Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 56 (1956)

Artikel: Über eine allgemeine Methode der Lösung des Zinsfussproblems für

verschiedene Versicherungsformen und die Darstellung der darin

auftretenden Momente

Autor: Gubler, Hermann

DOI: https://doi.org/10.5169/seals-966835

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Über eine allgemeine Methode der Lösung des Zinsfussproblems für verschiedene Versicherungsformen und die Darstellung der darin auftretenden Momente

Von Hermann Gubler, Basel

1. Einleitung

Das Zinsfussproblem gehört wohl zu den bekanntesten Problemen der Versicherungsmathematik. Es hat nicht nur theoretische Bedeutung, sondern tritt in dieser oder jener Form immer wieder an den Praktiker heran. Und zwar stellen sich die praktischen Fragen nicht nur deswegen, weil die Zinsen auf den Kapitalanlagen stets gewissen marktbedingten Schwankungen unterworfen sind, sondern vor allem deshalb, weil viele technische Grundlagen nur für spezielle Zinsfüsse gerechnet sind.

Fast alle bisher bekannten Methoden zur Lösung des Zinsfussproblems zielen darauf ab, den Leibrenten-Barwert nach dem neuen Zinssatz anzugeben, um dann daraus die andern versicherungsmathematischen Grössen zu bestimmen. Ein Verfahren von Lotka [1]¹) zur Berechnung der Vermehrungsrate der stabilen Bevölkerung wurde nun von Zwinggi [2] benützt, um das Problem auf eine neuartige Weise zu behandeln. Die neue Methode geht darauf aus, mit Hilfe der gegebenen Kommutationszahlen zum alten Zinsfuss aus einer versicherungstechnischen Grösse direkt auf die entsprechende Grösse nach dem neuen Zinsfuss zu schliessen, ohne den Umweg über den Leibrentenbarwert zu machen. Das Verfahren wurde von Zwinggi im Beispiel der Nettoprämie für die gemischte Versicherung beschrieben.

In der vorliegenden Untersuchung soll zunächst gezeigt werden, wie sich das Verfahren anwenden lässt auf die Bruttoprämie gemischter

¹⁾ Siehe Literaturverzeichnis.

Versicherungen mit steigender Dividende sowie auf das Nettodeckungskapital der gemischten Versicherung. Im letztern Fall wird unsere Darstellung eine gewisse Ähnlichkeit mit der von Vajda hergeleiteten Formel für die Umrechnung des Deckungskapitals von gemischten Versicherungen und lebenslänglichen Todesfallversicherungen erhalten. Ausführliche numerische Kontrollbeispiele illustrieren die Brauchbarkeit und Genauigkeit der Methode.

Um nicht wie bisher die kontinuierliche und diskontinuierliche Darstellung unterscheiden zu müssen, haben wir systematisch den Schärfschen Integralbegriff benützt, der vom Verfasser speziell für versicherungstechnische Funktionen geschaffen wurde. Zum bessern Verständnis geben wir in einem besondern Abschnitt die wichtigsten Eigenschaften dieses Integralbegriffes an.

Bei der obigen Methode der Behandlung des Zinsfussproblems spielen die Zeitmomente der diskontierten Zahlen der Lebenden und der Toten eine wesentliche Rolle. Wir zeigen, wie dieselben entweder mit Hilfe partieller Summation oder mit den Stirlingschen Zahlen berechnet werden können. Zudem geben wir für die Absterbeordnungen SM und SF 39/44, 3% eine Momenten-Tafel.

Bevor ich die Einleitung schliesse, möchte ich allen, die mir bei der Arbeit ihre Unterstützung angedeihen liessen, bestens danken. Speziell Herrn Prof. Zwinggi für die Problemstellung, Herrn Prof. Saxer für den Hinweis auf den Schärfschen Integralbegriff und meinem ehemaligen Studienkollegen, Herrn Prof. Specker, für seine praktischen Ratschläge.

2. Die Theorie des neuen Verfahrens

In allen Formeln für versicherungstechnische Grössen, in welchen der Zins eine Rolle spielt, tritt die Zinsintensität δ als exponentieller Faktor auf. Es ist daher naheliegend, für die Lösung des Zinsfussproblems einen Ansatz von der Form

$$f_{(\delta)} = f_{(\delta_0)} e^{g(\delta_0 - \delta)} \tag{1}$$

zu wählen, wobei vorausgesetzt werden kann, dass für die Zinsintensität δ_0 nicht nur der Funktionswert selbst, sondern auch alle nötigen Kommutationszahlen vorhanden sind. Die gesuchte Funktion $g_{(\delta_0-\delta)}$ soll also eine Funktion der alten Kommutationszahlen und der Differenz $\delta_0-\delta$ sein.

Wir logarithmieren die Gleichung (1) und erhalten

$$\ln f_{(\delta)} = \ln f_{(\delta_0)} + g_{(\delta_0 - \delta)}. \tag{2}$$

Wenn wir nun $\delta_0 - \delta = r$ setzen, schreibt sich Gleichung (2):

$$\ln f(\mathbf{r}) = \ln f(0) + g(\mathbf{r}).$$

Durch Differentiation nach der Variablen r erhalten wir für g(r) eine Differentialgleichung, in welcher f(0) nur noch als Integrationskonstante auftritt:

 $\frac{\partial \ln f(r)}{\partial r} = \frac{\partial g(r)}{\partial r}$

oder, etwas anders dargestellt:

$$g'(r) = \frac{\partial f(r)}{f(r) \partial r}.$$

Mit Hilfe dieser Differentialgleichung soll nun die Funktion g(r) aus der Funktion f(r) und deren Ableitung bestimmt werden. Nun sind aber die in der praktischen Versicherungsmathematik vorkommenden Funktionen f(r) selten in einfacher Weise durch analytische Funktionen darstellbar, so dass sich die Funktion g'(r) kaum in der sich aus der Ableitung ergebenden rohen Form integrieren liesse. Wir müssen daher versuchen, für g'(r) gute Näherungslösungen zu finden, Welche sich zur Integration eignen.

In der klassischen Versicherungsmathematik muss stets unterschieden werden zwischen der kontinuierlichen und der diskontinuierlichen Methode. Die einzelnen Formeln müssen jeweils getrennt abgeleitet werden. Im folgenden Abschnitt wollen wir nun den Integralbegriff von Schärf einführen, mit dessen Hilfe sich die beiden Methoden formell vereinigen lassen.

3. Der Integralbegriff von Schärf

Der neue Integralbegriff von Schärf [3] geht durch eine Verallgemeinerung aus dem Riemann-Stieltjesschen Integral hervor. Er gibt
uns die Möglichkeit, die traditionelle Doppelspurigkeit der kontinuierlichen und der diskontinuierlichen Methode in der Versicherungsmathematik zu überwinden.

Das Riemann-Stieltjessche Integral wurde durch Loewy [4] in der $V_{ersicherungsmathematik}$ eingeführt. Die Voraussetzungen für seine

Existenz sind aber in der diskontinuierlichen Methode nicht immer erfüllt. Die für die diskontinuierliche Versicherungsmathematik typischen Treppenfunktionen können nicht ohne weiteres nach der Methode von Riemann-Stieltjes über eine andere Funktion integriert werden. Der von Schärf entwickelte Integralbegriff hat nun diesen Mangel behoben. Durch geeignete Definition sogenannter «einseitiger» Stieltjes-Integrale hat Schärf es ermöglicht, auch diese für die Versicherungsmathematik wichtigsten Funktionen zu integrieren.

Wir betrachten zwei Funktionen f(t) und g(t) in einem Intervall $[a,b]^1$). Es sei D_n eine Einteilung von [a,b] mit den Teilungspunkten $a=t_0, t_1, t_2, \ldots, t_n=b$. Dabei nennen wir eine Folge $\{D_n\}$ von Einteilungen «normal», wenn die maximale Länge der Teilintervalle für $n \to \infty$ gegen 0 konvergiert. Mit Hilfe der Funktionswerte von f und g in diesen Teilungspunkten bilden wir nun folgende Summen:

$$\begin{array}{l}
\stackrel{(-)}{A}_{D_{n}}(f,g) = \sum\limits_{i=0}^{n-1} f(t_{i}) \left[g(t_{i+1}) - g(t_{i}) \right], \\
\stackrel{+)}{A}_{D_{n}}(f,g) = \sum\limits_{i=0}^{n-1} f(t_{i+1}) \left[g(t_{i+1}) - g(t_{i}) \right].
\end{array} \right\} (1)$$

Konvergiert für jede «normale» Einteilungsfolge $\{D_n\}$ die Zahlenfolge $\{^{(-)}A_{D_n}(f,g)\}$ bzw. $\{^{(+)}A_{D_n}(f,g)\}$, so setzen wir

$$\lim_{n \to \infty} A_{D_n}(f, g) = \int_a^{(-)} f \, dg = \text{linksseitiges Stieltjes-Integral,}$$

$$\lim_{n \to \infty} A_{D_n}(f, g) = \int_a^{(+)} f \, dg = \text{rechtsseitiges Stieltjes-Integral.}$$

$$\lim_{n \to \infty} A_{D_n}(f, g) = \int_a^{(+)} f \, dg = \text{rechtsseitiges Stieltjes-Integral.}$$

Aus den funktionentheoretischen Untersuchungen von Schärf greifen wir folgenden, für unsere Entwicklungen wichtigen Satz heraus:

Satz: Ist im Intervall [a,b] die Funktion f beschränkt, die Funktion g von beschränkter Schwankung, so ist für die Existenz von

$$\int_{a}^{(-)} f \, dg$$

notwendig und hinreichend, dass

¹) Für die Intervalle $a \le t \le b$, $a \le t < b$, $a < t \le b$, a < t < b verwenden wir entsprechend die Bezeichnungen [a,b], [a,b), (a,b], (a,b).

- 1. In jedem linksseitigen, im Intervall (a,b] gelegenen Unstetigkeitspunkt der Funktion g die Funktion f eine linksseitige Grenze f(x-0) hat.
- 2. Die Menge N der linksseitigen, im Innern von [a,b] gelegenen Unstetigkeitspunkte der Funktion f eine Nullmenge bezüglich der linksseitigen Kontinuitätsfunktion g_e von g ist.

Dann existiert das Lebesgue-Stieltjessche Integral $\int f dg_e$ über dem Intervall [a,b), und es ist

$$\int_{a}^{(-)} f \, dg = \int_{[a,b)} f \, dg_{e} + \sum_{a < x_{i} \le b} f(x_{i} - 0) \left[g(x_{i}) - g(x_{i} - 0) \right], \tag{2}$$

Wobei die Summation sich auf alle im Intervall (a,b] gelegenen linksseitigen Unstetigkeitspunkte x_i der Funktion g erstreckt.

Für die in der kontinuierlichen Betrachtungsweise der Versicherungsmathematik auftretenden Funktionen sind die Bedingungen 1. und 2. trivial. Es lässt sich leicht zeigen, dass sie auch von den in der diskontinuierlichen Methode auftretenden Funktionen erfüllt werden.

Die diskontinuierlichen Funktionen der Versicherungsmathematik sind ausgesprochene Treppenfunktionen mit den Sprungstellen am Ende der Zeitintervalle. Wenn t_1 , t_2 die Grenzen eines solchen Intervalles sind, so sind diese Funktionen konstant im Intervall $[t_1,t_2)$. Die Funktionen sind in den Sprungstellen rechtsseitig stetig, hingegen linksseitig unstetig. Sehr wichtig ist nun die Tatsache, dass sie in den Sprungstellen stets eine linksseitige Grenze besitzen, indem $f(t_2-0)=f(t_1)$ ist. Also ist die 1. Bedingung auch in der diskontinuierlichen Betrachtungsweise stets erfüllt. Da die Menge N der Unstetigkeitsstellen in jedem Fall endlich ist, stellt sie bezüglich jeder andern Funktion eine Nullmenge dar, womit auch Bedingung 2 erfüllt ist.

Der Anwendung der Formel (2) des obigen Satzes auf alle versicherungstechnischen Funktionen steht also nichts im Wege. In den
folgenden Entwicklungen brauchen wir im wesentlichen die temporäre
Leibrente und die temporäre Todesfallversicherung. Wir wollen daher
zuerst zeigen, wie sich diese beiden Funktionen mit Hilfe des Schärfschen Integralbegriffes darstellen lassen.

Es bedeute w(t) im kontinuierlichen Fall $e^{-\delta t}$, im diskontinuierlichen Fall v^t . Wenn R(t) den bis zum Zeitpunkt t zu zahlenden Renten-

betrag darstellt, so können wir für den Barwert einer temporären Leibrente schreiben:

$$\frac{1}{l_x}\int_{0}^{(-)} l_{x+t} w(t) dR(t).$$

Ist die Höhe der Rente unabhängig von t, so ist R(t) = Rt. Damit wird, wenn wir R = 1 setzen,

$$\ddot{a}_{x:\overline{n}|} = \frac{1}{l_x} \int_{0}^{t} l_{x+t} w(t) dt.$$

Dabei müssen wir wohl beachten, dass dt nicht ein Differential, sondern einfach der integrierende Faktor des Schärfschen Integrals ist. Handelt es sich um stetige Funktionen, so geht das Integral über in ein Riemann-Stieltjessches, bzw. bei Differenzierbarkeit in ein gewöhnliches Riemannsches Integral. Im diskontinuierlichen Fall hingegen erhalten wir gemäss Formel (2):

$$\ddot{a}_{x;\overline{n}|} = \frac{1}{l_x} \sum_{t=0}^{n-1} l_{x+t} \, w(t) \, \big[(t+1) - t \big] = \frac{1}{l_x} \sum_{t=0}^{n-1} l_{x+t} \, w(t) \, .$$

Wenn wir an Stelle des linksseitigen Stieltijes-Integrales das rechtsseitige wählen, so gelangen wir nicht zum vorschüssigen, sondern zum nachschüssigen Rentenbarwert. Es ist dann im diskontinuierlichen Fall

$$\begin{split} \frac{1}{l_x} \int_0^{t+1} l_{x+t} \, w(t) \, dt &= \frac{1}{l_x} \sum_{t=0}^{n-1} l_{x+t+1} \, w(t+1) \left[(t+1) - t \right] \\ &= \frac{1}{l_x} \sum_{t=0}^{n-1} l_{x+t+1} \, w(t+1) \, = \, a_{x:\overline{n}|}. \end{split}$$

Die Zahl der innerhalb t Jahren gestorbenen Versicherten mit dem Eintrittsalter x ist $l_x - l_{x+t}$. Daher ist der Barwert für die temporäre Todesfallversicherung

$$A'_{x:\overline{n}|} = rac{1}{l_x} \int_{0}^{(+)n} w(t) d(l_x - l_{x+t})$$

$$= -rac{1}{l_x} \int_{0}^{(+)n} w(t) dl_{x+t}.$$

Im kontinuierlichen Fall ergibt sich daraus

$$egin{align} ar{A}_{x:\overline{n}|}' &= -rac{1}{l_x}\int\limits_0^n w(t)\;dl_{x+t} \ &= -rac{1}{l_x}\int\limits_0^n w(t)\;rac{dl_{x+t}}{dt}\,dt \,. \end{split}$$

Nun ist aber $\frac{dl_{x+t}}{dt} = -l_{x+t} \mu_{x+t}$ und somit

$$\overline{A}'_{x:\overline{n}|} = rac{1}{l_x} \int_0^n w(t) \, l_{x+t} \, \mu_{x+t} \, dt \, ,$$

was nichts anderes darstellt als die bekannte Formel für die kontinuierliche temporäre Todesfallversicherung. Aber auch im diskontinuierlichen Fall führt das Integral auf die gebräuchliche Darstellung. Wir benützen wieder Gleichung (2).

$$\begin{split} A_{x:\overline{n}|}' &= -\frac{1}{l_x} \sum_{t=0}^{n-1} w(t+1) \left[l_{x+t+1} - l_{x+t} \right] \\ &= \frac{1}{l_x} \sum_{t=0}^{n-1} w(t+1) \, d_{x+t} \, . \end{split}$$

Die diskontinuierlichen Funktionen der Versicherungsmathematik sind als Treppenfunktionen derart einfach, dass sich die Bedeutung des Schärfschen Integrales im diskontinuierlichen Fall jeweils sehr leicht direkt aus der Definitionsgleichung (1) ergibt.

4. Die Anwendung des neuen Verfahrens auf die Bruttoprämie für eine gemischte Versicherung mit steigender Dividende

a) Durch Variation der Zinsintensität

Wie wir in der Einleitung erwähnt haben, wurde das Verfahren von Zwinggi auf den Fall der Nettoprämie für die gemischte Versicherung angewendet. Dass es sich auch auf die Bruttoprämie mit steigender Dividende ausdehnen lässt, liegt, vom mathematischen Standpunkt

aus gesehen, auf der Hand. Ob es sich aber bei der Kompliziertheit des Aufbaus dieser versicherungsmathematischen Funktion praktisch durchführen lässt und zu brauchbaren Resultaten führt, soll im folgenden noch untersucht werden.

