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Über eine allgemeine Methode der Lösung
des Zinsfussproblems für verschiedene Versicherungs¬

formen und die Darstellung der darin

auftretenden Momente

Von Hermann Gubler, Basel

1. Einleitung

Das Zinsfussproblem gehört wohl zu den bekanntesten Problemen
^er Versicherungsmathematik. Es hat nicht nur theoretische Bedeu-
^ng> sondern tritt in dieser oder jener Form immer wieder an den
raktiker heran. Und zwar stellen sich die praktischen Fragen nicht^ deswegen, weil die Zinsen auf den Kapitalanlagen stets gewissen

^Unbedingten Schwankungen unterworfen sind, sondern vor allem
"Lshalb, weil viele technische Grundlagen nur für spezielle Zinsfüsse
gerechnet sind.

Fast alle bisher bekannten Methoden zur Lösung des Zinsfuss-
Problems zielen darauf ab, den Leibrenten-Barwert nach dem neuen

Umsatz anzugeben, um dann daraus die andern versicherungsmathe-
Uudischen Grössen zu bestimmen. Ein Verfahren von Lotka [1]*) zur

Rechnung der Vermehrungsrate der stabilen Bevölkerung wurde nun
v°h Zwinggi [2] benützt, um das Problem auf eine neuartige Weise

behandeln. Die neue Methode geht darauf aus, mit Hilfe der
gegebenen Kommutationszahlen zum alten Zinsfuss aus einer ver-
Slcherungstechnischen Grösse direkt auf die entsprechende Grösse
Uach dem neuen Zinsfuss zu schliessen, ohne den Umweg über den

^eibrentenbarwert zu machen. Das Verfahren wurde von Zwinggi im
6lspiel der Nettoprämie für die gemischte Versicherung beschrieben.

In der vorliegenden Untersuchung soll zunächst gezeigt werden,
^6 sich das Verfahren anwenden lässt auf die Bruttoprämie gemischter

l) Siehe Literaturverzeichnis.
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Versicherungen mit steigender Dividende sowie auf das Nettodeckungs-
kapital der gemischten Versicherung. Im letztern Fall wird unsere

Darstellung eine gewisse Ähnlichkeit mit der von Vajda hergeleiteten
Formel für die Umrechnung des Deckungskapitals von gemischten
Versicherungen und lebenslänglichen Todesfallversicherungen erhalten.
Ausführliche numerische Kontrollbeispiele illustrieren die Brauchbarkeit

und Genauigkeit der Methode.
Um nicht wie bisher die kontinuierliche und diskontinuierliche

Darstellung unterscheiden zu müssen, haben wir systematisch den

Schärfschen Integralbegriff benützt, der vom Verfasser speziell für
versicherungstechnische Funktionen geschaffen wurde. Zum besser«

Verständnis geben wir in einem besondern Abschnitt die wichtigsten
Eigenschaften dieses Integralbegriffes an.

Bei der obigen Methode der Behandlung des Zinsfussprobleins
spielen die Zeitmomente der diskontierten Zahlen der Lebenden und

der Toten eine wesentliche Rolle. Wir zeigen, wie dieselben entweder

mit Hilfe partieller Summation oder mit den Stirlingschen Zahlen

berechnet werden können. Zudem geben wir für die Absterbeordnungen
SM und SF 39/44, 3% eine Moincnten-Tafel.

Bevor ich die Einleitung schliesse, möchte ich allen, die mir bei

der Arbeit ihre Unterstützung angedeihen Hessen, bestens danken.

Speziell Herrn Prof. Zwinggi für die Problemstellung, Herrn Prof. Saxer

für den Hinweis auf den Schärfschen Integralbegriff und meinem
ehemaligen Studienkollegen, Herrn Prof. Specker, für seine praktischen
Ratschläge.

2. Die Theorie des neuen Verfahrens

In allen Formeln für versicherungstechnische Grössen, in welchen
der Zins eine Rolle spielt, tritt die Zinsintensität <5 als exponentieller
Faktor auf. Es ist daher naheliegend, für die Lösung des

Zinsfussproblems einen Ansatz von der Form

f(S) — /(<!„)

zu wählen, wobei vorausgesetzt werden kann, dass für die Zinsintensität

d0 nicht nur der Funktionswert selbst, sondern auch alle nötigen
Kommutationszahlen vorhanden sind. Die gesuchte Funktion a)

soll also eine Funktion der alten Kommutationszahlen und der Dif"
ferenz <5„ — <5 sein.
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logarithmieren die Gleichung (1) und erhalten

1° f(d) In f(d0) + 9(d0-d) • (2)

^enn wir nun <50 — d =r setzen, schreibt sich Gleichung (2):

In f(r) In /(0) + g(r).
Durch Differentiation nach der Variablen r erhalten wir für g(r) eine
Differentialgleichung, in welcher /(0) nur noch als Integrationskon-
«fcante auftritt: 8lnf{r) dg{f)

dr dr

0(fer, etwas anders dargestellt:
g/w

9 W
f(r) dr

Mit Hilfe dieser Differentialgleichung soll nun die Funktion g(r)
aus der Funktion f(r) und deren Ableitung bestimmt werden. Nun sind
aber die in der praktischen Versicherungsmathematik vorkommenden
Funktionen f(r) selten in einfacher Weise durch analytische Funktionen

darstellbar, so dass sich die Funktion g'(r) kaum in der sich
aus der Ableitung ergebenden rohen Form integrieren liesse. Wir müs-
Seu daher versuchen, für g'(r) gute Näherungslösungen zu finden,
Welche sich zur Integration eignen.

