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Zur maschinellen Auflösung des Zinsfussproblems

Von M. II. Amsler, Zürich

Nachdem den Versicherungsgesellschaften die Anschaffung von
Programmgesteuerten Rechenmaschinen für allgemeine Verwaltungs-
arbeiten möglich gemacht worden ist, ist dem Versicherungstnathe-
rhatiker die Aufgabe zuteil geworden, die Zweckmässigkeit des Ein-
s®tzens solcher Rechengeräte für mathematische Berechnungen zu
Untersuchen und gegebenenfalls Berechnungsmethoden auszudenken,
c'io den Erfordernissen der zur Verfügung stehenden Rechenmaschine
ailgepasst sind. Unter programmgesteuerter Rechenmaschine wird all-
8ehiein eine Maschine verstanden, die ausser der Ausführung
fundamentaler arithmetischer Operationen (Addition, Multiplikation usw.)
aüch die Zusammensetzung dieser Grundoperationen nach einem im
Joi'aus festgesetzten Rechenplan (Programm) besorgt, wobei die Reiheti-
01ge der verschiedenen rechnerischen und logischen Operationen von

^6n errechneten Resultaten abhängig gemacht werden können.

Das Zinsfussproblem ist eine der versicherungsmathematischen
^ülgaben, die heutzutage sowohl clem Theoretiker wie auch dem PrcBc-
^ker manche Schwierigkeiten bereiten, was aus der Mannigfaltigkeit
^er diesem Thema gewidmeten Veröffentlichungen hervorgeht.

Beim Zinsfussproblem handelt es sich darum, bei Vorliegen zeitlich
Bestaffelter Leistungen die Abhängigkeit zwischen clem Diskontsatz und

diesem Diskontsatz entsprechenden Barwert der betreffenden
6lstungen abzugrenzen.

Die bei diesem Problem am häufigsten entwickelten Auflösungs-
^ßthoden bestehen darin, die Abhängigkeit zwischen Diskontsatz und

aDvert durch Näherungsfunktionen folgender Eorm zu approximieren

B m, a)
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wo B bzw. d den Barwort bzw. den Diakontsatz bedeuten (Polyno®6;

Potenzreihen oder Lösungen gewisser Differentialgleichungen wie h®

der Poukkaschen Theorie). Solehe Methoden liefern fortige Näherung3'

funktionen, die in der Praxis wertvolle Dienste leisten. Diese klassische1"

Methoden sind indessen mit allerlei Nachteilen behaftet, erstens ein®®

lösen sie das Problem nur näherungsweise, und ausserdem erteilen ®e

über den gemachten Fehler oft keine hinreichenden Auskünfte. Fei'1101'

wenn Ausdrücke vom Typus (t) für die Berechnung von Barwerten
dem Diskontsatz (direkte Aufgabe des Zinsfussproblems) leicht auf

findbar sind, so ist die Umkehrung

d f-l(B) ®

solcher Formeln für die Berechnung des Diskontsatzes bei vorgegebene®

Barwert B (Umkehraufgabe des Zinsfussproblems) oft umständlich

sogar exakt nicht durchführbar. Schliesslich wurde bis heute eine so

grosse Anzahl derartiger Formeln abgeleitet, dass es manch®®

schwierig ist, für eine konkrete Berechnung die «richtige» Formel z11

finden.

Bei dem unten entwickelten Verfahren handelt es sich im Gegensat2

zu den obenerwähnten klassischen Methoden nicht um die Ableita®»

und Auswertung von formelmässigen Näherungsfunktionen, sond®11

um die Entwicklung eines rein numerischen Algorithmus, welcher v°nl

Diskontsatz zum Barwert und umgekehrt führt. Sein Anreiz besieh

darin, dass er bei den in der Praxis am häufigsten auftretenden Fall®1

(Leibrentenbarwerte oder mathematische Kurse fest verzinslich®

Effekten) die exakte Lösung des Problems liefert - sofern in der im®6

rischen Mathematik von einer exakten Lösung die Bede sein kann.

