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Beitriige zur Theorie der charakteristischen Funktionen

stochastischer Verteilungen

Yon H, Loeffel, Ziirich

Einleitung

In der Wahrscheinlichkeitsrechnung wird die Verteilung einer
Stochastischen Variablen durch die zugehérige Verteilungsfunlktion gege-
ben. Die Fourter-Stieltjessche Transformierte dieser Funktion, die soge-
Nannte charakteristische Funktion ist durch A.Cauchy [1]Y) im Jahre
1853 cingefiihet worden. In etwas abgednderter Form erscheint sie
bereits frither als erzeugende funktion von P. 8. Laplace [2]. 1920 hat
dann P, Lévy [3] durch zwei fundamentale Sitze die Theorie der
Charalteristischen Funktionen verankert. s sind dies die sogenannte
LéVysche Umkehrformel und der Kontinuitidtssatz. Dieser ist ein
"Vi(:htiges Hilfsmittel zur Liosung verschiedener Konvergenzfragen,
Wsbesondere des klassischen zentralen Grenzwertsatzes.

Die urspriingliche Fassung des Kontinuitiitssatzes wurde von
H, Cramdér, V. Glivenko und D. Dugué dahin abgeiindert, dass sie iiber
dic Avt der Konvergenz der Folge der charakteristischen Funktionen
keinerlei Voraussetzungen machten, hingegen iiber das Verhalten der
Grenzfunktion. So hat D. Dugué im Jahre 1955 bewiesen, dass os ge-
Nigt, den Realteil der Grenzfunktion als stetig im Nullpunkt voraus-
2Usetzen.

Auch in der sogenannten Arithmetik der Wahrscheinlichkeits-
8esetze hat sich die Theorie der charakteristischen Funktionen als
fruchtbar erwiesen. Hier handelt es sich darum, abzukliren, ob sich
®ine gegebene charakberistische Funktion als endliches oder unendliches
Produlet von charakteristischen unktionen darstellen lisst. A. Khint-
thine hat zur allgemeinen Theorie einen wesentlichen Beifrag geleistet.

1) Siehe Literaturverzeichnis auf Seite 3S4.

&
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Von P.Lévy stammt die geschlossene Darstellung einer charakteristi
schen Funktion, die zur Klasse der unendlich teilbaren Wahrscheinlich-
keitsgesetze gehort. Die klassischen Verteilungen von Gauss und Poisson
wurden insbesondere von D. A. Raikov, H. Cramér und D. Dugué
untersucht.

Eis ist nun von grossem Interesse, zu wissen, wann eine Vorgel@gte
Funktion eine charakberistische Funktion ist. S. Bochner hat bereit®
1932 gezeigt, dass jede positiv-definitive I'unkéion, die im Nullpunks
den Wert 1 annimmt, eine charakteristische I'unktion ist. Khintchine
und Cramér stellten notwendige und hinreichende Bedingungen auf, die
aber in der Praxis schwer anzuwenden sind. Zuginglichere Kriterien fi¥
spezielle Funktionsklassen stammen von J. Marcinkiewicz, A. Wintner
und D. Dugué fiir analytische charakteristische Funktionen. . Lukacs
und O. Szasz haben sich in letzter Zeit um dic Diskussion einige"
rationaler charakteristischer I'unktionen verdient gemacht. Tindlich
soll noch die einfache hinreichende Bedingung von G. Pdlya erwihn
werden, wonach gewisse reelle, konvexe Ifunlktionen (sogenannte Polya-
funktionen) charakteristische Funktionen sind.

In der vorliegenden Arbeit behandeln wir eine Integraltranstorma”
tion, die einer Gesamtheit von charakteristischen Funktionen eine neu®
charakberistische Iunktion zuordnet. Diese wird von M. Loove al8
«gewichtete» charakteristische Tunktion bezeichnet und spielt im At
sammenhang mit gewissen Konvergenzsiitzen abhingiger stochastische®
Variablen eine Rolle.

In einem ersten Teil wird die allgemeine Theorie begriindet U
dann fiir die spezielle Gesamtheit der zu einer festen charakteristische®
Funktion im engern Sinne #hnlichen charakteristischen Funktione™
angewandt. Die von M. Girault in einem ganz andern Zusammenhang®
hergeleitete Integraltransformation einer charalteristischen Trunktio®
erfahrt eine eingehende Behandlung. Tm folgenden wird die Crivaultseh®
Transformation verallgemeinert. Dabei gelingt es, eine einparametrig®
Schar (Scharparameter: 0 < p << o) von neuen Verteilungsfunktioﬂen
(die sogenannten p-Verteilungsfunktionen) herzuleiten. Diese erweise!
sich fiir 0 <p =<1 als unimodal mit Vertex Null. Die sinngemilss?
Erweiterung der p-Verteilungen auf negative Werte des Parameter®
liefert uns eine einfache Integraltransformation, die eine bestimm?b®
Klasse von reellen Funktionen in Polyafunktionen {iberfiihrt. Ab-
schliessend wird gezeigt, dass schwache, bzw. vollstindige Konvergen”

nd
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®iner Folge von Verteilungsfunktionen dquivalent ist mit schwacher
bz, vollstindiger Konvergenzderzugehdrigen p-Verteilungsfunktionen.
Ein ei] genannter Konvergenzaussage lidsst sich alsdann wesentlich
Verallgemeinern.

i Teil der Resultate der vorliegenden Arbeit wurde bereits in
awei Comptes-rendus-Noten der Akademie von Paris verdfientlicht [12].

Iis bleibt mir noch die angenehme Pflicht, meinem hochverehrten
Lehrer, Herrn Prof. Dr. W. Saxer, fiir die wertvollen Ratschlige withrend
der Ausfithrung der Arbeit meinen herzlichsten Dank auszusprechen.,

Iibensolchen Dank schulde ich auch den Herren Prof. Dr. E. Specker
(ETH), Prof. Dr. D. Dugué (Sorbonne) und Prof. Dr. M. Lo¢ve (Uni-
versity of California) fiir ihre Anregungen und ihr Interesse, das sie
&0 meiner Arbeit bekundeten.

§ 1. Folgen von charakteristischen Funktionen

Bevor wir zum Thema dieses Paragraphen iibergehen, seien noch
fnige wichtige Definitionen vorausgeschiclt.
Definition 1.

Unter einer allgemeinen Verteilungsfunktion If(z) verstehen wir
®Ine nicht abnehmende, linksstetige Funktion, wobei 0 < FF(z) < 1 in
T = @ = oo,

Aus obiger Definition folgt die Iixistenz der folgenden Grenzwerte:

F(z+40) = lim F(z), Fz—0) = lim F(x,),

¥z 2k
F(+4oo) = lim F(z), — F(—-o0) = lim I'(x);
> fco L»-—00

T heisst ein Stetigkeitspunkt bzw. Unstetigkeitspunkt von F(z), je
Nachdem F(z+-0) — I'(z—0) = 0 oder >0.

Fiir die Anwendungen besonders wichtig ist der Fall
[(—o0) = 0, [I'(+4o0) = 1. (1.1)

Wi nennen dann F(z) schlechthin Verteilungsfunktion.
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Defination 11

Unter der charakteristischen Funktion (), die zur Verteilung®”
funktion I'(z) gehort, verstehen wir die Fourier-Stieltjessche Trans”
formierte beztiglich I'(x):

+00
pl0) = [ aB(a), —oo<z< oo (1Y

Dabei ist der Riemann-Stieltjessche Integralbegriff zugrunde gelegt:

Ist I'(x) eine allgemeine Verteilungsfunktion, so nennen wir e
die allgemeine charakteristische Funktion.

Bekanntlich ist durch die allgemeine charalteristische Iunktion
¢(z) dic zugehorige allgemeine Verteilungsfunltion bis auf eine additLv
Konstante bestimmt. Setzen wir aber fest, dass:

F—eo) =0, (1.9
so ist F'(x) durch ¢(2) eindeutig bestimmt,.

In den nun folgenden Ausfithrungen handelt es sich, wenn nicht
besonders vermerkt, um gewéhnliche charakteristische I'unktionen.

Zusammenstellune der wichtigsten INicenschaften von @(z):
te} o] o] (p

a) @(2) ist eine stetige Funktion fiir —co < 7 << -f-co.

b) @0) =1, p(—z) = @(2) tiir alle z, wobei wir unter g(z) den koo
jugiert korplexen Wert von ¢(z) verstehen,

¢) |p@) | =1, —c0 2= oo

d) Tine charakteristische Ifunktion ist dann und nur dann reell, wen?
sie zu einer symmetrischen Verteilungsfunktion gehort [4, 5. 51)-

W

e) Wenn ¢(2) eine charakteristische Funktion ist, dann auch [fP(Z)J

fiir jede natiirliche Zahl n.

f) Gehort ¢(z) zu einem unendlich teilbaren Wahrschein]ichkeitsgesew ’
dann ist [p(2)]° tiir jede positive Zahl ¢ eine charakteristische Funk
tion.

g) Die normierte Linearkombination von charakteristischen F“nk.
tionen ist wieder eine charakteristische Funktion. Austiihrlich®”
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Seien ¢,(2), @a(2), . .., @,(¢) n charakteristische Funktionen, dann
18t auch
(I)n(\z) = € (]31(3) =T Co (Pz(z) +.o0 Gy, (]9"(2)

n
¥ s & « " 5
mit ¢; =0, 7 =1,2,...,m und > ¢, = 1 eine charakteristische
el
Ifunktion, die zur Verteilungsfunktion G, (z) gehort:

G (x) = ¢, y(x) + ey Fo(z) 4 ... + ¢, E(x).

h) wenn g(2) eine charakteristische Tunktion darstellt, so gilt das-
selbe fiir ¢(z.c) wobel —oo << a0 << + oo.