In der klassischen Versicherungsmathematik muss stets unter-
s®hieden werden zwischen der kontinuierlichen und der diskontinuierlichen

Methode. Die einzelnen Formeln müssen jeweils getrennt
abgleitet werden. Im folgenden Abschnitt wollen wir nun den Integral-
Degriff von Schärf einführen, mit dessen Hilfe sich die beiden Methoden
formell vereinigen lassen.

3. Der Integralbegriff von Schärf

Der neue Integralbegriff von Schärf [3] geht durch eine
Verallgemeinerung aus dem Eiemann-Stieltj esschen Integral hervor. Er gibt

die Möglichkeit, die traditionelle Doppelspurigkeit der kontinuier-
l°hen und der diskontinuierlichen Methode in der Versicherungsmathe-

rria,tik zu überwinden.
Das Eiemann-Stieltjessche Integral wurde durch Loeivij [4] in der

ctsicherungsmathematik eingeführt. Die Voraussetzungen für seine
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Existenz sind aber in der diskontinuierlichen Methode nicht immer
erfüllt. Die für die diskontinuierliche Versicherungsmathematik typi"
sehen Treppenfunktionen können nicht ohne weiteres nach der
Methode von Eiemann-Stieltjes über eine andere Funktion integriert
werden. Der von Schärf entwickelte Integralbegriff hat nun diesen

Mangel behoben. Durch geeignete Definition sogenannter «einseitiger»

Stieltjes-Integrale hat Schärf es ermöglicht, auch diese für die

Versicherungsmathematik wichtigsten Funktionen zu integrieren.
Wir betrachten zwei Funktionen /(<) und g(t) in einem Intervall

[a,!?]1). Es sei Dn eine Einteilung von [a,b] mit den Teilungspunkten
a t0, tlt t2, tn b. Dabei nennen wir eine Folge {D„} von

Einteilungen «normal», wenn die maximale Länge der Teilintervalle
für n-*- oo gegen 0 konvergiert. Mit Hilfe der Funktionswerte von /
und g in diesen Teilungspunkten bilden wir nun folgende Summen:

dDn(f,g) 2 KU) biU+i)—9(U)] >

+) l-i (1)

ADn(i'fj) 2 f(u+i) iX'i+i) - (äu)]
i 0

Konvergiert für jede «normale» Einteilungsfolge [Dn] die Zahlenfolge

\{~]ADn(f,g)\ bzw. {<+UDn(/,</}, so setzen wir

H H»
Yim ADn(f,g) I feig linksseitiges Stieltjes-Integral,
n+- co a

(+> (+)»
lim AD„(f>9)

n>- oo

Aus den funktionentheoretischen Untersuchungen von Schärf

greifen wir folgenden, für unsere Entwicklungen wichtigen Satz heraus:

Satz: Ist im Intervall [a,&] die Funktion / beschränkt, die Funktion

g von beschränkter Schwankung, so ist für die Existenz von

(-)»
I fdg

a

notwendig und hinreichend, dass

x) Für die Intervalle a s= t b, a£l<h a<C.t^b,a<C.t<.b verwenden
wir entsprechend die Bezeichnungen [a,b], [a,b), (a,b], (a,b).

J f dg rechtsseitiges Stieltjes-Integral.
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!• In jedem linksseitigen, im Intervall (a,b] gelegenen Unstetigkeits-
punkt der Funktion g die Funktion / eine linksseitige Grenze

f(x — 0) hat.
2- Die Monge N der linksseitigen, im Innern von [a,b] gelegenen

Unstetigkeitspunkte der Funktion / eine Nullmenge bezüglich
der linksseitigen Kontinuitätsfunktion ge von g ist.

Dann existiert das Lebesgue-Stieltjessche Integral j fdge über dem
Intervall [a,b), und es ist F.6)

(-)»

f f dg [fdgt+ 2 /(«i — 0) [</(®<) —£/(«* — 0)], (2)
./ J a<xi<~b
a [a,b)

Wobei die Summation sich auf alle im Intervall (a,b] gelegenen
linksseitigen Unstetigkeitspunkte x{ der Funktion g erstreckt.

Kür die in der kontinuierlichen Betrachtungsweise der Versiche-
rungsmathomatik auftretenden Funktionen sind die Bedingungen 1.

nnd 2. trivial. Es lässt sich leicht zeigen, dass sie auch von den in der
diskontinuierlichen Methode auftretenden Funktionen erfüllt werden.

Die diskontinuierlichen Funktionen der Versicherungsmathematik
Sltld ausgesprochene Treppenfunktionen mit den Sprungstellen am Ende
d0!" Zeitintervalle. Wenn t1,ti die Grenzen eines solchen Intervalles
s^d, so sind diese Funktionen konstant im Intervall [tvl2)- Die Funktionen

sind in den Sprungstellen rechtsseitig stetig, hingegen linksseitig
Unstetig. Sehr wichtig ist nun die Tatsache, dass sie in den Sprungstellen

stets eine linksseitige Grenzo besitzen, indem f(t2 — 0) /(it) ist.
Als° ist die 1. Bedingung auch in der diskontinuierlichen Betrachtungsweise

stets erfüllt. Da die Menge N der Unstetigkeitsstellen in jedem
1^11 endlich ist, stellt sie bezüglich jeder andern Funktion eine Null-
'fienge dar, womit auch Bedingung 2 erfüllt ist.