Methodisch beruht das vorgeschlagene Verfahren auf aussei3'

elementaren mathematischen Hilfsmitteln; es kann otwa wie folgt u®

schrieben werden: aus einem ersten, sonst beliebigen Näherungs^6,

wird auf Grund logischer, eindeutig festgesetzter Vorschriften ein z^01

ter, besserer Näherungswert ermittelt, welcher selbst weiter verbeSS0

rungsfähig ist (Iteration). Diese Vorschriften sind ferner so gestaH"0''

dass nach endlich vielen Iterationsschritten Werte in beliebiger N®1"0

der exakten Lösung erreicht werden d.h., dass das Verbesserung^®;

fahren konvergiert. Bei solchen iterativen Methoden stellt der B®^®9

der Konvergenz den springenden Punkt der ganzen Betrachtung d»r-
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§ 1. Die Methode

Zur direkten Aufgabe

(Berechnung des Barwertes bei vorgegebenem Diskontsatz)

Die Berechnung von Barwerten nach der üblichen Formel

k(») - i (i)
/ =0

^v°boi ct die t Jahre nach dem Berechnungszeitpunkt fällig werdenden
Leistungen und o den Abzinsungsfaktor bedeuten, setzt voraus, dass
Rubellen mit den verschiedenen Potenzen vl des Diskontierungsfaktors
«ür Verfügung stehen bzw. vorgerechnet werden. Um solche Vorberech-
^uigen zu umgehen, wird der Formed (1) folgender Ausdruck vorgezogen

}U(!) [(c„ ö H c„ i) » + <Va] o h • • + c,1 v + c0,

j)°i Welchem der Abzinsungsfaktor v formal ausschliesslich in der ersten
otenz erscheint. Nach letzterer Gleichung lässt sich der Barwert

Uh{o) als n -(es Glied folgender Bekursion ausdrücken:

'v 11 ~ Bk'' f~ 6'h-(/i I i) |

Bo — Cn jmi,, T, i k 0, 1,2, n 1. (II)

Wie leicht ersichtlich ist, stellen die Zwischenwerte die Barwerte^ Zeit n k der auf die k letzten Jahre entfallenden Leistungen dar.

Als Vorbereitung für die Behandlung der Umkehraufgabe geben
die durch Ableitung der ttekursion (II) nach n sich ergebeudo

hpl • 1

"auirsionsformel für den Differentialquotionten B bekannt
dv

B'.^ B',.v + B,

mit ^-0 j fc 0, 1, 2, w -1. (III)

^
Bas Berechnungsverfahren nach Formeln (II) und (III) entspricht

'himHornerschen Schema entlialtenen Algorithmus für die Auswertung
°h Polynomen samt ihren Ableitungen; es ist als Bekursionsverfahn

o
on^ ^ OtliUU UUP11 V,0 mu CII13 XtO l\.UI OlU-Un V Ulicllli Uli

.r Berechnungen mit programmgesteuerten Bochenmaschinell besonders

geeignet.
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Zur Umkehraufgabe

(Berechnung des Diskontsatzes bei vorgegebenem Barwert)

Wird umgekehrt bei vorgegebenem Leistnngsp]anc0, ct,.. .,ct,
nach dem Diskontsatz gesucht, welcher einem bestimmten ßarwei't B

entspricht, so wird die Aufgabe auf die Auflösung folgender algebraische1'

Gleichung für v zurückgeführt

±ctv' B, av>

1=0

wobei die c, und B als bekannt zu betrachten sind.

Besonders geeignet für die Auflösung der Gleichung (IV) duißh

automatische Bechengeräte ist das folgende altbekannte Newtonsch®

Iterationsverfahren: Es sei v0 ein erster Näherungswert der gesuchte11

Lösung v* obiger Gleichung (IV) (siehe Abbildung), ferner seien Bn(vo>

und B'n(v0) die Werte des Polynoms

-B» £ctv'
f=0

und seiner ersten Ableitung nach v im Punkte v0. Bn(v0) und B'n(v0) el

geben sich aus v0 durch Anwendung der Bekursionsformein (II) und (I-U-)'