Satz 7.

Sel ¢,(2), @a(2), - .., @ (2), ... eine unendliche Folge von charak-
beristischen Funktionen. Dann ist auch

D) =c,p)+ ... +e, 00+ ... (1.4)
eine charakteristische Ifunktion, mit ¢; =0, 4 = 1,2, ..., %, ... und
izl ¢, = 1, und gehért zur Verteilungsfunktion G(z) = SO‘J ¢; F.(z).
= -
o

Beypegs D(z) = limP,(z), wobei D (2) = e pi(2).

n
. "V P=
i co 2 01; =1
i=1

(p,}(z) ist aber nach ¢) fiir jedes n eine charakteristische Funktion. Da
% !pi(z)’ < ¢,;, folgt nach dem Weierstrallschen Konvergenzsatz, dass
(1.4) gleichmiissig in 2 gegen eine stebige unktion @(z) konvergiert.
Nach dem Kontinuititssatz folgt endlich, dass @(z) eine charakteristische
Punktion ist. "

A’nwendzmg i

Wenn ¢(z) eine charakteristische Ifunlktion ist, dann auch

®(z) = exp [p(2) —1] (1.5)
Wnd gehort zu einem unendlich teilbaren Wahrscheinlichkeitsgesetz.
Bewez’s: 1 @ 2

D) — (14 %—-5-—#-..—% :'Jr .

e ) l!ﬂ
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Aus dieser Reihenentwicklung folgt die Behauptung nach ]Jhg(—mbchaf
e) und Satz 1. Ausserdem gilt:
n

D(z) = = [pn@)]" furn =1,2 .2

ep{i (1)

wobel @'(z) = exp { : (lp—l)] fiir jedes n eine charakteristische If unk-
n
tion ist. Aus der Definition der unendlich teilbaren Gesetze folgt, dass

®D(z) auch dazu gehort.

Beisprele: —co < @ << fo0
xp [cos (az) —1],
)

¢
exp [¢*—1], Poisson-Verteilung:

|

p(2) = cos (az), DP(z) =
) ==, D)

’

§ 2. Integraltransformation einer Gesamtheit

von charakteristischen Funktionen

Die eingangs behandelte Transformation einer unendlichen F olg®
von charakteristischen Funktionen durch Reihenbildung fiihrt uns
notwendigerweise zur Transformation einer Gesamtheit von charal-
teristischen Funktionen (abhiingig von einem Parameter) durch Inte-
gration nach diesemn Parameter.

Satz 1.
Voraussetzung:
a) @(z,a) ist fir jeden Wert des Parameters « (¢ < « < b) eine charak”
teristische Funktion. .
b) @(ze) ist fiir jeden endlichen Wert von z eine stetige Tunktion i
der Variablen .
¢) V(a) ist eine nicht abnehmende, linksstetige beschrinkte Funk?tio?
m [a,b].

Wenn F(z,«) die zu ¢(z,«) gehorige Verteilungsfunktion darstellh

dann ist nach Definition:
-}« fo'e]

p(2,0) = Jem dF(z,e).

—0CQ
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b
Behauptung: & ] ) - ;

(2) = Vo) —Via) - p(2,0) AV («) (2.1)
ist auch cine charakteristische Funktion und gohort zur Verteilungs-
funktion: b

1
Gz) = - | Fx,0) dV (e) . 2.9
) = 55V f (@) AV (@) 2.2)

a

Bevor wir den Beweis durchfiihren, se1 noch vermerks, dass
M. Liodve (5] auf die Moglichkeit einer Transformation durch Inte-
8ration nach einem Parameter hingewiesen hat. Auf den nihern Sach-
Verhalt geht er aber nicht ein. In [5a] S. 879 hebt er allgemein die
Bedeutung soleher Untersuchungen (im Zusammenhang mit Grenzwert-
Sdtzen abhingiger Variablen) hervor.

Beweis

Iiir jedes feste 2 ist @(z,«) nach Voraussetzung eine stetige 'unk-
bion von « im Intervall [a,b]. Deshalb existiert nach einem belannten
Satze [6, 5.7] das Riemann-Stieltjessche Integral (2.1) und definiert
eine wohlbestimmte Funktion @(z).

Die n-te Riemannsche Summe, die wir mit @,(2) bezeichnen, heisst:

S
- 0 - V(a) 2_:_10(]7(.3',&') [V(“Ml) —V(a,;)] (2.8)

mit ¢y =a, a, =bund a; <b; < a; 4,1 =0,1, ..., (n—1).

?,(2)

D,(2) ist fiir jedes n cine charakteristische Munktion. Bezeichnen wir
Wit § dag Maximum von (a;,,—a;), t = 0,1, ..., (n—1), so folgt:

®(z) = lim D). (2.4)

J»0

Um zu zeigen, dass auch @(z2) eine charakteristische I'unktion ist, ge-
Niigt ey auf Grund des Kontinuititssatzes, deren Stetigkeit im Null-
Punkt nachzuweisen.

Das heisst, es muss gelten:

lim @(z) = P(0) = 1 oder lim [D(z)—1] = 0.

2»0 z2>0
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Diese Relation bedeutet aber nichts anderes, als dass fiir eine belieb1g®

oo 1z L.
Nll“fOlbL {‘dnt . , hm (p(zn) —1 = 0.

ne»co

b b
lim ®(z,) -1 = lim ___ ! i f [0(z,0) 1] dV(e) = lim j o) AV

7= co H»co V(b) - nco
a @

plz,%)—1

mit g, (o) = V(b)— V(a)

Um den Grenziibergang ausfiihren zu konnen, beniitzen wir das

Theorem von Lebesque:

Sei die F'unktionenfolge {g,(«)} in [a,b] gleichmiissig besphl'fi_inl‘t
und V() eine nicht abnehmende, beschrinkte I'unktion in [a,b]. Wen?
limg (2) = g(«) fiir fast alle w€[a,b], d. h. bis auf eine Menge VO

e co

V-Mass Null, dann gilt:
b b

lim f () dV (o) = J'g(a) AV (). (2.5)

n=co o a

Dabei 1st der Lebesgue-Stieltjessche Integralbegriff zugrunde gelegt-

Bemerkung:

Das Theorem von Lebesgue gilt nicht nur fiir ein Intervall, sonder™
fiir eine allgemeine V-messbare Punktmenge f7.

In (2.1) haben wir allerdings das Integral im ]Z{iemann-Stiem‘?s‘
schen Sinne genommen. Dieses existiert dann bekanntlich auch 1%
Sinne von Lebesgue und hat den gleichen Wert.

Da (p(zn,oc)| <1lftirn=12,... und ¢ <o =<"5, und
00) — 1
lim g,(«) = lim Pla) —1 = ] =0
i o0 V(b) — V(CL) ' b]
fiir alle a€[@v)
folgt: _ . F N v
lim @, () —1 = lim j g,(@) V(@) = [0dV (%) = 0;

a @

@(z) ist also stetig im Nullpunkt und somit eine charakteristische Funk”
tion, quod erat demonstrandum.
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Zmr charakteristischen Funktion ¢(z,b,) gehort die Verteilungs-
funktion I'(x,b,), die eindeutig bestimmt ist auf Grund von (1.1).
Deshalb ist der charakteristischen Funktion @,(2) die folgende Ver-
teilungsfunktion zugeordnet:

=

1 n-l » _ o »
(b) —V(a) ; (b)) [V(a‘i-f—l) V{a,)]. (2.6)

=0

[

G (x) = -
H("L) 'V

LI

Nach dem eben Bewiesenen strebt @,(2) tiir jede a-Einteilung gegen
die charakteristische I'unktion @(z). Nach dem Kontinuititssatz kon-
vergiert somit die Ifolge der zugehorigen Verteilungsfunktionen G,(x)
fiir jede a-Finteilung gegen die Grenzverteilungsfunktion G(z). Diese
18t der charakteristischen Funktion @(z) zugehorig. Mit andern Worten :
Sel 2 ein Stetigkeitspunkt von (/(z), dann strebt die Riemannsche
Summe (2.6) fiir jede a-Finteilung gegen den wohlbestimmten Wert
G(z). Damit ist aber gezeigt, dass das Integral (2.2) fiir jeden Stetig-
keitspunkt von G(x) einen Sinn hat.

Bemerkung:
Satz 1 gilt auch fir eine Gesamtheit von allgemeinen charakte-
rstischen Funktionen, fiir die gilt:

) =c¢c<1, firaoa<a=<h.

Die zu g(z,4) gehorige allgemeine Verteilungsfunktion ist dann nach
(1.8) eindeutig bestimmt.

Beziehung zwischen den Momenten

Mit m; , bezeichnen wir das i-te Moment des Wahrschemlichkeits-
gesetzes [M(x,o) besiiglich des Nullpunktes:
+-co
My, = | 2" d(z,0). (2.7)

—CO

Voraussetzung:

) m, , existiert fiir jedes €la,p)und v = 1,2, ..., k [d. h. die Inte-
grale (2.7) konvergieren absolut].

b) m; , ist V-integrierbar nach « fiir jeden Index 1.
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Behawptung:

Es existieren auch die Momente M; der transformierten Verteilung

G(z), und es gilt: ,

: ‘ 8
I\/Ii = V*(b)_V(a) fm,,-,a dV(oc) s (2 )

a

v=1,2, ...,k wenn k gerade; 1= 1,2, ..., (k—1) wenn k ungerade-

Bewens:

Da die ersten & Momente des durch p(z,x) roprisentierten Wahr-
scheinlichkeitsgesetzes existieren, hat bekanntlich ¢(z,x) die folgende
Taylor-Entwicklung:

22 . 2
P(z,0) = 14 amy o z2—my, 5 iws o o ¥ My, o o + P w2, (2-9)
!
wobei noch gilt: limw,(2) =0, fiir alle «€[a,b]. (2.98)
z»0

Durch Integration nach e« folgt nun:

[V(b)—V(a) = C].