Der Anwendung der Formel (2) des obigen Satzes auf alle ver-
Slcherungstechnischen Funktionen steht also nichts im Wege. In den
I°lgenden Entwicklungen brauchen wir im wesentlichen die temporäre

eibrente und die temporäre Todesfallversicherung. Wir wollen daher
zUerst zeigen, wie sich diese beiden Funktionen mit Hilfe des Schärften

Integralbegriffes darstellen lassen.
Es bedeute io(t) im kontinuierlichen Fall e~öt, im diskontinuier-

°hen Fall v'. Wenn R(t) den bis zum Zeitpunkt t zu zahlenden Renten-
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lx+lw(t) dR(t).

äx^ y- 0+(M0^-

betrag darstellt, so können wir für den Barwert einer temporären
Leibrente schreiben: „

1

0

Ist die Höhe der Bente unabhängig von t, so ist R(t) Rt. Damit

wird, wenn wir R — 1 setzen, (_j n
1

T*.
o

Dabei müssen wir wohl beachten, dass dt nicht ein Differential, sondern

einfach der integrierende Faktor des Schärfschen Integrals ist. Handelt
es sich um stetige Funktionen, so geht das Integral über in ein Biemann-

Stieltjessches, bzw. bei Differenzierbarkeit in ein gewöhnliches Bie-
inannsches Integral. Im diskontinuierlichen Fall hingegen erhalten wir
gemäss Formel (2):

äx:ü\ T 2 lx+t MO [(* +1) — <] 2 lx+t MO
lx i=o L i=o

Wenn wir an Stelle des linksseitigen Stieltijes-Integrales das rechtsseitige

wählen, so gelangen wir nicht zum vorschüssigen, sondern zum

nachschüssigen Bentenbarwert. Es ist dann im diskontinuierlichen Fall

H) »

r I h+t MO dt r 2 h+t+1 M* +!) [(*+1) - *]
lx J lx 0

0

J n—1

— 7^2 O+i+iM^ + l) ax.^.
lx 1 o

Die Zahl der innerhalb t Jahren gestorbenen Versicherten mit dem

Eintrittsalter x ist lx—lx+f. Daher ist der Barwert für die temporäre
Todesfallversicherung (+)n

1

o

(+)"

' w{t)dlx+l.

A'x:7Ü T I w{t)d{lx — lx+i)

h,
0
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^ kontinuierlichen Fall ergibt sich daraus

A'x:n] dlx+t

0

n

_1 fw(t) dl*±Ldt.ij u dt
0

^un ist aber — — lx+i,ux+t somit

Ax:n\ — Y
I W(t) h+t Px+t dt I

UX

0

Was nichts anderes darstellt als die bekannte Formel für die kontinuierliche

temporäre Todesfallversicherung. Aber auch im diskontinuierlichen
führt das Integral auf die gebräuchliche Darstellung. Wir benützen

nieder Gleichung (2).

Ax{n\ — 7 2 W(t "H 1) [L+ l+1 dx+t]
lx 1=0

7" 2 W(t + dx+l
lx 1 0

Die diskontinuierlichen Funktionen der Versicherungsmathematik
®lnd als Treppenfunktionen derart einfach, dass sich die Bedeutung des

ärfschen Integrales im diskontinuierlichen Fall jeweils sehr leicht
r0kt aus der Definitionsgleichung (1) ergibt.

4. Die Anwendung des neuen Verfahrens
auf die Bruttoprämie für eine gemischte Versicherung

mit steigender Dividende

a) Durch Variation der Zinsintensität

Wie wir in der Einleitung erwähnt haben, wurde das Verfahren von
^lnggi auf den Fall der Nettoprämie für die gemischte Versicherung

^gewendet. Dass es sich auch auf die Bruttoprämie mit steigender
Iyidende ausdehnen lässt, liegt, vom mathematischen Standpunkt



aus gesehen, auf der Hand. Ob es sich aber bei der Kompliziertheit
des Aufbaus dieser versicherungsmathematischen Funktion praktisch
durchführen lässt und zu brauchbaren Resultaten führt, soll im
folgenden noch untersucht werden.

Wir benützen folgende Abkürzungen:

Für die Abschluss-, Inkasso- und Verwaltungskosten verwenden wir die

üblichen Symbole a, ß, und y. Mit c bezeichnen wir den Dividendensatz>
in dem Sinne, dass nach t Jahren das ctfache der Bruttoprämie als
Gewinn ausgeschüttet werde. Mit der Ausschüttung des Gewinnes wird in
der Praxis erst nach Ablauf einer gewissen Frist von zum Beispiel zwei

oder drei Jahren begonnen. Um die Ableitungen nicht unnötig zu
komplizieren, können wir aber für unsere Betrachtungen ohne weiteres
annehmen, dass der Gewinn von Anfang an nach Massgabe der abgelaufenen

Versicherungsdauer ausgeschüttet werde.

