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Zur maschinellen Auflésung des Zinsfussproblems

Von M. H. Amsler, Ziirich

Nachdem den Versicherungsgesellschaften die Anschaffung von
Programmgestenerten Rechenmaschinen fiir allgemeine Verwaltungs-
beiton moglich gemacht worden ist, ist dem Versicherungsmathe-
Matiker die Aufgabe suteil geworden, die Zweckmiissigkeit des Iin-
%bzens solcher Rechengerite fiir mathematische Berechnungen zu
uPtel‘Suchon und gegebenenfalls Berechnungsmethoden auszudenken,
dio den Frfordernissen der zur Verfiigung stehenden Rechenmaschine
Ingepasst sind. Unter programmgesteuerter Rechenmaschine wird all-
8eMein eine Maschine verstanden, die ausser der Ausfithrung funda-
Mentaler arithmetischer Operationen (Addition, Multiplikation usw.)
Sch die Zusammensetzung dieser Grundoperationen nach einem im
Voraug festgesetzten Rechenplan (Programm) besorgt, wobeidie Reihen-
Olge der verschiedenen rechnerischen und logischen Operationen von
0 errechneten Resultaten abhiingig gemacht werden konnen,

Das Zinsfussproblem ist cine der versicherungsmathematischen
Aufg&ben, die heutzutage sowohl dem Theorotiker wie auch dem Prak-
tker manche Schwierigkeiten bereiten, was aus der Mannigfaltigkeit
r diesem Thema gewidmeten Verstfentlichungen hervorgeht.

Beim Zinsfussproblem handelt es sich darum, bei Vorliegen zeitlich
Sestaffelter Leistungen die Abhiingigkeit zwischen dem Diskontsatz und
em diesem Diskontsatz entsprechenden Barwert der betreffenden
Lelstungen abzugrenzen.

Die bei diesem Problem am hiufigsten entwickelten Auflosungs-
Wethoden bestehen darin, die Abhiingigkeit zwischen Diskontsatz und

Awert durch Niherungsfunktionen folgender Form zu approximieren

B = f(d), (1)
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wo B3 bzw. d den Barwert bzw. den Diskontsatz bedeuten (Polynom®
Potenzreihen oder Liosungen gewisser Differentialgleichungen wie bet
der Poulkkaschen Theorie). Solche Methoden liefern fertige Niherung®
funktionen, die in der Praxis wertvolle Dienste leisten. Diese klagsische?
Methoden sind indessen mit allerlei Nachteilen behaftet, erstens einm®
l6sen sie das Problem nur nidherungsweise, und ausserdem orbeilen 519
iiber den gemachten Fehler oft keine hinreichenden Auskiinfte. Ferneh
wenn Ausdriicke vom Typus (1) fiir die Berechnung von Barwerten aus
dem Diskontsatz (direkte Aufgabe des Zinstussproblems) leicht auf-
findbar sind, so ist die Umkehrung

d = (B @

solcher Formeln fiir die Berechnung des Diskontsatzes bei vorgegebene™
Barwert B (Umkehraufgabe des Zinsfussproblems) oft umstandliod
sogar exakt nicht durchfiihrbar. Schliesslich wurde bis heute eine 80
orosse Anzahl derartiger Formeln abgeleitet, dass es manch®
schwierig ist, fiir eine konkrete Berechnung die «richtige» Formel 24
finden.

Bei dem unten entwickelten Verfahren handelt es sich im Gegeﬂs‘:"tz

zu den obenerwihnten klassischen Methoden nichb wm die Ableituds
und Auswertung von formelmissigen Ndherungsfunktionen, sonder”
um die Kntwicklung eines rein numerischen Algorithinus, welcher o
Diskontsatz zum Barwert und umgekehrt fiihrt. Sein Anreis beSf{ehb
darin, dass er bel den in der Praxis am hdufigsten auftretenden Fa]]eﬂ.
(Leibrentenbarwerte oder mathematische Kurse fest verzinslich®!
Liffekten) die exakte Liosung des Problems liefert — sofern in der nui®”
rischen Mathematik von einer exakten Losung die Rede sein kann.