Wir benützen folgende Abkürzungen:

$$w(t) = e^{-\delta_0 t},$$

$$F(t) = e^{-\delta_0 t} l_{x+t}.$$

Für die Abschluss-, Inkasso- und Verwaltungskosten verwenden wir die üblichen Symbole α , β , und γ . Mit c bezeichnen wir den Dividendensatz, in dem Sinne, dass nach t Jahren das ct ach der Bruttoprämie als Gewinn ausgeschüttet werde. Mit der Ausschüttung des Gewinnes wird in der Praxis erst nach Ablauf einer gewissen Frist von zum Beispiel zwei oder drei Jahren begonnen. Um die Ableitungen nicht unnötig zu komplizieren, können wir aber für unsere Betrachtungen ohne weiteres annehmen, dass der Gewinn von Anfang an nach Massgabe der abgelaufenen Versicherungsdauer ausgeschüttet werde.

Unter diesen Voraussetzungen lässt sich die Bruttoprämie für die gemischte Versicherung für die Zinsintensität δ_0 folgendermassen schreiben:

$$P_0' = rac{\int\limits_0^{(+)n} w(t)\,dl_{x+\,t} + F(n) + lpha\,l_x + \gamma\int\limits_0^{(-)n} F(t)\,dt}{(1-eta)\left\{\int\limits_0^{(-)n} F(t)\,dt - c\int\limits_0^{(-)n} tF(t)\,dt
ight\}}.$$

Für die variierte Zinsintensität $\delta = \delta_0 + r$ gilt:

$$e^{-\delta t}\,=\,e^{-rt}\,w(t)$$
 , $e^{-\delta t}\,l_{x+t}\,=\,e^{-rt}\,F(t)$,

so dass sich für die Bruttoprämie zur neuen Zinsintensität δ ergibt:

$$P_{(\delta)}' = \frac{\int\limits_{0}^{(+)^{n}} e^{-rt} \, w(t) \, dl_{x+\,t} + e^{-rn} F(n) + \alpha \, l_{x} + \gamma \int\limits_{0}^{(-)^{n}} e^{-rt} \, F(t) \, dt}{(1 - \beta) \left\{ \int\limits_{0}^{(-)^{n}} e^{-rt} \, F(t) \, dt - c \int\limits_{0}^{(-)^{n}} t \, e^{-rt} \, F(t) \, dt \right\}}.$$

Nun bilden wir die Ableitung von $P'_{(\delta)}$ nach der Variablen r.

$$\begin{split} \frac{\partial P_{(\delta)}'}{\partial r} &= -\frac{\int\limits_{0}^{(+)n} t \, e^{-rt} \, w(t) \, dl_{x+t} + n \, e^{-rn} F(n) + \gamma \int\limits_{0}^{(-)n} t \, e^{-rt} F(t) \, dt}{(1-\beta) \left\{\int\limits_{0}^{(-)n} e^{-rt} F(t) \, dt - c \int\limits_{0}^{(-)n} t e^{-rt} F(t) \, dt\right\}} \\ &+ \frac{(1-\beta) \left\{\int\limits_{0}^{(-)n} t \, e^{-rt} \, F(t) \, dt - c \int\limits_{0}^{(-)n} t^2 \, e^{-rt} F(t) \, dt\right\}}{(1-\beta) \left\{\int\limits_{0}^{(-)n} e^{-rt} F(t) \, dt - c \int\limits_{0}^{(-)n} t \, e^{-rt} \, F(t) \, dt\right\}} P_{(\delta)}'. \end{split}$$

Indem wir die Gleichung durch $P'_{(\delta)}$ dividieren, gelangen wir zur gesuchten logarithmischen Ableitung nach r.

$$\begin{split} \frac{\partial P_{(\delta)}'}{P_{(\delta)}'\partial r} &= -\frac{\int\limits_{0}^{(+)n} t \, e^{-rt} \, w(t) \, dl_{x+t} + n e^{-rn} F(n) + \gamma \int\limits_{0}^{(-)n} t \, e^{-rt} \, F(t) \, dt}{\int\limits_{0}^{(+)n} e^{-rt} \, w(t) \, dl_{x+t} + e^{-rn} F(n) + \alpha l_x + \gamma \int\limits_{0}^{(-)n} e^{-rt} \, F(t) \, dt} \\ &+ \frac{\int\limits_{0}^{(-)n} t \, e^{-rt} \, F(t) \, dt - c \int\limits_{0}^{(-)n} t \, e^{-rt} \, F(t) \, dt}{\int\limits_{0}^{(-)n} e^{-rt} \, F(t) \, dt - c \int\limits_{0}^{(-)n} t \, e^{-rt} \, F(t) \, dt} = \mathrm{I} + \mathrm{II}. \end{split}$$

Wir müssen nun versuchen, diese Differentialgleichung zu lösen. Eine exakte Darstellung des Integrals in einer analytisch geschlossenen Form ist jedoch ausgeschlossen. Um eine Näherungslösung zu erhalten, entwickeln wir den Ausdruck auf der rechten Seite in eine Potenzreihe. Vom mathematischen Standpunkt aus wäre es nun interessant zu wissen, welchen Fehler wir begehen, wenn wir die betreffende Potenzreihe nach dem nten Glied abbrechen. Bei den versicherungsmathematischen Funktionen sind jedoch solche theoretische Untersuchungen mit den Mitteln der reinen Mathematik sehr schwierig, weil die darin auftretenden biometrischen Funktionen meist entweder überhaupt nur empirisch oder dann in äusserst komplizierter analytischer Form gegeben sind. In der Praxis bleibt daher in den meisten Fällen nichts

anderes übrig, als die entwickelten Formeln anhand von praktischen Beispielen auf ihre Brauchbarkeit hin zu prüfen. Da es sich jedoch bei den hier zur Anwendung gelangenden biometrischen Funktionen um beschränkte Funktionen handelt, die im kontinuierlichen Fall stetig und stetig differenzierbar sind und im diskontinuierlichen Fall reine Treppenfunktionen darstellen, lassen sich aus Rechnungsbeispielen doch ziemlich zuverlässige und für die Praxis durchaus hinreichende Schlüsse ziehen. Wir werden uns daher auch in unserm Fall auf die Prüfung des Verfahrens anhand praktischer Beispiele beschränken.

Es gilt nun also, die rechte Seite der letzten Gleichung in eine Potenzreihe nach r zu entwickeln. Wir gehen dabei schrittweise vor, indem wir zuerst die einzelnen Ausdrücke entwickeln. Wenn die Glieder mit Potenzen von höherer Ordnung als 1 vernachlässigt werden, so erhalten wir beispielsweise:

$$\int_{0}^{(+)n} e^{-rt} w(t) dl_{x+t} = \int_{0}^{(+)n} w(t) dl_{x+t} - r \int_{0}^{(+)n} t w(t) dl_{x+t} + \dots,$$

$$\int_{0}^{(+)n} t e^{-rt} w(t) dl_{x+t} = \int_{0}^{(+)n} t w(t) dl_{x+t} - r \int_{0}^{(+)n} t^{2} w(t) dl_{x+t} + \dots.$$

Damit lassen sich die mit I und II bezeichneten Quotienten der logarithmischen Ableitung folgendermassen schreiben:

$$\begin{split} &\mathbf{I} = -\frac{\int\limits_{0}^{(+)n} t \, w(t) \, dl_{x+t} - r \int\limits_{0}^{(+)n} t^2 w(t) \, dl_{x+t} + n F(n) - r n^2 F(n) + \gamma \left\{ \int\limits_{0}^{(-)n} t \, F(t) \, dt - r \int\limits_{0}^{(-)n} t^2 F(t) \, dt \right\} }{\int\limits_{0}^{(+)n} w(t) \, dl_{x+t} - r \int\limits_{0}^{(+)n} t \, w(t) \, dl_{x+t} + F(n) - r n F(n) + \alpha \, l_x + \gamma \left\{ \int\limits_{0}^{(-)n} F(t) \, dt - r \int\limits_{0}^{(-)n} t \, F(t) \, dt \right\} } \\ &\mathbf{II} = \frac{\int\limits_{0}^{(-)n} t \, F(t) \, dt - r \int\limits_{0}^{(-)n} t^2 F(t) \, dt - c \left\{ \int\limits_{0}^{(-)n} t^2 F(t) \, dt - r \int\limits_{0}^{(-)n} t^2 F(t) \, dt \right\} }{\int\limits_{0}^{(-)n} F(t) \, dt - r \int\limits_{0}^{(-)n} t \, F(t) \, dt - r \int\limits_{0}^{(-)n} t^2 F(t) \, dt \right\}} . \end{split}$$

Zur Vereinfachung der Schreibweise führen wir folgende Symbole ein:

$$U_k = \left\{ \int\limits_0^{(-)} t^k F(t) dt \right\} e^{-\delta_0 x}, \qquad V_k = \left\{ \int\limits_0^{(+)} t^k w(t) dl_{x+t} + n^k F(n) \right\} e^{-\delta_0 x},$$

und erhalten damit für I und II

$$egin{align} \mathrm{I} &= rac{V_1 \!-\! r V_2 + \gamma (U_1 \!-\! r U_2)}{V_0 \!-\! r V_1 + lpha D_x \!+\! \gamma (U_0 \!-\! r U_1)} \,, \ &\mathrm{II} &= rac{U_1 \!-\! r U_2 \!-\! c (U_2 \!-\! r U_3)}{U_0 \!-\! r U_1 \!-\! c (U_1 \!-\! r U_2)} \,, \end{aligned}$$

oder, indem wir die Glieder mit r zusammenfassen:

$$egin{align} \mathrm{I} &= -rac{V_1 + \gamma U_1 - r(V_2 + \gamma U_2)}{V_0 + \gamma U_0 + lpha D_x - r(V_1 + \gamma U_1)} \,, \ \\ \mathrm{II} &= rac{U_1 - c\, U_2 - r(U_2 - c\, U_3)}{U_0 - c\, U_1 - r(U_1 - c\, U_2)}. \end{split}$$

Um die Darstellung der Ausdrücke noch weiter zu vereinfachen, führen wir Hilfsgrössen T_i und W_i ein.

$$T_i = U_i - c U_{i+1}$$
, $W_i = V_i + \gamma U_i$.

Dann ist

$$\mathrm{I} = -rac{W_1 - rW_2}{W_0 + lpha D_x - rW_1} \quad ext{und} \quad \mathrm{II} = rac{T_1 - rT_2}{T_0 - rT_1}.$$

Nun bilden wir die Potenzreihen nach r für die beiden Quotienten I und II, wobei wir wieder die Glieder mit Potenzen von höherer Ordnung als 1 vernachlässigen.

$$egin{align} \mathrm{I} &= -rac{W_1}{W_0+lpha D_x} + riggl\{rac{W_2}{W_0+lpha D_x} - \Big(rac{W_1}{W_0+lpha D_x}\Big)^2iggr\}, \ \ \mathrm{II} &= rac{T_1}{T_0} + riggl\{\Big(rac{T_1}{T_0}\Big)^2 - rac{T_2}{T_0}iggr\}. \end{aligned}$$

Die Lösung der homogenen Differentialgleichung

$$\frac{\partial P'_{(\delta)}}{\partial r} = P'_{(\delta)}(I + II)$$

lässt sich nun leicht angeben, wenn man berücksichtigt, dass für r=0 die Integrationskonstante $P'_{(\delta)}=P'_{(\delta_0)}$ sein muss.

$$P'_{(\delta)} = P'_{(\delta_0)} e^{ar + rac{b}{2}r^2}$$
,

wobei a und b folgendermassen bestimmt werden:

$$a = \frac{T_1}{T_0} - \frac{W_1}{W_0 + \alpha D_x},$$

$$b = \left(\frac{T_1}{T_0}\right)^2 - \frac{T_2}{T_0} - \left(\frac{W_1}{W_0 + \alpha D_x}\right)^2 + \frac{W_2}{W_0 + \alpha D_x}.$$
(3)

In diesen Ausdrücken treten neben der Variablen r nur noch Grössen auf, die sich mit Hilfe derjenigen Kommutationszahlen bestimmen lassen, welche der Zinsintensität δ_0 entsprechen.

Damit ist unsere Aufgabe für den Fall der Variation der Zinsintensität gelöst, und zwar sowohl für die kontinuierliche wie für die diskontinuierliche Methode.

In der Praxis hat man es jedoch meistens nicht mit einer Änderung der Zinsintensität δ, sondern mit einer Änderung des Zinsfusses i zu tun. Natürlich lässt sich ohne weiteres aus der Zinsfussdifferenz die entsprechende Differenz der Zinsintensitäten berechnen. Wir wollen aber doch noch sehen, wie sich die Formeln ableiten lassen, wenn wir direkt den Zinsfuss ändern, ohne den Umweg über die Zinsintensität zu machen.

b) Durch Variation des Zinsfusses

Während die kontinuierliche Methode der Versicherungsmathematik mehr nur theoretische Bedeutung hat und in der Praxis selten zur Anwendung gelangt, ist die diskontinuierliche Methode in ihrer klassischen Form das tägliche Brot des Praktikers. Sie wird sich wohl kaum durch das Schärfsche Integral, das beide Methoden vereinigt, zurückdrängen lassen. Wir wollen daher die folgenden Ableitungen nach der rein diskontinuierlichen Methode, unter Verwendung der jedem Versicherungsmathematiker geläufigen Symbole durchführen.

Wir gehen von einer Prämiendarstellung aus, welche nicht einfach eine genaue Übertragung der Ableitungen des letzten Abschnittes zulässt, sondern ein neues Element in die Enwicklungen hineinbringt. Unter Zugrundelegung derselben Annahme wie unter a) können wir die Bruttoprämie zum Zinsfuss i_0 für die gemischte Versicherung mit steigender Dividende darstellen als

$$P_0' = \frac{(1+\alpha)\left\{\sum\limits_{t=0}^{n-1}C_{x+t} + D_{x+n}\right\} + (\gamma + \alpha d_0)\sum\limits_{t=0}^{n-1}D_{x+t}}{(1-\beta)\left\{\sum\limits_{t=0}^{n-1}D_{x+t} - c\sum\limits_{t=0}^{n-1}tD_{x+t}\right\}}.$$

Hier tritt im Zähler der Ausdruck $\alpha \delta_0$ auf. Wollten wir die Ableitung für die kontinuierliche und die diskontinuierliche Methode zusammen mit Hilfe des Schärfschen Integrals durchführen, so könnten wir diese Darstellung nicht benützen. Wir müssen uns hier durch die Wahl von d_0 oder δ_0 von Anfang an für eine der beiden Betrachtungsweisen entscheiden.

Wir führen nun folgende Abkürzungen ein:

$$F(t) = \frac{D_{x+t}}{v_0^x}$$
 und $G(t) = \frac{C_{x+t}}{v_0^x}$.

Damit erhalten wir für die Bruttoprämie:

$$P_0' = \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1} G(t) + F(n)\right\} + (\gamma + \alpha d_0) \sum_{t=0}^{n-1} F(t)}{(1+\beta)\left\{\sum_{t=0}^{n-1} F(t) - c \sum_{t=0}^{n-1} t F(t)\right\}}.$$

In der diskontinuierlichen Methode ist in allen Kommutationszahlen der Diskontierungsfaktor v^x enthalten. Es ist daher zweckmässig, für den Übergang auf den Zinsfuss i an Stelle der Differenz $i-i_0$ den

Quotienten $\frac{v}{v_0}$ zu benützen.