Unter diesen Voraussetzungen lässt sich die Bruttoprämie für die

gemischte Versicherung für die Zinsintensität d0 folgenderinassen

so dass sich für die Bruttoprämie zur neuen Zinsintensität <5 ergibt:

io(t) — e d°l,

F(t) e~^lx+r

schreiben:
(+)» (-)n

Für die variierte Zinsintensität <5 <50 + r gilt:

e~öt e~rt w(t),

e~*li>x+t e-«F(t),

(+)«

je~" w(f) dlx+t + e~TnF(n) + alx + y je~" F(t) dt
0 0
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Nun bilden wir die Ableitung von PL, nach der Variablen r.

ftew(t) dlx+t + ne-"F(n) + yf te~"F(t) dt

_[d) Ö 0

dr
~~

* (—)» H»
(1-/9) Je~rtF(t) dt — cfte~r'F(t) dt

l 0 0

(-) n

(1-/9) ft e~rt F(t) ät—c ft2 e~rt F(t) dt
'

ö o p'
H» (-) »> *

('') "

i \ f P~rt Fit) dt — r. f t(Crl Fit) dt(1-/1) fe~rlF{t) dt — c fte~rlF(t)i
l 0 0

Wem wir die Gleichung durch P(',s) dividieren, gelangen wir zur
gewehten logaritbmischen Ableitung nach r.

(+)« (-)»

fte-'1 w(t) dlx+i + ne~r"F(n) + y fte~"F(t) dt

- ~
<d>

_ _
0 __

®

P'wdr ' (+);' " ~

H/'
J e~rl toil) dlx+t + e~rnF(n) + alx + y j e~rt F{t) dt
0 0

-) n (-) n

fte~rt F(l)dl — c ft2e~"F(t)dt

+ -- - -M - i + n.' (-)" (-) n
1

fe~"F(t)dt — c fte~"F(t)dt

Wir müssen nun versuchen, diese Differentialgleichung zu lösen.
lQe exakte Darstellung des Integrals in einer analytisch geschlossenen
°rm ist jedoch ausgeschlossen. Um eine Näherungslösung zu erhalten,

Wtwickeln wir den Ausdruck auf der rechten Seite in eine Potenzreihe.
°m mathematischen Standpunkt aus wäre es nun interessant zu

^lssen, welchen Fehler wir begehen, wenn wir die betreffende Potenz-
*eihe nach dem wten Glied abbrechen. Bei den versicherungsmathe-
Watischen Funktionen sind jedoch solche theoretische Untersuchungen^ den Mitteln der reinen Mathematik sehr schwierig, weil die darin
^tretenden biometrischen Funktionen meist entweder überhaupt nur
eWpirisch oder dann in äusserst komplizierter analytischer Form ge-
§eben sind. In der Praxis bleibt daher in den meisten Fällen nichts
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anderes übrig, als die entwickelten Formeln anhand von praktischen
Beispielen auf ihre Brauchbarkeit hin zu prüfen. Da es sich jedoch bei

den hier zur Anwendung gelangenden biometrischen Funktionen um
beschränkte Funktionen handelt, dio im kontinuierlichen Fall stetig
und stetig differenzierbar sind und im diskontinuierlichen Fall reine

Treppenfunktionen darstellen, lassen sich aus Bechnungsbeispielen
doch ziemlich zuverlässige und für die Praxis durchaus hinreichende
Schlüsse ziehen. Wir werden uns daher auch in unserm Fall auf die

Prüfung des Verfahrens anhand praktischer Beispiele beschränken.
Es gilt nun also, die rechte Seite der letzten Gleichung in eine

Potenzreihe nach r zu entwickeln. Wir gehen daboi schrittweise vor,
indem wir zuerst die einzelnen Ausdrücke entwickeln. Wenn die Glieder

mit Potenzen von höherer Ordnung als 1 vernachlässigt werden, so

erhalten wir beispielsweise:

(+)» (+)« (+)«

fe~rt w(t) dlx+t J w(t) dlx+l—r j tw(t) dlx+t +
0 0 0

+ )n + )» (f-)»

Jte~rl w(t) dlx+t j tw(t) dlx+t—r j thv(t) dlx+t +

Damit lassen sich die mit I und II bezeichneten Quotienten der logarithmischen

Ableitung folgendermassen schreiben:

Zur Vereinfachung der Schreibweise führen wir folgende Symbole ein:
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und erhalten damit für I und II

V.-r^ + y^-rU,)I
Fo-r^ + aZVMfJo-rt/i) '

Ut-rUi-ciUt-rUJ11
ü0~rt71-c(C71-rC72)'

°der, indem wir die Glieder mit r zusammenfassen:

Vl + yU^r(V2 + yü2)
I

II

V0 + yU0 + «Dx~r(V1 + yü1) '

Vl^cU2~r(U2-cU3)
Uo-cUt-r^-cUi)

Um die Darstellung der Ausdrücke noch weiter zu vereinfachen, führen
^ir Hilfsgrössen T{ und If; ein.

T^ü.-cü^,
Wi Vi-\-yUi.

üann ist

i un(l Ii T'zlTi.
HJ + aD.-rJT, T0 — rTl

U'm bilden wir die Potenzreihen nach r für die beiden Quotienten I und
U> wobei wir wieder die Glieder mit Potenzen von höherer Ordnung als 1

^nachlässigen.

I ,.rf * W>-
W0 + <*-Dx \W0 + *DX \W0 + *DX

11=TJ+M\2 T>

T0 \\ToJ T0

Uie Lösung der homogenen Differentialgleichung

13
dr

l&sst

(a) P'w (I + II)

sich nun leicht angeben, wenn man berücksichtigt, dass für r — 0
' p'
W — 1 (-So)

(^e Integrationskonstante PL sein muss
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Es ist P'± Ii(*> P{So) e
ar + r2

wobei a und b folgendermassen bestimmt werden:

Ty W,
a

T0 bFo + a-D^.

