ ist aber nach (4.8a) auch gleich der Bechtsableitung von G(%) 1111

Punkte x blt in der Tat:

n<
V[

M6i) ~

G(x) stellt, wie man leicht einsieht, einen Streckenzug dar. Die einzelnen

Strecken können mit Hilfe von (4.8a) sukzessive konstruiert werden-

Z. ß. gibt
G'+(b2)

G(bJ-F(b2 + 0)
+ V"2/

b2

die Steigung des Geradenstückes zwischen b.2 und bs. Schliesslich erreicht

man den Punkt x br Da,F(— 0) G(— 0) lässt sich der Streckenzug

bis zum Nullpunkt ergänzen. In analoger Weise gilt für positive Wert®

von x: G(x) 1, für x (> ar.
a-r l r-l

-
1 - 0 du +ar-1 ^ x ^ ar > &(X) ~ X

du
2W

ar

X
1 r-i

2 pi + S Vk) +
i
X Clj, / y i o

dies ist wiederum eine Gerade mit der Steigung mr:

t 0 Vr

G'(vi)

ar ar

G(nr_t) — F(ar_{ -0)

G'_(ar),

usw.

Wegen H(-(-0) G(-)-O) kann der Streckenzug auch von der positive^1

Seite gegen den Nullpunkt ergänzt werden.
Im Falle der oben besprochenen verallgemeinerten Binomial

Verteilung lassen sich aus Tabelle 1 besonders schön die wesentliche11

Eigenschaften der transformierton Verteilungsfunktion G(x) ablesen-

G(x) ist nämlich, mit eventueller Ausnahme des Nullpunktes, übel'®'

stetig, konkav für x > 0 und konvex für x<0.
Wir wollen nun zwei Beispiele von allgemeineren Verteilung8'

funktionen auf die Giraultsche Transformation hin näher untersuchen-
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F,G

GW

.h

fW Kr

JlL
61 £>2 ^3 bi 0 Qj 0% ^3

Tabelle 1

B Beispiel:

Hier betrachten wir eine durchwegs stetige Verteilungsfunktion,
die wie folgt definiert ist:

F(x)

1

1 x — a

2 a

1

2

1 x
2 a

0

x 3 a

2 3a

2a a > 0

o <; x <; a

x < o

Durctrelementare Rechnung erhält man:

1

»-([„gSn-logsl+^-b

a; 1

G(a:)
n (log 3a —log 2a) +
2a ^

x Sg 3a

2a <i x ^ 3a

a < x < 2a

31

(loga— logs) + ^ (1 + log3a —log2a) 0 <; x <i a
2a 2a

0 a: <0
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G'(x) ist für x 0 stetig und im Intervall (a,2a) konstant. Dies muss
auch so sein, denn F(x) ist daselbst auch überall stetig.

G+(0) oo, Gi(0) 0.

Zum nähern Verlaufe der Kurve G(x) siehe Tabello 2.
F,C

y.

GM

F(')

0 1 2 3"

a 1 Tabelle 2

2. Beispiel:

F(x) besitze an den Stellen x 0 und x J Unstetigkeiten und
sei sonst wie folgt definiert:

F(x)

X + 'l
_t
2"

l(a+I)
1

x 0

0 < x ^ |
1 ^ x ^ l
< ® ^ £

z >

G(x)

1

7(log;-log® + l) + ,7a

®[i-(!og-2 — log J) + J]+ 2

«[log i -logo; + i (log l — log ») + 56] + -|

0

-> X-
X g d

^ 0

: ^ ^ *

0 < x ^ ~i

Beachte in Tabelle 3 die Konstruktion' bzw. Berechnung dß''

Bechts- und Linksableitung von G(x) im Unstetigkeitspunkt x 1'



G(x)

F(u)
x I du, x > 0

/ M2

/ F(u)
- X I du, x<()

I u2

tg«+

tg<x_

«(D-^a+o)
f>

•t

'I'abelle ii

§ 6. Verallgemeinerungen der Giraultschen Transformation

Sei cp(z) eine charakteristische Funktion, die zur Verteilungsfunktion

F(x) gehört. Dann ist nach (2.1) bzw. (2.2) auch
l

0b\z) I 9j(z a) (l(av), 0 < j) < oo ((i. 1)
6

eine charakteristische Funktion, die zur Verteilungsfunktion G{p)(x)

gehört, wobei:

(fW(x) f(X)(1(^). («.2)

F hat für jedes x ^ als Funktion von a betrachtet, (0 <( a <( 1),

höchstens abzählbar viele Unstetigkoiten. Ausserdem ist aP für jedes

P> 0 eine stetige Funktion in [0,1]. Somit existiert das Integral (6.2)
Hn Riemannschen Sinne für jedes x-f^O.