Methodisch beruht das vorgeschlagene Verfahren aut Fusser’

elementaren mathematischen Hilfsmitteln; es kann otwa wie folgt W™
schrieben werden: aus einem ersten, sonst beliebigen Niiherungswelt
wird auf Grund logischer, eindeutig festgesetzter Vorschriften ein AC
ter, besserer Néherungswert ermittelt, welcher selbst weiter verbess®”
rungsfahig ist (Iteration). Diese Vorschriften sind ferner so gestﬂ’ltet’
dass nach endlich vielen Iterationsschritten Werte in beliebiger N#h
der exakten Losung erreicht werden d.h., dass das Verbesserurlgs"el_“
fahren konvergiert. Bei solchen iterativen Methoden stellt der Bewer®
der Konvergenz den springenden Punkt der ganzen Betrachtung dar”
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§ 1. Die Methode

Zuyr dwrekten Aufgabe
(Berechnung des Barwertes bei vorgegebenem Diskontsatz)

Die Berechnung von Barwerten nach der tiblichen Formel
n
> I 7.
B,o) = Yoo, (M
t=0

Wobei ¢, die t Jahre nach dem Berechnungszeitpunkt fillig werdenden
eiStumgen und » den Abzinsungsfaltor bedeuten, setzt voraus, dass
abellen mit den verschiedenen Potenzen v des Diskontierungsfaktors

“ur Verfiigung stehen bzw. vorgerechnet werden. Um solche Vorberech-

Mungen 4y umgehen, wird der Iformel (I) folgender Ausdruck vorgezogen

]gn(u) — { [((’ v | Co- l) v + Oy )] U- } _I_ cl} v “I— Co »

bej : T

“Uwelchem der Abzinsungsfalktor » formal aussehliesslich in der ersten
“0benz erscheint. Nach letzterer Gleichung ligst sich der Barwert
u(V) als m-tes Glied folgender Rekursion ausdriicken:

By = Byv e,y 1) l
mii
R I 30 = Oy J

Wie leicht ersichtlich ist, stellen die Zwischenwerte B, die Barwerte
;
W Zeit 5 — J; der auf die k letaten Jahre entfallenden Lushungen dar.

h=01,2 ...,n -1. (11)

Als Vorbereitung fiir die Behandlung der Umkehraufgabe geben
Wi
¥ die durch Ableitung der Rekursion (IT) nach » sich ergebevide

R g . . . . ; ( 1
Ckursionsformel fiir den Differentialquotienten ; * = B, bekannt
dv

: Lk =0,1,2,...,n—1. III
i, Bé == () J ( )

q Das Berechnungsverfahren nach Formeln (IT) und (ITI) entspricht
*Wim Hornerschen Schema enthaltenen Algorithmusfiir die Auswertung
011 Iolynomen sart thren Ableitungen; es ist als Rekursionsverfahren
li Berechrmnoen mit programmgesteuerten Rechenmaschinen beson-
ory geeignet,
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Zr Umbkehraufgabe

(Berechnung des Diskontsatzes bei vorgegebenem Barwert)

Wird umgekehrt bei vorgegebenem Leistungsplancy, ¢y, . . ., ¢ -+ 2%
nach dem Diskontsatz gesucht, welcher einem bestimiten Barwerb
entspricht, so wird die Aufgabe auf die Auflosung folgender algobraische®
Gleichung fiir v zuriickgefiihrt

i‘: evt = B, (V)
t=0

wobei die ¢, und B als bekannt zu betrachten sind.

Besonders geeignet fiir die Auflosung der Gleichung (IV) durch
automatische Rechengeriite ist das folgende altbekannte Newtonsoh?
Iterationsverfahren: I&s sei v, ein erster Niherungswert der gesuchbe?
Liésung v* obiger Gleichung (IV) (siehe Abbildung), ferner seien Bn(”’ﬂ)
und B)(v,) die Werte des Polynoms

n
B,(v) = > ¢t
=0
und seiner ersten Ableitung nach v im Punkte v,. B,(n,) und B;(ve) &
geben sich aus v, durch Anwendung der Rekursionsformeln (IT) und ( ILh-

Das Newtonsche Iterationsverfahren

|/j o
7

* \ Vo
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M

an begtimme dann den Schnittpunks
B,(v) — B

B (v,)
Qer Kuryentangente im Punkte v, mit der Horizontalen aul der Hohe B,
ferner die entsprechenden Funktionswerte B, (v,) und B, (»,) im Punkte
Y, im allgemeinen den Punkt

oo = o=l v
AN

s den Tunktionswerten B, (v,) und B)(v,) im vorhergehenden Punkt »;

t=0, 1,2, ...). Vonder somit erklirten Punktfolge vy, vy, vy, ..., v,,

Wirg ﬁowunscht dass sie gegen die gesuchte Losung v* der Glelchunc

V) konv ergiert.