[ b b b

:7 [ f dV (o) + 12 f My, dV () + ... 44 Z]: f My, o AV () +z’”‘fa)a(z) CIV(“)]

a a a a
%

:1—[—i/11z—|—...+i’°ZT-Ak—|—z"'Q(z), (2.10)

b b

4, == (1;’ f m; o AV () und (z) = é f 0y (?) AV (a)-

wobel

a a

Nach (2.9a) und dem Theorem von Lebesgue folgt ausserdem:

lim 2(2) = 0.

z»0

=
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Nach R. Fortet [7] wissen wir:

Hat eine charalteristische unktion die I'orm:
. h
D) =1+1dz2+ ...+ 7}"] -, of- F0(),
!

mit reellen 4, und £2(2)-- 0, wenn z-- 0, so folgt die Existenz der
(k—1) ersten Momente (beziiglich des Nullpunktes) M,. Wenn k gerade
Ist, existiert auch M, und es gilt: i

1
M‘. :A — - 5 7n~adVCC N . 6. d.
2 ] % V(b)—V((L) J (23 ( ) q
a
In einem zweiten Beweis dndern wir die Voraussetzung b) ab, indem

wir jetzt fordern: p

i)y 8 =19 ...k (2.11)
oz
I8t eine V-integrierbare Funktion in « fiir jedes z, /E <op.

Mit Hilfe dieser neuen Voraussetzung lisst sich die Fallunterseheidung k
gerade bzw. ungerade, umgehen.

Beweis: Wir fiihren zuerst einige Abkiirzungen ein.

0 )
2 Pla,0) = g(2,0), 0 D(z) = Dy(2) ,
d&nn fO]gt (pk(o,ot) - ’ik "ynk,a’ (ph(o) = 'I’lk Mk’ ‘ZI é g,
b b
1 [ 1 +h,0)— (2, _
) | f Pi(6@) AV(6) = lim- f [‘p(z PR )| 7).
-0 : ]

Sei nun {h,} eine beliebige Nullfolge fiir n--co, dann gilt:

+h0) — (2, .
lim plth 7) " a),__%(zja) = limg,(«) = 0 fiir alle «,
1w 0o by n-co
Ausgerdem ist | g,(«)| < K fiir o €[a,b]; somit folgt nach dem Theorem
Von Lebesgue: "

D,(2) — éf%(z,oc) dV(x) = 0.

a
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Mit der gleichen Boweismethode kommt man sukzessive bis zur k-ten
Ableitung und erhilt endlich:

1 ,
(blc(z) - Of(pic(z?a‘) dV(Oc)’
oder wenn wir 2z = 0 setzen:
1

M, = -O-J My, AV (ar) q. e. d.

@

§ 3. Beweis eines Satzes von Bochner

Satz 1 von § 2 kann auf unendliche «-Intervalle wie folgt verall-
goemeinert werden:

Voraussetzung:

a) V(x)ist eine nicht abnehmende, linksstetige, beschrinkte IPunlktion
in g <<o=<oo.

b) (za) ist fiir jedes o€[a,c0] mit Ausnahme von abzihlbar vielen
eine charakteristische Funktion. Dabei diirfen die Ausnahmewerte
nicht mit den Unstetigkeitsstellen von V(«) zusammenfallen.

¢) p(z,a) ist fir jedes 2 eine stetige Funktion in .

Behawptung:
Iis ist auch o0
i :
D(2) = —————— | ple,e) AV () (3.1)
Vios) — V(@) ] (

eine charalteristische I"'unktion.

Beweis:

Man kann leicht zeigen, dass das Integral (3.1) fiir jedes feste ?
existiert und somit den Grenzwert von Riemannschen Summen dar”
stellt. Diese sind charakteristische Funktionen, denn bei der Einteilung
des a-Intervalles konnen die Zwischenpunkte b, (a, < b, < a;,1) #°
gewihlt werden, dags sie nicht mit den Ausnahmewerten unter
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zusammenfallen. Weiter st nach dem Theorem von Lebesgue @(z)
wiederum eine stetige Funktion im Nullpunkt. Damit folgt obige
Behauptung.

Anwendung:

S. Bochner hat in [8] ohne Beweis angegeben, dass jede I'unktion
der folgenden Gestalt eine charakteristische Funktion ist:

fee)

- 2 ol ] N :
H(z) = exp [—22g(2))], 9() = Py (8.2)
wobei V(«) Bedingung «) erfiillt. .
Beweis:
) = exp I 'lﬁl + — “ 1 dV(oc)l = BX [— [V (e0) =V (0)] + A=
) 24-a? | P 1 2z
b : (m/
Wir setaen: 1 v 7
V(o0) — V(0) — &, ¢ fa)\ = h(z),
()
0 oL
somit folgt: H(z) = exp {k[h(z) —1]}. (3.8)
1

Bekanntlich ist plae) =

fiir 0 <« < o eine charakteristische Tunktion, die zum Typus der
Sogenannten Liaplace-Vertellung gehdort. ¢(z,«) 1st fiir alle z eine stetige
Funktion in « (0 < a < o), wenn wir ¢(0,0) = 1 definieren. Iis ist des-
halb erlaubt, Formel (8.1) ansuwenden, und wir finden, dass h(z) eine
charakteristische I'unktion ist.

Nach (1.5) ist auch H(z) eine charakteristische Funktion, denn
exp [h(z) —1] gehort zu einem unendlich teilbaren Wahrscheinlichkeits-
8esetz, quod erat demonstrandum.

H(z) kann auch dann noch eine charakteristische Funktion sein,
wenn k - oo, sofern dabei H(z) eine im Nullpunkt stetige Ifunktion ist.
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Dies ist der Fall fiir: V(w) = o, 0<p<?2;

L g ot
e g s — :
dV(e) = pa? do; g(2) = p PO do;
0
Tt " de L
A>0; f " —‘_&2 do. gj o existiert, da 8—p>1;
A
A A
P! 1 [ pt g A?
Z:/: (), é&_,_mz da-< Zz' o o = Zzp;
0 0
A
) det
ausserdem: 22¢(z)--0, wenn z--0; denn lim [~ . =0
2> o
7 +C)
. 2
. 1 '
nach dem Satz von Lebesgue, da lim 5, —= 0 fiir alle
20 1_|_<GC> 0<O(,§A-'
2
Spezialfall: Vi) = «.

S W et

Dies ist die charakteristische I'unktion, welche zur sogenannten Cauchy-
Verteilung gehort.

_ oXp <~ Z'ZD

0

§4. Transformation von Girault

Wir gehen aus von Formel (2.1) und setzen:
Pew) = plza), Vo) =«, a=0,b=1. (41)

Dies ist offenbar erlaubt, denn ¢(z - «) ist eine in z und « stetige Funlktion:

1 z

D(z) :fcp(z-cc) do = -—i-f(p(’tb) du. (4.92)
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Die zu @(z) gehorige Verteilungsfunktion G(x) berechnet sich nach
(2.2) wie folgt: 1

(x) :fF(i)doc. (4.3)

0
(4.2) wurde von M. Girault in [9] mit Hilfe einer zweidimensionalen
Wahrscheinlichkeitsverteilung hergeleitet.
Satz 1.
Die Transformation (4.2) ist ein-emndeutig und aus D(z) = @(2)

folgt @(2) = 1 und umgekehrt.

Beweis: 2

1 1
a) Sel D(z) — f @y () du = , j py(u) du,

F
0 0

dann folgt fiir 2+ 0 .
0 = [[pu) — pola)] du,
9

und durch Differentiation nach der obern Grenze 2:
0 = @(2) — @a(?) -
Fiir 2 =0 ist aber: @ (0) = @,(0) = ®0) =1, q.e.d.

2

_ 1
b) Sei p(z) = -f(p(u) du,

2
0
fir 2 =£ 0 ist die rechte Seite der Gleichheit differenzierbar, somit
auch die linke; es folgt: _
¢(2) = z¢'(2) + @l2), dann folgt @'(z) = 0 fiir alle 240, d. h.
#(e) = C = p(0) = 1.

Nach (4.8) lisst sich ((z) explizit berechnen. Dabei machen wir die

Variablensubstitution = = u, so dass die Fallunterscheidung 2 > 0 und
o

T < 0 nobig ist. OOI
'1
:z;f (?L)-du, x>0
: u?
G(z) = . (4.4)

I ()
—x | - dw, x<0
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Aus der Darstellung (4.4) ersieht man ohne weiteres, dass (/(z) fiir alle
x = 0 stetig i18t. Dagegen kann (/(x) im Nullpunkt eine Unstetiglett
haben, wenn ['(x) daselbst auch eine hat. Noch priziser:
G(+0) = F(+0), G(—0) = F(—0). (4.5)
Beweis:
Wir beschrinken uns auf den Beweis der ersten Gleichheit, d®
derjenige fiir die zweite ganz analog verlauft.

o A o

"I I "Flu)

x>0, Glx) = mj (;L)- dw — x [f (Q;) du -l—j(:') du

U % i

x x A i

_ 4 o )
40 du i da "F 410 1 1 ] 1]_

#| Hd+0) u? + wr | @ A+ )<a, 4 A

] A -

Sei A fest und strebe x gegen - 0:
(G(+0) < I'(A+0) fiir jedes 4 >0, wenn auch 4 - -0,

so erhilt man: G(+0) < I'(4-0), andererseits gilt aber:

<

=

CcQ

l,
G(a) = o Flz + ())f“;’ — Pz 0).
U
Ty @ > 40 G(+0) = I'(4+0), q.e.d.