Durch (6.2) wird also einer Verteilungsfunktion F(x) eine ein-

parametrige Schar G(p](x) von neuen Verteilungsfunktionen zugeordnet.
Wir nennen sie die ^-Verteilungsfunktionen.
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Die Giraultsche Transformation ergibt sich als der Spezialfall p
1 •

(6.1) lässt sich mit der Variablensubstitution z-ct u wie folgt uin-

formen:

(ß{lp\z)

V
<p{u) uv 1 du,

-z)f

z > 0;

q>(u) (—u)p-1 du, z < 0.

(6.3)

Analog folgt aus (6.2) mit u:
et

PxP J

G{v)(x)

r F<u)p(-'r <-«)»',i"'

x>0;

x < 0.

(6.4)

G{v\x) ist eine stetige Verteilungsfunktion für x =/= 0. Im Nullpunkt

gilt wieder wie in (4.5):

Gw(+0) F(+ 0), Gw(— 0) F(— 0). (6 •5)

(6.4) kann auch auf eine allgemeine Verteilungsfunktion angewandt

werden. Dann gilt:

Gw(+oo) -F(+oo), G{v)(—oo)=F(—oo). (6-6)

Den Beweis obiger Delationen geben wir in einem andern Zusammen*

hange am Ende von § 7.

Aus (6.4) folgt noch ohne weiteres:

Gw(x) ^ p x"F(x + 0)
du

uV+1
F(x -f- 0), x > 0;

(6.?)

du
GM(x) ^ p{—x)pF(x—Q) |

_
~uy,+ i F(x—0), x < 0.
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Weiter besitzt G{v\x) in jedem Stetigkeitspunkt von F(x) eine erste
AbleitUng:

d G®(t)-F(x)Gö"(®)=p--U (\ x=/=Q. (6.8)dx x

In einem Unstetigkeitspunkte von F(x) existiert eine Kechts- bzw.
Linksableitung von G[v\x). Im Nullpunkt brauchen dieselben jedoch
nicht immer zu existieren. Man kann leicht zeigen dass:

oo

CF(u)--F(+ 0)
limaF" I y - dn A<oo (6.9)

X^-hO J
X

eine notwendige und hinreichende Bedingung für die Existenz von
GW'(O) ist.

Sei x =/= 0 ein Stetigkeitspunkt von F(x), dann folgt nach (6.8):

F(x)
1

[p G{v\x) - x G(v)'{x)]. (6.10)

If(a;) ist somit in jedem Stetigkeitspunkt durch G{r'\x) eindeutig
bestimmt. Da wir F(x) wie immer als linksstetig voraussetzen, besteht
also zwischen F(x) und G{v)(x) eine ein-eindeutige Beziehung.

Bemerkung über unimodale Verteilungen

Wir haben bereits gezeigt, dass die Verteilungsfunktion G^\x)
unimodal mit Vertex Null ist.

In der Folge geben wir eine neue Klasse von unimodalen
Verteilungsfunktionen an:

Satz 1.

Sei F(x) eine beliebige Verteilungsfunktion. Dann ist die Gesamtheit

der durch (6.4) definierten Verteilungsfunktionen G^v\x) für alle p
(0<p< 1) unimodal mit Vertex Null.

Bevor wir den Beweis durchführen, sei noch vermerkt, dass man
durch einfache Beispiele zeigen kann, dass obiger Satz im Falle p > 1

Uicht mehr richtig ist.
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Beweis:

Wir beschränken uns auf den Beweis dor Konkavität für x>®-
Die Konvexität für x < 0 beweist sich ganz analog.

a) x> 0 derart, dass K(a;-|-0) — F(x—0) > 0, dann folgt nach

1 p(!!<k. I'(I+0)
p clx W 1

J ii»+l

Eine entsprechende Delation ergibt sich für die Linksableitung. Durch

Differenzenbildung folgt dann:

d+
G{p\x) - d~

G{v\x)
clx dx

F{x -0)—F(x + 0)
<()

1

V

b) Seien nun x> 0 und {x-\-A), A > 0 Stetigkoitspunkte vonF(x)

Zu zeigen: d dö D G{v\x +A)~ - G®(x) ^0,clx dx

D <p(x + A)p p+idu— — v+idu+ "
J upt x-\-A J uv h x

x+A x

x+A oo

- -"xr + "»-'z+j+lr'
x x \-A

Da nach Voraussetzung 0<p<l ist obige Summe kleiner als:

iM °°

+vi<,x+*r-^}nx+A)J j" + 'f
ac x+A

o, „.„d.

Verhalten der Gl-V\x) für ejrosse Werte des Parameters p

Sei F(x) eine nicht unimodale Verteilungsfunktion. Es gibt dan11

eine Schranke A > 0, derart, dass für p > A alle Gi-P\x) nicht uniinodal

sind.