Tn

W,

W0 + <xDx
+

W9

Wn 4- aD„

(3)

In diesen Ausdrücken treten neben der Variablen r nur noch Grössen

auf, die sich mit Hilfe derjenigen Kommutationszahlen bestimmen
lassen, welche der Zinsintensität d0 entsprechen.

Damit ist unsere Aufgabe für den Fall der Variation der
Zinsintensität gelöst, und zwar sowohl für die kontinuierliche wie für die

diskontinuierliche Methode.

In der Praxis hat man es jedoch meistens nicht mit einer Änderung
der Zinsintensität <5, sondern mit einer Änderung des Zinsfusses i zu tun.
Natürlich lässt sich ohne weiteres aus der Zinsfussdifferenz die

entsprechende Differenz der Zinsintensitäten berechnen. Wir wollen aber

doch noch sehen, wie sich die Formeln ableiten lassen, wenn wir direkt
den Zinsfuss ändern, ohne den Umweg über die Zinsintensität zu machen.

b) Durch Variation des Zinsfusses

Während die kontinuierliche Methode der Versicherungsmathematik

mehr nur theoretische Bedeutung hat und in der Praxis selten zur
Anwendung gelangt, ist die diskontinuierliche Methode in ihrer
klassischen Form das tägliche Brot des Praktikers. Sie wird sich wohl kaum
durch das Schärfsche Integral, das beide Methoden vereinigt,
zurückdrängen lassen. Wir wollen daher die folgenden Ableitungen nach der

rein diskontinuierlichen Methode, unter Verwendung der jedem
Versicherungsmathematiker geläufigen Symbole durchführen.

Wir gehen von einer Prämiendarstellung aus, welche nicht einfach
eine genaue Übertragung der Ableitungen des letzten Abschnittes zu-

lässt, sondern ein neues Element in die Enwicklungen hineinbringt.
Unter Zugrundelegung derselben Annahme wie unter a) können wir die
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Hruttoprämie zum Zinsfuss i0 für die gemischte Versicherung mit
steigender Dividende darstellen als

P'
+ «)(2 Gx+t + D*+«! + (Y + *<k) '2 Dx+t

\t= 0 J <=0

(i-ÄI
<=0

Hier tritt im Zähler der Ausdruck a<50 auf. Wollten wir die Ableitung für
die kontinuierliche und die diskontinuierliche Methode zusammen mit
Hilfe des Schärfschen Integrals durchführen, so könnten wir diese
Darstellung nicht benützen. Wir müssen uns hier durch die Wahl von d0
°der f50 von Anfang an für eine der beiden Betrachtungsweisen ent-
Scheiden.

Wir führen nun folgende Abkürzungen ein:

F(t) />x;' und G(t)
vo vo

Haniit erhalten wir für die Bruttoprämie:

(1 + a) jgG(t) + F(n)j + (y + ad0) §V(Q

o /=o J

iß der diskontinuierlichen Methode ist in allen Kommutationszahlen
der Diskontierungsfaktor vx enthalten. Es ist daher zweckmässig, für
den Übergang auf den Zinsfuss i an Stelle der Differenz i — f0 den

Quotienten — zu benützen.
»o

Hhr definieren: v 14- L
1 +h —

uo 1 + i
ann gilt für den Zinsfuss i:

DJi)x±l _ Dz+t V_\
_ +

''T' %-( "
(1 + h)t+i G(t).

Üü vo \voJ
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Wenn wir noch berücksichtigen, class d 1 — v0(l + A) ist, so erhalten

wir für die Bruttoprämie nach dem neuen Zinsfuss i:

h)i+1 G(t) + (1-MO"*») + {y+oc--a®0(l +h)} § (1+Ä)'^0
1

*=0

(1 -ß) I § (1 + h)1 F(t) - c § t (1 + h)'F(t)
'* 0 *=0

Die Operationenfolge ist nun ungefähr dieselbe wie in Abschnitt a)-
Als erstes gilt es, diesen Ausdruck für PL nach h zu differenzieren-

Ö

{ n—1

aP'.. (\ + oL)\^ß+l)(l+h)tG(t)+n(l+hr1F(n)
(0 ' t +0

oi " in-1 n-1

(1-/1) 2(1 + hyF(t)~c^t(l + h)'F(t)
0=o i=0

-ocv02 (1 + h)' F(t) + {y + «-«Ü0(l + h)} 2 t(l -|- h)l~lF(t)
t=0 t=0

n—l n— 1

21 (1 + h) '-1 F(t) - c 2 P (1 + h) F(t)
t =0 f 0 p'

n-1 n~l (i)"

^(i+hyF(i)~-c^t(i+hyF(t)
t=o

Wir dividieren diese Gleichung durch P'^.

(1 + a) (§ («+1) (1 + h)>1 G(t) + n(1 + h)»F(n) ]- a v0 § (1 + h)' F(t) +
0P(ü

_p' f)h ft1 1

{i) (1 + «)[2(1+ä)'+1G(<) + (1 +^W)J+

+ {y + a — <*^0(1+10} 2^(1 + lF(t)
(=0

_

+ {y + a _ a„0 (i + h)} 2 (1 + h)1 F(t)
1-0

2 t (1 + Ä)1'-1 F(t) - e 2 f2(1 + h)F(t)
A10 1 —11.