Verhalten wm Unendlichen
(4.2) gilt auch im Falle, dass @(0) = I'(co) — I'(—oc0) £ 1, und wir
erhalten: G+ oo) = F{+w), ((—oo) — F(—o0). (4_6)

Den Beweis konnen wir uns schenken, da er sich wieder durch eleme?”
tare Abschitzungen ergibt.
Wemn @(0) = 1, kann man leicht die folgenden Ungleichunge”

herleiten: x>0, 1=0G@)=Fx4+0);
z<0, 0=G@)=Fa—0).

@.7)

Die Kurve (i(x) verliuft somit fir x>0 immer oberhalb der Kurve
F(z) und fir < 0 immer unterhalb derselben.
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Untersuchung der ersten Ablevtung

Sei ¢ > () ein Stetigkeitspunkt von I'(z), dann gilt:

P - Fla)  Gz)— )
¥ (x) :j " -duﬁﬁ----a-:—-- R i, (4.8)
An einer Stelle x, wo I'(z 4 0) = F(z—0), existiert eine Rechts- bzw.
Linksableitung. Wir kennzeichnen sie mit «-» bzw. «—» und erhalten:
G(z) —F(z+0) G(z) — F(z—0)

Gy (z) = — . -, G_(z) = . . (4.8a)

Fiir 2 < 0 erhiilt man die gleichen Beziehungen wie unter (4.8) bzw.

(4.8a).
Im tibrigen ist G'(x) fiir 2> 0 eine nicht zunehmende und fiir 2 < 0
eine nicht abnehmende Funktion von z.

Beweis fiir 2>0:

co (o]

>0, ((2)— G'(w4-d) = f F(Z’) du— T j F(Z’)du et
U B U z-+/
et z x4
i f F(u) )y IFz44) _ Fx)d e(x+A)— (z+A) F(x)
= - dru’__ : SRS SR . ; S — e e W B N
u? x x4 z(z-+A4) z(z-+A4)
B A)—olle) P+ _
W.fz;-(:c'—#A) o x4 -

Verhalten der Ablettung vm Nullpunkt

Wir untersuchen die Rechtsableitung im Nullpunkt, die wie folgt

definiert ist: co
e
x ] —(:6) du—F(4-0)
U
G(z) — G(+0 , .
G;(O) — lim (i) ( }:) = lim ———
a0 x -0 &€
w) — F(+0
— lim fF(“) i} F(,l—l d’lb,
-0 u?

z

23
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¢, (0) existiert dann und nur dann, wenn
1

j P —F+0) (.9)

u?
existiert. .
Im folgenden werden notwendige und hinreichende Bedingungen fiir die
Verteilungsfunktion I'(z) angegeben, damit das Integral (4.9) existiert:

Behauptung: f(u) = F(u) — F(--0) = o(w), fiir u-= 40, (4.10)

ist eine notwendige Bedingung fiir die Fxistenz von (4.9).

Beweis:

Nach Voraussetzung gibt es zu einem & >0 ein 6 > 0 derart, das
fiir alle a << b < d:

b
j f(u) lu < e.
%2

Sei nun 0 < s<<rund r = 35 < §, dann gilt unter Beniitzung der Tat-
sache, dass f(u) eine nicht abnehmende Funktion ist:

e fls) [ dn fs s 1)
&> f(u)—du> [(S) e f(s)r log T) = fv(s) log8 > - f )
u? r U 35 8 3s 3 s
s 8 q. e. d.
Bemerkung:

(4.10) it keine hinreichende Bedingung, wie das Beispiel

U
flu) = - -
) ylogu{
sofort zeigt.

Dagegen ist die folgende Bedingung hinreichend :
fu) = 0@u'*), w40, &>0. (4.11)
Folgerung:

Die Existenz von F'(0) geniigt nicht fiir diejenige von Gfk(o)'

Analoge Resultate wie die obigen gelten fiir die Linksableitung ¢.(0)-
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Die Verteilungsfunktion I7(z) heisst unimodal mit Vertex a, wenn
B(z) konvex ist tiir < « und konkav fiiv x> a.

Satz 2.

Iiinem beliebigen Wahrsceheinlichkeitsgesetz If'(z) wird dureh die
Integraltransformation (4.4) ein neues Gesetz G(x) zugeordnet, das
unimodal mit Vertex Null ist.

In diesem Zusammenhang sei auch auf die Arbeit [9a, 8. 157]

verwiesen.

§ 5. Anwendungen und Beispiele zur Giraultschen
Transformation

G. Polya [10] hat gezeigt, dass jede Funktion ¢(z) mit den folgen-
den Iiigenschaften eine charakteristische Funktion ist:

p(2) 1st eine reelle, stetige Tfunktion fiir —oo < 2 < o0 l

@(0) =1, p(—2) = ¢(2), m. glg) =4 0; [ (5.1)

@(2) konvex fiir 2>0;

lim @(z) = 0 kann durch dic weniger einschrinkende Bedingung
2» 09

p(z) = 0, fir 2>0, (5.1a)
ersetzt werden.
Denn wenn @(z) die Bedingungen (5.1) erfiillt, dann ist @(z) eine
charakteristische Funktion und somit auch alle Funktionen der Gestalt:

pele)+q mit p>0, ¢q>0 und p+4q=1.

Bemerkung:

Eine IMunktion, die (5.1) baw. (5.1a) erfillt, nennen wir eine
Pélyatunktion und die zugehorige Wahrscheinlichkeitsverteilung eine
Pélyaverteilung.

Aus der letzten Forderung in (5.1) folgt bekanntlich, dass ¢(z)
(mit eventueller Ausnahme des Nullpunktes) eine Rechts- bzw. Links-

ableitung besitzt.
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Satz 1. z
1
Wenn ¢(2) eine Pélyafunktion ist, dann auch @(z) = - J () die-
2
Bewers: z b
z2p(2) — ](p(u) du ;
; 6 : ¢ (0)
1>0, 0@ =—" =0, B0 =",
z

Durch eine kleine Rechnung erhilt man fiir die Rechtsableitung vo"
D'(2):

K

2 /1
@’.”-(Z) = e ( 9 72 (Pil- — 3@ —l— f{p(u) d’lb) __>___. 0

v (siehe Tigur)-
Fiir @”(z) ergibt sich ein entsprechender Ausdruck.

ir eeben nun eine Klass unimodalen Pélyafunktione -
A% b eine Klasse von unimodalen Pélyafunktionen &

1 [

gt) =5 v— ) O0Z2mEl: (5.2)
| o) = {111

Beweas:
z2>0, (P'(z) = —'(1(1‘|—Z)_a_1<0, (p”(z) - a(“*}*l) (lﬁl_z)—a~2>0.
Im weitern existiert eine Darstellung der Form:

Z

1
pe) = — [ w(u) du,
z

0
wobel () eine charakteristische Funktion ist, denn fir 2>0 gilt?

) d g
p(&) = [29(x)] = A [(H_Z)a

— (1) = e
142\ 142 (142)"
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9(2,a) ist aber eine Polyafunktion fiir 0 < a =1, denn es gilt:

—
Yo 20, ) =<0 J'@>0.

w(2) ist somit als Produlkt von zwei charakteristischen F'unktionen wieder
eme charakterigtische 'unktion, quod erat demonstrandum.
Graphische Methode fiir die Giraultsche Transformation sm Falle
evner verallgemeinerten DBinomanalverterlung

Die Verteilungsfunktion F(z), die zu einer verallgemeinerten Bi-
homialverteilung gehort, 1st durch folgenden Ausdruck gegeben:

0, x < by

P;’ by <= b P;:->O; k=1, ...,1
iji::’ b-i<:v-§bg+1 pk>0, k:(),...,'r
S ' b
\‘p]c) bl<w§0 Zpk—’—zpk:l

- k=1 k=1 k=0
> P+ Po s < =g

ot D Py <&y

l
ﬂpr’c‘l‘ZPk, a,, <T=a,

1, x> a, ‘ (5.8)

Zur Bestimmung der transformierten Verteilungsfunktion G(x) gehen
Wir aug von den Formeln (4.4):

by <ax < by, Gla) = »_«wfiuz- du = (—ux) <-~b1 _93) Py
by ’
G! . » ' ) . r_ pj_
(2) ist eine Gerade mit der Steigung m, = B
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m, ist aber nach (4.8a) auch gleich der Rechtsableitung von G(z) im
Punkte x = b,, in der Tat:

: 0—p, Py

il Q. D

* by by
G(x) stellt, wie man leicht einsieht, einen Streckenzug dar. Die einzelne
Strecken kénnen mit Hilfe von (4.8a) sukzessive konstruiert werden:
r E :
i s @IS G(by) —F(by +0)

0y = W2 IOED

&

die Steigung des Geradenstiickes zwischen b, und b;. Sehliesslich crreicht
man den Punkt 2 = b,. Da I'(—0) = G/(-—0) lisst sich der Streckenzug
bis zum Nullpunkt ergéinzen. In analoger Weise gilt fiir positive Werte

YOI g Gz) =1, fix z>=a,.
A z
| | 2P+ > P v
Gy g8, G@ =2 — T duw + [ 2
* ay

I 1 1 ! r:l 1 )
i o Rl ! g \1 B . j

dies 1st wiederum eine Gerade mit der Steigung m,:

11— P/i >‘ D

MWy, = S w = df- = (' (a,),
“r r
(i -Fla
((a,.) = G e (L e
Cb o

Wegen F(+0) = G(+0) kann der Streckenzug auch von del positivel
Seite gegen den Nullpunkt erginzt werden.