Bei einem beliebigen Polynom zweiten oder hoheren Grades kon-
Vergiert dio oben definierte Folgo vy, vy, vy, . .. nicht zwangsliufig, da
® 2.B. nicht von vornherein sicher ist, ob die behandelte Gleichung
ubolhd.upt Losungen »* besitzt. Da ferner Gleichungen n-ten Grades

8 zu n recllen Lidsungen besitzen konnen, muss noch nachtriglich
a‘f)gddmt werden, ob eine auf diese Art errechnete Lidsung eine fiir
die gestellte Aufgabe annchmbare Lisung darstellt.

Bei den Gleichungen und Ligsungen, die aus unserem Problemkreis
®tstehen, sind gliicklicherweise Schwierigkeiten dieser Art nicht zu

®fiirchten. Fs gilt némlich folgender

il ilf 8satz:

lig sei f(z) eine reelle cindeutige, auf dem Intervall a << a <<oo
Mal stetig differenzierbare Funktion der reellen Variabeln z.

VO’!‘(mssetZ’ng : af 0
T
dz
auf @ < z <oo.
?f >0
da?
Behcmpmmg:

1. Die Gleichung f(x) = ¢ bei vorgegebenem g = f(a) (VI)

QSl’th genau eine Lijsung 2* = «. Die aus einem ersten Niherungswert
B> g durch das Newtonsche Iterationsverfahren definierte Folge
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Tg, &1, Ty, ... Konvergiert gegen die Liosung x*. Die Folge z, 2 -
(d.h. ohne Anfangspunkt z;) ist monoton abnehmend.

2. Falls g < f(a), besitzt die Gleichung (VI) keino Lisung gross®’
als a. Die Tolge z,, z,, @5, ... divergiert aus dem Definitionsintervﬁll
von f(x): nach endlich vielen Schritten wird ein Wert z, < a ausserhald
des betreffenden Intervalles erreicht.

Aus diesem clementaren Hilfssatz (Beweis siche unten) konne™
folgende Figenschaften des Newtonschen Iterationsverfahrens als Aut-
losungsvertahren fiir das Zinsfussproblem entnommen werden:

Bei den aus Zinsfussproblemen entstandenen Gleichungen (IY)
handelt es sich ja stets um algebraische Gleichungen mit lauter post
tiven, genauer mit lauter nicht negativen Koeffizienten (¢, = 0), wobel
zwei Grenzfille von vornherein aus unseren Betrachtungen au
geschaltet werden diirfen, namlich der triviale Fall ¢, = 0 fiir alle t
und der uninteressante Fall n = 1. Gesucht sind positive Losungen ¥
wobei der Wert v = 0 (d.h. j = o) ebenfalls naturgemiiss ausgeschlos”
sen werden darf. Die Funktion

* ) e N e ad :
fo) = Dlew (n = 2)

.o v A ¥ L M I b} ”
erfiillt demnach auf dem Intervall @ = v < co bei beliebigen positivel
die Voraussetzung des Hilfssatzes:

d 7
/ - E f,ctv""l >0,

dv i—1

dz i D)
- f - Z t(t—1)¢, >0,
dv? fr '

Auf diesem Intervall gelten somit Behauptungen 1 und 2: ;

Ist der gegebene Barwert B in Gleichung (IV) grosser als f(¢) bt
beliebig kleinem a > 0 d.h. ist B3 leicht grosser als die erste Leistung ¢’
so besitzt die Umkehraufgabe genau eine Liosung. Die durch das Nf’w'
tonsche Iterationsverfahren definierte Folge v, v,, ... konvergle!
gegen diese Lidsung, und zwar gleichgiiltig wie der erste Niherung®
wert vy( > 0) gewihlt worden 1st. Fiir die Beurteilung, ob ein Nijherung®
wert v, genau genug ist oder nicht, kann z. B. die im Rechenvorga®
(Gleichung (V)) auftretende Ditferenz

B,(v,) — B
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hemngezogen werden: fillt diese Zahl unter eine zum voraus fest-
Besetzte Schranke ¢ (z. B. eine Kinheit in der letzten Stelle von B), so
dart das Verfahren unterbrochen werden. Tst diese Bedingung z.B.
beim m-ten Schritt erfiillt, so kann der zuletzt errechnete Wert v

. | ;
bay, Jm = — —1 als Lésung der Umkehraufgabe bet der Toleranz-
m
Marge ¢ angesehen werden.