— 365 —

Beiveis:

Gäbe es keine solche Schranke A, so könnte man eine unbeschränkt
wachsende Folge {p„} von Parameterwerten angeben, für die G(Pn)(a:)

unimodal wäre. Nach einem Satze von Lapin [4, Seite 160 ] inüsste dann

lim G^"\x) G(x)
auch unimodal sein. n"°°

Andererseits ist aber G(x) gleich der ursprünglichen Verteilungsfunktion

F(x), denn: +00

limä>(p)(s) q>(e) feüxdF(x).

Nach (6.3): z-ö

(Fr\z) ^ j <p(u) u*-1 du-j-
^ I <p(u) du; z>0, <5>0.

zv ] zv

o

Beim zweiten Integral auf der rechten Seite benützen wir den 1.

Mittelwertsatz der Integralrechnung. Dazu zerlegen wir <p(u) in Eeal- und
Imaginärteil:

<p(u) 91 (p(u) + i^(p(u) ~ r(u)

Z-Ö

p-l
&*\z) l j (p(u)(Jjdu+ 1^[r(2 — &1d)+ih(z—&ad)] j u^du,

0 s-ö

und #2 sind Zahlen zwischen null und eins. Für noch so kleines
<5 > 0 gilt daher:

lim <P^(z) r(z—P1d) + ih(z—,
J)>- CO

dann folöt lira ^'(g) r(z) -\-ih(z) <p(z), q. e. d.

Beziehung zwischen den Momenten

"Sei mk das fc-te Moment'bezüglich Nullpunkt der Verteilung, die
zur charakteristischen Funktion <p(z) gehört. Ebenso MktP das fc-te
Moment von (P{p\z).
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Satz 2.

Ans der Existenz von mk (k natürliche Zahl) folgt diejenige von

Mk für jedes 0<p< oo, und es gilt:

MkiP=
V

mk. 6.12
k+p

Beweis:

fc-tes Moment von k
<p{z-a.) mka a. mk.

Da Voraussetzung (2.11) erfüllt ist, folgt gemäss (2.8):

l l

Mk,v %• J<*'£ d(a.p) pmk j a.p+,1~1 da.
^ ^ mk.

0 0

Überdies gilt: \imMhtP mk.
CO

In einem folgenden Satz werden wir dio Invarianzeigenschaft der

Pölyafunktionon bei der Transformation (4.2), verallgemeinern.

Satz 3.

Wenn <p(z) für 2^0 eine stetig differenzierbare Pölyafunktion ist»

dann ist die durch (6.3) definierte charakteristische Punktion eine zweimal

stetig differenzierbare Polyafunktion.

Beiveis:

Nach (6.3) p C
#<*>(*) ^ <p(u)vrldu, 0<p<oo;

0

z> 0, zv ^ &p\z) + p zP"1 &{p)(z) p cp(z) z*~\

dann folgt" Z Z

p zv <p(z) — p2 J (p{u) u1^1 du p zv <p(z) — q>(z) p2 J iif1 du

®{P)(Z) °M - < -
0 - - 33 0;

Iz
V ' zp+l - zp+i

p z2p+1 (p'(z) — p(p-\-l) z2pf(z) + p2(p-\-l)zv J (p('ll)UP

0

idi'
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Durch partielle Integration ergibt sich :

<p(z) zv 1

win) udu — | 99 (u) uv du ;

p p
o o

dz2
0{p\z)

1

»2P+2
pz2p+1 <p\z) — p(p-fl) zp I <p'(u) uv du

Da (p'(z) stetig ist, folgt nach dem 1. Mittelwertsatz der
Integralrechnung :

Z Z

(' C ZV + l
I <p'(u)updu — ip'(C) I updu <p'(Q - 0<£<z.J J P +1

0 0

Nach Voraussetzung ist aber q>'{z) für z > 0 eine zunehmende Funktion.
Deshalb folgt: cp'(£) < <p'(z) und endlich:

0(z)
P

[(p'(z) — 99'(C)] 0 • q. e. d.
dz2

Siehe auch [9a, S. 290],

§7. Erweiterung der p-Verteilungen auf negative Werte
des Parameters

Selbstverständlich können wir eine Ausdehnung der Transformation

(6.1) nicht d urchführen, indem wir einfach p durch —p ersetzen.
In diesem Falle würde ja das Integral (6.1) im Nullpunkt divergieren.
Die Verallgemeinerung gelingt aber auf folgendem Umwege:

Sei <p(z) eine beliebige charakteristische Funktion, die zur
Verteilungsfunktion F(x) gehört. Dann ist sicher auch die folgende Funktion

eine charakteristische Funktion:

l
j (p(z-x1/p) doc, 0<p<oo. (7.1j

b
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Mit der Substitution z • allp u folgt:

xFWp){z) 0<P'(2)

V
(p(u) up~1 du, 2>0;

(7.2)

(-*)p
I (pWt—u^du, z<0.