Wir definieren:

$$1 + h = \frac{v}{v_0} = \frac{1 + i_0}{1 + i}.$$

 D_{ann} gilt für den Zinsfuss i:

$$rac{D_{(i)x+t}}{v_{(i)}^x} = rac{D_{x+t}}{v_0^x} \left(rac{v}{v_0}
ight)^t = (1+h)^t F(t),$$
 $rac{C_{(i)x+t}}{v_0^x} = rac{C_{x+t}}{v_0^x} \left(rac{v}{v_0}
ight)^{t+1} = (1+h)^{t+1} G(t).$

Wenn wir noch berücksichtigen, dass $d = 1 - v_0(1+h)$ ist, so erhalten wir für die Bruttoprämie nach dem neuen Zinsfuss i:

$$P_{(i)}' = \frac{(1+\alpha)\left\{\sum\limits_{t=0}^{n-1}(1+h)^{t+1}G(t) + (1+h)^{n}F(n)\right\} + \left\{\gamma + \alpha - \alpha v_{0}(1+h)\right\}\sum\limits_{t=0}^{n-1}(1+h)^{t}F(t)}{(1-\beta)\left\{\sum\limits_{t=0}^{n-1}(1+h)^{t}F(t) - c\sum\limits_{t=0}^{n-1}t\left(1+h\right)^{t}F(t)\right\}}$$

Die Operationenfolge ist nun ungefähr dieselbe wie in Abschnitt a). Als erstes gilt es, diesen Ausdruck für $P'_{(i)}$ nach h zu differenzieren.

$$\frac{\partial P'_{(i)}}{\partial h} = \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1} (t+1) (1+h)^t G(t) + n(1+h)^{n-1} F(n)\right\} - \left\{\sum_{t=0}^{n-1} (1+h)^t F(t) - c \sum_{t=0}^{n-1} t (1+h)^t F(t)\right\} \dots}{(1-\beta)\left\{\sum_{t=0}^{n-1} (1+h)^t F(t) - c \sum_{t=0}^{n-1} t (1+h)^t F(t)\right\} \dots}$$

$$-\frac{\sum\limits_{t=0}^{n-1}t(1+h)^{t-1}F(t)-c\sum\limits_{t=0}^{n-1}t^{2}(1+h)^{t-1}F(t)}{\sum\limits_{t=0}^{n-1}(1+h)^{t}F(t)-c\sum\limits_{t=0}^{n-1}t(1+h)^{t}F(t)}P'_{(i)}.$$

Wir dividieren diese Gleichung durch $P'_{(i)}$.

$$\frac{\partial P_{(i)}'}{P_{(i)}'\partial h} = \frac{(1+\alpha)\left\{\sum\limits_{t=0}^{n-1}(t+1)(1+h)^tG(t) + n(1+h)^nF(n)\right\} - \alpha v_0\sum\limits_{t=0}^{n-1}(1+h)^tF(t) + (1+\alpha)\left\{\sum\limits_{t=0}^{n-1}(1+h)^{t+1}G(t) + (1+h)^nF(n)\right\} + \frac{1}{1+\alpha}\left\{\sum\limits_{t=0}^{n-1}(1+h)^{t+1}G(t) + (1+h)^nF(n)\right\} + \frac{1}{1+\alpha}\left\{\sum\limits_{t=0}^{n-1}t(1+h)^{t+1}F(t) + (1+h)^nF(n)\right\} - \frac{1}{1+\alpha}\left\{\sum\limits_{t=0}^{n-1}t(1+h)^{t+1}F(t) - c\sum\limits_{t=0}^{n-1}t^2(1+h)^{t+1}F(t) - c\sum\limits_{t=0}^{n-1}t(1+h)^tF(t) - c\sum\limits_{t=0}^{n-1}t(1+$$

Bei der Entwicklung der Quotienten I und II in Potenzreihen wollen wir wieder schrittweise vorgehen, indem wir zuerst die einzelnen Summanden nach h entwickeln und erst dann die Quotienten selber. Wir begnügen uns auch hier mit den ersten beiden Gliedern der Entwicklungen.

$$\begin{split} \mathbf{I} & \equiv \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1}(t+1)\,G(t) + \sum_{t=0}^{n-1}(t+1)\,th\,G(t) + n\,F(n) + n(n-1)\,h\,F(n)\right\} - }{(1+\alpha)\left\{\sum_{t=0}^{n-1}G(t) + \sum_{t=0}^{n-1}(t+1)\,h\,G(t) + F(n) + nh\,F(n)\right\} + } \\ & = \frac{\alpha v_0\left\{\sum_{t=0}^{n-1}F(t) + \sum_{t=0}^{n-1}th\,F(t)\right\} + (\gamma + \alpha d_0 - \alpha v_0h)\left\{\sum_{t=0}^{n-1}tF(t) + \sum_{t=0}^{n-1}t^2h\,F(t) - \sum_{t=0}^{n-1}th\,F(t)\right\} + (\gamma + \alpha d_0 - \alpha v_0h)\left\{\sum_{t=0}^{n-1}F(t) + \sum_{t=0}^{n-1}th\,F(t)\right\} - \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1}(t+1)\,G(t) + n\,F(n)\right\} - \alpha v_0\sum_{t=0}^{n-1}F(t) + (\gamma + \alpha d_0)\sum_{t=0}^{n-1}tF(t) + (1+\alpha)\left\{\sum_{t=0}^{n-1}t^2G(t) + F(n)\right\} + (\gamma + \alpha d_0)\sum_{t=0}^{n-1}F(t) + (\gamma + \alpha d_0) + \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1}t^2G(t) + n\,F(n)\right\} + (\gamma + \alpha d_0)\sum_{t=0}^{n-1}tF(t) + (\gamma + \alpha d_0) + \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1}t^2F(t) - n\,F(n)\right\} - \alpha v_0\sum_{t=0}^{n-1}tF(t)\right\} - \alpha v_0\sum_{t=0}^{n-1}tF(t) - \alpha v_0\sum_{t=0}^{n-1}tF(t) - \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1}(t+1)\,G(t) + n\,F(n)\right\} - \alpha v_0\sum_{t=0}^{n-1}tF(t)\right\} - \alpha v_0\sum_{t=0}^{n-1}tF(t)} - \frac{(1+\alpha)\left\{\sum_{t=0}^{n-1}(t+1)\,G(t) + n\,F(n)\right\} - \alpha v_0\sum_{t=0}^{n-1}tF(t)} - \alpha v_0\sum_{t=0}^{n-1}t\,F(t) - \alpha v_0\sum_{t=0}^{n-1}t\,F(t) - \alpha v_0\sum_{t=0}^{n-1}t\,F(t)} - \alpha v_0\sum_{t=0}^{n-1}t\,F(t) - \alpha v_0\sum_{t=0}^{n-1$$

Analog für den Quotienten II:

$$\begin{split} & \text{II} = \frac{\sum\limits_{t=0}^{n-1} tF(t) + h\sum\limits_{t=0}^{n-1} t\left(t-1\right)F(t) - c\sum\limits_{t=0}^{n-1} t^2F(t) - hc\sum\limits_{t=0}^{n-1} t^2(t-1)F(t)}{\sum\limits_{t=0}^{n-1} F(t) + h\sum\limits_{t=0}^{n-1} tF(t) - c\sum\limits_{t=0}^{n-1} tF(t) - hc\sum\limits_{t=0}^{n-1} t^2F(t)} \\ & = \frac{\sum\limits_{t=0}^{n-1} tF(t) - c\sum\limits_{t=0}^{n-1} t^2F(t) + h\left\{\sum\limits_{t=0}^{n-1} t^2F(t) - \sum\limits_{t=0}^{n-1} tF(t) - c\sum\limits_{t=0}^{n-1} t^3F(t) + c\sum\limits_{t=0}^{n-1} t^2F(t)\right\}}{\sum\limits_{t=0}^{n-1} F(t) - c\sum\limits_{t=0}^{n-1} tF(t) + h\left\{\sum\limits_{t=0}^{n-1} tF(t) - c\sum\limits_{t=0}^{n-1} t^2F(t)\right\}}. \\ & \text{II} = \frac{\sum\limits_{t=0}^{n-1} tD_{x+t} - c\sum\limits_{t=0}^{n-1} t^2D_{x+t} + h\left\{-\left(\sum\limits_{t=0}^{n-1} tD_{x+t} - c\sum\limits_{t=0}^{n-1} t^2D_{x+t}\right) + \sum\limits_{t=0}^{n-1} t^2D_{x+t} - c\sum\limits_{t=0}^{n-1} t^3D_{x+t}\right\}}{\sum\limits_{t=0}^{n-1} D_{x+t} - c\sum\limits_{t=0}^{n-1} tD_{x+t} + h\left\{\sum\limits_{t=0}^{n-1} tD_{x+t} - c\sum\limits_{t=0}^{n-1} t^2D_{x+t}\right\}} \end{split}$$

Nun benützen wir wieder die schon Seite 100 eingeführten Abkürzungen

$$U_i = \sum_{t=0}^{n-1} t^i D_{x+t}, \qquad V_i = \sum_{t=0}^{n-1} (t+1)^i C_{x+t} + n^i D_{x+n},$$

und bilden damit noch folgende Grössen T_i und W_i^* :

$$T_i = U_i - c U_{i+1}, \quad W_i^* = (1+\alpha) V_i + (\gamma + \alpha d_0) U_i.$$

Mit diesen Abkürzungen lassen sich die beiden Quotienten nun in einfacher Weise darstellen.

$$\begin{split} \mathbf{I} &= \frac{W_1^* - \alpha v_0 U_0 + h(W_2^* - W_1^* - 2\alpha v_0 U_1)}{W_0^* + h(W_1^* - \alpha v_0 U_0)} \\ \mathbf{II} &= \frac{T_1 + h(T_2 - T_1)}{T_0 + hT_1}. \end{split}$$

Nun werden die Quotienten I und II ihrerseits in Potenzreihen nach h entwickelt, wobei wiederum nur die beiden ersten Glieder berücksichtigt werden sollen. Wir erhalten

$$\begin{split} \mathbf{I} &= \frac{W_1^* - \alpha v_0 U_0}{W_0^*} + h \left\{ \frac{W_2^* - W_1^* - 2\alpha v_0 U_1}{W_0^*} - \left(\frac{W_1^* - \alpha v_0 U_0}{W_0^*} \right)^2 \right\}, \\ \mathbf{II} &= \frac{T_1}{T_0} + h \left\{ \frac{T_2 - T_1}{T_0} - \left(\frac{T_1}{T_0} \right)^2 \right\}. \end{split}$$

Für die Lösung der homogenen Differentialgleichung

$$\frac{\partial P_{(i)}'}{P_{(i)}'\partial h} = I - II,$$

die sich wieder in der Form

$$P'_{(i)} = P'_0 e^{ah + \frac{b}{2}h^2}$$

 $\operatorname{darstellen}$ lässt, ergeben sich für die Grössen a und b folgende Ausdrücke:

$$a = \frac{W_{1}^{*} - \alpha v_{0} U_{0}}{W_{0}^{*}} - \frac{T_{1}}{T_{0}},$$

$$b = \frac{W_{2}^{*} - W_{1}^{*} - 2\alpha v_{0} U_{1}}{W_{0}^{*}} - \left(\frac{W_{1}^{*} - \alpha v_{0} U_{0}}{W_{0}^{*}}\right)^{2} - \frac{T_{2} - T_{1}}{T_{0}} + \left(\frac{T_{1}}{T_{0}}\right)^{2}.$$

$$(4)$$

Diése Formeln sind etwas komplizierter als diejenigen, welche wir im letzten Abschnitt erhalten haben. Um leichter zu sehen, woher die Unterschiede kommen, schreiben wir noch die Ausdrücke für a und bauf, die sich ergeben hätten, wenn wir bei der Variation des Zinsfusses von derselben Darstellung der Prämie ausgegangen wären wie im Ab-

schnitt a). Wir hätten für den Exponenten $ah + \frac{b}{2}h^2$ zu der Variablen h folgende Parameter erhalten:

$$a = \frac{W_1}{W_0 + \alpha D_x} - \frac{T_1}{T_0},$$

$$b = \frac{W_2 - W_1}{W_0 + \alpha D_x} - \left(\frac{W_1}{W_0 + \alpha D_x}\right)^2 - \frac{T_2 - T_1}{T_0} + \left(\frac{T_1}{T_0}\right)^2.$$
(5)

Während die Formeln (3) (siehe Seite 102!) und (5) in der Darstellung für a genau übereinstimmen, treten in (5) in derjenigen für b an Stelle von W_2 , bzw. T_2 je die Differenzen $W_2 - W_1$, bzw. $T_2 - T_1$ auf. Dies rührt davon her, dass sich bei der Differentiation die Exponentialfunktion e^{-rt} reproduziert, während in der Potenz $(1+h)^t$ der Grad um 1 abnimmt, so dass sich bei der darauffolgenden Potenzreihenentwicklung im ersten Fall t^2 , im zweiten Fall hingegen das Produkt t(t-1) ergibt.

Nun wollen wir zeigen, dass im diskontinuierlichen Fall die Ausdrücke (4) und (5) übereinstimmen. Da die Quotienten mit den Grössen T_i schon formell gleich sind, müssen wir nur noch die andern untersuchen.

$$\begin{split} \text{Es ist} & W_0^* = (1+\alpha)\,V_0 + (\gamma + \alpha\,d_0)\,U_0 \\ &= V_0 + \gamma\,U_0 + \alpha(V_0 + d_0\,U_0) \\ &= W_0 + \alpha \left\{ \sum_{t=0}^{n-1} C_{x+t} + D_{x+n} + d_0 \sum_{t=0}^{n-1} D_{x+t} \right\} \\ &= W_0 + \alpha \left\{ D_x A_{x:\overline{n}|} + d_0 D_x \ddot{a}_{x:\overline{n}|} \right\} \\ &= W_0 + \alpha D_x (1 - d_0 \ddot{a}_{x:\overline{n}|} + d_0 \ddot{a}_{x:\overline{n}|}) \\ &= W_0 + \alpha D_x, \end{split}$$

$$\begin{split} W_1^* &= W_1 + \alpha \left\{ \sum_{t=0}^{n-1} (t+1) \, C_{x+t} + n \, D_{x+n} + d_0 \sum_{t=0}^{n-1} t \, D_{x+t} \right\} \\ &= W_1 + \alpha \left\{ \sum_{t=0}^{n-1} A_{x+t:\overline{n-t}|} D_{x+t} + d_0 \sum_{t=0}^{n-1} \ddot{a}_{x+t:\overline{n-t}|} D_{x+t} \right\} \\ &= W_1 + \alpha \left\{ \sum_{t=0}^{n-1} (1 - d_0 \, \ddot{a}_{x+t:\overline{n-t}|}) \, D_{x+t} + d_0 \sum_{t=0}^{n-1} \ddot{a}_{x+t:\overline{n-t}|} D_{x+t} - \sum_{t=0}^{n-1} D_{x+t} \right\} \\ &= W_1 + \alpha (1 - d_0) \sum_{t=0}^{n-1} D_{x+t} \\ &= W_1 + \alpha v_0 \, U_0 \, , \end{split}$$

also

$$W_1^* - \alpha v_0 U_0 = W_1.$$

Damit ist gezeigt, dass die beiden Ausdrücke für a übereinstimmen. In analoger Weise lässt sich dasselbe für b beweisen. Zu diesem Zwecke müssen wir nur noch zeigen, dass

$$W_2^* - W_1^* - 2\alpha v_0 U_1 = W_2 - W_1$$

ist. Es ist aber

$$W_2^* = W_2 + \alpha (V_2 + d_0 U_2)$$
,

wobei gilt:

$$\begin{split} & V_2 + d_0 \, U_2 = \sum_{t=0}^{n-1} (t+1)^2 C_{x+t} + n^2 D_{x+n} + d_0 \sum_{t=0}^{n-1} (t+1)^2 D_{x+t} \\ & \qquad \qquad - d_0 \sum_{t=0}^{n-1} \left[(2t+1) \, D_{x+t} \right] \\ & = \sum_{t=0}^{n-1} \left[(t+1)^2 - t^2 \right] A_{x+t: \overline{n-t}} D_{x+t} + d_0 \sum_{t=0}^{n-1} \left[(t+1)^2 - t^2 \right] \\ & \qquad \qquad \cdot \ddot{a}_{x+t: \overline{n-t}} D_{x+t} - d_0 \sum_{t=0}^{n-1} \left(2t+1 \right) D_{x+t} \\ & = \sum_{t=0}^{n-1} \left(2t+1 \right) \left(1 - d_0 \, \ddot{a}_{x+t: \overline{n-t}} \right) D_{x+t} + d_0 \sum_{t=0}^{n-1} \left(2t+1 \right) \\ & \qquad \qquad \cdot \ddot{a}_{x+t: \overline{n-t}} D_{x+t} - d_0 \sum_{t=0}^{n-1} \left(2t+1 \right) D_{x+t} \\ & = v_0 \sum_{t=0}^{n-1} \left(2t+1 \right) D_{x+t} \\ & = 2 v_0 \, U_1 + v_0 \, U_0 \, . \end{split}$$

Damit wird

$$\begin{split} W_2^* - W_1^* - 2\alpha v_0 \, U_1 &= W_2 + \alpha (2 v_0 \, U_1 + v_0 \, U_0) - W_1 - \alpha v_0 \, U_0 - 2\alpha v_0 \, U_1 \\ &= W_2 - W_1 \quad \text{q. e. d.} \end{split}$$

Für die praktische Berechnung können wir also an Stelle der Ausdrücke (4) ohne weiteres die etwas einfacheren Formeln (5) verwenden.

Schon an dieser Stelle sei insbesondere noch darauf hingewiesen, dass in den beiden Formeln (3) und (5) die Ausdrücke für a abgesehen vom Vorzeichen übereinstimmen. (In Formel (5) ist das Vorzeichen von a davon abhängig, ob h bei wachsendem Zinsfuss positiv oder negativ gewählt wird.) Die Tatsache, dass wir für die Ableitung der Umrechnungsformel statt von der Änderung der Zinsintensität direkt von der Änderung des Zinsfusses ausgehen, wirkt sich demnach erst in der Formel für b aus. In erster Näherung, wenn wir die Potenzreihenentwicklungen schon nach dem ersten Glied abbrechen würden, könnte also r durch h, beziehungsweise —h ersetzt ersetzt werden. Wir werden später anhand von Beispielen sehen, dass wir uns tatsächlich in vielen Fällen auf das erste Glied beschränken können, indem der Einfluss des quadratischen Gliedes $\frac{b}{2}$ h^2 schon so klein wird, dass es für die Praxis oft nicht mehr von Bedeutung ist.