Die Genauigkeit der Nz‘ih(—\rungqliiqml 1,, hitngt ausser von & be-
kannlich in erster Linie vom Wert B, im Punkte v, ab. Je grésser
Bn( v,) ist, desto genauer ist die Loauno v,,; n den meisten Fillen ist

n grosser als 1, d.h. ist die Genauwigkeit von v,, mindestens so gross
‘.'Vi@ die Genaunigkeit ¢ von B,(v,). Schliesslich liegt die genaue Lisung

™ oberhalb der Niherungslssung j, , weil die Folge v, vy, ... ab-
baw. die entsprechende Ifolge 4, 9,, ... zunimmt.

~ Fillt dagegen der gegebene Barwert B unter den kleinsten zu-
d8sigen Wers ¢, — dieser Iall komunt praktisch nie vor —, so liefert das

erfahren nach einer gewissen Anzahl Schritten einen Wert v, < a.
Dag Vorzeichen des Ausdruckes v, —« kann somit als Kriterium fiir
die Entscheidung dienen, ob das V(—}L fahren fortgesetzt oder abgebrochen
Werden muss.

Die wesentlichen Merkmale der oben geschilderten Methode zur
Allflosunor der Umkehraufgabe seien schliesslich noch kurz hervor-
8hoben; sie sind vom Standpunkt einer weitgehenden Automati-
Sl"‘1‘11110' des Rechenvorganges aus zu beurteilen:

@) Der Algorithmus beginnt und wird aufrechterhalten unter alleiniger
Angabe der Betriige der zeitlich gestatfelten Leistungen ¢,. Wei-
tere Hinweise z. B. iiber die Natur der Leistungen ¢, — ob es sich
um Versicherungsleistungen, Annuitéiten, Zinszahlungen mit allen
mdglichen Varianten handelt — sind nicht erforderlich.

b) Der Algorithmus bricht von selbst ab auf Grund logisch-mathe-
matischer Kriterien.

) Die Liosung — falls eine solche existiert — kann mit beliebiger Ge-
nauigkeit geliefert werden. Probleme ohne Lisung schliessen sich
automatisch aus.



Bemerkungen:

1. Iis wurde vorausgesebzt, dass die gestaffelten Leistungen ¢, VO™
Zinsfuss unabhingig sind. Diese Annahme trifft aber z. B. nicht zu bét
den anwarbschaftlichen Witwen- pder Uberlebenszeitrenten, wo beim
Tode des Versicherten eine Rente zu laufen beginnt. Auf TFiille letztere?
Art kann aber das Newtonsche Verfahren ohne grosse Anderungen aus”
gedehnt werden, da die zugehoérigen Barwerte sich als lineare Kombl
nationen zweier oder mehrerer Barwerte mit festen ¢, ausdriicke?
lassen. Fiir jede Komponente werden parallel die Teil-Barwerte B,v;
und B/(v,) ermittelt, linear kombiniert und dann in die Formel (V) fiir
die Bestimmung des nichsten Niherungswertes eingesetzt. Das Vel
fahren bleibt also im wesentlichen bestehen.

2. Es gibt selbstverstiindlich fiir die Auflésung der Umkeb!
aufgabe auch andere iterative Methoden als die hier behandelte New"
tonsche, so z. B. das Verfahren der eingeschachtelten Intervalle: es wire
von zwei ersten Niherungswerten ausgegangen; fiiv den ersten vy 8¢t
der Barwert kleiner, fiir den zweiten v, dagegen grosser als der gegeben®
Barwert B. Da die Liésung sich irgendwo auf dem Intervall v, bis 7t
befindet, wird das betreffende Intervall in zwei gleiche Teile geteilt. Ist
der Barwert im Mittelpunkt vy, — | (v, -+ v,) grosser als B, so liegh die
Losung auf dem linken Halbinter vall v, bis vy, welcher IlOGhIIl“l.]fahElolblel
wird usw. Ist der Barwert i Mittelpunkt v, kleiner, so ist das recht®
Halbintervall weiter zu unterteilen. Die somit erklirten ineinander e’
geschachtelten Intervalle ziehen sich bekanntlich auf einen einzige?
Punkt — die gesuchte Lisung — zusammen. Bei diesem trivialen Verfahre?
eriibrigt sich die Berechnung der ersten Ableitung B’ sowie Je‘ﬂlch(a
Konvergenzbetrachtung; dagegen ist die Konvergenz des Vorfahren?
sehr schlecht.