Jede ^-Funktion lässt sich als V-Funktion schreiben, indem man

vom Parameter p zum reziproken Wert übergeht, wie aus (7.2) er-

sichtlich ist.

(7.1) lässt sich nun ohne weiteres auf negative p-Werte ausdehnen:

l

W^llp\z) — J (p{z-cCl,v) da, ()<p<oo. (7-3)

g
Mit -

1/p u folgt dann:

y^l»\z) &~p\z)

p
I <P(U)

1
p zp I du,' up+l

<p(u)

(—u)p+1
l>(-z)p I "Zu, plu>

z> 0;

z< 0.

(7.4)

Die zu 0(-'v\z) gehörige Verteilungsfunktion Gl p\x) heisst:

G{-v\x) jF(x- a1/p) da

0

- I Flu) up~L du, x > 0;
sy>P I

(7.5)

(_I (~u)^ du' x<°-

G( p\x) ist für x =j= 0 eine stetige Punktion. Im Nullpunkt gilt:

(?H')(_1_0) F(+0), G(~p)(—0) F(~0). (7-6)
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Für eine allgemeine Verteilungsfunktion gilt:

2?(+oo), oo) F(— oo). (7,6a)

(7.5) besitzt in jedem Stetigkeitspunkt von F(x) eine 1. Ableitung,
namllch: d F(x)-G(x)

G<-pl(a;) p - a^O. (7.7)
da; a;

In einem Unstetigkeitspunkt von F(x) existiert eine Rechts- und eine

Linksableitung von (F'p\x): (7 7 a)

V G,,.w _ ,»<.•*>-<*>>, i- G„,(I) _dx x dx x

In Satz 3, § 6, haben wir gezeigt, dass unter gewissen
Voraussetzungen die Integraltransformation (6.1) Pölyafunktionen wieder
in solche überführt. Dasselbe gilt auch für die Transformation (7.4).
Doch dieselbe führt noch viel allgemeinere reelle Punktionen in
Pölyafunktionen über.

Salz la.
Sei <p(z) eine reelle Punktion, definiert in —oo z ^ -[-oo mit den

folgenden Eigenschaften:

| 1' V® — ^ für alle z'
[ 9o(z -\-A) sS <p(z)' für alle z>0 und A > 0.

Behauptung:

Die nach (7.4) transformierten Punktionen sind für alle p(0< p ^ 1)

Pölyafunktionen.

Beweis:

Sei £>0 ein Stetigkeitspunkt von <p(z), dann folgt:

i 0{Z) „M j <P(U)

_
<P(Z)

T tF+l z
< 0.

Sind z> 0 und z-j-A Stetigkeitspunkte von <p(z), so kann man analog
*ie beim Beweise von Satz 1, § 6, zeigen, dass für 0< p <j 1:

&'(z -\-A) — @'(z) 72: 0, für alle z > 0 und A > 0.
24
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Satz lb.
Sei 0(z) eino Pölyafunktion und p ]> 1 eine beliebige vorgegebene

Zahl.

Behauptung: 1 Q\
<p(z) \p0(z)—z0'(z)\ ">

ist eine Funktion mit den Eigenschaften (Ii) und es gilt:
CO

0(z) (T>rV\z) pzv ^ du, für z> 0. (7-8a)
J uV

Z

Hpibpi <? * c

<p(z+0) - <p(z-0) [0'_(Z) - 0'+(z)} ^ 0.

<p(z) hat also nur Unstetigkeiten 1. Art und diese treten höchstens

abzählbar oft auf [11, S. 286]. Seien z> 0 und z-\-A Stetigkeitspunkte
von 0'(z), dann folgt:

A A p A p

da nach Voraussetzung 0(z) eine konvexe Funktion in 2>0 ist wIlC^

p 1. 9o(z) ist somit für z > 0 eine monoton abnehmende Funktion.
Weiter ist:

hm q>(z) hm 0(z) 1,
denn: 2"°

lim — z0'(z) 0 und lim — z0'(z) 5S lim 1 — 0(z) 0.
2>-0 Z>- 0 Z>- 0

Im übrigen sieht man leicht ein, dass cp(z) 0, cp(z) 9o(—z).

besitzt also die Eigenschaften (E).

Wir wollen nun noch (7.8a) beweisen:

0(U)—U0'(U) V5 \
I V f®(«) f ^ ihn

0{rV\z) pzv f p+1
du — pzv I du — zp '

U J 11

p I 0(u} J v0^> / 0(n)
I ..p+idu ^(2)- q-e-d-

#
U

u z J
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Satz 2.

Wenn <p{z) eine reelle, positive charakteristische Punktion ist, die
für ^>0 nicht zunehmend ist, dann gehört sie zu einer für alle

stetigen Verteilungsfunktion.