5. Die praktische Berechnung

In den Formeln für a und b treten nicht die einfachen Kommutationszahlen C_x , M_x , R_x , ... und D_x , N_x , S_x , ... auf, sondern durchwegs die sogenannten Momente von C_x und D_x . Es ist daher naheliegend, für die praktischen Berechnungen die Momente zu tabellieren. Allerdings wird dies nur an dieser Stelle in Frage kommen, wo die Theorie anhand von Beispielen auf ihre Brauchbarkeit hin untersucht werden soll, während in der Praxis diese zeitraubende Arbeit den Wert der Umrechnungsmethode illusorisch machen würde. Denn dort geht es meistens darum, nur einzelne Werte möglichst rasch umzurechnen, bzw. umzuschätzen.

Wir haben die Momente bis zur dritten Ordnung für die heute sehr gebräuchlichen Sterbetafeln SM und SF 1939/44 berechnet. Allerdings im Blick auf unsere Theorie nur zu dem relativ hohen Zinsfuss von 3 % (siehe Tabellen am Schluss!).

Es sei
$$m_x^{(k)} = \sum_{t=x}^{\omega} t^k D_t,$$
 und analog
$$M_x^{(k)} = \sum_{t=x}^{\omega} (t+1)^k C_t.$$

Damit lassen sich die U_k nach folgender Rekursionsformel berechnen:

$$\begin{split} U_k &= \sum_{t=0}^{n-1} t^k D_{x+t} \\ &= \sum_{t=0}^{n-1} (x+t)^k D_{x+t} - \sum_{p=0}^{k-1} \binom{k}{p} x^{k-p} \sum_{t=0}^{n-1} t^p D_{x+t} \\ &= m_x^{(k)} - m_{x+n}^{(k)} - \sum_{p=0}^{k-1} \binom{k}{p} x^{k-p} U_p. \end{split}$$

Nun berechnen wir U_0 direkt und daraus dann mit Hilfe der eben hergeleiteten Rekursionsformel U_1 , U_2 und U_3 .

$$\begin{split} U_0 &= \sum_{t=0}^{n-1} D_{x+t} = m_x^{(0)} - m_{x+n}^{(0)}, \\ U_1 &= m_x^{(1)} - m_{x+n}^{(1)} - x \, U_0, \\ U_2 &= m_x^{(2)} - m_{x+n}^{(2)} - 2 \, x \, U_1 - x^2 \, U_0, \\ U_3 &= m_x^{(3)} - m_{x+n}^{(3)} - 3 \, x \, U_2 - 3 \, x^2 \, U_1 - x^3 \, U_0. \end{split}$$

Entsprechend den U_k definieren wir die V_k folgendermassen:

$$V_k = \sum_{t=0}^{n-1} (t+1)^k C_{x+t} + n^k D_{x+n}.$$

Sie lassen sich ebenfalls durch eine Rekursionsformel auf die Momente $M_x^{(k)}$ zurückführen. Es ist

$$\begin{split} V_k &= \sum_{t=0}^{n-1} (t+1)^k C_{x+t} + n^k D_{x+n} \\ &= \sum_{t=0}^{n-1} (x+t+1)^k C_{x+t} + (x+n)^k D_{x+n} - \sum_{p=0}^{k-1} {k \choose p} x^{k-p} \Big\{ \sum_{t=0}^{n-1} (t+1)^p C_{x+t} + n^p D_{x+n} \Big\} \\ &= M_x^{(k)} - M_{x+n}^{(k)} + (x+n)^k D_{x+n} - \sum_{p=0}^{k-1} {k \choose p} x^{k-p} V_p \,, \end{split}$$

also im konkreten Fall:

$$\begin{split} V_0 &= M_x^{(0)} - M_{x+n}^{(0)} + D_{x+n}\,, \\ V_1 &= M_x^{(1)} - M_{x+n}^{(1)} + (x+n)\,D_{x+n} - x\,V_0\,, \\ V_2 &= M_x^{(2)} - M_{x+n}^{(2)} + (x+n)^2 D_{x+n} - 2\,x\,V_1 - x^2\,V_0. \end{split}$$

Mit Hilfe der Momente lassen sich also die für die Umrechnung notwendigen Grössen U_k und V_k (und damit auch die W_k) in ziemlich einfacher Weise darstellen und auch praktisch berechnen.

Damit sind wir nun in der Lage, anhand von Beispielen die Güte des Verfahrens zu prüfen. Und da es sich nur um eine Variation des Zinsfusses handelt, sind die Resultate höchstens in ganz geringem Mass von der zugrunde liegenden Sterbetafel abhängig. Wir können uns daher auf eine einzige Sterbetafel beschränken.

Den in nachstehender Tabelle aufgeführten Bruttoprämien für die gemischte Versicherung mit steigender Dividende liegen folgende Daten zugrunde.

Sterbetafel							SM 1939/44
Ausgangszinfuss i_{0} .			٠	•		•	3%
Abschlusskosten α .	•				٠		0,040
Inkassokosten β	•					•	0,03
Verwaltungskosten γ					•	•	0,002
Dividendensatz c .	•						0,02
Versicherungssumme		•					10 000

Ausgehend vom Zinsfuss von 3% wurden die Prämien nun nach dem neuen Verfahren umgerechnet auf die Zinsfüsse von $2\frac{1}{2}$ %, $3\frac{1}{2}$ % und 4%. Neben den erhaltenen Näherungswerten führen wir jeweils auch die genauen Werte auf.

Ein-		Jahresprämie für den Zinsfuss										
tritts- alter	Dauer	$i_0 = 3 \%$	i=2	1/2 %	i=3	1/2 %	i = 4 %					
$x \mid n$	n		Näherung	genau	Näherung	genau	Näherung	genau				
20	20	496,5	520,7	520,9	473,4	473,5	451,5	451,7				
	30	339,2	363,4	363,5	317,0	316,9	296,7	296,6				
ì	40	267,8	292,1	292,1	246,4	246,3	227,5	227,4				
	50	234,2	258,7	258,7	213,5	213,5	195,8	195,8				
30	20	500,7	524,9	525,0	477,8	477,7	456,1	456,0				
	30	350,3	374,4	374,4	328,3	328,1	308,0	308,0				
	40	289,1	313,1	313,2	267,9	267,8	249,0	249,0				
40	20	524,1	547,9	547,9	501,6	501,4	480,2	480,				
	30	389,8	413,1	413,1	368,4	368,3	348,7	348,				
50	10	1033,4	1057,9	1057,9	1009,6	1009,4	986,4	986,				
00	20	587,2	609,9	610,0	565,6	565,6	545,3	545,				

Die Näherungswerte weichen von den genauen Werten nur sehr wenig ab. Da bei der angewandten Umrechnungsmethode mehrmals kleine Werte als Differenzen von grossen Zahlen auftreten, muss den Näherungswerten zum Vorneherein eine gewisse Toleranz eingeräumt werden. Die Detailrechnung zeigt, dass die Grössenordnung dieser Toleranz ungefähr bei 0,1 % liegt. Fast alle Fehler liegen innerhalb dieser Grenze. Daraus können wir schliessen, dass die Einbeziehung weiterer Glieder der Potenzreihenentwicklung keine wesentliche Verbesserung der Resultate mit sich bringen würde. Auffallend ist jedoch, dass die Näherungswerte beim Übergang auf einen kleinern Zinsfuss kleiner oder gleich, beim Übergang auf einen grössern Zinsfuss hingegen fast durchwegs grösser oder gleich den genauen Werten sind. Dies zeigt immerhin einen gewissen Einfluss des Restgliedes.

Anderseits wäre aber zu erwarten gewesen, dass die Fehler sowohl mit zunehmender Versicherungsdauer und damit zunehmendem Einfluss des Zinses, als auch mit zunehmender Zinsdifferenz grösser würden. Nun sind aber interessanterweise gerade die Differenzen bei der längsten

Versicherungsdauer (Eintrittsalter 20, Dauer 50) überall gleich Null. Und für die Zinsdifferenz von 1% sind sie kaum grösser als für diejenigen von $\frac{1}{2}\%$. Beides weist eher wieder auf die mangelnde Genauigkeit der Rechnungselemente hin.

In der Lebensversicherung werden aber beispielsweise die Prämien für eine Summe von Fr. 10 000 auf Franken genau angegeben. Bei dieser Genauigkeit würde die Umrechnung, abgesehen von Rundungsdifferenzen, überhaupt genaue Resultate ergeben.

Die Beispiele zeigen also, dass das neue Näherungsverfahren zur Lösung des Zinsfussproblems auch bei der ziemlich komplizierten versicherungstechnischen Funktion der Bruttoprämie für die gemischte Versicherung mit steigender Dividende zu sehr guten Resultaten führt.

6. Das abgekürzte Verfahren

Bei der Berechnung von praktischen Beispielen sieht man, dass der Einfluss des zweiten Gliedes der Potenzreihenentwicklung auf das Endresultat schon ziemlich gering ist. Es erhebt sich daher die Frage, ob es nicht zweckmässig wäre, wenn man sich überhaupt auf das erste Glied beschränken würde. Das Zinsfussproblem ist ja, wie wir schon in der Einleitung betont haben, ein Problem, das sich in der Praxis immer wieder stellt. Wir müssen daher darnach trachten, Formeln zu finden, welche die Umrechnung auf andere Zinsfüsse möglichst einfach gestalten. Da zudem die Forderungen in bezug auf die Genauigkeit der gesuchten Werte meistens nicht allzu streng sind, wollen wir die Formel in ihrer ersten Näherung ebenfalls auf ihre Brauchbarkeit hin untersuchen. Dabei wollen wir von der Annahme ausgehen, dass nicht die Zinsintensität, sondern der Zinsfuss variiert werde.

Wenn wir uns in allen Potenzreihenentwicklungen nach h nur auf das erste Glied beschränken, so reduziert sich die Formel für die neue Bruttoprämie auf

 $\frac{P'_{(i)} = P'_{(i_0)}e^{ah}}{}$

Wobei Formel (5) entsprechend

$$a = \frac{W_{\mathrm{1}}}{W_{\mathrm{0}} + \alpha D_x} - \frac{T_{\mathrm{1}}}{T_{\mathrm{0}}}$$

ist.

Nachstehende Tabelle zeigt, was für Näherungswerte mit Hilfe dieser Umrechnungsformel erzielt werden. Den Berechnungen liegen wieder dieselben Daten zugrunde wie im vorhergehenden Kapitel. Ausgehend von der Bruttoprämie zum Zinsfuss von 3% wurden diejenigen zu den Zinsfüssen von $2\frac{1}{2}$, $3\frac{1}{2}$ und 4% bestimmt. Neben den Näherungswerten geben wir wieder auch die genauen Werte an.

Ein- tritts- alter	Dauer n	Jahresprämie für den Zinsfuss									
		uer $i=2\frac{1}{2}\%$		i = 3	1/2 %	i=4%					
		Näherung	genau	Näherung	genau	Näherung	genau				
20	20	520,8	520,9	473,6	473,5	451,9	451,7				
	30	363,3	363,5	316,9	316,9	296,3	296,6				
	40	291,7	292,1	246,0	246,3	226,3	227,4				
	50	257,9	258,7	212,9	213,5	193,6	195,8				
30	20	524,9	525,0	477,8	477,7	456,1	456,0				
	30	374,2	374,4	328,1	328,1	307,6	308,0				
	40	312,7	313,2	267,5	267,8	247,7	249,0				
40	20	547,9	547,9	501,3	501.4	480,2	480,1				
	30	412,9	413,1	368,2	368,3	348,0	348,6				
50	10	1058,0	1057,9	1009,6	1009,4	986,6	986,2				
	20	609,9	610,0	565,6	565,6	545,0	545,1				

Das neue Verfahren bringt sogar in erster Näherung noch sehr gute Resultate. In den weitaus meisten Fällen würde in der Praxis diese Genauigkeit vollauf genügen. Hier können wir nun aber schon deutlich konstatieren, wie die Fehler mit zunehmender Versicherungsdauer sowie mit steigender Zinsdifferenz grösser werden.

Wir könnten aber noch weiter gehen und die nicht sehr handliche Exponentialfunktion noch nach h entwickeln.

$$e^{ah}=1+ah+\ldots$$

Damit lässt sich der neue Funktionswert in folgender einfacher Weise darstellen:

 $P'_{(i)} = P'_{(i_0)}(1+ah).$

Von dieser abgekürzten Formel lassen sich natürlich nicht mehr so gute Resultate erwarten wie von der ersten Näherung mit Hilfe der Exponentialfunktion. Es lohnt sich aber doch, auch diese Ergebnisse noch kurz zu betrachten. Wir wollen die Prämien aber nur auf ganze Einheiten genau berechnen. In der Praxis kommt es oft vor, dass Versicherungswerte zu einem Zinsfuss zu berechnen sind, für den die technischen Grundlagen fehlen. Wenn diese aber, was in vielen Fällen zutrifft, zu zwei andern Zinsfüssen vorhanden sind, hilft man sich meistens mit einer einfachen Extrapolation. Wir wollen daher in der nachstehenden Tabelle neben den nach unserer abgekürzten Formel berechneten Näherungswerten nicht nur die genauen Werte anführen, sondern auch die durch Extrapolation gefundenen. Dies gibt uns einen gewissen Maßstab für die Genauigkeit.

x n				J	fahresprän	nie für de	en Zinsfu	ss		
	n	$i=2\frac{1}{2}\%$			i	= 31/2 %	THE RESIDENCE OF THE PARTY OF T	i=4%		
		Extra- polation	Nähe- rung	genau	Extra- polation	Nähe- rung	genau	Extra- polation	Nähe- rung	genau
20	20	520	520	521	472	473	473	448	450	452
	30	361	362	363	315	316	317	291	293	297
	40	289	291	292	244	245	246	219	223	227
	50	255	257	259	210	212	214	185	190	196
30	20	524	524	525	476	477	478	452	454	456
	30	372	373	374	326	327	328	302	305	308
	40	310	312	313	265	267	268	241	244	249
40	20	547	547	548	500	501	501	476	478	480
	30	411	412	413	367	368	368	343	346	349
50	10	1057	1058	1058	1009	1009	1009	984	986	986
	20	609	609	610	564	565	566	542	543	545

Die Tabelle zeigt, dass die Abweichungen der Näherungswerte von den genauen Werten nur etwa halb so gross sind wie die Fehler, die bei der linearen Extrapolation gemacht werden. Und wenn man berücksichtigt, dass die Näherungslösungen ausgehend von den Funktionswerten und Kommutationszahlen zu einem einzigen Zinsfuss berechnet wurden, während wir uns bei der Extrapolation auf zwei zu verschiedenen Zinsfüssen berechnete Funktionswerte stützen mussten, darf das erreichte Resultat immer noch als gut bezeichnet werden.

7. Anwendung auf das Netto-Deckungskapital der gemischten Versicherung

Das Netto-Deckungskapital der gemischten Versicherung lässt sich bekanntlich in der folgenden einfachen Form darstellen:

$$_{t}V_{x}=rac{\ddot{a}_{\overline{x:n}}-\ddot{a}_{x+t:\overline{n-t}|}}{\ddot{a}_{\overline{x:n}|}}.$$

Es soll nun für diese Funktion eine dem Verfahren von Zwinggi entsprechende Umrechnungsformel hergeleitet werden. Wir benützen wieder den Integralbegriff von Schärf, wollen aber nicht die Zinsintensität, sondern den Zinsfuss i variieren. Wenn $F(t) = v_0^t l_{x+t}$ ist, können wir das Deckungskapital darstellen als

$$_{t}V_{x(i_{0})}=rac{\displaystyle\int\limits_{0}^{(-)}F(au)\,d au-\displaystylerac{F(0)}{F(t)}\displaystyle\int\limits_{t}^{(-)}F(au)\,d au}{\displaystyle\int\limits_{0}^{(-)}F(au)\,d au}\,.$$

Nun sei wieder h so definiert, dass für den Zinsfuss i gilt:

$$1 + h = \frac{1 + i_0}{1 + i}.$$

Dann geht $F(\tau)$ über in $(1+h)^{\tau}F(\tau)$ und für das Deckungskapital zum Zinsfuss i ergibt sich:

$${}_{t}V_{x(t)} = \frac{\int\limits_{0}^{(-)n} (1+h)^{\tau} F(\tau) d\tau - \frac{F(0)}{(1+h)^{t} F(t)} \int\limits_{t}^{(-)n} (1+h)^{\tau} F(\tau) d\tau}{\int\limits_{0}^{(-)n} (1+h)^{\tau} F(\tau) d\tau}.$$

Dieser Ausdruck wird nun nach h differenziert.

$$\frac{\partial_{t}V_{x(i)}}{\partial h} = \frac{\int\limits_{0}^{(-)n} \tau(1+h)^{\tau-1}F(\tau) d\tau + \frac{t}{(1+h)^{t+1}} \frac{F(0)}{F(t)} \int\limits_{t}^{(-)n} (1+h)^{\tau}F(\tau) d\tau - \int\limits_{0}^{(n)} (1+h)F(\tau) d\tau \dots}$$

$$-\frac{F(0)}{(1+h)^{t}F(t)}\int_{t}^{(-)n}\tau(1+h)^{\tau-1}F(\tau) d\tau - \int_{0}^{(-)n}\tau(1+h)^{\tau-1}F(\tau) d\tau - \int_{0}^{(-)n}(1+h)^{\tau}F(\tau) d\tau$$
.....