Im Ialle der eben besprochenen verallgemeinerten Binomial
verteilung lassen sich aus Tabelle 1 besonders schon die wesentliche?
Eigenschaften der transformierten Verteilungsfunktion ((z) ablesel’
G(x) ist ndmlich, mit eventueller Ausnahme des Nullpunktes, iiber?
stetig, konkav fiir 2 > 0 und konvex fiir z < 0.

Wir wollen nun zwei Beispiele von allgemeineren Verteilung®
funktionen auf die Giraultsche Transformation hin nither untersuche™



f.G
|
G(x)
——————— = "“:::.:::-'3""""' by = i
"""" e Ps
| pe
, =
F(X) p[ — PO
Pa ’,n‘ﬁ/
P5 —= :‘_”_ _____
p;l i =] :_’..4:::.__._, ==
b b, by by 0 0 az % = i
Tabelle 1
1. Beisprel:

Hier betrachten wir eine durchwegs stetige Verteilungsfunktion,
die wie folgt definiert ist:

.1 x = 3a
1 z—
S 2a <z < 3a
2 a
1
Fle) = « Fl a=r=2a a>0
1
- 0=z=a
2
0 r<0

Durch”elementare Rechnung erhiilt man:

x 1
‘;Ea (log Ba—log x) + 9 e 20 <z < 8a
x 1
Glz) = (log 3a—log 2a) -+ e< < 20
20 2
~(log a— log ) - = (1+logBa—log2a) 0<a<a
a a -

0 =<0
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G'(x) 18t fiir © == 0 stetig und im Intervall (a,2q) konstant. Dies muss

auch so sein, denn I'(x) ist daselbst auch iiberall stetig.

G (0) = 00, G (0) =0,
Zum niihern Verlaufe der Kurve G(z) siehe Tabelle 2.
F.G
- i
TG )
e | A
sl !
V! ..=:__:j.:;/:: ________ l
/’ J_’____,,.X
0 1 2 3

2. Beispiel:
F(x) besitze an den Stellen z = 0 und 2 = * Unstetigkeiten und
sel sonst wie folgt definiert:

9

0

a=1

0
x4

x
2

Lo tD)
1

T(log ¥ —logz 1)+ 7
z[i(logy—log2) + 4]+ L
z[log } —logz + | (log % —log %)+

se sl o
AN A

8 8 8 8 8

IV IAC A IA A

6
]

=]

o mlo mo

1+

=

Tabelle 2

A A TA
B o8 B 8 8

WAIA WA W N
S w = e el wle

Beachte in Tabelle 3 die Konstruktion bzw. Berechnung dff
Rechts- und Linksableitung von G(z) im Unstetigkeitspunkt « = 4"



F.G

‘_Eli A S o
"Iw) DY (5
o ( du, 2x2>0 tgo, = Gi) — r—(“_l_ )
22 : 3
X
G =y ((3)—F (5 —0)
P tgo_ =",
— S tdw,  x<<0 i
uz
e T'abelle 3

§ 6. Verallgemeinerungen der Giraultschen Transformation

Sei g(z) eine charakteristische I'unktion, die zur Verteilungsfunk-
tion I*(z) gehdrt. Dann ist nach (2.1) bzw. (2.2) auch
1
@) (z) = I plz-a)de?), 0<p<<oo, (6.1)
0
eine charakteristische Funktion, die zur Verteilungsfunktion G%)(z)
gehort, wobel: L

GP(z) — | I ( ) d(e”) - (6.2)
o

€T 0
F(a) hat fiir jedes a == 0, als Funktion von « betrachtet, (0 <o = 1),

héchstens abzihlbar viele Unstetigkeiten. Ausserdem ist «? fiir jedes
g J

P >0 eine stetige Funktion in [0,1]. Somit existiert das Integral (6.2)

Im Riemannschen Sinne fir jedes z -4~ 0.

Durch (6.2) wird also einer Verteillungsfunktion I'(z) eine ein-
Parametrige Schar G')(x) von neuen Verteilungsfunktionen zugeordnet.
Wir nennen sie die p-Verteilungsfunktionen.

[ te]
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Die Giraultsche Transformation ergibt sich als der Spezialfall p = 1.
(6.1) lisst sich mit der Variablensubstitution 2z« = % wie folgt um-
formen:

?:, J p(u) w du, 2> 0;
&
Q)(P)(Z) s 0 z (6,3)
(—2)" [ o) (—wPtdu,  2<0.
—2
0

T
Analog folgt aus (6.2) mit = wu:
v 4

co

F(u
pa? f ,MTE‘P)l-du’ z>0;

G)(z) = (6.4)

I‘u |
( pH r<<0.

G'P)(z) ist eine stetige Verteilungsfunktion fiir z =~ 0. Im Nullpunk®
gilt wieder wie in (4.5):
FP(40) = F(+0), GP(—0) = I'(—0). (6.5)
(6.4) kann auch auf eine allgemeine Verteilungsfunktion angew&ndf‘
werden. Dann gilt:
G(’ﬂ)(+ o0) = F(+ o), (1) (—o0) = F(—o00). (66)

Den Beweis obiger Relationen geben wir in einem andern Zugammen”
ange am Knde von §7.
hang End 7
Aus (6.4) folgt noch ohne weiteres:

1
G (z) = pa? Fla -+ ())f ;:’il. = Iz -+0), r>0;
2%

du

GW(2) < p(— o) F(z—0) ] gt =Fa—0),  2<0.
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Weiter besitzt GP(2) in jedem Stetigkeitspunkt von I7(z) eine erste

Ableitung: _
° d G0() GP(z) — F(x) 4 0 o
—— GPg) = p—r - x =0, )
dz b o ’ (6.8
In einem Unstetigkeitspunkte von I7(x) existiert eine Rechts- bzw.
Li.nksableitung von GP(z). Im Nullpunkt brauchen dieselben jedoch
nicht immer zu existieren. Man kann leicht zeigen dass:

() — I+ 0)

lim 27! r G =4 <oo (6.9)
U

e -0
T

eine notwendige und hinreichende Bedingung fiir die Tixistenz von
GPY0) st
Sei z = 0 ein Stetigkeitspunkt von F(z), dann folgt nach (6.8):
v 1 ~ [ 4 ! ]
Fz) = [pGP@)—2 (P (z)]. (6.10)
p

F(z) ist somit in jedem Stetigkeitspunkt durch G®)(x) eindeutig be-

stimmt. Da wir I'(x) wie immer als linksstetig voraussetzen, besteht

also zwischen F'(x) und (;")(z) eine ein-eindeutige Beziehung.

Bemerkung diber unimodale Verteilungen

Wir haben bereits gezeigt, dass die Verteilungstunktion GV(x)
unimodal mit Vertex Null ist.
In der Folge geben wir eine neue Klasse von unimodalen Ver-

teilungsfunktionen an:

Satz 1.

Sei I'(x) eine beliebige Vertetlungsfunktion. Dann ist die Gesamt-
heit der durch (6.4) definierten Vertetlungsfunktionen GP(x) fiir alle P
(0 < p< 1) unimodal mit Vertex Null.

Bevor wir den Beweis durchfiihren, sei noch vermerks, dass man
durch einfache Beispiele zeigen kann, dass obiger Satz im Falle p>1
nicht mehr richtig ist.
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Bewets:

Wir beschriinken uns auf den Beweis der Konkavitit fiir 2 >0
Die Konvexitit fiir £ << 0 beweist sich ganz analog.

a) x>0 derart, dass F(z+0)—F(z—0) >0, dann folgt nach

(6 . 4) . 0
1 d, "F(w) I'(x+0)
TR aey — part | S e — )
p dx () = pa J " %

Eine entsprechende Relation ergibt sich fiir die Linksableitung. Durch
Differenzenbildung folgt dann:

4 dF P () — 4 (;(m(w)- _ F(”EAO)M FET _I—O) <0.
p | dx dx z -
b) Seiennun z>0und (x+ 4), 4 >0 Stetigkeitspunkte von F(2)-
Zu zeigen:
u zeigen 5 s d GOt A) — d ((z) <0,
dx dx
| F(u) Faz+A) "F(w) I(x)
. L P —py g L=
D = p(z+-4) fup'“ du i/ pal” oy du -+ - .
z-+4 s
z+4 oo ( )
Flw) q (P, Flatd)  FE
z z+d

Da nach Voraussetzung 0<<p<<1 ist obige Summe kleiner als:

a+4d co

du 247 T cu Flz+A) F@ #
i f wn Trler =] et f W apd @
z x4

, 2 p-1 1
— [F(z)—F(z+ 4)] ( l+A> Caa =0 aed

\

Verhalten der GP\(z) fiir grosse Werte des Parameters p

Sei F(z) eine nicht unimodale Verteilungsfunktion. Ks gibt dan?
eine Schranke 4 > 0, derart, dass fiir p > 4 alle G¥(2) nicht unimoda!
sind.



Beweis:
(tibe es keine solche Schranke 4, so kénnte man eine unbeschriinkt

wachsende Folge {p,} von Parameterwerten angeben, fiir die G®(x)
unimodal wiire. Nach einem Satze von Lapin [4, Seite 160 ] miisste dann

lim G®)(z) = (Xa)

auch unimodal sein.