Beiveis:

0'rl\z) ist nach Satz 1 eine Pölyafunktion, die zur Verteilungsfunktion

x

G[~1\x) —
*

jF(u)du (7.9)

gehört. 0

Bekanntlich besitzt aber eine zu einer Pölyafunktion gehörige
Verteilungsfunktion für a; =£ 0 eine stetige erste Ableitung.

X

G^fx) — - (p'('u)dtt, x 0.
dx W x x2 J

0

Die Differenz auf der rechten Seite kann aber nur dann eine stetige
Punktion sein, wenn F(x) stetig ist, quod erat demonstrandum.

Beziehung zwischen den Momenten

Gemäss (7.4) folgt:

dz
0^\z) fz^ I ——du, z> 0. (7.10)

Setzen wir p 1, so folgt:

d
tfi-lw 2>0. (7.Ila)dz

Die Kechtsableitung von 0<rl\z) im Nullpunkt existiert dann und nur
dann, wenn

/w(u)
— 1

j(, (7.11b)

existiert. 0
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Satz 3.

Die zu der charakteristischen Punktion gehörige Verteilungsfunktion

besitzt keine Momente bezüglich dem Nullpunkt.

Beweis:

Sei cp(z) eine beliebige charakteristische Funktion, deren 1. Moment

bezüglich Nullpunkt existieren soll

f(z) 97 cp(z) + i 3 q>(z) r(z) + ih(z).

i, 0^l)(z) 2 j (p^ du z
I u2

'rlu) C h(u)
du + % I

_
du

u*
R(z) iH$'

dz

d

dz

H 0{'l\z)

0^](Z)

r(u)--l h(u)
du + 'i I clu,

uz f u2

r{u) - - L h(u)
du + % I du.

u2 ] u2.

(7.12)

Aus der Existenz der 1. Ableitung von 0( l'(^) im Nullpunkt, folgt

durch Differenzenbildung der Gleichungen (7.12):

r(u) - 1

du 0. (7.12 a)

Dies ist aber nicht möglich, denn r(z) ist eine reelle charakteristische

Funktion und r(2) — l ^ 0. r{z)~ 1 0 ist nur möglich auf einet

nicht überall dichten Punktmenge in z 0, denn andererseits wate

r(z) 1, was wir ausschliessen wollen. Es gibt somit ein Intervall

ri6[0,co] für das r(z)—l <0. Integral (7.12a) ist also kleiner als Nulk

quod erat demonstrandum.

Beispiel:
cp(z)

1 4-z2
(p'{0) 0.
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oo

*>o, &-y) 2 I
1

•

1

& 2
/ 1 it

rk / du
h

1 + M:

2
TT 1

arc tg ä — 4-
2 «

gemäss (7.11b) folgt:
I 7X I 7%

<(o) - 2, ®:(o) + 2.
Bemerkung:

Die Transformation (6.1) kann auch durch folgende Verallgemeinerung

der Funktion F(a) od' erweitert werden.

Sei <p(z) eine beliebige charakteristische Funktion, die zur
Verteilungsfunktion F(x) gehört. F(a) ist eine nicht abnehmende stetige
Funktion in 0 < a :h I. mit F(0) 0 und F(l) 1. Dann ist auch

l

0(z) I'<p(z a) dV(tx) (7.13)
ö

eine charakteristische Funktion, die zur Verteilungsfunktion

gehört.

G(x) I F^XJ dV(a) (7.13 a)

Wir werden nun sehen, dass sich einige Eigenschaften der

Verteilungsfunktionen auf obige Transformation übertragen lassen.

Da für a;>0, F(^X^j ^ F(x-\-0); und für z<0, f(^ ^j<^F(x—0),

für alle 0 a < 1, folgt:

x > 0, 12: G(x) 2: F(x + 0);

x>0, 0^G(x)^F(x — 0).
(7.14)

Im weitern ist G(x) wieder eine stetige Verteilungsfunktion für x =f= 0.

Im Nullpunkt, bzw. im Unendlichen gilt:

G(+0)=F(+0), G(-0)=F(-0);
G(+oo) ~ Foo), G( oo) F(— oo).

(7.15)



Beweis:

Zu zeigen, class für eine beliebige Nullfolge {}:
lim G(a;+^ln) — O(x) 0, für alio x -/= 0.

x fest, G(x-{-An) — G(x]

x4~A„\ ixF n)-F dV(a.) [Fa(x +AJ~FaW\dV(*)-

F(x) hat höchstens abzählbar viele Unstotigkeiten. 15m fester Wert von

x ist deshalb für fast alle a. (0 <( a ^ 1), d. h. mit Ausnahme von

abzählbar vielen, ein Stetigkeitspunkt von F | J Fa(x). Dann folgt

Yim FjxAr A,)—Fa{x) 0, für fast alle a [0,1.1 •

n>-oo

Nach dem Theorem von Lebesgue folgt dann die Behauptung ohne

weiteres. Ferner folgt nach den gleichen Überlegungen:

G( + 0)—F(-\-Q) lim
x- -l-o

F -F( + 0) dV(a) 0.