Das Newtonsche Iteralionsverfahren
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Man bestimme dann den Schnittpunkt

H »0— s

Bn(oa)

Kurvontangonte im Punkte v0 mit der Horizontalen auf der Höhe B,
filier die entsprechenden Punktionsworte ß„('t>x) und B'n(v^) im Punkte
wi> im allgemeinen den Punkt

B„(v;) - B)l\ l' l\T\Vi+l Vi~ D'M
aus den Punktionswerten B^d^ und B'^v^ im vorhergehenden Punkt vt
^ ^ 0,1, 2, Von der somit erklärten Punktfolge v0, vv t>2, vv
^ird gewünscht, dass sie gegen die gesuchte Lösung v* der Gleichung

konvergiert.
Bei einem beliebigen Polynom zweiten oder höheren Grades kon-

Vei'giert dio oben definierte Folge ü0, nicht zwangsläufig, da
®s z.B. nicht von vornherein sicher ist, ob die behandelte Gleichung
jiborhaupt Lösungen v* besitzt. I3a ferner Gleichungen w-ten Grades

ls zu n reellen Lösungen besitzen können, muss noch nachträglich
^geklärt werden, ob eine auf diese Art errechnete Lösung eine für
c^6 gestellte Aufgabe annehmbare Lösung darstellt.

Bei den Gleichungen und Lösungen, die aus unserem Problemkreis
®ldstehen, sind glücklicherweise Schwierigkeiten dieser Art nicht zu
fürchten. Es gilt nämlich folgender

Müfssatz:

Es sei f(x) eine reelle eindeutige, auf dem Intervall a Ai x < oo

^üil stetig differenzierbare Funktion der reellen Variabein x.

^Aussetzung: df
>0

dx

dV
>0

dx2

auf a < x < oo.

®Häuptling:

1. Die Gleichung f(x) — g bei vorgegebenem g f{a) (VI)
^®sitzt

genau eine Lösung x*^a. Die aus einem ersten Näherungswert
^ a durch das Newtonsche Iterationsverfahren definierte Folge
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x0, xlt x2, konvergiert gegen die Lösung x*. Lie Folge xv, x2,

(d.h. ohne Anfangspunkt x0) ist monoton abnehmend.

2. Falls g<f(a), besitzt die Gleichung (VI) keine Lösung grösser

als a. Lie Folge x0, x1} x2, divergiert aus dem Lefinitionsintervä

von f(x): nach endlich vielen Schritten wird ein Wert xt<a ausserhalb

des betreffenden Intervalles erreicht.

Aus diesem elementaren Hilfssatz (Beweis siehe unten) können

folgende Fügenschaften des Newtonschen Iterationsverfahrens als Auf'

lösungsverfahren für das Zinsfussproblem entnommen werden:
Bei den aus Zinsfussproblemen entstandenen Gleichungen (l^'j

handelt es sich ja stets um algebraische Gleichungen mit lauter p09^

tiven, genauer mit lauter nicht negativen Koeffizienten (c( > 0), wob?1

zwei Grenzfälle von vornherein aus unseren Betrachtungen all&

geschaltet werden dürfen, nämlich der triviale Fall vt 0 für alle

und der uninteressante Fall n — 1. Gesucht sind positive Lösunger1 v<

wobei der Wert v 0 (d. h. j - oo) ebenfalls naturgemäss ausgeschle9

sen werden darf. Lie Funktion

/(") ^ ci »' (n ^ 2)
(=0

erfüllt demnach auf dem Intervall « <^ u< oo bei beliebigen positiven"
die Voraussetzung des Hilfssatzes:

d!
äv / i

(Pf XI
do1 tti

Auf diesem Intervall gelten somit Behauptungen 1 und 2:
Ist der gegebene Barwert B in Gleichung (IV) grösser als f(o) bo1

beliebig kleinem a > 0 d.h. ist B leicht grösser als die erste Leistung c«'