Andererseits ist aber G/(z) gleich der urspriinglichen Verteilungsfunk-

tion ['(x), denn: Foo
lim @P)(2) = p(z) = f e Al (z).
p>co —co

Nach (6.8):

z-0 F]

P (z) = z)f(p(u)fu”“ldu—i— ?p](p(u) wldu;, >0, 6>0.

~

z-d

Beim zweiten Integral auf der rechten Seite beniitzen wir den 1. Mittel-
wertsatz der Integralrechnung. Dazu zerlegen wir ¢(u) in Real- und

Imaginiirteil :
p(u) = Rolu) +1Jew) = r(w) + 1 h(uw),
z-0 | z
/o NP '
Dz — P f @) (u> du ?:J [r(z—9y0) + th(z—3,0)] J wPtdu,
2 2 Z
0 z-0

¥, und ¥, sind Zahlen zwischen null und ecins. Fiir noch so kleines
0 >0 gilt daher:

lim @P(2) = r(z—9,0) + th(z—8,0),

proo
dann folgt '
wnn folgt lim gP(z2) = r(2) +1h(2) = @(2), q. e. d.
pl—DO

Beziehung zwischen den Momenten

"Sei m,, das k-te Mowment beziiglich Nullpunkt der Verteilung, die
zur charakteristischen Funktion ¢(z) gehort. Iibenso M, das k-te
Moment von @P(z).
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Satz 2.

Aus der lixistenz von m,, (I natiirliche Zahl) folgt diejenige von
M, , fiir jedes 0<<p << oo, und es gilt:

a P .
My = kot m, - 6.12
Beweis:

k-tes Moment von %
Pz w) = my, = o my,.

Da Voraussetzung (2.11) erfiillt 1st, folgt gemiss (2.8):

1 1
M, =m, | &de?) =pm, Pl gy — P m, .
k,p kf (@) = p kf“ k+p k
Uberdies gilt: lim M, = my.
pFCC

In einem folgenden Satz werden wir die Invarianzeigenschaft der
g g
Polyafunktionen bei der Transtormation (4.2), verallgemeinern.

Satz 3.

Wenn ¢(2) fiir z %= 0 eine stetig differenzierbare Polyafunktion st

dann 1st die dureh (6. 3) definierte charakteristische I'unktion eine zwel”
mal stetig differenzierbare Polyafunktion.

Bewets:
Nach (6.3)

PP (z) — i:; f ) w?du, 0 << P << co;
0
d
2>0, & g D) - p P DV = p () P,
2
dann folgt , .
P2 (@) —p* [ p(u) w du PP p(2) — pz) p* [ul du
0 0

B e e e

1
Iz

_ 0

2

; PP(E) = —'g:;:; P2 (&) —p(p+1) 27 p(e) + 12 (p -+~1)Z7’f‘1)(u) wf‘fw"

0
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Dureh partielle Integration ergibt sich:

2

' 2) &P 1 :
[ p(w) W™t du = (p(p) — — p f @' (w) w? du;

V]

2
»

2 (D) —p(p 1) f @' () o

0

d 1

T N
dz? @l = gope

Da ¢'(2) stetig ist, folgt nach dem 1. Mittelwertsatz der Integral-
rechnung:

2
Ak

f(p’(u)u”du == qa’((j)fupdu = ¢'(0) R 0<i<a.
p_

0

Nach Voraussetzung ist aber ¢'(z) fiir 2> 0 eine zunehmende I'unktion.
Deshalb folgt: ¢'(£) < ¢'(2) und endlich:

l
‘ Dz} = £ [¢'(2) —¢'(0)] ==20. q.e d

dz> 2

Siehe auch [9a, S.290].

§ 7. Erweiterung der p-Verteilungen auf negative Werte

des Parameters

Selbstverstindlich kénnen wir eine Ausdehnung der Transforma-
tion (6.1) nicht durchfiihren, indem wir einfach p durch —gp ersetzen.
In dieserm Falle wiirde ja das Integral (6.1) im Nullpunkt divergieren.
Die Verallgemeinerung gelingt aber auf folgendem Umwege:

Sei @(z) eine beliebige charalkteristische Funktion, die zur Ver-
beilungsfunktion F(z) gehort. Dann ist sicher auch die folgende Tunk-
tion eine charakteristische Tunktion :

1

Piin)(z) = l'(p(z.alm) da, 0<p<oo. (7.1

0
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Mit der Substitution z-a'? = u folgt:

p
4

Ip(llp)(z) — qj(p)(z) —

-

, J o) u? du,

0

4

z2>0;

Z

| g?" j o) (—uwPtdu, <0,

0

Jede @-Funktion lisst sich als ¥W-Funktion schreiben, indem mam
vom Parameter p zum reziproken Wert i{ibergeht, wie aus (7.2) eI

sichthich 1st.

(7.1) liisst sich nun ohne weiteres auf negative p-Werte ausdehnen:

1
PORG) = (g de, 0<p<oo. (1-9)
0

2
Mit -

yp, = u folgt dann:
o

gj(~1/p)(z) = (DH’)(z) —

Die zu @ P)(z) gohorige Verteilungsfunktion G (x) heisst:

1

GP(z) = JF(:E c Py dov =

0

GP)(z) ist fiir = O eine stetige Funktion. Im Nullpunkt gilt:
GEP(40) = F(+0),

' w
Z&l— du, 2>0;
' U
! ("_Z)pj --('_—FPI_EL)'B-H- i, #<0,
Pp‘ j Flu)w’™ du,
o
0

T

(—=)°

GD(—0) = F(—0).

—® -JF(u) (—w)tdu, x<0.

(7.6)
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Fiir eine allgemeine Verteilungsfunktion gilt:
(FP)(f00) = I(F-00), G —00) = F(-—c0). (7.6a)
(7.5) besitzt in jedem Stetigkeitspunkt von I(z) eine 1. Ableitung,
hémlich: -
d () — G5 (x
LG ) = p (&) — ), z 0. (7.7)

dx €

In einem Unstetigkeitspunkt von I'(z) existiert eine Rechts- und eine

Linksableitung von G\)(x): (7.74)

U rale) Vo () — (1PN e
dF G (z) = Pﬁ(a; ‘_0) G.Y (nc) , d‘ G x) = p F(T’,O) ~ G,p(q)
dx T dx T

In Satz 8, § 6, haben wir gezeigt, dass unter gewissen Voraus-
setzungen die Integraltransformation (6.1) Pélyafunktionen wieder
In golche iiberfithrt. Dasselbe gilt auch fiir die Transformation (7.4).
Doch dieselbe fithrt noch viel allgemeinere reelle Funktionen in Pélya-
funktionen iiber.

Satz 1a.
Sel p(2) eine reelle Funktion, definiert in —oco << 2 << -}-co mit den
folgenden Kigenschaften:
(1 p0) =1, @ =0, @) =gp(2), tLirallee;
p(z+A4) < (), firallez>0 und 4>0.

Behawptung:
Die nach (7. 4) transformierten 'unktionen sind fiir alle p(0<<p <1)
Polyatunktionen. -

Bewers:

Sei 2> 0 ein Stetigkeitspunkt von ¢(2), dann folgt:

co

) e
-p'dp_ f,u"p-Hﬁd 2

Sind 2> 0 und # + 4 Stetigkeitspunkte von ¢(z), so kann man analog
Wie beim Beweise von Satz 1, § 6, zeigen, dass fiir 0<<p < 1:
@'(z4+A)—D'(z) =0, fiirallez>0 und 4>0.
24

d

P(z) =
i (&) =1p
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Satz 1b.

Sei @(2) eine Polyafunktion und p = 1 eine beliebige vorgegeben®
Zahl.

Behawptung: 1
o 0o = PO~ 9
P
ist eine Funktion mit den Eigenschaften (I7) und es gilti:

D) = ¢\ () = PZPJ Zﬁz du, fir z>0. (7.89)

z

Beweis:

P(2--0) — p(z—0) — ; [® (2) & ()] < 0.

IA

@(z) hat also nur Unstetigkeiten 1. Art und diese treten hochstens
abzithlbar oft auf [11, 8. 286]. Seien 2> 0 und z -4 Stetigkeitspunkt®
von @'(z), dann folgh:

(t+A)—gle)  PletA)—P() D'(+4) 2

0,
A A P + Ap

W\

[9'(2) —'(z + )]

da nach Voraussetzung @(2) eine konvexe I'unktion in z >0 isb und
p=1. g(2) ist somit fiir >0 eine monoton abnehmende Funlktion:

Weiter ist: lim g(2) = hlm @(z) = 1,

denn: a0 s

lim—z®'(z) =0 und lim—2z®(z) <lim1—®(z) = 0.

pre)) 20 z»0

Im iibrigen sieht man leicht ein, dass ¢(2) =0, @(2) = p(—2). p(?)
besitzt also die Kigenschaften (I4).

Wir wollen nun noch (7.8a) beweisen:

[e20]

. %
D(u)— - D'(u) by g
@("P) 2) — )zp e P,,,V,,,ﬁ : dru} e Zp ,? (lu) l’u; o zp _¢(Qb)— du
( =7 ' A =P ubtt ¢ uP
D (u) D) = D (u)
B pzpf—z;,mrl =g’ P =R Pt du = D(2), q. e d



Satz 2.

Wenn ¢(z) eine reelle, positive charakteristische Ifunkéion ist, die
fir 2> 0 nicht zunchmend ist, dann gehort sie zu einer fiir alle z == 0
stetigen Verteilungsfunktion.