Ähnlich verifiziert man die andern Gleichheiten unter (7.15). Dannt

sind auch (6.5), (6.6), (7.6) und (7.6a) bewiesen, denn dieso ergeben

sich als Spezialfälle von (7.15).

Iteration der Transformation J cp(z • a) d V(a)
o

In diesem Abschnitt wollen wir uns überlegen, gegen welche

Funktion eine beliebige charakteristische Funktion bei fortgesetzter
Anwendung der Integraltransformation (7.13), strebt. Zur Abklärung
dieser Frage ist es zweckmässig, die betrachtete Funktionenklasse wie

folgt zu erweitern:
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Voraussetzung:

a) F(a) ist eine nicht abnehmende Funktion in 0 rg a 1 mit
F(0) 0 und F(L) 1.

Weiter soll ein Wert a„(0<a0< 1) existieren, so dass F(a0) >0;
b) f(z) ist eine reelhvcrtige, beschränkte Funktion in —oo <^z^L + oo,

stetig im Nullpunkt und /(0) 0.

}{z- a) ist F-integrierbar in a für jedes z.

SütZ'
lim/„(«)=/(0) 0,

wobei
1

fx(z) T(f) [f(z a) dF(a) und /i+1 F(/;), i 1,2,....
b

Beweis:

Um die Iteration durchführen zu können, müssen wir voraussetzen,
dass fiiz'd) für jedes z F-integrierbar in a ist.

1. T(f) ist ein linearer und monotoner Integraloperator, d. h.

TQ+g) - T(l) + T(g), T(c /) cT(f) für jede Zahl c.

T(f) j> 0 wenn / 5: 0, oder aus / <j g folgt: T(f) <( T(g).

2. Mit / ist auch T(f) monoton abnehmend (bzw. monoton
zunehmend), denn es gilt z.B. für ä>0:

l
7c > 1, f\(kz) —/i{z) f [Kftzu) — f(za)] dV(a) <( 0.

0 FÖ

3. Wenn f(z) monoton abnehmend ist, dann gilt:
lim /„(*) /(°)

denn t

« > 0
> /» hl(2) - /»(*) | [/»M — /»(*)] (1V(K) W 0 •

ö r0

Für ^ > 0 ist \[n(z)} eine monoton wachsende Folge von beschränkten
Funktionen (entsprechend für z<0 eino monoton abnehmende Folgo
von beschränkten Funktionen), konvergiert also gegen eine gewisse
Funktion 'j{z). m 0.
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Nach dem Theorem von Lobesgue folgt nun:

litn T(/„) T (lim /„) T(g) g.
«>00 «> oo

Die Grenzfunktion g(z) ist somit das Fixelement bei der Transformation

T, d. h. es muss sein:

j [g(za) — g(z)\dV(a) 0, für alle z.

g(z) ist als Grenzfunktion von monoton abnehmenden Funktionen wie-

der monoton abnehmend, dann folgt:

z> 0, g(zoCj — g(z) ^ 0, für alle ürgia^l*

Sei z> 0 ein beliebiger, aber fester Wert, dann folgt:

i ß

0 f [g(za) —g(z)] dV(a) ^ j [g(za) —g(z)] dV(a) ^ \g(zß) —g(z)] V(ß) § °'
5 ö

für a0 ^ ß <1 ^

Somit g(zß) — !l(2) > für alle 0<z<A.
Da f(z) nach Voraussetzung im Nullpunkt stetig ist, gilt das gleiche für
die Grenzfunktion g(z), und es folgt:

g(z) lim g(zß") — g(0) 0, für alle 2>0, q. e. d*

«»oo

Für z < 0 folgt der Beweis analog.

4. Ist f(z) eine beliebige Funktion mit den Eigenschaften b), darin

nehmen wir für z> 0 eine nicht zunehmende, beschränkte Funktion

f*(z) mit f*{z) t== tiz) > z-

f*{z) inf /(£).
0<iKz

Ausserdem existiert eine nicht abnehmende Funktion f**(z)
f**(z) Azf(z)- Nach 1. und 3. folgt dann ohne weiteres:

z > 0, 0 lim f*(z) <S lim fn(z) ^ lim ff*(z) — 0, q. e. d.
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Spezialfall:

f(z) <p(z) charakt. Funktion 97 <p(z) + i% <p(z) — r(z) + i h(z).

r(0) 1, /;(()) 0, r(z) | ^ 1 und j h(z) | ig 1.