Nun bilden wir die logarithmische Ableitung von ${}_{t}V_{x(i)}$:

$$\frac{\partial_{t}V_{x(i)}}{\partial_{t}V_{x(i)}\partial h} = \int_{0}^{(-)^{n}} \tau(1+h)^{\tau-1}F(\tau) d\tau + \frac{t}{(1+h)^{t+1}} \frac{F(0)}{F(t)} \int_{t}^{(-)^{n}} (1+h)^{\tau}F(\tau) d\tau - \int_{0}^{(-)^{n}} (1+h)^{\tau}F(\tau) d\tau - \frac{F(0)}{(1+h)^{t}F(t)} \int_{t}^{(-)^{n}} (1+h)^{\tau}F(\tau) d\tau \dots$$

$$-\frac{F(0)}{(1+h)^{t}F(t)}\int_{t}^{(-)n}\tau(1+h)^{\tau-1}F(\tau) d\tau \qquad \int_{0}^{(-)n}\tau(1+h)^{\tau-1}F(\tau) d\tau = I-II.$$

$$\dots \qquad \int_{0}^{(-)n}(1+h)^{\tau}F(\tau) d\tau$$

Die beiden Quotienten I und II werden nun nach h entwickelt, und zwar wieder nur bis zum 2. Glied.

Wenn wir nun $\int_{0}^{(-)n} \tau^k D_{x+\tau} d\tau = U_k$ und $\int_{t}^{(-)n} \tau^k D_{x+\tau} d\tau = U_k^t$ setzen, so ergibt sich:

$$\begin{split} \mathbf{I} &= \frac{U_{1} + \frac{F(0)}{F(t)} \left(tU_{0}^{t} - U_{1}^{t}\right) + h \left\{U_{2} - U_{1} + \frac{F(0)}{F(t)} \left[\left(2t + 1\right) U_{1}^{t} - t(t + 1) U_{0}^{t} - U_{2}^{t}\right]\right\}}{U_{0} + \frac{F(0)}{F(t)} U_{0}^{t} + h \left\{U_{1} + \frac{F(0)}{F(t)} \left(tU_{0}^{t} - U_{1}^{t}\right)\right\}}\\ &= \frac{\frac{F(t)}{F(0)} U_{1} - U_{1}^{t} + tU_{0}^{t}}{F(0) U_{0} - U_{0}^{t}} + \frac{F(t)}{F(0)} U_{0} - U_{0}^{t} \end{split}$$

$$+ h \left\{ \frac{\frac{F(t)}{F(0)} \left(U_2 - U_1 \right) - U_2^t + \left(2t + 1 \right) U_1^t - \left(t + 1 \right) U_0^t}{\frac{F(t)}{F(0)} U_0 - U_0^t} - \left(\frac{\frac{F(t)}{F(0)} U_1 - U_1^t + t U_0^t}{\frac{F(t)}{F(0)} U_0 - U_0^t} \right)^{\frac{2}{2}} \right\}$$

$$\mathbf{II} = \frac{U_{\mathrm{l}}}{U_{\mathrm{0}}} + h \left\{ \frac{U_{\mathrm{2}} - U_{\mathrm{l}}}{U_{\mathrm{0}}} - \left(\frac{U_{\mathrm{l}}}{U_{\mathrm{0}}}\right)^{2} \right\}.$$

Die Lösung der Differentialgleichung $\frac{\partial_{\ \iota} V_{x(i)}}{\iota V_{x(i)} \partial h} = I - II$ schreiben wir wieder in der Form

$$_{t}V_{x(i)} = {}_{t}V_{x(i_{0})}e^{ah+\frac{b}{2}h^{2}}$$
 (2. Näherung),

worin die Parameter a und b folgendermassen lauten:

$$a = \frac{\frac{D_{x+t}}{D_x} U_{\rm l} - U_{\rm l}^t + t U_{\rm 0}^t}{\frac{D_{x+t}}{D_x} U_{\rm 0} - U_{\rm 0}^t} - \frac{U_{\rm l}}{U_{\rm 0}} = (a_{\rm l}) - (a_{\rm 2}),$$

$$b = \frac{\frac{D_{x+t}}{D_x} (U_2 - U_1) - U_2^t + (2t+1) U_1^t - t(t+1) U_0^t}{\frac{D_{x+t}}{D_x} U_0 - U_0^t} - \frac{U_2 - U_1}{U_0} - (a_1)^2 + (a_2)^3$$

Für die praktische Berechnung werden die U_k^t , die sich nicht unmittelbar aus den Momenten ergeben, am besten als Differenz dargestellt.

Im diskontinuierlichen Fall ist

$$U_k^t = \sum_{\tau=0}^{n-1} \tau^k D_{x+\tau} - \sum_{\tau=0}^{t-1} \tau^k D_{x+\tau}.$$

Um ein Bild von der Genauigkeit dieser Näherungsformel zu erhalten, haben wir auch hier einige Beispiele gerechnet und in der Tabelle Seite 120 zusammengestellt. Ausgehend von den nach der Sterbetafel SM 1939/44 zu einem Zinsfuss von 3 % gerechneten Deckungskapitalien wurden die Näherungswerte für den Zinsfuss von 4 % bestimmt. Dabei wurden die entsprechenden Werte sowohl nach der obigen vollständigen Formel (2. Näherung) berechnet, als auch nach dem abgekürzten Ver-

fahren unter Vernachlässigung von $\frac{b}{2}h^2$ nach der Formel

$$_{t}V_{x(i)}=_{t}V_{x(i_{0})}e^{ah}$$
 (1. Näherung).

Diese letztere Darstellung weist eine gewisse Ähnlichkeit auf mit der von Vajda [5] hergeleiteten Formel für die Umrechnung des Deckungskapitals von gemischten Versicherungen und lebenslänglichen Todesfallversicherungen. Vajda geht von der Beobachtung aus, dass sich das Deckungskapital dieser Versicherungsarten bei Zinsfussänderungen im Sinne einer geometrischen Folge ändert. Die Annahme, dass die Folge der Deckungskapitalien genau geometrisch verlaufe, führt nun auf die Folgerung, dass in der von ihm hergeleiteten Differentialgleichung für das Deckungskapital der gemischten Versicherung

$$\frac{\partial_{\ t} V_x}{{}_t V_x \partial i} = v \ \frac{(\operatorname{I} \ddot{a})_{x:\overline{n}|} \ddot{a}_{x+t:\overline{n-t}|} - (\operatorname{I} \ddot{a})_{x+t:\overline{n-t}|} \ddot{a}_{x:\overline{n}|}}{\ddot{a}_{x:\overline{n}|} (\ddot{a}_{x+t:\overline{n-t}|} - \ddot{a}_{x:\overline{n}|})} = {}_t W_x,$$

 ${}_{t}W_{x}$ unabhängig ist vom Zinsfuss i. Diese Annahme deckt sich also im Prinzip mit unserm abgekürzten Verfahren, wo wir auch in erster Näherung annehmen, die logarithmische Ableitung sei von i, beziehungsweise von h, unabhängig.

Die Methode von Vajda führt daher auf eine ganz ähnliche Lösung. Es ist

$$t^{V_{x(i)}} = t^{V_{x(i_0)}} e^{t^{W_x(i-i_0)}}, \quad (Vajda),$$

Wobei zur Berechnung von ${}_tW_x$ nur die Grundlagen zum Zinsfuss $i_{\mathbf{0}}$ benötigt werden.

Neben den nach dem vollständigen (2. Näherung) und dem abgekürzten (1. Näherung) Verfahren von Zwinggi bestimmten Näherungswerten sind in der nachstehenden Tabelle auch die nach der Methode von Vajda erhaltenen Näherungswerte aufgeführt.

x:n	t	$i_0 = 3 \%$	i=4%							
		$t_0 = 3 \%$	1. Näherung	Vajda	2. Näherung	genau				
		%	%	%	%	%				
30:30	5	11,29	9,88	9,87	9,85	9,85				
	10	24,33	21,83	21,80	21,76	21,77				
	15	39,21	36,07	36,04	35,97	35,97				
	20	56,19	53,04	53,01	52,93	52,93				
	25	75,99	73,73	73,71	73,65	73,65				
40:20	5	19,66	18,19	18,18	18,16	18,15				
	10	42,10	39,89	39,87	39,84	39,84				
	15	68,27	66,37	66,35	66,32	66,32				
50:20	5	19,75	18,36	18,35	18,34	18,35				
200000000000000000000000000000000000000	10	41,70	39,60	39,58	39,56	39,56				
	15	67,17	65,31	65,30	65,27	65,27				

Die vollständige Formel (2. Näherung) ergibt auch hier wieder sehr gute Resultate, indem die Näherungswerte fast durchwegs mit den genauen Werten übereinstimmen. Aber auch die Genauigkeit der 1. Näherung und der Methode von Vajda dürfte in den meisten Fällen der Praxis durchaus genügen.

Wir haben schon betont, dass sich die Methode von Vajda im Prinzip mit unserm abgekürzten Verfahren deckt. Die Beispiele zeigen jedoch, dass die Umrechnungsformeln nicht zu den gleichen Resultaten führen. Während Vajda in seiner Formel vom genauen Wert der logarithmischen Ableitung von $_iV_x$ nach dem Zinsfuss i an der Stelle i_0 ausgeht, benützen wir im abgekürzten Verfahren von Zwinggi die logarithmische Ableitung nach der Variablen h an derselben Stelle i_0 beziehungsweise h=0. Nun wollen wir vorerst zeigen, dass sich die beiden Ableitungen tatsächlich ineinander überführen lassen. Es ist zu beweisen, dass für $i=i_0$ gilt:

$$\frac{\partial \log_{\,t} V_x}{\partial \, i} = \frac{\partial \log_{\,t} V_x}{\partial \, h} \, \frac{dh}{di}.$$

Es ist
$$h=\frac{1+i_0}{1+i}-1 \text{ und damit } \frac{dh}{di}=-\frac{1+i_0}{(1+i)^2}.$$
 Für
$$i=i_0 \text{ ist also } \frac{dh}{di}=-v_0.$$

Damit bleibt zu zeigen, dass $a = -\frac{\iota W_x}{v_0}$ ist.

Dies lässt sich durch folgende einfache Umformung zeigen:

$$a = \frac{\frac{D_{x+t}}{D_x} \sum_{\tau=0}^{n-1} \tau D_{x+\tau} - \sum_{\tau=t}^{n-1} \tau D_{x+\tau} + t \sum_{\tau=t}^{n-1} D_{x+\tau}}{\frac{D_{x+t}}{D_x} \sum_{\tau=0}^{n-1} D_{x+\tau} - \sum_{\tau=t}^{n-1} D_{x+\tau}} \frac{\sum_{\tau=0}^{n-1} \tau D_{x+\tau}}{\sum_{\tau=0}^{n-1} D_{x+\tau}}$$

$$= \frac{\frac{1}{D_x} \sum_{\tau=0}^{n-1} \tau D_{x+\tau} - \frac{1}{D_{x+t}} \sum_{\tau=t}^{n-1} \tau D_{x+\tau} + \frac{t}{D_{x+t}} \sum_{\tau=t}^{n-1} D_{x+\tau}}{\frac{1}{D_x} \sum_{\tau=0}^{n-1} D_{x+\tau} - \frac{1}{D_x} \sum_{\tau=0}^{n-1} D_{x+\tau}} \frac{1}{D_x} \sum_{\tau=0}^{n-1} \tau D_{x+\tau}$$

$$= \frac{(I \ddot{a})_{x:n_1} - \ddot{a}_{x:n_1} - (I \ddot{a})_{x+t:n-t} - \ddot{a}_{x+t:n-t}}{\ddot{a}_{x:n_1} - \ddot{a}_{x+t:n-t}} - \frac{(I \ddot{a})_{x:n_1} - \ddot{a}_{x:n_1}}{\ddot{a}_{x:n_1}}.$$

Wir erweitern den ersten Quotienten mit $\ddot{a}_{x:\overline{n}|}$ und den zweiten mit $\ddot{a}_{x:\overline{n}|} - \ddot{a}_{x+t:\overline{n-t}|}$ und erhalten:

$$a = \frac{(\operatorname{I} \ddot{a})_{x:\overline{n}|} \ddot{a}_{x+t:\overline{n-t}|} - (\operatorname{I} \ddot{a})_{x+t:\overline{n-t}|} \ddot{a}_{x:\overline{n}|}}{\ddot{a}_{x:\overline{n}|} (\ddot{a}_{x:\overline{n}|} - \ddot{a}_{x+t:\overline{n-t}|})} = -\frac{\iota W_x}{v_0},$$

was zu beweisen war.

Es ist also
$$a = - {}_t W_x (1 + i_0) \,,$$
 und damit
$$ah = {}_t W_x (1 + i_0) \, \frac{i - i_0}{1 + i} \,,$$
 oder
$$\underline{ah \neq {}_t W_x (i - i_0) \,,}$$

d. h.: die beiden Exponenten von e sind verschieden. Trotzdem die beiden Methoden im Prinzip übereinstimmen, müssen sie daher zu verschiedenen Resultaten führen. Die eigentliche Ursache der Verschiedenheit liegt im nichtlinearen Zusammenhang von i und h.

Die Tatsache, dass mit der Methode von Vajda bessere Resultate erzielt werden als mit dem abgekürzten Verfahren, zeigt, dass die Folge der Deckungskapitalien für äquidistante i eher geometrisch verläuft als für äquidistante h. Da die Beziehung zwischen i und h nicht linear ist, können die sich entsprechenden Werte nicht gleichzeitig äquidistant sein.

8. Verfahren bei Vorhandensein von Tabellen nach zwei Zinsfüssen

In sehr vielen Fällen sind die auf einer Absterbeordnung aufgebauten Kommutationszahlen nicht nur für einen einzigen Zinsfuss gerechnet. Sind die entsprechenden Tabellen für mindestens zwei Zinsfüsse vorhanden, so lässt sich unser Verfahren zur Berechnung versicherungstechnischer Werte nach einem dritten Zinsfuss stark vereinfachen.

Wir setzen voraus, dass für die Zinsintensitäten δ_0 und δ_1 alle notwendigen Kommutationszahlen bekannt seien. Für eine Funktion $f(\delta)$ suchen wir nun, ausgehend von $f(\delta_0)$ und $f(\delta_1)$, den entsprechenden Wert für die Zinsintensität δ .

Es sei
$$\delta_1 = \delta_0 + r_1 \quad \text{und} \quad \delta = \delta_0 + r.$$
Dann ist
$$f(\delta_1) = f(\delta_0) e^{ar_1 + \frac{b}{2}r_1^2} \qquad (1)$$
und
$$f(\delta) = f(\delta_0) e^{ar + \frac{b}{2}r^2}. \qquad (2)$$

Durch Logarithmieren von Gleichung (1) nach der Basis e erhalten wir:

$$\log \operatorname{nat} f(\delta_1) = \log \operatorname{nat} f(\delta_0) + ar_1 + \frac{b}{2} r_1^2. \tag{3}$$

Daraus berechnen wir die Grösse b:

$$b\,=\,2\,\frac{\log \operatorname{nat} f(\boldsymbol{\delta}_{\mathbf{1}}) - \log \operatorname{nat} f(\boldsymbol{\delta}_{\mathbf{0}}) - a r_{\mathbf{1}}}{r_{\mathbf{1}}^2}.$$

Eingesetzt in Gleichung (2) ergibt sich:

$$f(\delta) = f(\delta_0) e^{ar + \left\{\log \operatorname{nat} \frac{f(\delta_1)}{f(\delta_0)} - ar_1\right\} \left(\frac{r}{r_1}\right)^2}.$$
 (4)

Die Berechnungsarbeit wird dadurch wesentlich vereinfacht. Wir haben nur die Grösse a zur Zinsintensität δ_0 zu berechnen, während sich b aus a und den bekannten Funktionswerten ergibt.

Noch bedeutend einfacher gestalten sich die Berechnungen, wenn uns die Genauigkeit des abgekürzten Verfahrens genügt.

Wir berechnen a aus (3), indem wir b=0 setzen.

$$a = rac{\log \operatorname{nat} rac{f(\delta_1)}{f(\delta_0)}}{r_1}.$$

Damit erhalten wir

 $f(\delta) = f(\delta_0) e^{\log \operatorname{nat} \frac{f(\delta_1)}{f(\delta_0)} \frac{r}{r_1}}$ $f(\delta) = f(\delta_0) \left(\frac{f(\delta_1)}{f(\delta_0)}\right)^{\frac{r}{r_1}}.$ oder (5)

Diese Interpolationsformel, in welcher selbstverständlich die konti- \overline{r} ohne weiteres durch die diskontinuierlichen h ersetzt Werden können, enthält nun keine Parameter a und b mehr und ist daher für die praktische Anwendung sehr bequem.