so besitzt die Umkehraufgabe genau eine Lösung. Die durch das

tonsche Iterationsverfahren definierte Folge vlt d2, konvergiel

gegen diese Lösung, und zwar gleichgültig wie der erste Näherung9

wert v0(> 0) gewählt worden ist. Für die Beurteilung, ob ein Näherung0

wert genau genug ist oder nicht, kann z. iL die im Bechenvorg11Ilr

(Gleichung (V)) auftretende Lifferenz

1W- «



— 265 —

herangezogen werden: fällt diese Zahl unter eine zum voraus
festgesetzte Sehranke e (z. 13. eine Einheit in der letzten Stolle von B), so
^arf das Verfahren unterbrochen werden. Ist diese Bedingung z.B.
heim m-ten Schritt erfüllt, so kann der zuletzt errechnete Wert vm

- 1 als Lösung der Umkehraufgabe bei der Toleranz-
Vm

^rge e angesehen werden.

Die Genauigkeit der Näherungslösung jm hängt ausser von e

bekanntlich in erster Linie vom Wert ß' im Punkte v„. ab. Je grösser
T)'/

n(®m) ist, desto genauer ist die Lösung vm; in den meisten Fällen ist
grösser als 1, d.h. ist die Genauigkeit von vm mindestens so gross
die Genauigkeit e von ßH(vm). Schliesslich liegt die genaue Lösung

1 oberhalb der Näherungslösung jm, weil die Folge vlt v2, ab-
hzw. die entsprechende Folge ••• zunimmt.

Fällt dagegen der gegebene Barwert B unter den kleinsten zu-
'assigen Wert r0 - dieser Fall kommt praktisch nie vor -, so liefert das
Erfahren nach einer gewissen Anzahl Schritten einen Wert v,<a.T)

Vorzeichen des Ausdruckes ui kann somit als Kriterium für
che Entscheidung dienen, ob das Verfahren fortgesetzt oder abgebrochen
Werden inuss.

Die wesentlichen Merkmale der oben geschilderten Methode zur
Auflösung der Unikehraufgabe seien schliesslich noch kurz
hervorgehoben; sie sind vom Standpunkt einer weitgehenden Automati-
Sleriuig des Itechenvorgangos aus zu beurteilen:

a) Der AIgorithmus beginnt und wird aufrechterhalten unter alleiniger
Angabe der Beträge der zeitlich gestaffelten Leistungen ct. Weitere

Hinweise z.B. über die Natur der Leistungen ct - ob es sich

um Versicherungsleistungen, Annuitäten, Zinszahlungen mit allen

möglichen Varianten handelt - sind nicht erforderlich.

Der Algorithmus bricht von selbst ab auf Grund logisch-mathematischer

Kriterien.
c) Die Lösung - falls eine solche existiert - kann mit beliebiger

Genauigkeit geliefert werden. Probleme ohne Lösung schliessen sich
automatisch aus.
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Bemerkungen:

1. Es wurde vorausgesetzt, dass die gestaffelten Leistungen ct vorI1

Zinsfuss unabhängig sind. Diese Annahme trifft aber z. B. nicht zu bel

den anwartschaftlichen Witwen- oder Überlebenszeitrenten, wo beiß1

Tode des Versicherten eine Rente zu laufen beginnt. Auf Eälle letzterei

Art kann aber das Newtonsche Verfahren ohne grosse Änderungen aß0-

gedehnt werden, da die zugehörigen Barwerte sich als lineare Komb1'

nationen zweier oder mehrerer Barwerto mit festen ct ausdrück011

lassen. Für jede Komponente werden parallel die Teil-Barwerte Bjpi)
und ermittelt, linear kombiniert und dann in die Formel (V) f01

die Bestimmung des nächsten Näherungswertes eingesetzt. Das V01'-

fahren bleibt also im wesentlichen bestehen.