Die Voraussetzungen für die Anwendbarkeit des obigen Satzes sind
erfüllt, und es folgt: Hm^ ^ _ j

n*-co

mit ; 1

<P\(z) I <p(zx) dV(cc) und <pi+1(z) Jtp^za) dV(a.).
ö o

Durch Iteration der Transformation (7.13) strebt die Folge der
charakteristischen Funktionen tpn(z) gegen die charakteristische Funktion <p(z) 1.

§ 8. Schwache und vollständige Konvergenz
von Verteilungsfunktionen

Wir betrachten Folgen von allgemeinen Verteilungsfunktionen und
deren Grenzfunktionen.

Definition I.
Fine Folge von Verteilungsfunktionen {T),(a;)} heisst im schwachen

Sinne (—s-»-) gegen eine Verteilungsfunktion F(x) konvergent, wenn
Fn(x) ~^£~F(x) in jedem Stetigkeitspunkt von F{x).

Definition IL
Fine Folge {Fn(x)} konvergiert vollständig (—V-»-) gegen eine

Verteilungsfunktion F(x), wenn Fn(x) ~s * F{x) und zusätzlich:

I«(+ °°) + °°), °°) ^(— °°) •

Sei 9o(z) die zu F(x) gehörige allgemeine charakteristische Funktion.
Im Zusammenhange mit der Konvergenz im schwachen Sinne führte
jH. Loeve die sogenannte «integrierte charakteristische Funktion» ein,
die wie folgt definiert ist: z

cp{z) I <p(u) du. (8.1)
ö

M.Loöve [5 a, S. 190 J hat gezeigt, dass Konvergenz im schwachen, bzw.

vollständigen Sinne einer Folge von Verteilungsfunktionen äquivalent
ist mit der Konvergenz der zugehörigen integrierten charakteristischen
Funktionen bzw. gewöhnlichen charakteristischen Funktionen.



Wir geben nun eine neue notwendige und hinreichende Bedingung

an für schwache, bzw. vollständige Konvergenz:

Satz 1.

Es sei Fn(x) —s--F(x). Wir ordnen jetzt jeder Verteilungsfunktion
Fn(x) gemäss (6.4) die p-Transformierte G^\x) zu. Dann gilt:

G\f(x) —s-*- G^Xx), für alle 0<p<
wobei G^PXx) die ^-Transformierte von F(x) ist.

Beiceis:

Wir können uns auf den Fall x > 0 beschränken, da der Beweis für

x < 0 analog verläuft. Gemäss (6.4) folgt:
oo oo

G*\x) pxrj^du -xpJ s>°-
X X

Nach einer partiellen Integration ergibt sich:
oo oo

a«(x) - f 1
dFju)\ -A-F"t-x) - I 1 äF,w]-

1 J «' I 1 J «'
X X

Um den Grenzübergang n-*- co ausführen zu können, benötigen wir
das verallgemeinerte Lemma von Helly-Bray [5a, S. 181].

Lemma:

Sei a > 0 und g(u) eine stetige Funktion im Intervall (a,oo) mit

</(+oo) 0.

Aus der Tatsache, dass Fn(x)—s-*-F(x), folgt dann:
oo oo

fgill) dFJu) —- J g(u) dF(u).
a a

In unserem Falle ist g(u) Diese Funktion erfüllt für alle 0<p<ca
uv

die verlangte Bedingung, und es folgt:
OO CO

{"p'-j>w} - -*fP £ />(»)} - «p!
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Satz 1'.

Sei \Fn(x)} eine Folge von Verteilungsfunktionen, derart, dass

für ein bestimmtes p (0<p<°o): Gjf'(.'r) —s->- G^p\x), dann ist
F„(x) —s--F(x), und F(x) ist in allen seinen Stetigkeitspunkten definiert
durch:

F{x)
1

V
pG^\x)~x (G^(x))

Cltb

Beiveis:

Da jede Folge von Verteilungsfunktionen iin schwachen Sinne

kompakt ist, existiert eine Teilfolge der Folge {K,(#)!, so dass

Fn,{x) —s-»- F{x).

Auf Grund von Satz 1 folgt dann:

x > 0, G$(x) —s-«- G(l'\x) p xp
F(u)
1/P+1

du.

Nach Voraussetzung ist aber G{p)(x) —s— G^'\x), das heisst jede Teilfolge
der Folge strebt gegen die gleiche Verteilungsfunktion G{p\x),
somit folgt:

(rW(x) G^(x) px»
F(u)
ijV+1

du.

Nach (6.10) können wir F(x) in jedem Stetigkeitspunkt berechnen:

Fix) VG{p\x)~x
_

(Gt">(x))
CvOb

F(x),
q. e. d.