Beweis des Hilfssatzes

; 2
Aus flf~>0 und I = i } wegen d{ >0 folgt, dass f(x)? il
dx de ~ dx liea i
2 monoton bis ins Unendliche wiichst, d.h. dass die durch die Funlktio®
f(z) definierte Zuordnung zwischen den Intervallen a < z < co W
f(a) < f(x) < oo ein-eindeutig ist, womit der erste Teil der Behauptund
sowle der 1. Satz der Behauptung 2 bestitigt werden: fiir ¢ = fla

gibt es genau eine Lidsung, fiir g << f(«) iiberhaupt keine.
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d?f
da?
Kurye f(x) inder (z, f(x))-Iobene niimlich, dass jede Tangente Stiitzgerade
der Kurve f(z) ist, d.h. dass die Tangente im Intervall ¢ < 2 << oo
Ausser dem Beriihrungspunkt Lkeinen weiteren Punkt mit der Kurve
8emeinsam hat.

Dies gilt offenbar Jokal: die Kurve ist positiv gekritmmt, d.h. liegt
in der Niihe des Beriihrungspunktes oberhalb der Tangente. Wiirde
Mun die betreffende Tangente z. B. rechts vom Beriihrungspunkt die
Kurve treffen, so miisste die Tangente im ersten Treffpunkt aus nahe-

Aus > 0 folgt eine wichtige geometrische Higenschaft der

liegenden geometrischen Griinden eine kleinere Neigung - o f als
dx

dle betrachtete erste Tangente haben, entgegen unserer Voraussetzung
"> 0d. . f(x) > ['(x) tir > x. Links vom Beriihrungspunkt fiihrt
®ine ihnliche Betrachtung zum selben Schluss.

Die Konvergenz bzw. Divergenz der Punktfolge z,, ,, 2, ..
ist eine Folgerung letzterer Iigenschaft:

Behawptung 1: Weil die Tangente ¢(z,) im 1. Nihorungspunkt z,
Wieht horizontal ist (f/(z) > 0), schneidet #(x,) die Horizontale mit der
Ordinate g, und zwar — wegen der Higenschaft der Tangente, Stiitz-
ge}chde zu sein — In einem rechts vom Schnittpunkt der Horizontalen
Mg der Kurve, d.h. rechts von der genauen Lésung x* gelegenen

inkt g,

Wegen der Monotonitit der Funktion f(z) gilt aus z, > x*
f(2) > f(2¥) = ¢,
d'clS heigst f(;];.l)%g

Ly = By — —
’ ! ()

Aus der Iiigenschaft der Tangente, Stiitzgerade zu sein, ergibt sich
®mer, dass x, rechts von x* liegt:

< B

B < iy 2 My
Gelten letztere Ungleichungen fiir den 2-ten Punkt 2, d.h. gelten
wF L <y,
Qo folgy fa®) < f(z),
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das heisst: Hz,)—g
Tiyr = 5’-’5*"(‘?';1' < &y
f'(z)
und wiederum aus der Figenschaft der Tangente im Punkte x,

%
Ty =>x™

Die Folge z,, 2,, ... ist also monoton abnehmend (z; < z;_() und
beschrinkt (z, > 2*): sie ist also konvergent. Es sei x** der (}renzwelt
der Folge; bei beliebig kleinem ¢ gibt es demnach ein N(e), fiir welche

| Ligr ™
das heisst fz,) —q
{"L';'.H“‘ “’»sl = ( Yo S <e  sobald i > N(g)-
[ ()
Da nach Voraussetzung f'(z,) =+ 0 auf e =<2 << oo, ]_(onverglel'ﬂ
nach letzterer (Hleichung die Folge f(x,), f(xy), ... gegen den Werb §

d. h. — nach der ein-eindeutigen Zuordnung zwischen den Intervallen
o <z <oco und fla) = f(x) <oco — die lolge der z; selbst gegen das
Urbild z* von g. Behauptung 1 ist somit vollstindig bewiesen.