2. Es gibt selbstverständlich für die Auflösung clor Umkehr-

aufgäbe auch andere iterative Methoden als die hier behandelte Nmv'

tonsche, so z.B. das Verfahren clor eingeschachtelten Intervalle: es wir1!

von zwei ersten Näherungswerten ausgegangen; für den ersten v0 001

der Barwert kleiner, für den zweiten vx dagegen grösser als der gegeben0

Barwert B. Da clie Lösung sich irgendwo auf dem Intervall v0 bis

befindet, wird das betreffende Intervall in zwei gleiche Teile geteilt. I0'

cler Barwert im Mittelpunkt v2 -- (®u + ßj.) grösser als B, so liegt ch0

Lösung auf dem linken Halbintervall v0 bis vz, welcher nochmals halbi01'

wird usw. Ist cler Barwert im Mittelpunkt vz kleiner, so ist das recht0

Halbintervall weiter zu unterteilen. Die somit erklärten ineinander eiß-

geschachtelten Intervalle ziehen sich bekanntlich auf einen einzigeI)

Punkt - die gesuchte Lösung - zusammen. Bei diesem trivialen Verfahr011

erübrigt sich die Berechnung der ersten Ableitung B' sowie jegh°^e

Konvergenzbetrachtung; dagegen ist die Konvergenz des Verfahr0110

sehr schlecht.

Beweis cles Hüfssatzes

df df df
Aus >0 und >dx dx dx wegen J > 0 folgt, dass f(x) ß11'

dx1

x monoton bis ins Unendliche wächst, d.h. class die durch die FunktioJj
f(x) definierte Zuordnung zwischen den Intervallen a^x<°° 1111

f{a) ^ f(x) < oo ein-eindoutig ist, womit der erste Teil cler BohauptußS
sowie cler 1. Satz cler Behauptung 2 bestätigt werden: für </§/' '

gibt es genau eine Lösung, für g < f(a) überhaupt keine.
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d2f
Aus >0 folgt eine wichtige geometrische Eigenschaft der

dx2

Kurve/(a:) in der (x, /(a;))-Ebene nämlich, dass jede Tangente Stützgerade
•Kr Kurve /(x) ist, d.h. dass die Tangento im Intervall a^x< oo

aUsser dem Berührungspunkt keinen weiteren Punkt mit der Kurve
§euieinsain hat.

Dies gilt offenbar lokal: die Kurve ist positiv gekrümmt, d.h. liegt
111 der Nähe des Berührungspunktes oberhalb der Tangente. Würde

die betreffende Tangente z. B. rechts vom Berührungspunkt die
Kurve treffen, so müsste die Tangente im ersten Treffpunkt aus

nahelegenden geometrischen Gründen eine kleinere Neigung
^

/' als
dx

de betrachtete erste Tangente haben, entgegen unserer Voraussetzung
f 0 d. h. f'(x) > f'(x) für x>x. Links vom Berührungspunkt führt
eiüe ähnliche Betrachtung zum selben Schluss.

Die Konvergenz bzw. Divergenz der Punktfolge x0, xlt x2,
Ist eine Folgerung letzterer Eigenschaft:

Behauptung 1: Weil die Tangente £(a;0) im l.Näherungspunkt x0
®lcht horizontal ist (f'(x) >0), schneidet t(x0) die Horizontale mit der
Ordinate g, und zwar - wegen der Eigenschaft der Tangente, Stütz-
8°rade zu sein - in einem rechts vom Schnittpunkt der Horizontalen

der Kurve, d.h. rechts von der genauen Lösung x* gelegenen
^uukt xx.

Wegen der Monotonität der Funktion f(x) gilt aus xL > x*

f(xx)>f(x*) g,
dtls heisst /(«i) —(J

xa Xl- <aV

Aus der Eigenschaft der Tangente, Stützgerade zu sein, ergibt sich
^'Uer, dass x2 rechts von x* liegt:

x* <xi<xl.
Gelten letztere Ungleichungen für den Uten Punkt xi d.h. gelten

dann folgt

x*<xi<xi.i,
/(«*) < f(Xi),
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Xi hl > x*.

das heisst:
Ii+, T'~ fed <ai"

und wiederum aus der Eigenschaft der Tangente im Punkte xi

Die Folge xl, x2, ist also monoton abnehmend (x% < xhl) un<^

beschränkt (x{ > x*) \ sie ist also konvergent. Es sei x** der Grenzt1'
der Folge; bei beliebig kleinem £ gibt es demnach ein N(e), für welche®

\xi + l — »jI <
das heisst f(x,)—q ~r/\<e sobald »> N(s)

1

f(*i)

Da nach Voraussetzung f'(x) =f= 0 auf a<ir< oo, konvcrgie^

nach letzterer Gleichung die Folge f(x), /(x2), gegen den Wert </>

d. h. - nach der ein-eindeutigen Zuordnung zwischen den Intervalle11

a^x< oo und [(a) ^ /(a;)<oo - die Folge der xt selbst gegen
<faS

Urbild x* von g. Behauptung 1 ist somit vollständig bewiesen.