Auch hier wollen wir einige Beispiele rechnen, um die Genauigkeit der Formel zu prüfen. Wir benützen dazu die in der Tabelle Seite 111 berechneten Werte der Bruttoprämie für die Gemischte Versicherung. Ausgehend von den beiden Zinsfüssen $2\frac{1}{2}$ und $3\frac{9}{9}$ wollen wir auf die $^{\rm ents}$ prechenden Prämien für die Zinsfüsse $3\,{}^{\prime\!}\!/_{\!\!2}$ und $4\,{}^{\prime\!}\!/_{\!\!o}$ schliessen. Den ⁸⁰ erhaltenen Näherungswerten stellen wir die durch lineare Extra-Polation berechneten Werte gegenüber.

x n		Jahresprämie für den Zinsfuss									
	n		$i = 3\frac{1}{2}\%$		i = 4 %						
		lineare Ex- trapolation	Näherung	genau	lineare Ex- trapolation	Näherung	genau				
20	20	472	473	473	448	452	452				
	30	315	317	317	291	296	297				
	40	244	246	246	219	226	227				
	50	210	212	214	185	193	196				
30	20	476	478	478	452	456	456				
	30	326	328	328	302	307	308				
	40	265	267	268	241	247	249				
40	20	500	501	501	476	480	480				
	30	367	368	368	343	348	349				
50	2400000										
00	10	1009	1010	1009	984	987	986				
	20	564	566	566	542	545	545				

Wie die Zahlen zeigen, ist die Genauigkeit der neuen Extrapolationsformel grösser als diejenige der sehr häufig angewandten linearen Methode. Mit nur wenig mehr Rechenarbeit werden also damit bedeutend bessere Resultate erzielt. Diese Extrapolationsformel dürfte daher in der Praxis Verwendung finden.

9. Berechnung der Momente aus den Kommutationszahlen

Die Momente der diskontierten Zahlen der Lebenden lassen sich folgendermassen darstellen:

- a) nach der kontinuierlichen Methode $\overline{m}_x^{(k)} = \int\limits_x^\infty t^k \overline{D}_\iota \, dt$,
- b) nach der diskontinuierlichen Methode $m_x^{(k)} = \sum_{t=x}^{\omega} t^k D_t$.

Beide Darstellungen lassen sich vereinigen, wenn wir den Schärfschen Integralbegriff verwenden. Es ist dann

$$m_x^{(k)} = -\int\limits_{x}^{(-)} t^k \, dN_t \, .$$

(Bei allen Entwicklungen ist stets zu berücksichtigen, dass bei der Berechnung der Kommutationszahlen in der Richtung des abnehmenden Alters integriert, bzw. summiert wird. Bei deren Verwendung muss also bei jeder Integration das Vorzeichen gewechselt werden.)

Der Gedanke ist naheliegend, dieses Integral durch partielle Integration zu lösen. Analog zum Riemannschen Integral gilt nämlich für das Stieltjessche, bzw. für das Schärfsche Integral

$$\int_{a}^{(-)} f dg = fg \Big|_{a}^{b} - \int_{a}^{(+)} g df.$$

In unserm Fall können wir daher schreiben:

$$-\int_{x}^{(-)\infty} t^{k} dN_{t} = -t^{k} N_{t} \Big|_{x}^{\infty} + \int_{x}^{(+)\infty} N_{t} dt^{k}$$

$$= x^{k} N_{x} + \int_{x}^{(+)\infty} N_{t} dt^{k}.$$
(10)

Nach der kontinuierlichen Methode können wir das verbleibende Integral überführen in das entsprechende Riemannsche Integral:

$$\int_{x}^{(+)\infty} N_{t} dt^{k} = \int_{x}^{\infty} N_{t} \frac{dt^{k}}{dt} dt = k \int_{x}^{\infty} t^{k-1} N_{t} dt.$$
 (11)

Sind hingegen die Funktionen diskontinuierlich, so erhalten wir

$$\int_{x}^{(+)} N_{t} dt^{k} = \sum_{t=x}^{\omega} N_{t+1} \{ (t+1)^{k} - t^{k} \}.$$
 (12)

Sowohl im kontinuierlichen wie im diskontinuierlichen Fall gelangen Wir auf diese Weise zu Ausdrücken, in welchen t^k nicht mehr vorkommt. Die weitere Entwicklung der beiden Darstellungen kann aber nun nicht mehr durch einen einheitlichen Formalismus erfolgen, weil sich dt^k (Formel 10) nicht in derselben Weise auswerten lässt. Wir stehen also hier vor der Tatsache, dass wir die Entwicklung trotz des Schärfschen Integralbegriffes nach der kontinuierlichen und der diskontinuierlichen Methode getrennt durchführen müssen.

a) Nach der kontinuierlichen Methode

Wir sind für $\overline{m}_x^{(k)}$ mit (10) und (11) schon zu der folgenden Darstellung gelangt:

$$\overline{m}_x^{(k)} = x^k \, \overline{N}_x + k \int_x^\infty t^{k-1} \, \overline{N} \, dt.$$

Durch fortgesetzte partielle Integration können wir den Grad der P_{otenz} von t sukzessive kleiner werden lassen.

$$\begin{split} \overline{\boldsymbol{m}}_{x}^{(k)} &= x^{k} \, \overline{N}_{x} - k t^{k-1} \, \overline{S}_{t} \, \Big|_{x}^{\infty} + k \, (k-1) \int_{x}^{\infty} t^{k-2} \, \overline{S}_{t} \, dt \\ &= x^{k} \, \overline{N}_{x} + k \, x^{k-1} \, \overline{S}_{x} - k \, (k-1) \, t^{k-2} \, \overline{S}_{t}^{(2)} \, \Big|_{x}^{\infty} + k \, (k-1) \, (k-2) \int_{x}^{\infty} t^{k-3} \, \overline{S}_{t}^{(2)} \, dt \\ &= x^{k} \, \overline{N}_{x} + k \, x^{k-1} \, \overline{S}_{x} + k \, (k-1) \, x^{k-2} \, \overline{S}_{x}^{(2)} + \ldots + k \, ! \, \overline{S}_{x}^{(k)}. \end{split}$$

Wenn wir \overline{N}_x mit $\overline{S}_x^{(0)}$ und \overline{S}_x mit $\overline{S}_x^{(1)}$ bezeichnen, so lässt sich diese Summe folgendermassen schreiben:

$$\overline{m}_{x}^{(k)} = \sum_{i=0}^{k} \frac{k!}{(k-i)!} x^{k-1} \, \overline{S}_{x}^{(i)}.$$

Die Momente der diskontierten Zahlen der Toten

$$\overline{M}_x^{(k)} = \int_x^\infty (t+1)^k \, \overline{C}_t \, dt$$

lassen sich ganz analog aus den entsprechenden Kommutationszahlen rechnen:

$$\overline{M}_{x}^{(k)} = \sum_{i=0}^{k} \frac{k!}{(k-i)!} (x+1)^{k-i} \overline{R}_{x}^{(i)}.$$

Diese Darstellung der Momente lässt sich nicht von der kontinuierlichen Methode auf die diskontinuierliche übertragen. Es lässt sich leicht zeigen, dass diese Formeln für die diskontinuierlichen Momente und Kommutationszahlen schon für k=1 nicht auf das richtige Resultat führen würden.

b) Nach der diskontinuierlichen Methode

ba) Mit partieller Summation

Analog zur partiellen Integration wenden wir hier die partielle Summation an, um den Grad der Potenz von t zu senken. Die von uns zur Anwendung gelangende Formel für die partielle Summation leiten wir analog zu derjenigen von Knopp [6] ab.

Zu diesem Zwecke betrachten wir zwei Folgen $a_1, a_2 \ldots a_n$, $b_1, b_2 \ldots b_n$, und deren Produkt,

$$\{a_{\nu}\}\{b_{\nu}\} = \sum_{\nu=1}^{n} a_{\nu} b_{\nu}.$$

Es sei $A_i = \sum_{\nu=i}^n a_{\nu}$; dann ist $a_i = A_i - A_{i+1}$ und damit erhalten wir:

$$\sum_{\nu=1}^{n} a_{\nu} b_{\nu} = (A_{1} - A_{2}) b_{1} + (A_{2} - A_{3}) b_{2} + \ldots + (A_{n} - A_{n+1}) b_{n}.$$

Für i > n ist aber $A_i = 0$.

Daher ist

$$\sum_{\nu=1}^{n} a_{\nu} b_{\nu} = A_{1} b_{1} + A_{2} (b_{2} - b_{1}) + A_{3} (b_{3} - b_{2}) + \ldots + A_{n} (b_{n} - b_{n-1}),$$

$$\sum_{\nu=1}^{n} a_{\nu} b_{\nu} = A_{1} b_{1} + \sum_{i=2}^{n} A_{i} (b_{i} - b_{i-1}).$$

Mit Hilfe dieser Formel für die partielle Summation lassen sich nun die Momente auf die Kommutationszahlen zurückführen.

Nach Gleichung (12) ist unter Berücksichtigung von (10)

$$m_x^{(k)} = x^k N_x + \underbrace{\sum_{t=x+1}^{\omega} N_t \left[t^k - (t-1)^k \right]}_{R_1}$$

Nach der partiellen Summationsformel ist

$$\begin{split} & \mathbb{E}_{1} = \sum_{t=x+1}^{\omega} N_{t} \left\{ \begin{pmatrix} k \\ 1 \end{pmatrix} t^{k-1} - \begin{pmatrix} k \\ 2 \end{pmatrix} t^{k-2} + \ldots + (-1)^{k} \right\} \\ & = \sum_{t=x+1}^{\omega} N_{t} \sum_{i_{1}=1}^{k} (-1)^{i_{1}+1} \begin{pmatrix} k \\ i_{1} \end{pmatrix} t^{k-i_{1}} \\ & = \sum_{i_{1}=1}^{k} (-1)^{i_{1}+1} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \sum_{t=x+1}^{\omega} N_{t} t^{k-i_{1}} \\ & = \sum_{i_{1}=1}^{k} (-1)^{i_{1}+1} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \left\{ (x+1)^{k-i_{1}} S_{x+1} + \sum_{t=x+2}^{\omega} S_{t} \left[t^{k-i_{1}} - (t-1)^{k-i_{1}} \right] \right\} \\ & = \sum_{i_{1}=1}^{k} (-1)^{i_{1}+1} \begin{pmatrix} k \\ i_{1} \end{pmatrix} (x+1)^{k-i_{1}} S_{x+1} + \sum_{i_{1}=1}^{k} (-1)^{i_{1}+1} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \sum_{t=x+2}^{\omega} S_{t} \left[t^{k-i_{1}} - (t-1)^{k-i_{1}} \right] \\ & = \sum_{i_{1}=1}^{k} (-1)^{i_{1}+1} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \sum_{t=x+2}^{\omega} S_{t} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{2}+1} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} t^{k-i_{1}-i_{2}} \\ & = \sum_{i_{1}=1}^{k} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{1}+i_{2}+2} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} \sum_{t=x+2}^{\omega} S_{t} t^{k-i_{1}-i_{2}} + \sum_{t=x+3}^{\omega} S_{t}^{(2)} \left[t^{k-i_{1}-i_{2}} - (t-1)^{k-i_{1}-i_{2}} \right] \\ & = S_{x+2}^{(2)} \sum_{i_{1}=1}^{k} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{1}+i_{2}+2} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} \sum_{t=x+3}^{\omega} \sum_{i_{1}=1}^{k-i_{1}-i_{2}} (-1)^{i_{3}+1} \begin{pmatrix} k - i_{1} - i_{2} \\ i_{1} \end{pmatrix} t^{k-i_{1}-i_{2}} \\ & = \sum_{i_{1}=1}^{k} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{1}+i_{2}+2} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} \sum_{t=x+3}^{\omega} \sum_{i_{3}=1}^{k-i_{1}-i_{2}} (-1)^{i_{3}+1} \begin{pmatrix} k - i_{1} - i_{2} \\ k - i_{1} \end{pmatrix} t^{k-i_{1}-i_{2}-i_{3}} \\ & = \sum_{i_{1}=1}^{k} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{1}+i_{2}+2} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} \sum_{t=x+3}^{\omega} \sum_{i_{3}=1}^{k-i_{1}-i_{2}} (-1)^{i_{3}+1} \begin{pmatrix} k - i_{1} - i_{2} \\ k - i_{1} - i_{2} \end{pmatrix} t^{k-i_{1}-i_{2}-i_{3}} \\ & = \sum_{i_{1}=1}^{k} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{1}+i_{2}+2} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} \sum_{t=x+3}^{\omega} \sum_{i_{3}=1}^{k-i_{1}-i_{2}} (-1)^{i_{3}+1} \begin{pmatrix} k - i_{1} - i_{2} \\ k - i_{1} - i_{2} \end{pmatrix} t^{k-i_{1}-i_{2}-i_{3}} \\ & = \sum_{i_{1}=1}^{k} \sum_{i_{2}=1}^{k-i_{1}} (-1)^{i_{1}+i_{2}+2} \begin{pmatrix} k \\ i_{1} \end{pmatrix} \begin{pmatrix} k - i_{1} \\ i_{2} \end{pmatrix} \sum_{t=x+3}^{k-i_{1}-i_{2}} (-1)^{i_{3}+1} \begin{pmatrix} k - i_{1} \\ k - i_{1} \end{pmatrix} t^{k-i_{1}-i_{2}-i_{3}} \\ & = \sum_{i_{1}=1}^{k} \sum_{t_{$$

Aus diesen Entwicklungen lässt sich das Bildungsgesetz für die endgültige Formel schon deutlich ablesen. Es ist

$$\begin{split} m_x^{(k)} &= S_x^{(0)} \, x^k + S_{x+1}^{(1)} \sum_{i_1=1}^k (-1)^{i_1+1} \, {k \choose i_1} \, (x+1)^{k-i_1} + \\ &+ S_{x+2}^{(2)} \sum_{i_1=1}^k \sum_{i_2=1}^{k-i_1} (-1)^{i_1+i_2+2} \, {k \choose i_1} \, {k-i_1 \choose i_2} \, (x+2)^{k-i_1-i_2} + \\ &+ S_{x+3}^{(3)} \sum_{i_1=1}^k \sum_{i_2=1}^{k-i_1} \sum_{i_3=1}^{k-i_1-i_2} (-1)^{i_1+i_2+i_3+3} \, {k \choose i_1} \, {k-i_1 \choose i_2} \, {k-i_1-i_2 \choose i_3} \, (x+3)^{k-i_1-i_2-i_3} + \end{split}$$

Damit erhalten wir für das k-te Moment der diskontierten Zahlen der Lebenden folgenden Ausdruck:

$$m_x^{(k)} = \sum_{n=0}^k S_{x+n}^{(n)} \sum_{i_1=1}^k \sum_{i_2=1}^{k-i_1} \sum_{i_3=1}^{k-i_1-i_2} \dots \sum_{i_n=1}^{k-i_1-\dots-i_{n-1}} \cdot \cdots \cdot (-1)^{i_1+\dots+i_n+n} \binom{k}{i_1} \binom{k-i_1}{i_2} \dots \binom{k-i_1-\dots-i_{n-1}}{i_n} (x+n)^{k-i_1-\dots-i_n}.$$

In analoger Weise lassen sich die diskontierten Zahlen der Toten durch die entsprechenden Kommutationszahlen darstellen.

Damit haben wir die Darstellung der Momente durch die Kommutationszahlen auch für den diskontinuierlichen Fall abgeleitet. Für dié praktische Rechnung ist diese Formel aber nicht sehr handlich. Wir wollen daher im folgenden noch nach einer einfachern Darstellung suchen.

bb) Mit Hilfe der Stirlingschen Zahlen

Wir wollen auch hier zuerst die Momente der diskontierten Zahlen der Lebenden betrachten.

Es ist
$$m_x^{(k)} = \sum_{t=x}^{\omega} t^k D_t.$$

Für unsere Entwicklungen schreiben wir die Momente besser in der folgenden Form:

$$m_{x}^{(k)} = \sum_{t=0}^{\omega-x} (x+t)^{k} D_{x+t}$$

$$= \sum_{i=0}^{k} {k \choose i} x^{k-i} \sum_{t=0}^{\omega-x} t^{i} D_{x+t}.$$
(1)

Darin müssen wir für t = i = 0 den unbestimmten Faktor $t^i = 1$ setzen.

Zunächst betrachten wir folgenden Satz aus der Kombinatorik:

Es ist
$$\sum_{k=0}^{n} {i+k \choose i} = {n+i+1 \choose i+1}.$$

Mit Hilfe dieses Satzes wollen wir nach der Methode der vollständigen Induktion zeigen, dass

$$S_x^{(i)} = \sum_{t=0}^{\omega-x} {t+i \choose i} D_{x+t}$$
 (2)

ist. Es ist nämlich

$$S_x^{(0)} = \sum_{t=0}^{\omega-x} D_{x+t} = \sum_{t=0}^{\omega-x} {t+0 \choose 0} D_{x+t}.$$

Wir nehmen nun an, der Satz sei für $S_x^{(i)}$ bewiesen und schliessen auf $S_x^{(i+1)}$.