Bewets:
@N(z) ist nach Satz 1 eine Polyatunktion, die zur Verteilungs-
funktion z

1
Gz) = ~ f I'(w) du (7.9)
z
gehort. 0
Bekanntlich besitat aber eine zu einer Polyafunktion gehdrige Ver-
teilungsfunktion fiir z =~ 0 eine stetige erste Ableitung.
d Pa) 1
— G"(2) = A jF(u) du, x0.
7 m 2

dx
0

Die Differenz auf der rechten Seite kann aber nur dann eine stetige
Funktion sein, wenn F(z) stetig ist, quod erat demonstrandum.

Beziechung zwischen den Momenten

Gemiiss (7.4) folgb:

[e o]

g st [ P00 — 90
dz PO) = pPam f Tt ~dw, 2>0. (7.10)
Setzen wir p = 1, so folgt:

1 Cp(u) —
f.@(—l)(z)=jM—lu, 2>0. (7.11a)

dz U2

Die Rechtsableitung von @(z) im Nullpunkt existiert dann und nur

dann, wenn -
- plu) —1
f LQht Y (7.11b)

existiert.
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Satz 3.

Die zu der charakteristischen Funktion @Y(2) gehdrige Verteilungs-
funktion besitzt keine Momente beziiglich dem Nullpunkt.
Bewers:

Sei @(2) eine beliebige charakteristische Funktion, deren 1. Moment
beziiglich Nullpunkt existieren soll

oz) = Ro() +1Jpl) = () +ih@).

: ‘ ; . o
b e = J P = [ f " s f ) | = R+ i
i “r(u) —1 h(r
,(_* OH(z) | = [ ?(tb)‘ dw -1 [ 1(1:) dae
dz sl 2w )
0 . ’ 0 . (7.12)
z | 1 "k
o PO | = ) ——du 4 ) du.
dz o uw? u?
0 0

Aus der Iixistenz der 1. Ableitung von @U(z) im Nullpunkt, folgh
durch Differenzenbildung der Gleichungen (7.19):

(o]

fr(u)w : du = 0. (7.124a)
U2

0

Dies ist aber nicht maglich, denn 7(2) ist eine reelle charakteristisch®
Funktion und 7(z) —1 < 0. 7(2) —1 = 0 ist nur méglich auf einer
nicht iiberall dichten Punktmenge in z > 0, denn andererseits wire
r(z) = 1, was wir ausschliessen wollen. lis gibt somit ein Intervall
A €[0,c0] fiir das r(z) —1 << 0. Integral (7.12a) ist also kleiner als Null,

quod erat demonstrandum.

Beisprel: 1 - "
p(2) = Lz’ ¢'(0) = 0.



s G e

(s.¢] o]

1 i 7 Codu “du
2>0. @) — o § bl == 5 | e o k
>0, (2) ZJ i 5 du = 2 - [ Y FJ -

4

= Z

7T
arctge — - J-

i 2 2
gemiiss (7.11b) folgt: '

OL0) =— ., OO =+

Bemerkung:
Die Transformation (6.1) kann auch durch folgende Verallgemeine-
rung der Funktion V(«) = o erweitert werden.

Sei @(2) eine beliebige charakteristische FFunktion, die zur Ver-
teilungsfunktion 77(x) gehort. V(e) ist eine nicht abnehmende stetige
Funktion in 0 <« <1 mit V(0) = 0 und V(1) = 1. Dann ist auch

B(z) = fqo(z- o) AV («) (7.18)

eine charakteristische Tunktion, die zur Verteilungsfunktion

() — j F(i) AV (@) (7.188)

gehort. 0
Wir werden nun sehen, dass sich cinige Iligenschaften der p-Ver-
teilungsfunktionen auf obige Transformation iibertragen lassen.
Da fiir x>0, I ( > = I'(z-}0); und fir <0, ]_,1( > < IF(z—0),
04 74
fiir alle 0 << 1, folgt:
x>0, 1=0G(@x)=F(x40);
. B (7.14)
r>0, 0=ZG)<IFx—0).

Im weitern ist G(z) wieder eine stetige Verteilungsfunktion fir x = 0.
Im Nullpunkt, bzw. im Unendlichen gilt:
G(10) = I(+0),  G(—0) — F(—0);

(7.15)
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Beweis:
Zu zeigen, dass fiir eine beliebige Nullfolge {4, }:

limG(a+4,) —G(x) =0,  fiir alle 2 5= 0.

N0

z fest, Glz+4,)—G(z) =

1
ez
‘ o B
0

F(z) hat hochstens abzihlbar viele Unstetigkeiten. lhin fester Wert von
x ist deshalb fiir fast alle & (0 << << 1), d. h. mit Ausnahme von ab-

L

dV (a) = J [ (x4 A,) — 1, ()] AV (a)-

/

. o % _ , ‘
zihlbar vielen, ein Stetigkeitspunkt von .Z"( ) — F(x). Dann folgh
*4

lim 77 (x—+A,) — T (x) = 0, fiir fast alle « €[0,1]-

N CO

Nach dem Theorem von Lebesgue folgt dann die Behauptung ohne
weiteres. I'erner folgb nach den gleichen Uberlegungen:

((+0) —I'(-0) = lim J ‘ ---—Zf -+ 0) ‘ dV(x) = 0.

o -0

Ahnlich verifiziert man die andern Gleichheiten unter (7.15). Damib
sind auch (6.5), (6.6), (7.6) und (7.6a) bewiesen, denn diese ergebent
sich als Spezialfille von (7.15).

t
Lteratvon der Transformation J @z o) dV ()
0

In diesem Abschnitt wollen wir uns iiberlegen, gegen welche
I"unktion eine beliebige charakteristische Funktion bei fortgesetzter
Anwendung der Integraltransformation (7.13), strebt. Zur Abklirung
dieser Frage ist es zweckmissig, die betrachtete Funktionenlklasse Wi€
folgh zu erweitern:
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Voraussetzung:
@) V(x) ist eine nicht abnehmende Iunktion in 0 <« <1 mit
V() = 0 und V(1) = 1.
Weiter soll ein Wert oy (0 << xy<< 1) existieren, so dass V(xy) > 0;
b) f(2) ist eine reellwertige, beschrinkte I'unktion in —co << 2 << -0,
stetig im Nullpunkt und f(0) = 0.
flz- ) ist V-integrierbar in e« fiir jedes z.

Seitg: lim f,(z) = f(0) = 0,
wobei 1 e

h@) = T() = [He-x) V() wnd fo =TH), i=1,2, ...
Beweis:

Um die Iteration durchfiihren zu kénnen, miissen wir voraussetzen,
dass fi(z+«) fiir jedes z V-integrierbar in o« ist.
1. T'(f) 1st ein linearer und monotoner Integraloperator, d. h.
T(f+q) =T +T(g), T(cf)=-cT(f) fir jede Zahl c.
T({f) =0 wenn f =0, oder aus f =g folgt: 1(f) < L(g).
2. Mit f 1st auch 7'(f) monoton abnehmend (bzw. monoton zu-
nehmend), denn es gilt z B. tiir 2> 0: '

k>1,hm@%mﬁzjymmyﬁggmm@go.

=0
8. Wenn f(z) monoton abnehmend ist, dann gilt:
. lim f.(2) = f(0) = 0,

n»co

denn 1

23>0, o) —hid = [[hza) =] dV(@) = 0.

0

=0
Piir 2> 0 ist ! fu(#)} eine monoton wachsende Folge von beschriinkten
Funktionen (entsprechend fiir z<< 0 eine monoton abnehmende Folge
von beschrinkten Funktionen), konvergiert also gegen eine gewisse
Funktion ¢(z
9(2) lim f,(2) = g(2), ¢(0) = 0.

N 00
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Nach dem Theorem von Lebesgue folgt nun:
limT(f,) = T (tim f,) = T(g) = g.

Die Grenzfunktion ¢(z) ist somit das Fixelement bei der Transformation
T, d. h. es muss sein:

1
f [g(za) — g(@)] dV(e) = 0,  tiir alle 2.

0

g(2) 15t als Grenzfunktion von monoton abnehmenden Funktionen wie
der monoton abnehmend, dann folgt:

2>0, glze)—g(z) =0, firalle 0=<a=1.

Sei z > 0 cin beliebiger, aber fester Wert, dann folgt:

1 g

0 = [Tytee) ~9@] V@) = [[gtee) 9] AV(e) = [g(B) —g(@] V(A Z
0 fiir o, < <1
Somit q9(zf) = g(2), fiiv alle 0 <<z << 4.

Da f(2) nach Voraussetzung im Nullpunkt stetig ist, gilt das gleiche fir
die Grenzfunktion ¢(2), und es folgt:

¢(2) = lim g(2f") = ¢(0) = 0, fiir alle2>0, q.e. d.

Ne=Cco

I'iir 2 << 0 folgt der Beweis analog.

4. TIst f(z) eine beliebige Funktion mit den Iiigenschaften b), dann
nehmen wir fiir 2 >0 eine nicht zunchmende, beschrinkte Tfunlktion

[*(2) mit f*(z) = f(z), = B.

f(2) = inf f(8).

0<&<z
Ausserdem existiert eine nicht abnehmende I'unktion f**(2) mit

[**(2) = f(#). Nach 1. und 3. folgt dann ohne weiteres:

>0, 0=1limf) <lm/f () <lm ¥z =0, qed

N»co N Nn» co
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Spezialfall : ,
f(2) = @(2) = charakt. Funktion = R (2) 41 J p(2) = r(z) +-1h(2).
(0 =1, &(0)=20, ’)(z)‘ <1 und ih(z)l s 1.
Die Voraussetzungen fiiv die Anwendbarkeit des obigen Satzes sind
erfiillt, und es folgt: lim ¢, (2) = p(0) = 1

n» oo

mit ! 1
pild) = [p(za) dV(0) wd g, () = [ ple0) dV().
0 0
Durch Iteration der Transformation (7.18) strebt die Folge der charalkte-
ristischen Ifunktionen g,(2) gegen die charakteristische Funktion p(2)=1.