Behauptung 2: Im Falle g < [(a) gilt wie oben

xx > x2 > X3 > > xt.

Flier kann keine untere Schranke im Intervall a ^ x < oo für d*e

Folge xt angegeben werden: nach Voraussetzung gilt solange Xi^a

/(«) ^ f(xi) ^ f(xi) >

/'(«) ^ f'(Xi) ^ f'(xx),

das heisst aus g < [(a)

f(xi)--g f(a)-(J
f'(xi) f'(xi)is 1

" Xi — tu \ '> HI-.. \ — <5 0.

Bei jedem Iterationsschritt reduziert sich demnach die Abszisse

mindestens um die positive Grösse <5. Nach endlich vielen Schritt611

wird also ein links von a gelegener Punkt erreicht, w.z.b.w.
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§ 2. Der Reclienplan

Her in dor Versicherungsmathematik hiiufig verwendeten modoll-
artigen Darstellung entsprechend, wollen wir die Leistungen ct als
Vermutung zugunsten einer fiktiven Basisgesamtheit von gleichberechtigten
Individuen definieren. Um ferner einen möglichst allgemeinen Rechen-
Ptan zu erzielen, zerlegen wir die zur Zeit t auf die Basisgesamtheit
enteilende Gesamtleistung in zwei Komponenten: eine Rechts-Kompo-
nente ax fällig zur Zeit t am Anfang der neuen Verzinsungsperiode und
eUie Links-Komponente b, fällig am Ende der zur Zeit t abgelaufenen
Periode. Es sei Xt die Anzahl der im Zeitpunkt t in der Basisgesamtheit
Vorhandenen Individuen, und zwar genau nach AuszahlungderLeistung

und unmittelbar vor Fälligkeit der Leistung at. Den Barwert
(zugunsten eines einzelnen Individuums der Basisgesamtheit) der innert
ßiner Zeitspanne von n Verzinsungsperiodon fällig werdenden Leistungen
dinieren wir als Quotienten

O Ax:ti\_
x:«] <\

>

Wobei
Ax:7n 2°*+««' + 26*-H®'

t 1

Wird zwecks Vereinfachung der Schreibweise auf ein besonderes
lorkmal für den Anfangszeitpunkt x verzichtet und wird für die rest-
°ue Dauer das Symbol k n t eingeführt, so haben wir

Bn \ (VII)

»Uit

K= + (vni)
/= 0 1

Wobei offenbar als Rekursionsformel für den Ausdruck

Ak — {[(^.U + an-1) + fyi-l] V + • • " + K-b-1} V + an-k

^sprechend Formel (II), § 1, gilt:

^4+ 1 [A+U' + äri-l l 7, n 1 O 1 /Ty\
ittit A o j

fc 0,1,2, n-1. (IX)



— 270 —

Für die Ableitung B'n von Bn nach der Veränderlichen v erhalt011

wir aus (VII) und (IX) (X, at, bt sind Konstante)

K A"; (%)

Am A v + (A + K-k)

mit A'0 0

Nach dem in § 1 beschriebenen Verfahren für die Auflösung d0r

Umkehraufgabe erhalten wir den folgenden zweifach zyklischen Rechen*

plan (siehe Abbildung).

1. Festlegung der Konstanten:
B gegebener Barwert,
e Toleranzmarge für B,

v0 erster Näherungswert der gesuchten Lösung.
2. Angabe der Anfangswerte A0 0 und A'0 0 gemäss (IX) und (XI)*

3. vg Vi i-ter Näherungswert.
4. A0 — Ak und A'0 A'k stellen die fc-ten Werte der Rekursionerl

(IX) und (XI) dar.