 D_{x+t} kommt in allen $S_{x+k}^{(i)}$ vor, für welche $k \leq t$ ist. Nach unserer Annahme ist die Anzahl der D_{x+t} in $S_{x+k}^{(i)}$ gleich $\binom{t-k+i}{i}$. Also ist

$$S_x^{(i+1)} = \sum_{t=0}^{\omega-x} S_{x+t}^{(i)} = \sum_{t=0}^{\omega-x} \sum_{\tau=0}^{t} {\tau+i \choose i} D_{x+t}.$$

Nach dem angeführten Satz aus der Kombinatorik ist somit

$$S_x^{(i+1)} = \sum_{t=0}^{\omega-x} {t+i+1 \choose i+1} D_{x+t}, \quad \text{was zu beweisen war.}$$

Damit bietet sich uns die Möglichkeit, die Summe $\sum_{t=0}^{\omega^{-x}} t^i D_{x+t}$ auf Summen zurückzuführen, in welchen nur noch solche Potenzen von t Vorkommen, deren Exponenten kleiner als i sind:

$$\sum_{t=0}^{\omega-x} t^{i} D_{x+t} = i! \sum_{t=0}^{\omega-x} {t+i \choose i} D_{x+t} - \sum_{k=0}^{i-1} A_{k} \sum_{t=0}^{\omega-x} t^{k} D_{x+t}
= i! S_{x}^{(i)} - \sum_{k=0}^{i-1} A_{k} \sum_{t=0}^{\omega-x} t^{k} D_{x+t}.$$
(3)

Es bleibt uns nun die Aufgabe, die Koeffizienten A_k zu bestimmen. Diese stimmen überein mit den Koeffizienten von t, die sich ergeben, wenn wir den folgenden Ausdruck in eine Potenzreihe entwickeln:

$$i! {t+i \choose i} - t^i = (t+1)(t+2)(t+3)\dots(t+i) - t^i.$$
 (4)

Dazu leisten uns die Stirlingschen Zahlen [7] wertvolle Dienste. Die Zahlen S_n^k dienen zur Transformation der nach unten gebildeten Faktoriellen

$$(x)_n = x(x-1)(x-2)\dots(x-n+1)$$

in eine Potenzreihe

$$(x)_n = \sum_{k=1}^n S_n^k x^k.$$

Sie können mit Hilfe der Rekursionsformel

$$S_{n+1}^k = S_n^{k-1} - n S_n^k$$

berechnet werden.

Die Stirlingschen Zahlen (erster Art) S_n^k

n	1	2	3	4	5	6	7	
1 2 3 4 5	$egin{array}{c} 1 \\ -1 \\ 2 \\ -6 \\ 24 \end{array}$	$ \begin{array}{c c} 1 \\ -3 \\ 11 \\ -50 \end{array} $	$\begin{array}{c} 1 \\ -6 \\ 35 \end{array}$	1 10	1			
$\begin{bmatrix} 6 \\ 7 \\ \cdots \end{bmatrix}$	-120 720	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-225 1624	-735	-15 175	-21	1	

Mit Hilfe dieser Zahlen lässt sich nun der Ausdruck (4) folgendermassen in eine Summe von Potenzen umformen:

$$i! {t+i \choose i} - t^i = \sum_{k=1}^i (t+i)^k S_i^k - t^i$$

oder, indem wir $(t+i)^k$ entwickeln:

$$= \sum_{k=1}^{i} S_{i}^{k} \sum_{n=0}^{k} {k \choose n} t^{n} i^{k-n} - t^{i}.$$

Für n = i ist auch k = i und dann ist der entsprechende Summand der Doppelsumme $= t^i$. Statt am Schluss t^i zu subtrahieren, können wir daher die Bedingung aufnehmen, dass stets n < i sei. Wir erhalten damit für Gleichung (3) folgende Darstellung:

$$\sum_{t=0}^{\omega-x} t^i D_{x+t} = i! S_x^{(i)} - \sum_{k=1}^i \sum_{\substack{n=0\\n < i}}^k \binom{k}{n} i^{k-n} S_i^k \sum_{t=0}^{\omega-x} t^n D_{x+t}.$$
 (5)

Zu dem gegebenen i suchen wir für jedes n < i den Koeffizienten

$$\sigma_i^n \text{ von } \sum_{t=0}^{\omega-x} t^n D_{x+t}.$$

$$\sigma_i^n = \sum_{t=0}^i {k \choose n} i^{k-n} S_i^k, \tag{6}$$

Es ist

Wobei σ_i^n für unsere Zwecke nur definiert ist für n < i.

In der folgenden Tabelle führen wir jedoch in Klammern auch die Werte von σ_i^n auf für n=i.

n i	0	1	2	3	4	5	6	
0 1 2 3 4 5 6	(1) 1 2 6 24 120 720	(1) 3 11 50 274 1764	(1) 6 35 225 1624	(1) 10 85 735	(1) 15 175	(1) 21	(1)	

Tabelle der σ_i^n

In dieser Tabelle treten die genau gleichen Zahlen auf wie in derjenigen für die Stirlingschen Zahlen (erster Art) S_n^k , nur mit dem Unterschied, dass alle positiv sind.

Wir wollen nun vorerst die neuen Zahlen σ_i^n etwas näher betrachten.

 $Behauptung\colon$ Die Zahlen σ^n_i dienen zur Transformation der nach oben gebildeten Faktoriellen

$$\prod_{t=1}^{i} (x+t) = (x+1)(x+2) \dots (x+i)$$

in eine Summe von Potenzen:

$$\prod_{t=1}^{i} (x+t) = \sum_{n=0}^{i} \sigma_i^n x^n.$$
 (7)

Beweis: Es ist

$$\begin{split} \prod_{l=1}^{i} (x+t) &= \prod_{l=0}^{i-1} (x+i-t) = \sum_{k=1}^{i} S_{i}^{k} (x+i)^{k} \\ &= \sum_{k=1}^{i} \sum_{n=0}^{k} S_{i}^{k} {k \choose n} i^{k-n} x^{n} \\ &= \sum_{n=0}^{i} \left\{ \sum_{k=n}^{i} S_{i}^{k} {k \choose n} i^{k-n} \right\} x^{n}. \end{split}$$

Der Klammerinhalt stellt aber nichts anderes dar, als σ_i^n . Also ist Gleichung (7) bewiesen.

Wir können also Gleichung (7) als Definitionsgleichung der Zahlen σ_i^n betrachten. Daraus ergibt sich:

$$\begin{split} \sum_{n=0}^{i} \sigma_{i}^{n} x^{n} &= (x+i) \sum_{n=0}^{i-1} \sigma_{i-1}^{n} x^{n} \\ &= \sum_{n=0}^{i-1} \sigma_{i-1}^{n} x^{n+1} + i \sum_{n=0}^{i-1} \sigma_{i-1}^{n} x_{n}. \end{split}$$

Durch Koeffizientenvergleich erhalten wir folgende Rekursionsformel für die Zahlen σ_i^n : $\sigma_i^n = \sigma_{i-1}^{n-1} + i \sigma_{i-1}^n. \tag{8}$

(Auf diese Weise liesse sich auch der Beweis der Rekursionsformel für die Stirlingschen Zahlen erster Art von Jordan [7] vereinfachen.)

Diese Zahlen σ_i^n ermöglichen nun eine einfachere Darstellung von Gleichung (5). Es ist

$$\sum_{t=0}^{\omega-x} t^i D_{x+i} = i! S_x^{(i)} - \sum_{n=0}^{i-1} \sigma_i^n \sum_{t=0}^{\omega-x} t^n D_{x+t}.$$
 (9)

Was wir aber suchen, ist eine Form, in welcher nicht mehr die Summen $\sum_{t=0}^{\omega-x} t^n D_{x+t}$ auftreten, sondern direkt die Kommutationszahlen. Wir suchen für Gleichung (9) eine Darstellung von der Form

$$\sum_{t=0}^{\omega-x} t^i D_{x+t} = \sum_{m=0}^i \delta_i^m S_x^{(m)}.$$

Unter Verwendung dieser noch unbekannten Zahlen δ_i^m können wir Gleichung (9) folgendermassen schreiben:

$$\sum_{m=0}^{i} \delta_{i}^{m} S_{x}^{(m)} = \delta_{i}^{i} S_{x}^{(i)} - \sum_{n=0}^{i-1} \sigma_{i}^{n} \sum_{m=0}^{n} \delta_{n}^{m} S_{x}^{(m)}.$$

Daraus schliessen wir:

1.
$$\delta_i^i = i!$$

2. $\sum_{m=0}^{i-1} \delta_i^m S_x^{(m)} = -\sum_{n=0}^{i-1} \sigma_i^n \sum_{m=0}^n \delta_n^m S_x^{(m)}$. (10)

Durch Koeffizientenvergleich in (10) erhalten wir

$$\delta_i^m = -\sum_{n=m}^{i-1} \sigma_i^n \delta_n^m. \tag{11}$$

Damit haben wir schon das Bildungsgesetz, nach welchem sich die δ_i^m aus den σ_i^n berechnen lassen. Wir wollen aber noch versuchen, eine Formel zu erhalten, welche eine direkte Berechnung der δ_i^m erlaubt, ohne Zuhilfenahme der Zahlen σ_i^n .

Zu diesem Zwecke betrachten wir eine Funktion $D_{n(x)}$, die folgendermassen definiert ist:

$$D_{n(x)} = \sum_{\nu=0}^{n} \delta_n^{\nu} x^{\nu}.$$

Aus dieser Definition folgt

$$D_{n(x)} = n! x^{n} - \sum_{\nu=0}^{n-1} \sum_{\mu=\nu}^{n-1} \sigma_{n}^{\mu} \delta_{\mu}^{\nu} x^{\nu}$$

$$= n! x^{n} - \sum_{\mu=0}^{n-1} \sigma_{n}^{\mu} \sum_{\nu=0}^{\mu} \delta_{\mu}^{\nu} x^{\nu}$$

$$= n! x^{n} - \sum_{\mu=0}^{n-1} \sigma_{n}^{\mu} D_{\mu(x)}.$$

 N_{un} wollen wir zeigen, dass für diese Funktion $D_{n(x)}$ gilt:

$$D_{n(x)} = (x-1) \frac{d}{dx} (x D_{n-1(x)}).$$

Beweis: Wir führen den Beweis wieder durch nach der Methode der vollständigen Induktion. Für n=0 ist die Aussage trivial, denn schon aus der Definition geht hervor, dass für $n \leq 0$ die Funktion $D_{n(x)} \equiv 0$ ist.

Nun setzen wir voraus, der Satz sei bewiesen für alle $\mu < n$. Es ist dann

$$xD_{n-1(x)} = (n-1)! x^{n} - \sum_{\mu=0}^{n-2} \sigma_{n-1}^{\mu} D_{\mu(x)} x \cdot (x-1) \frac{d}{dx} (xD_{n-1(x)}) = n! x^{n} - n! x^{n-1} - \sum_{\mu=0}^{n-2} \sigma_{n-1}^{\mu} (x-1) \frac{d}{dx} (xD_{\mu(x)}) \cdot (x-1) \frac{d}$$

Nach Induktionsvoraussetzung ist aber

$$(x-1)\frac{d}{dx}(xD_{\mu(x)}) = D_{\mu+1(x)}.$$

Also ist

$$\begin{split} (x-1)\frac{d}{dx}(xD_{n-1(x)}) \; &=\; n\,!\;x^n-n\,!\;x^{n-1}-\sum_{\mu=0}^{n-2}\sigma_{n-1}^{\mu}\,D_{\mu+1(x)}\\ \\ &=\; n\,!\;x^n-n\,!\;x^{n-1}-\sum_{\nu=1}^{n-1}\sigma_{n-1}^{\nu-1}\,D_{\nu(x)}\,. \end{split}$$

Für die Zahlen σ_n^{ν} gilt aber nach (8):

$$\sigma_{n-1}^{\nu-1} = \sigma_n^{\nu} - n \sigma_{n-1}^{\nu}.$$

Eingesetzt in obiger Gleichung erhalten wir

$$\begin{split} &(x-1)\frac{d}{dx}(xD_{n-1(x)}) = \\ &= n!\,x^n - n!\,x^{n-1} - \sum_{\nu=1}^{n-1}\sigma_n^{\nu}\,D_{\nu(x)} + n\sum_{\nu=1}^{n-1}\sigma_{n-1}^{\nu}\,D_{\nu(x)} \\ &= \left\{n!\,x^n - \sum_{\nu=0}^{n-1}\sigma_n^{\nu}\,D_{\nu(x)}\right\} + \sigma_n^0\,D_{0(x)} - n\left\{(n-1)\,x^{n-1} - \sum_{\nu=0}^{n-1}\sigma_{n-1}^{\nu}\,D_{\nu(x)}\right\} - n\sigma_{n-1}^0\,D_{0(x)} \\ &= D_{n(x)} + \left\{\sigma_n^0 - n\,\sigma_{n-1}^0\right\}D_{0(x)} - n\left\{(n-1)\,x^{n-1} - \sum_{\nu=0}^{n-2}\sigma_{n-1}^{\nu}\,D_{\nu(x)} - \sigma_{n-1}^{n-1}\,D_{n-1(x)}\right\}. \\ &\text{Nun ist aber} \qquad \sigma_n^0 = n\,\sigma_{n-1}^0 \\ &\text{und} \qquad (n-1)\,x^{n-1} - \sum_{\nu=0}^{n-2}\sigma_{n-1}^{\nu}\,D_{\nu(x)} = D_{n-1(x)}. \end{split}$$

Damit werden die Klammerinhalte der letzten Gleichung = 0 und wir erhalten tatsächlich

$$(x-1)\frac{d}{dx}(xD_{n-1(x)})=D_{n(x)},$$
 was zu beweisen wäre.

Auf Grund dieses Satzes lässt sich nun die Funktion $D_{n(x)}$ zerlegen. Es ist

$$\begin{split} D_{n(x)} &= \sum_{\nu=0}^{n} \delta_{n}^{\nu} x^{\nu} \\ &= (x-1) \frac{d}{dx} \left(\sum_{\nu=0}^{n} \delta_{n-1}^{\nu} x^{\nu+1} \right) \\ &= (x-1) \sum_{\nu=0}^{n-1} (\nu+1) \delta_{n-1}^{\nu} x^{\nu} \\ &= \sum_{\nu=0}^{n-1} (\nu+1) \delta_{n-1}^{\nu} x^{\nu+1} - \sum_{\nu=0}^{n-1} (\nu+1) \delta_{n-1}^{\nu} x^{\nu} \\ &\sum_{\nu=0}^{n} \delta_{n}^{\nu} x^{\nu} = \sum_{\nu=1}^{n} \nu \delta_{n-1}^{\nu-1} x^{\nu} - \sum_{\nu=0}^{n-1} (\nu+1) \delta_{n-1}^{\nu} x^{\nu} \end{split}$$

Aus dieser Darstellung für die Funktion $D_{n(x)}$ erhalten wir nun durch Koeffizientenvergleich eine Rekursionsformel für die Zahlen δ_n^{ν} . Es ist

$$\delta_n^{\nu} = \nu \, \delta_{n-1}^{\nu-1} - (\nu+1) \, \delta_{n-1}^{\nu}$$
.

Damit lässt sich nun leicht eine Tabelle der Zahlen δ_i^n aufstellen.

-60-180-360-2520

Tabelle der δ_i^n

Mit Hilfe dieser Zahlen können wir jetzt Gleichung (9) in folgender einfacher Form schreiben:

$$\sum_{t=0}^{\omega-x} t^i D_{x+t} = \sum_{n=0}^i \delta_i^n S_x^{(n)}.$$

Damit ist es uns gelungen, die Momente der diskontierten Zahlen der Lebenden aus den gewöhnlichen Kommutationszahlen zu berechnen. Es gilt für das k-te Moment

$$m_x^{(k)} = \sum_{t=0}^{\omega - x} (x+t)^k D_{x+t},$$

$$m_x^{(k)} = \sum_{i=0}^k {k \choose i} x^{k-i} \sum_{n=0}^i \delta_i^n S_x^{(n)}.$$
(12)

Für die Momente der diskontierten Zahlen der Toten ergibt sich ganz analog

$$M_{x}^{(k)} = \sum_{i=0}^{\omega-x} (x+1+t)^{k} C_{x+t} = \sum_{i=0}^{k} {k \choose i} (x+1)^{k-1} \sum_{n=0}^{i} \delta_{i}^{n} R_{x}^{(n)},$$

$$M_{x}^{(k)} = \sum_{i=0}^{k} {k \choose i} \sum_{j=0}^{k-i} {k-i \choose j} x^{k-i-j} \sum_{n=0}^{i} \delta_{i}^{n} R_{x}^{(n)}.$$
(13)

Damit ist die Aufgabe gelöst. Diese Darstellung ist nun bedeutend einfacher und für den praktischen Gebrauch handlicher als diejenige, die wir mit Hilfe der partiellen Summation abgeleitet haben.