Zusatz:

Wegen (6.6) folgt ohne weiteres, dass die beiden zitierten Sätze 1

'ind 1' auch Gültigkeit haben, wenn man schwache durch vollständige
Konvergenz ersetzt.
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Beispiele:

1. Wir betrachten eine Folge von allgemeinen Verteilungsfunktionen,

die wie folgt definiert sind:

1

K(x)

l-
n — 2 1

x 4-
2 n2 2

1

n

x>n

\x\<n

Wie man leicht sieht, gilt: Fn(x) —s F(x) ^

Wir werden nun zeigen, dass auch die Folge der gemäss (4.4)

transformierten Verteilungsfunktionen Gn(x) im schwachen Sin110

konvergieren. Dabei können wir uns auf den Fall a;>0 beschränken-

Man erhält:

Gn(x)

n-2 v
1/1 1 \ 1 / IN

(log n —log z) + - + 1 —
in- 2 \ x n n \ n

x ^ tH

1

1- *
n

2 ""

Für 0< x<oo gilt: limG„(a;) G(x) £.
tl>- CO

Dies ist aber gerade die Transformierte von F(x) Ausserdem-

Fn( + 00) F{+°°)> Gn(+ oo) -/— G(+ oo)
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2. Sei die Folge (-TC/a)} wie folgt definiert:

1 -')(*+ "
2 n / V ii - '2

KW
l

I®! =1

a^l

a < — l

F,(a)

1

11/»

l/»

1

-1 1
+ 1

Offetibar gilt: iOr+l), i.r|^t
1 £ ^ 1

0 x ^ — 1

F„(x)-v-~F{x) -

Nach (4.4) folgt für a>0:

/l l \ 1 / 1 \ 1
I - (— log a) -f- — l + 1 —
V 2 n I " ; 2 \ a / »

1

a ^ 1;

a > 1.

lim fr'„(a) f/(.r)

1 1 l
log x 4- F

2 ° 2a 2
a 1;

1, a > 1.

F(x) unci (7(a) sind in der Tat nach (4.4) verknüpft, denn es gilt:

« < x < 1, (7(a) x

L

("10,?«+
u2 } M

X a'°B*+ä(*"1| + 1

1 1 1

log a -I- I-
2 2a 2
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Für x Si: 1 gilt selbstverständlich die analoge Eolation zwischen F(%)

und G(x). Endlich ist:

_Z^t( —(— oo) F(-\~ °°) 1 und (jh(-\- °°) G(+ °°) 1-

Verallgemeinerung von Satz 1

Wir haben gezeigt, dass ans Fn{x) —s— F(x) folgt:

G^(x) —s-*- G<*\x), 0<p < co.

Dabei waren die Funktionen G^(x) bzw. G^v\x) nach (6.4) definiert.

Ihre ursprüngliche Form ist aber nach (6.2):
1 1

G%\x) J*Fn(-® ä(«F), (P\x) =Jf(ä(cF).
ö 0

Die Gesamtheit der Folgen von Verteilungsfunktionen Fnl-~ )>

a(0,1) wird nun wie folgt erweitert:

a) Mit D bezeichnen wir eine auf der reellen Achse überall dichte

Punktmenge;

b) sei E eine im Lebesgueschen Sinne messbare lineare Punktinenge
und

c) F(a) eine nicht abnehmende beschränkte Funktion in E, mit

fclV(a) 1;

d) sei Fn(x,a) für fast alle a (E (d. h. bis auf eine Menge vom F-Mass

Null) eine Folge von Verteilungsfunktionen. Im übrigen sollen

dann die folgenden Integrale im Lebesgue-Stieltjesschen Sinne

existieren: rxiD, j FJx,a) dV(<x) Gn(x), n — 1,2,
E

Voraussetzungen:

1. Fn(x,a.)—s-*-F(x,u.) für fast alle ociE.

2. Die Menge der a-Werte, für die ein beliebiger Wert xiD Unstetig'

keitspunkt von F(x,a) ist, soll vom F-Mass null sein.

Behauptung: Gn(x) —s-*- G(x) — JF(x,a) dV(a).
E
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Beweis:

Gemäss 2. und 1. folgt:

a:il), Fn(x,a) F(x,a) für fast alle aiE.
Da \Fn(x,a.) ] <! 1 für n 1, 2, und fast alle aiE, folgt nach dem
Theorem von Lebesgue:

x(D, fFn(x,oL) clV(a) Gn(x) -> fF(x,oc) dV(oc) G(x),
L L

q. e. d.
Im weitern ist G(x) für xiD stetig, denn:

\imG(x +A)—G(x) lim j [F(x-\-A,a)—F(x,<x)]dV(a) 0.

Satz 1 dieses § ergibt sich nun als der folgende Spezialfall:

Fn(xA) F(a) a",

für 0 < p < oo; E (0,1), 1) {a 0}.
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