5.-7. Berechnung der nächsten Werte Ak+i und Ak+1 gemäss (lX)

und (XI).
8. Die neu errechneten Werte Ak+t bzw. Ak+1 werden als Anfangswei'

Ak bzw. A'k für eine weitere Umdrehung um den /c-Zyklus (4" '

angenommen. Nach n Umläufen (fc n) Übergang zum i-ZyldllS'

9. Bn und B'n gemäss (VII) und (X) errechnen.

10. Fehler ABn sowie neuen Näherungswert i>j + 1 ermitteln.

11. Falls der Fehler grösser als die Toleranzmarge e ist, vi + i,
111 0>

umnennen, zwecks nochmaliger Verbesserung der Approxhnati011'

und bei Programmschritt 4 neu anfangen (Ak A'k 0 für h ^ >'

12. Ist ;/!£„] ^e, d.h. ist die gewünschte Genauigkeit bei der Lös«11^

erreicht, dann Zinsfuss j aus ui+1 ermitteln.
13. Ist vj + 1 < 0, besitzt die gestellte Aufgabe keine Lösung.

Für die Auflösung der direkten Aufgabe umfasst der obige Rech011

plan die Programmschritte 1-9, wobei in diesem Fall als v0 der g®

gebene Diskontierungsfaktor zu wählen ist. Der Plan ist dann eh»®

zyklisch; die Mitberechnung der Ableitungen A und B'k ist überflüsS1^

h 0, 1, 2, n — 1. (XD
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6

Der Rechenplctn
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§ 3. Beispiele

/. Aus der Lebensversicherung

Der Leibrentenbarwerfc «40:25] beträgt nach den Gruncllageö

SM 21/30 2*4%: B 16.692. Gesucht ist der technische Zins, welcher

bei der Sterbetafel SM 48/53 zuin selben Barwert führt (Toleranzmarge

für B: s 0,001).

Die ct sind die lx nach SM 48/53 (genauer axhl lx+t, bx+i ^
und maii findet aus dem ersten Näherungswert j0 2/4%:

Diskontierungs-

faktor
«10: 25 |

dä

dv
Verbesserter Diskontierungsfaktor

0,97561

(i ay2%)
17,500 183,22

17,500-16,692 „nf7lo0
0,97561 - - 0,97129

183,22

0,97120 16,717 172,00
16,717 — 16,692 „nr-in5

0,97120 0,9710&
172,00

0,97105 16,692

Aus v 0,97105 ergibt sich der technische Zins j 2,981 %, wobei

der Fehler höchstens eine Einheit in der dritten Dezimalstelle ausmacht-

2. Aus der Renditentheorie fest verzinslicher Wertpapiere

Bei der 3/4%igen holländischen Staatsanleihe 1951 sind die

Zinsen halbjährlich zahlbar. Die Schuld wird nach einem fest umschrie

benen Amortisationsplan getilgt (2% bis 6% jährlich), wobei die Obh

gationen zu 100% zurückbezahlt werden. Wie gross ist die Rendite be'

einem Ankaufskurs von 96% (Toleranzmarge e 0,001%), wenn de1'

Schuldner von der vorzeitigen Rückzahlungsmöglichkeit keinen $e

brauch macht

Leistungen ct werden alle 6 Monate nachschüssig fällig: ax+t
bx+l — Zinsen und Rückzahlungen. Die Verzinsungsperiode betragt

ein halbes Jahr.



Aus dem ersten Näherungswert j0 3%% ergibt sich:

Diskontierungs-

faktor v-
"n K Verbesserter Diskontiorungsfaktor

°>98176

^=B3/4%)
0,97581 22,857

0,97581 - 0,96
0,98176 — 2W 0,98107

0,08107 0,96022 22,369
0,96022 — 0,96

0,98107 — ' 0,98106
22,369

0,98106 0,95999

das heisst j — — 1 3,898%.' 0,98 1 062
7
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