Behauptung 2: Im Talle g < f(a) gilt wie oben
94:1>:U2>.L‘3> o e >'L'L'

Hier kann keine untere Schranke im Intervall a << a2 << oo filt i
Folge x, angegeben werden: nach Voraussetzung gilt solange ; =0

(@) = Hz) = f(2y),
flo) = Flz) =[xy,
das heisst aus g < f(a)
@%ﬂ J @)=y
f(a) ﬂm
Bei jedem Iterationsschritt reduziert sich demnach die Absazisse i

mindestens um die positive Grosse d. Nach endlich vielen Schribte”
wird also ein links von @ gelegener Punkt erreicht, w.z.b.w.

l s 0.

R
Wurwﬂﬁ‘
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§ 2. Der Rechenplan

Der in der Versicherungsmathematik hiufig verwendeton modell-
Wtigen Darstellung entsprechend, wollen wir die Lieistungen ¢, als Ver-
8litung zugunsten einer fiktiven Basisgesamtheit von gleichberechtigten
Individuen definieren. Um ferner einen mdoglichst allgemeinen Rechen-
Plan zu erzielen, zerlegen wir die zur Zeit ¢ auf die Basisgesamtheit ent-
fallende Gres samtleistung in zwei Komponenten: eine Rechts-Kompo-
Nente g, fillig zur Zeit ¢ am Anfang der neuen Verzinsungsperiode und
fine Llnks Komponente b, fillig am Knde der zur Zeit ¢ abgelaufenen

eriode, Bs sei A, die Anmhl der im Zeitpunkt ¢ in der Basisgesamtheit
Vorhandenen Individuen, und zwar genau nach Auszahlung der I, eistung
¢ und unmittelbar vor Filligkeit der Leistung «,. Den Barwert (zu-
glmsten eines einzelnen Individuums der Basisgesamtheit) der innert
Ciney Zeitspanne vonn Verzinsungsperioden fillig werdenden Leistungen
definigron wir als Quotienten

B Axm
Tin ) /o{ B
z
WObei n—1
:un] Za‘x+tv “I"Z‘ba,kt
t=1

\ Wird zwecks Vereinfachung der Schreibweise auf ein besonderes
l[erkm&l fiir den Anfangszeitpunkt x verzichtet und wird fiir die rest-
iche Dauer das Symbol k = n-—¢ eingefiithrt, so haben wir

[l"
B, =M (VID)
) ‘
Inj¢ n—l1
Z‘ a, vt 4 >‘ b, vt (VIII)

Wobei offenbar als Rekursionsformel fiir den Ausdruck
Ak - {[(b"’l) + a”—i) + b‘""l] U -}_ e _!_ bnﬂk—l} v + L
"tsprechend Formel (IT), § 1, gilt:

Ak+1 = [Ak - bn__k] VA Oy gy [

, k=0,1,2,...,n—1. (IX
l'nlt AOZO J ( )
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Fiir die Ableitung B, von B, nach der Veriinderlichen » erhalte?
wir aus (VII) und (IX) (4, ¢, b, sind Konstante)

]3}’5 — ‘4')2 ; (X)
yl
Ay = Ao+ (4,-+b,) ]
Bl k0 (4, Jlk:ﬂLL&“w%—L (XD)

mit Al =0 |
Nach dem in § 1 beschriebenen Verfahren fir die Auflssung de*

Umkehraufgabe erhalten wir den folgenden zweifach zyklischen Rechen”

plan (siehe Abbildung).

1. Festlegung der Konstanten:

B = gegebener Barwert,
¢ = Toleranzmarge fiir B,
vy = erster Naherungswert der gesuchten Ligsung.

2. Angabe der Anfangswerte 4, = 0 und 4, = 0 gemiigs (IX) und (XI) '

3. vy = v, = ¢-ter Nidherungswert.

4. Ay= A, und A, = A, stellen die k-ten Werte der Relursione®
(IX) und (XI) dar.

5.-7. Berechnung der nichsten Werte A,,, und 4, , gemiss (%)
und (XI).