^(i+hYF(t)-cn^t(i+hyF(t)
(=0 f=0
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der Entwicklung der Quotienten I und II in Potenzreihen wollen
wieder schrittweise vorgehen, indem wir zuerst die einzelnen

Summanden nach h entwickeln und erst dann die Quotienten selber. Wir
begnügen uns auch hier mit den ersten beiden Gliedern der Entwicklungen.

(1 + a) ^ (i+1) G(t) + 2 («+1) thG(t) + nF(n) + n(n—1) hFin) —
(=0 i=o 1

(1-ha) 2 G{t) + 2 (t + 1) hG(t) +F(n) +nhF(n)
t=o i 0

2m +
o

»-1

t=o
(y + ad0 — a.v0h)

n-1

2^(0 + "z^hFit)
o

+ (y + ad0 — a.v(lh) • + y1fhF(t) \

t—0 \

U + a) Is (< + 1) G(t) +nF(n))—a-vo2m + {y+«-d0) 2^(0 +
!(=0 J ^=0 t —Q

+a) 12 ^w + Aw) 1 + (7+ado) 2 AO "X"

+ fc
(1 + «) 12<2A0 + 2tAO + n2F(n) — nF(n)\ — a»024AO + + + a+>)

li 0 (=0 I (=0

+ fc (1 + a) (2 (< + l) AO + »A»)) + (y+arfo) 2 «AO
u=o 1 /=0

-«®<>SA0
<=.0

j" n-1 n-1 1 n—1

2«8A0-2«A0 -«»<>2'A0
U=0 i =0 ] f=0

l"a) j^j +^|n|"~aüoE ^hl + (y+ a^o) +
i=0 J < 0 t 0

n—1

>2^
0

(1 + a) | 2 A+1 + Ac+n| + (y + a^0) 2 Ac+ i +
ri—1

>2-
i-0

+ Ä (1 + a) 12 (t + 1)«CX+ -2 (i +1) A-h + n*Z>;
(=0 i=0

z+n wAc+»f

4-ä (1 + a)
n—1 «—1

2 (<+l) Gx+t + nDx+n\ + (y+acZ0) 2 lDx+t~ mo2A
/ 0

n-1

-au0 2 tDx+l + (y+ ado) 2 <8I)*+j ~ 2 tDx
0

n-1 >1—1

(=0
r-M

/ 0

-aü02«A

x + f

x+i
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Analog für den Quotienten II:

2 tF(t) + 7»21(' -1) F(l) - «'S ^(0 ~ hc"^t F(t)
1=0 (=0 1=0 t 0

^F(t) + //>] tF(t)-c'2tF(t) -hc'y] t2F(t)
1=0 (=0 (=0 (=0

2tF(t)-o v PF(t) + hl2t*F(t) -V tF(t)-c"^ t*F(l) + c2 <2F(
t=0 *=0 W=0__ *=o /=0 *=0

n-1 n—1 I n-l «-1 \

2 F(t)- c 2 tF(t) + h 2 m)- c v PF®
t= 0 f=0 h=0 J

S'-O.I- -«2,.» + ''(-(S'D.H--«2'=ß..M) + S'aD.M-«2'Sa<ll
(=0 f=0 1 U 0 /=0 ' (=0 0

V Dt H-cyitDxH+h j2^ M - c S <3 A,J
*=0 i =0 u=0 J

Nun benützen wir wieder die schon Seite 100 eingeführten Abkürzungen

Ui V> h
/=0 /=0

und bilden damit noch folgende Grössen T; und 1K*:

- u-cüin, w: (1+a)rj + (y l-«d0) A-
Mit diesen Abkürzungen lassen sich die beiden Quotienten nun in
einfacher Weise darstellen.

W*-*v0U0 + h(W*a -W* 2 avQ 17,)

>F0* + M^ a)>0 C70)

n T. + h^-T,)
T0+hTt

Nun werden die Quotienten 1 und II ihrerseits in Potenzroihen nach h

entwickelt, wobei wiederum nur die beiden ersten Glieder berücksichtig!
werden sollen. Wir erhalten

L= K ~+h\ yn 1 K )v

n=r'+*!J,'-r'-fr''
T T \ T10 L0 \10
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^dr die Lösung der homogenen Differentialgleichung

P'{i)8h

sich wieder in der Form

P' _ p'/hi"lh*
1 (i) — *0 0

darstellen lässt, ergehen sich für die Grössen a und b folgende Ausdrücke:

W*^_av0ü0 __Tt
W*0 T0

W* W* — 2a.v0Ul ,WX-«V^o\2 Tt-T./TS*
W*

~

Wt T0 \T0

(4)

^iese Formeln sind etwas komplizierter als diejenigen, welche wir im
ätzten Abschnitt erhalten haben. [Im leichter zu sehen, woher die
^terschiede kommen, schreiben wir noch dio Ausdrücke für a und b

ailf> die sich ergeben hätten, wenn wir bei der Variation dos Zinsfusses
v°o derselben Darstellung der Prämio ausgegangen wären wio im Ab-

s°hnitt a). Wir hätten für den Exponenten ah + h2 zu der Variablen
^ folgende Parameter erhalten:

W, T{

W0-\-*Dx T0'

W, ~Wy / Wy Y Ta — Ty ,Ty
W0 + *DX \W0 + ctDx) T0 \T0

2
(5)

fahrend die Formeln (3) (siehe Soito 102!) und (5) in der Darstellung für
® genau übereinstimmen, treten in (5) in derjenigen für b an Stelle von

a. bzw. T2 je die Differenzen W2--WL, bzw. T2 — Tl auf. Dies rührt
av°n her, dass sich bei der Differentiation die Exponentialfunktion e~rt

reProduziert, während in der Potenz (l + /t)( der Grad um 1 abnimmt,
Y dass sich bei der darauffolgenden Potenzreihenentwicklung im ersten

a'l [2, im zweiten Fall hingegen das Produkt <(f — 1) ergibt.
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Nun wollen wir zeigen, class im diskontinuierlichen Fall die

Ausdrücke (4) und (5) übereinstimmen. Da die Quotienten mit den

Grössen T; schon formell gleich sind, müssen wir nur noch die andern
untersuchen.