§8. Schwache und vollstindige Konvergenz

von Verteilungsfunktionen

Wir betrachten I'olgen von allgemeinen Verteilungsfunktionen und
deren Grenzfunktionen.
Definition 1.

Iline Iolge von Verteilungsfunktionen [F)(x)} heisst im schwachen
Sinne (—s-») gegen eine Verteilungstunktion I(x) konvergent, wenn
B (@)~ F(2) in jedem Stetigkeitspunkt von I7(x).

n»=co
Definition I1.
Eine Folge {Ii(x)} konvergiert vollstindig (—v-~) gegen eine
Verteilungsfunktion 7(z), wenn I (z) —s-> F(z) und zusiitzlich:
en 1 T
I+ 00) -> I(+-00), I(—00) > I'(—c0).
Sei @(z) die zu F(x) gehorige allgemeine charakteristische Funktion.
P 8 8 3
Im Zusammenhange mit der Konvergenz im sechwachen Sinne fiihrte
M. Loeve die sogenannte «integrierte charakteristische Funktiony ein,
die wie folgt definiert ist: :
i) = ](p(u) du . (8.1)
M. Loove [5a, S.190] hat gezeigt, dass Konvergenz im schwachen, bzw,
vollstindigen Sinne einer Folge von Verteilungsfunktionen fquivalent
18t mit der Konvergenz der zugehorigen integrierten charakteristischen
Funktionen bzw. gewohnlichen charakteristischen Funktionen.
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Wir geben nun eine neue notwendige und hinreichende Bedingun§
an fiir schwache, bzw. vollstindige Konvergenz:

Satz 1.
Es sei I7(x) —s—~ F'(x). Wir ordnen jetzt jeder Verteilungstunktion
F(z) gemiiss (6.4) die p-Transformierte GP(x) zu. Dann gilb:
GP(z) —s—> GP(z), fiir alle 0 < p < oo,

wobei G(z) die p-Transformierte von F(zx) ist.

Bewens:

Wir kénnen uns auf den Fall > 0 beschriinken, da der Beweis filr
z << 0 analog verlduft. Gemiss (6.4) folgt:

co [}

B ) 1
GP(x) = paﬂ’f ';(fl)-du - ~a:7’]1?;l(u)d( p»), x>0
U W

€T €T
Nach einer partiellen Integration ergibt sich:

oo fere]

Um den Grenziibergang n-»co ausfithren zu konnen, benstigen Wit
das verallgemeinerte Lemma von Helly-Bray [5a, S. 181].

Lemma:

Sei @ >0 und ¢(u) eine stetige Funktion im Intervall (a,co) mib
g(o0) = 0,

Aus der Tatsache, dass I (x) —s— I'(z), folgt dann:

[eye] [ee]

f glu) dB () o ‘ [ 'g(u) dff(u).

a4 a

In unserem Falleist g(u) = » Diese Punktion erfiillt fiir alle 0 << p < ©°
W

cdie verlangte Bedingung, und es folgt:

—F(z OO]_ Fu) =% (1 p(e)
W () = _gjp{_.__i E}a’) - f = dF(u)}- P { 5:) L_ f - dF(u)} ey (‘wd‘
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Satz 1'.
Sei {I( , eine Ifolge von Veltmlunwsfunhtmnen, derart, dass
fiir ein beqmmmteq p (0<p<oo): GP(z)—s> (P(z), dann ist

I (2) —s— F(2), und I(z) ist in allen seinen %etm gkeitspunkten definiert
durch:

1
R = | [p@ie ) (@),
P :

Bewess:

Da jede I'olge von Verteilungstunktionen im schwachen Sinne
kompakt ist, existiert eine Teilfolge [, (z)} der Folge {F(z)}, so dass

11/(33) —S—> [_‘i(lﬁ) s

Auf Grund von Satz 1 folgt dann:

[ee]

1(7) ) , (1)
z>0, GW(x)—s>(G"(z) = paF o du .

X

Nach Voraussetzung ist aber G\)(a )—s—» GW(x), das heisst jede Teilfolge
der Tolge {G1¥(x)} strebt gegen die gleiche Verteilungsfunktion G%¥(z),

somit folgt:
B ’ F(w)
(_:(7’)( ) = (p)( ) = Pmpfu*”“ du .

Nach (6.10) konnen wir F(z) in jedem Stetigkeitspunkt berechnen :

— 1 _
Ii‘(;t) —] P G(‘p)( = CL (CI 1’)) = F(.’E) s
Pl

q. e. d.

Zusats:

Wegen (6.6) folgt ohne weiteres, dass die beiden zitierten Sitze 1
nd 1’ auch Giiltigkeit haben, wenn man schwache durch vollstindige
Konvergenz ergetut.
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Beaspiele:

1. Wir betrachten eine Folge von allzemeinen Verteilungsfunk-

tionen, die wie folgt definiert sind:

1
1- =N
n
-9
B@) =~ ot [o]=n
1
e —n
n
()
1 1/n
1n
D) —e 1
. 174 e
Wie man leicht sieht, gilt: I (z) —s— I'(x) = |} .

“

Wir werden nun zeigen, dass auch die Ifolge der gemiss (4.4)
transformierten Verteilungsfunktionen ¢/ (z) im schwachen Sinne
konvergieren. Dabei kénnen wir uns auf den Fall x> 0 beschrinkett:

Man erhalt:
—39 1

&

K l lora 1(
la, ot (logm —loga) + g\

Gofa) = ]

Iiir 0 < <<oo gilt: limG,(2) = G(z) = .

n»co

Dies 1st aber gerade die Transformierte von F(x) = ).

Gn("r' OO) _/"' G(+ OO) .

B+ 00) =[-> I( o),

Ausserdem’
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2. Sei die Folge | I7(x)} wie folgh definiert:

11N/ 1 " ) <1
— L= » | =
(2 n ( n—2, %=
l
E(x) = 1— -, |
N
[
, r=<—1
N
b I ()
= 1 l]n
—_— LUn n
1 f +1
Offenbar gilt: J La+1), ‘1} =1
Iﬁ‘l(;lj) — V- If‘(:l,') e I. P N 2': J.
] 0, pa — 1

: l log : 1 1 < ]
Ja’(Zf . (— log x) ‘)( ) F1- nE v =<
(;u(l) - ‘,
I 1 , =1
n
I : l | ! f- 4 < 1
& |——=logz + +--1, zZ1;
lim (7 (v) = G(x) — 2 2x 2
" \ 1, r =1
B(x) und G(z) sind in der Tat nach (4.4) verkniipft, denn es gilt:
L o
YRR (TR " du
0<a<1, G(z) = = ] 2 (1 .l ) du -+ [ ( : l =
u? w?
P i

=i &

i 1/ ) I o
1)1 = el logzp -+
210hJJ}ﬁ2(m ,F| i R 2|
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Fiir = 1 gilt selbstverstindlich die analoge Relation zwischen F ()
und G(x). Endlich ist:

(4 oo)>F(+o0) =1 und G, (+ o0)-»G(+ o) = 1.

n

Verallyemeinerung von Satz 1

Wir haben gezeigt, dass aus I(x) —s-- I'(x) folgt:
GP(z) —s—> GV(x), 0<p<<oo.
Dabei waren die Funktionen G%(x) baw. G%¥(x) nach (6.4) definiert.
Thre urspriingliche Form ist aber nach (6.2):

1 1

(9(z) — f F(“’) Aoy,  GO() — f I(“i) ).
& «,
0 0

0
Die Gesamtheit der Folgen von Verteilungsfunktionen I, (a)’
% €(0,1) wird nun wie folgt erweitert: '
@) Mit D bezeichnen wir eine auf der reellen Achse iiberall dichte
Punktmenge;

b) sei I eine im Lebesgueschen Sinne messbare lineare Punktmeng®
und
¢) V(x) eine nicht abnehmende beschriinkte Funktion in 14, mit
f‘ aFle) = 13
b
d) sei F(x,«) fiir fast alle w€F (d. h. bis auf eine Menge vom V-Mass
Null) eine Folge von Verteilungsfunktionen. Im iibrigen sollen
dann die folgenden Integrale im Lebesgue-Stieltjesschen Sinne
existieren:
zeD, f P, dV(e) = G (x), n=1,2 .-
ol
Voraussetzungen:
1. B(x,0) —s—> F(z,a) fiir fast alle c el

2. Die Menge der a-Werte, fiir die ein beliebiger Wert ¢ D Unstetig-
keitspunkt von F(z,«) ist, soll vom F-Mass null sein.

Behauptung: G, (x) —s—G(z) = f F(z,o) dV (a) .
E
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Bewers:
(remiiss 2. und 1. folgt:
ceD, I(rw)-F(xe) fiir fast alle wcF7.

Da ;n(x,m)\ <1 firn=1,2, ... und fast alle a €, folgt nach dem
Theorem von Lebesgue:
e, fF wya) dV () = (3 (@) -~ [Fm )dV (@) = G(x),

q- e. d.
Im weitern ist G(z) tiiv zeD stetig, denn:

lim G(z+4) —G(z) = lim [[F(a-+A,8) —F(a,0)] dV(e) = 0.

A»0 A0

Satz 1 dieses § ergibt sich nun als der folgende Spezialfall:
T
Reo) =1(2), V@ =
o

fir 0 <p<<oo; K = (0,1), D= {z=£0}.
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