$\label{eq:momentafeln}$ SM und SF 1939/44, 3 %

$$m_x^{(i)} = \sum_{t=x}^{\omega} t^i D_t$$

$$M_x^{(i)} = \sum_{t=x}^{\omega} (t+1)^i C_t$$

x	$m_x^{(1)}$	$m_x^{(2)}$	$m_x^{(3)} \cdot 10^{-3}$
	x.	x	x
20	10.000.171	0.100.000.010	100.007.400
20	49 362 151	2 182 260 010	108807462
21	48 345 871	2 161 934 410	$108\ 400\ 950$
22	47312797	$2\ 140\ 239\ 856$	$107\ 945\ 364$
23	$46\ 265\ 157$	$2\ 117\ 191\ 776$	107438306
24	$45\ 205\ 041$	$2\ 092\ 809\ 108$	106877505
25	$44\ 134\ 401$	$2\ 067\ 113\ 748$	$106\ 260\ 816$
26	$43\ 055\ 026$	2 040 129 373	105586207
27	$41\ 968\ 616$	$2\ 011\ 882\ 713$	104851794
28	40876736	$1\ 982\ 401\ 953$	104055813
29	39 780 788	1 951 715 409	103 196 590
30	38 682 094	1 919 853 283	102272588
31	37 581 904	1 886 847 583	101 282 417
32	36 481 466	1 852 734 005	100 224 896
33	35 381 946	1 817 549 365	99 098 988
34	34 284 465	1 781 332 492	97 903 831
35	$33\ 190\ 073$	$1\ 744\ 123\ 164$	$96\ 638\ 714$
36	32099823	1 705 964 414	$95\ 303\ 158$
37	31 014 747	1 666 901 678	93 896 900
38	29 935 753	1 626 978 900	92419757
39	28 863 773	1 586 243 660	90 871 818
40	27 799 697	1 544 744 696	89 253 358
41	26744377	1 502 531 896	87 564 846
$\frac{11}{42}$	25 698 713	1 459 659 672	85 807 085
43	24 664 623	1 416 185 892	83 981 186
44	23 640 008	1 372 170 447	82088522
45			
	22 628 756	1 327 675 359	80 130 738
46	21 630 746	1 282 764 909	78 109 768
47	20 646 852	1 237 505 785	76 027 848
48	19677853	1 191 962 832	73 887 329
49	18724477	1 146 200 784	$71\ 690\ 751$
50	17 787 499	1 100 288 862	$69\ 441\ 067$
51	16867614	1 054 294 612	$67\ 141\ 355$
52	15965592	1 008 291 505	$64\ 795\ 197$
53	15082185	962 354 331	62406464
54	14218142	916 560 047	59 979 367
55	13 374 181	870 986 175	57 518 378
56	12551057	825 714 327	$55\ 028\ 426$
57	11 749 563	780 830 641	52 514 940
58	10970498	736 423 959	49 983 759
59	10 214 654	692 584 984	47 441 098
60	9 482 788	649 404 920	44 893 474
61	8775664	606 977 480	42347828
62	8 094 050	565 399 026	39 811 542
63	7438629	524 762 949	$37\ 292\ 105$
64	6 810 021	485 160 664	34 797 161
04	0 010 021	400 100 004	04 101 101

x	$m_x^{(1)}$	$m_x^{(2)}$	$m_x^{(3)} \cdot 10^{-3}$
65	6 208 786	446 681 611	32 334 502
66	5 635 499	409 417 956	29 912 364
67	5 090 755	373 464 839	27539458
68	4 575 089	338 915 921	25 224 680
69	4 088 930	305 857 095	22 976 680
70	100000000000000000000000000000000000000	VARISTRANSCOT VARISTRANSCOTO D' AL DE 1000	
70	$3\ 632\ 626$	$274\ 372\ 126$	20 804 217
71	$3\ 206\ 459$	244 540 436	18715999
72	2810634	216 436 861	16720645
73	2445212	190 126 506	14826299
74	2110032	165 658 402	13040127
75	1 804 767	143 068 807	11 368 497
76	1528955	$122\ 382\ 869$	9817052
77	1281970	103 612 024	8 390 468
78	1 063 005	86 751 727	7092225
79	870 992	71 774 744	5 924 020
80	704 618	58 631 198	4885443
81	562 314	$47\ 246\ 878$	3 974 697
82	442 288	37 524 788	3 187 208
83	342 543	29 345 714	$\frac{3}{2}\frac{107}{516}\frac{200}{524}$
84	260 954	22 573 827	1 954 457
	(2) (10) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	50 5550	
85	195 333	17 061 680	1 491 437
86	143 482	$12\ 654\ 362$	1 116 815
87	103 284	$9\ 197\ 325$	819 510
88	$72\ 744$	$6\ 540\ 301$	$588\ 349$
89	50 045	$4\ 542\ 815$	$412\ 570$
90	33 564	3 076 006	$282\ 024$
91	21 902	$2\ 026\ 408$	$187\ 560$
92	13 870	$1\ 295\ 523$	$121\ 049$
93	8 503	801 814	$75\ 628$
94	5 033	$479\ 123$	$45\ 618$
95	2867	275 453	26 473
96	1 566	151 896	14 735
97	818	80 107	7 843
98	405	40 027	3 955
99	188	18 800	1 875
.00			
.00	883	8 316	837
	36	3 616	367
.02	15	1 576 536	$\begin{array}{c} 161 \\ 55 \end{array}$
	5		00

x	$M_x^{(1)}$	$M_x^{(2)}$	x	$M_x^{(1)}$	$M_x^{(2)}$
20	819 598	53 857 262	65	476 753	36 395 759
21	816 658	53795522	66	456 346	35 048 884
$\frac{21}{22}$	813 556	53 727 278	67	435 114	33 626 347
$\frac{22}{23}$	810 313	53 652 689	68	413 157	32 133 278
24	806 977	53 572 625	69	390 518	30571180
25	803 577	53487625	70	367 256	28 942 888
26	$800\ 145$	53 398 393	71	343 407	$27\ 249\ 616$
27	796 716	53 305 810	72	$319\ 122$	25501075
28	793 300	53 210 162	73	$294\ 594$	23710531
29	789 965	53113447	74	269 982	21889199
30	786 665	53 014 447	75	245 419	20 047 011
31	783 379	52912581	76	$221\ 053$	18195225
32	780 051	52806085	77	197 068	16348342
33	776 685	52 695 007	78	173 731	14 528 041
34	773 251	52578251	79	151 295	12755597
35	796 716	52454526	80	$130\ 023$	11053845
36	766 080	52323630	81	$110\ 162$	9445088
37	$762\ 343$	52185361	82	91 933	7950367
38	758 467	52038073	83	$75\ 499$	6586345
39	754 411	51879889	84	60 950	5364212
40	750 171	51710289	85	48 336	4291988
41	$745\ 620$	$51\ 523\ 698$	86	$37\ 601$	3 368 793
42	740 748	$51\ 319\ 074$	87	$28\ 660$	2590946
43	$735\ 502$	$51\ 093\ 496$	88	$21\ 367$	1949173
44	729 826	50843752	89	$15\ 559$	$1\ 432\ 238$
45	723 706	50568352	90	11 040	1 025 509
46	717 128	50 265 764	91	7 623	714 603
47	710 125	49 936 623	92	5 107	483 099
48	702 685	49 579 503	93	3 310	315 948
49	694 796	$49\ 192\ 942$	94	2072	199 560
50	686 396	48772942	95	1 246	$121\ 128$
51	677 461	$48\ 317\ 247$	96	718	70 440
52	667 945	47822415	97	398	39 390
53	657 822	47 285 896	98	209	20.856
54	647 076	46705612	99	103	$10\ 365$
55	635 647	46077028	100	45	4666
56	623 462	$45\ 394\ 635$	101	20	2116
57	610 477	44 654 501	102	10	1076
58	596 679	43854223	103	5	546
5 9	582 064	42991955			
60	566 597	42063888			
61	$550\ 242$	$41\ 066\ 287$			
62	533 050	40 000 365			
63	515 064	38 867 216			
64	496 312	37667088	1		

y	$m_{m{y}}^{(1)}$	$m_y^{(2)}$	$m_y^{(3)} \cdot 10^{-3}$
20	53 170 805	2 411 018 487	123 671 640
21	52 134 625	2 390 294 887	123 257 168
22	51 080 278	2 368 153 600	123 257 108 122 792 201
23	50 010 022	2 344 607 968	122 192 201 122 274 197
24	48 925 986	2 319 675 140	121 700 742
25	47830170	2 293 375 556	121 069 552
26	$46\ 724\ 445$	$2\ 265\ 732\ 431$	120 378 474
27	45 610 579	2 236 771 915	119 625 501
28	$44\ 490\ 214$	2 206 522 060	118 808 755
29	$43\ 364\ 922$	2 175 013 884	$117\ 926\ 526$
30	$42\ 236\ 126$	2 142 278 800	116 977 209
31	$41\ 105\ 246$	$2\ 108\ 352\ 400$	115 959 417
32	39 973 498	$2\ 073\ 268\ 212$	114 871 807
33	38 842 106	2 037 063 668	113 713 262
34	37 712 186	1 999 776 308	112 482 779
35	36 584 814	1 961 445 660	111 179 537
36	35 461 034	1 922 113 360	109 802 906
37	34 341 866	1 881 823 312	108352464
38	33 228 203	1 840 617 781	106 827 859
39	32 120 997	1 798 543 953	105 229 054
40	04 004 000		100 850 000
40	31 021 080	1 755 647 190	103 556 080
41	29 929 280	1 711 975 190	101 809 200
42	28 846 388	1 667 576 618	99 988 859
43	$27\ 773\ 162$	$1\ 622\ 501\ 126$	98 095 688
44	26710374	1 576 801 242	96 130 593
45	25658730	1 530 528 906	94 094 610
46	24618915	1 483 737 231	91 988 985
47	23591597	1 436 480 603	89 815 180
48	22577431	1 388 814 801	87 574 887
49	$21\ 577\ 111$	1 340 799 441	82 270 150
50	20 591 280	1 292 493 722	82 903 170
51	19 620 630	$1\ 243\ 961\ 222$	80 476 545
52	18 665 849	1 195 267 381	77 993 159
53	17727634	1 146 480 191	$75\ 456\ 225$
54	16806653	1 097 668 198	72 869 189
55	15903562	1 048 901 306	70 235 777
56	15018947	1 000 247 508	67 559 818
57	14 153 316	951 772 161	64 845 199
58	13 307 191	903 543 030	62 096 139
59	13307191 12481161	855 633 278	59 317 373
60	11 675 917	808 123 894	56 514 319
61	10892221	761 102 134	53 693 013
62	10130862	714 659 217	50 859 995
63	$9\ 392\ 653$	$668\ 890\ 247$	48 022 319
64	8678460	623 896 075	45187686

y	$m_{m{y}}^{(1)}$	$m_y^{(2)}$	$m_y^{(3)} \cdot 10^{-3}$
65	7 989 161	579 780 926	42 364 316
66	7 325 602	536 649 591	39 560 779
67	6 688 517	494 601 994	36 785 638
68	6 078 670	453 742 218	34 048 033
69	5 496 869	414 179 736	31 357 784
70	4 944 034	376 034 128	28725737
71	4 421 127	339 430 638	$26\ 163\ 493$
72	$3\ 929\ 062$	304 493 988	$23\ 682\ 991$
7 3	3 468 608	271 341 271	21 295 995
74	3 040 346	240 078 160	19013788
75	2644609	210 793 607	16 846 731
76	2281392	183 552 295	14803633
77	1950328	158 391 461	12 891 410
78	1650852	135 331 801	11 115 816
79	1 382 259	114 381 547	9 481 696
80	1 143 726	95 537 472	7 993 014
81	934 286	$78\ 782\ 272$	6652598
82	752 708	64 074 478	$5461\ 267$
83	597 523	51 349 308	4 417 803
84	466 956	40 512 222	3 518 325
85	358 907	31 436 089	2 755 930
86	271 059	23 969 051	2121232
87	200 944	17 939 170	1602662
88	146059	13 164 192	1 187 239
89	Sec. 1994 (1994) 1994 (1994)	Company Indiana Manager and Company of the Company	
	103 970	9 460 395	861 305
90	72 387	$6\ 649\ 472$	$611\ 133$
91	49 226	4 565 018	$423\ 532$
92	32 650	3 056 638	286 269
93	21 086	$1\ 992\ 713$	$188\ 388$
94	13 236	$1\ 262\ 654$	$120\ 493$
95	8 061	$776\ 232$	74 769
96	4 755	$462\ 162$	$44 \ 932$
97	2 708	$265\ 679$	$26\ 070$
98	1 484	$146\ 941$	$14\ 552$
99	780	77 988	7 795
100	393	39 665	4 001
101	190	19 365	1971
102	88	9 063	930
103	38	3 963	410
104	13	1 419	148
105	4	441	46

y	$M_y^{(1)}$	$M_y^{(2)}$	y	$M_y^{(1)}$	$M_y^{(2)}$
20	F05 540	FF 0F0 000	200	F90 400	41 000 180
21	797 749	55 056 292	65	538 462	41 866 458
22	795 796	$55\ 015\ 279$	66	521 394	40739970
	793 662	54 968 331	67	503 345	39 530 687
23	791 385	54 915 960	68	484 224	$39\ 230\ 459$
24	788 985	54 858 360	69	463 904	36828379
25	786 485	54795860	70	$442\ 295$	35315749
26	783 885	54 728 260	71	419 433	$33\ 692\ 547$
27	781 212	$54\ 656\ 089$	72	$395\ 421$	$31\ 943\ 683$
28	778 496	54 580 041	73	370 433	30139559
29	775 741	54500146	74	$344\ 681$	$28\ 233\ 911$
30	$772\ 921$	54 415 546	75	318 499	26 270 261
31	770 100	54 328 095	76	292 218	$24\ 272\ 905$
32	$767\ 284$	54 237 983	77	266 046	$22\ 257\ 661$
33	764 446	54 144 329	78	$240\ 112$	20 234 809
34	761 556	54 046 069	79	$214\ 524$	$18\ 213\ 357$
35	758 616	53 943 169	80	189 452	16 207 597
36	$755\ 592$	53 834 305	81	165 144	14 238 649
37	$752\ 484$	53 719 309	82	141 864	12329689
38	749 254			119 936	10 509 665
39		53 596 569	83		
	745 900	53 465 763	84	99 684	8 808 497
40 41	742 420	53 326 563	85	81 384	7 252 997
42	738 812	53 178 635	86	65 197	5860915
43	$735\ 032$	$53\ 019\ 875$	87	51 217	4 644 655
	731 076	52849767	88	39 408	3605463
44	726 896	52665847	89	29 665	2738336
45	$722\ 486$	52467397	90	$21\ 817$	2032016
46	717840	$52\ 253\ 681$	91	15657	$1\ 471\ 456$
47	$712\ 905$	52021736	92	$10\ 951$	1038504
48	707 673	51 770 600	93	$7\ 451$	$713\ 004$
49	$702\ 087$	$51\ 496\ 886$	94	$4\ 922$	$475\ 278$
50	696 087	51 196 886	95	3 151	307 033
51	689 635	50867834	96	1 954	$192\ 121$
52	$682\ 704$	50507422	97	1 171	$116\ 170$
53	675 279	50 113 897	98	673	67 366
54	667 346	49 685 515	99	371	$37\ 468$
55	658 936	49 222 965	100	194	19768
56	650 099	48728093	101	97	9 971
57	640 797	48 197 879	102	47	$\begin{smallmatrix} 3 & 5 & 1 \\ 4 & 871 \end{smallmatrix}$
58	630 937	47 625 999	103	$\frac{1}{22}$	$\frac{1}{2}\frac{011}{296}$
59	620 388	47 003 608	104	8	840
60	609 042	46322848	105	4	420
61	596 848	45 579 014	200	•	120
62	583 754	44 767 186			
63	569 680	43 880 524			
64	554 576	42 913 868	1 1	1	

Literaturverzeichnis

- [1] Dublin, L. I. and Lotka, A.J.: «On the true rate of natural increase.» Journal of the American Mathematical Association, 1925.

 Linder, A.: «Die Vermehrungsrate der stabilen Bevölkerung.» Archiv für mathematische Wirtschafts- und Sozialforschung, Bd. 4, 1938.
- [2] Zwinggi, E.: «Beitrag zum Zinsfussproblem der Prämie.» Experientia, Bd. 5, 1949.
 - «A study of the dependence of the premium on the rate of interest.» Skand-Aktuarietidskrift, 1950.
 - «Beiträge zum Zinsfussproblem.» Blätter der Deutschen Gesellschaft für Versicherungsmathematik, Bd. 1, 1952.
- [3] Schärf, H.: «Über links- und rechtsseitige Stieltjesintegrale und deren Anwendungen.» Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, Bd. 43, 2, 1943.
- [4] Loewy, A.: Der Stieltjessche Integralbegriff und seine Verwertung in der Versicherungsmathematik.» Blätter für Versicherungsmathematik, 1931.
 - «Zur Bedeutung des Stieltjesschen Integrals in der Versicherungsmathermatik.» Assekuranzjahrbuch 1935.
- [5] Vajda, S.: Calculation of the policy-values for different rates of interest.» Skand-Aktuarietidskrift 1945.
- [6] Knopp: «Theorie und Anwendungen der unendlichen Reihen.» 1. Aufl. 1931 (S. 182).
- [7] Jordan, C.: «On Stirlings Numbers.» The Tohoku Mathematical Journal, Bd. 37, 1933.
 - Ivo, Lah: «Die Ableitung der Versicherungswerte nach einzelnen Zinsmassen.» Blätter der Deutschen Gesellschaft für Versicherungsmathematik, Bd. 2, 1, 1954.