Es ist W* (1 + a) F0 + (y + a d0) U0

V0 + yU0 + «(V0 -\- d0 ü0)

W0 + a|2 Cx+t + Dx+n + ^0 2A;-H|
u=o t=o I

W0 + a {DxAx.j^ + d0Dxäx.^}

W0 + aDx(l — cl0äx.-^)

W0 + ccDx,

n—1

wt wt + « 2 («+1) c*+, + +do 2tD.
0

n~l

i^ + a
n-l

«—1

^1 + a I 2 A+f :Ä=(1 DX-H + *0 21 ®a:-H :Ä=T|
<=0

as-M

n—1

2(1 d0®x+t: n-T]) Ac+ "I- ^0 2 ®x+ i: fi-i | ®x+ 2 '

(=0 1=0 (=0

Wt -f- a(l d0) 2 Ac+<
(=0

a "Tq Ü70,

also

Damit ist gezeigt, dass die beiden Ausdrücke für a übereinstimmen-
In analoger Weise lässt sich dasselbe für b beweisen. Zu diesem Zwecke

müssen wir nur noch zeigen, dass

ist. Es ist aber

wobei gilt:

Wt-Wt — ^aVoüi W2-Wx

W* W2 + a(V2 + d0U2),
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K + d0ü2 2(i+l)2Cx+i + n^+n + i02(< + l)2^+(
t=> 0 *=»0

~don-Z(2t + l)Dx+t

— zj [(' +1)2—<2] Ax+t:j=t]Dx+l + d02 [(^ + 1)2 —^2]
t=> 0 *=0

' ä'x+t ;n^t}Dx+t ^0 ~l"l) ^x\-i
/=0

2 (^H-l) — Ac-f-* + 4öS 0^ + 1)
/=0

n—1

a,ic-H :n=T| Ac+( d0^(2i + l)Dx+(

v02i(2t + l)Dx_l
(=0

2u0ü1 + v0ü'o-

^amifc wird

^?-TFf-2a»0Di ttra + a(2«0D1 + »0ü0l-Wr1-at70CT0-2a»0üi

^8-^1 q-e.d.
^Ür die praktische Berechnung können wir also an Stelle der Ausdrücke
(4) ohne weiteres die etwas einfacheren Formeln (5) verwenden.

Schon an dieser Stelle sei insbesondere noch darauf hingewiesen,
^ass in den beiden Formeln (3) und (5) die Ausdrücke für a abgesehen
v°m Vorzeichen übereinstimmen. (In Formel (5) ist das Vorzeichen von a
•Won abhängig, ob h bei wachsendem Zinsfuss positiv oder negativ
gewählt wird.) Die Tatsache, dass wir für die Ableitung der Urnrech-
!(llngsformel statt von der Änderung der Zinsintensität direkt von der

jWerung des Zinsfusses ausgehen, wirkt sich demnach erst in der
°rmel für b aus. In erster Näherung, wenn wir die Potenzreihen-

eütwicklungen schon nach dem ersten Glied abbrechen würden, könnte
<dso r durch h, beziehungsweise —h ersetzt ersetzt werden. Wir werden
später anhand von Beispielen sehen, dass wir uns tatsächlich in vielen

a'len auf das erste Glied beschränken können, indem der Einfluss des

l^dratischen Gliedes ^ h2 schon so klein wird, dass es für die Praxis
'2

oft flicht mehr von Bedeutung ist.
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5. Die praktische Berechnung

In den Formeln für a und b treten nicht die einfachen Kommuta-
tionszahlen Cx, Mx, llz, und Dx, Nx, Sx, auf, sondern durchwegs
die sogenannten Momente von Cx und Dx. Es ist daher naheliegend, für
die praktischen Berechnungen die Momente zu tabellieren. Allerdings
wird dies nur an dieser Stelle in Frage kommen, wo die Theorie anhand

von Beispielen auf ihre Brauchbarkeit hin untersucht werden solb

während in der Praxis diese zeitraubende Arbeit den Wert der Uin-

rechnungsmethode illusorisch machen würde. Denn dort geht es meistens

darum, nur einzelne Werte möglichst rasch umzurechnen, bzw. um*

zuschätzen.

Wir haben die Momente bis zur dritten Ordnung für die heute sehr

gebräuchlichen Sterbetafeln SM und SF 1939/44 berechnet. Allerdings
im Blick auf unsere Theorie nur zu dem relativ hohen Zinsfuss von 3 %

(siehe Tabellen am Schluss!).

Es sei

l—x

und analog ^ ^ +^ ^ _

t —x

Damit lassen sich die Uk nach folgender Rekursionsformel berechnen:

Uk 2^-H
t 0

*=o p=o XF/ t =o

- *§, -2 Ö x"^ Up
p=0 VP'

Nun berechnen wir U0 direkt und daraus dann mit Hilfe der ebeü

hergeleiteten Rekursionsformel TJy, U2 und U3.