8. Die neu errechneten Werte 4, baw. 4, | werden aly Anfangs gwerte
A, bzw. A, fiir eine weitere Umdrehung um den k-Zyklus (4-
angenommen. Nach n Umliufen (k = n) Ubergang zum -7 yllus:

9. B, und B, gemiiss (VII) und (X) errechnen.

10. T'ehler 4B, sowie neuen Niherungswert v, , ermitteln.

11. Talls der I'ehler grosser als die Toleranzmarge ¢ ist, v, 1 in Vi
umnennen, zwecks nochmaliger Verbesserung der Appxo‘{lm“'mo '
und bei Programmschritt 4 neu anfangen (4, = 4, = 0 fiir k=

12. Ist :ZIB,,I < &, d.h. ist die gewiinschte Genauigkeit bei der Lisuos
erreicht, dann Zinsfuss j aus v, , ermitteln.

13. Ist v, << 0, besitzt die gestellte Aufgabe keine Ligsung.

Tiir die Auflésung der direkten Aufgabe umfasst der obige Reche?
plan die Programmschritte 1-9, wobei in diesem Fall als v, der &
gebene Diskontierungsfaktor zu wihlen ist. Der Plan ist dann einfa?
zyklisch; die Mitherechnung der Ableitungen A, und B, ist ubelflubslg
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Der Rechenplan

6
Ak+ bn-k
(Ari—bnnk) Vi, 5
AI’( Vi Ak ‘l" bn—k
A
dp-k-1
/
Ak-|—1 = (Ak+bll—k) Vf+arlwkn1 bn—k
Acit = Akvi+ (Ac+ bai)
\ k-Zyklus
8 e ey
k ==n
1 > A
[ 2 ,
B A
Ay=0
¢ - ,
Ay=0
Yo
g"‘—_
1 / i-Zyklus
P41
1 |48, > ¢
}‘ @ 1 1 I/I B,,‘ < e 10 :
Vi+1 - ‘( /1 Bn = Bn_ B Bn = /';'"
Keine Losung Vigr < OVigr = Vi— g~ B, =-"
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§ 3. Beispiele

1. Aus der Lebensversicherung

Der Leibrentenbarwert dy,.q5 bebriigh nach den Grrundlaged

SM 21/30 2145 % : B = 16.692. Gesucht ist der technische Zins, welcher
bei der Sterbetafel SM 48/53 zumn selben Barwert fiihrt (’,l‘olet'mlzmal'ge
fiir B: ¢ = 0,001).

Die ¢, sind die [, nach SM 48/53 (genaver a,,, = I, ,, b,y = 0)

und man findet aus dem ersten Naherungswert j, = 214 9%,:

L5 di
kontierungs- | dy9. 35 e Verbesserter Diskontierungsfalktor
; dv
faktor

17,500 — 16,692
0,97561 17,500 | 183,22 | 097561 — =" " = 0,97120
(= 2% %) ”

16,717 —16,692 ;
0,97120 | 16,717 | 172,00 | 0,97120 — ~ PO 097106

172,00
0,97105 | 16,692

Aus v = 0,97105 ergibt sich der technische Zins j = 2,981 9%, wobe!
der Fehler hochstens eine FKinheit in der dritten Dezimalstelle ausmaﬁht’

2. Aus der Renditentheorie fest verzinslicher Wertpapiere

Bei der 31, %igen hollindischen Staatsanleihe 1951 sind ‘%le
Zinsen halbjiihrlich zahlbar. Die Schuld wird nach einem fest umsehr1®”
benen Amortisationsplan getilgt (29, bis 69, jihrlich), wobei die Obh,’
gationen zu 1009, zuriickbezahlt werden. Wie gross ist die Rendite bel'
einem Ankaufskurs von 96 %, (Toleranzmarge ¢ = 0,0019%,), wenn der
Schuldner von der vorzeitigen Riickzahlungsmoglichkeit lkeinen Ge-
brauch macht ?

& £ - . * o x _ O
Leistungen ¢, werden alle 6 Monate nachschiissig fillig: a,,, =/

b,,, = Zinsen und Riickzahlungen. Die Verzinsungsperiode betrig
ein halbes Jahr.
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Aus dem ersten Niherungswert 7, = 83/ 9%, crgibt sich:

Dis-
kOntierungs- B, B, Verbesserter Diskontierungsfaktor
falktor p!

, 0,97581 0,96

D08176  10,07581 | 22,857 | 098176 — " T = 0,98107
(= 3349 A

0 0,96022 0,96

98107 | 0,96022 | 22,369 | 0,98107 — S = 0,98106

92,369
0,98106 0,95999

dag heigst ? — —1 = 3,898%.

0,981062

18






	Zur maschinellen Auflösung des Zinsfussproblems