Ii—1

U — V D — — m(0)— Zj^x+t — rnx rnx+n>
1=0

ui m^ — m^—xüo,
U2 mx] — mixln—2xül — x2U0,

U3 m{*)~mfln—'dxU2~-3x2ü1 — x3U0.



— Ill —

Entsprechend den Uk definieren wir die Vk folgendermassen:

n 1

Vk ~ 2 (' + l)ÄC,,. I-t + n'CDX+H-
/ 0

lassen sich ebenfalls durch eine Rekursionsforinol auf die Momente^ zurückführen. Es ist

Vk^%(t + l)kCx+t+n"Dx+ll
1=0

50 2 (x+t+\)*Cx+t -|- (x+n)"Dx+n^ (V-*(2 (t-\-iyCx+l +m>Dx+n}
r?=o vr7 u=o Jv

k~ i /fc.- ^ mw„+(x+^ ^ vp,
p=o V"

als0 im konkreten Fall:

V0 MW-M<£l+J>x+n,

Vi MW - fl'j,, + (x + n) Dx+n -- s F0,

F2 MW-MWn+ (x + n)*Dxi.n-2xVl-x^V0.
^Et Hilfe der Momente lassen sich also die für die Umrechnung
notwendigen Grössen Uk und Vk (und damit auch die in ziemlich
^'nfacher Weise darstellen und auch praktisch berechnen.

Damit sind wir nun in der Lage, anhand von Heispielen die Giite
c'es Verfahrens zu prüfen. Und da es sich nur um eine Variation des Zins-
f"sses handelt, sind die Resultate höchstens in ganz geringem Mass von
^er zugrunde liegenden Sterbetafel abhängig. Wir können uns daher auf
6ln° einzige Sterbetafel beschränken.

Den in nachstehender Tabelle aufgeführten Hruttoprämien für die
8°'Uischte Versicherung mit steigender Dividende liegen folgende Daten
Zugrunde:

Sterbetafel SM 1939/44
Ausgangszinfuss i0 3%
Abschlusskoston a 0,040

Inkassokoston ß 0,03

Verwaltungskoston y 0,002

Dividendensatz c 0,02

Versicherungssumme 10 000
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Ausgehend vom Zinsfuss von 3% wurden die Prämien nun nach dem

neuen Verfahren umgerechnet auf die Zinsfüsse von 2,y2%, 3%% und

4 %. Neben den erhaltenen Näherungswerten führen wir jeweils auch dm

genauen Werte auf.

Ein-
Dauer

Jahreaprämio für den Zinsfusa

trittsalter

lQ 3 %
» 2'/2% i=*3y2% t 4%

X n Näherung genau Näherung gonau Näherung genau

20 20
30
40
50

490,5
339,2
267,8
234,2

520,7
363,4
292,1
258,7

520,9
363,5
292,1
258,7

473,4
317,0
246.4
213.5

473,5
316,9
246,3
213,5

451,5
296.7
227,5
195.8

451.7
296,6
227,4
195.8

80 20
30
40

500,7
350,3
289,1

524,9
374,4
313,1

525,0
374,4
313,2

477.8
328,3
267.9

477.7
328,1
267.8

456,1
308,0
249,0

456,0
308,0
249,0

40 20
30

524,1
389,8

547,9
413,1

547,9
413,1

501,6
368,4

501,4
368,3

480,2
348,7

480,1
348,6

50 10
20

1033,4
587,2

1057,9
609,9

1057,9
610,0

1009,6
565,6

1009,4
565,6

986,4
545,3

986,2
545,1

Die Näherungswerte weichen von den genauen Werten nur sehr wenig

ab. Da bei der angewandten Umrechnungsmethode mehrmals kleine

Werte als Differenzen von grossen Zahlen auftreten, muss den

Näherungswerten zum Vorneherein eine gewisse Toleranz eingeräumt werden-

Die Detailrechnung zeigt, dass die Grössenordnung dieser Toleranz
ungefähr bei 0,1 °loo liegt. Fast alle Fehler liegen innerhalb dieser Grenze.

Daraus können wir schliessen, dass die Einbeziehung weiterer Gliedef
der Potenzreihenentwicklung keine wesentliche Verbesserung der
Resultate mit sich bringen würde. Auffallend ist jedoch, dass die

Näherungswerte beim Übergang auf einen kleinern Zinsfuss kleiner oder

gleich, beim Übergang auf einen grössern Zinsfuss hingegen fast durchwegs

grösser oder gleich den genauen Werten sind. Dies zeigt immerhin
einen gewissen Einfluss des Eestgliedes.

Anderseits wäre aber zu erwarten gewesen, dass die Fehler sowohl

mit zunehmender Versicherungsdauer und damit zunehmendem Ein*

fluss des Zinses, als auch mit zunehmender Zinsdifferenz grösser würden-

Nun sind aber interessanterweise gerade die Differenzen bei der längsten
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Versicherungsdauer (Eintrittsalter 20, Dauor 50) überall gleich Null.
Und für die Zinsdifferenz von 1% sind sie kaum grösser als für
diejenigen von />% Beides weist eher wieder auf die mangelnde
Genauigkeit der Bechnungselomente hin.

In der Lebensversicherung werden aber beispielsweise die Prämien
Uir eine Summe von Fr. 10 000 auf Franken genau angegeben. Bei dieser
Genauigkeit würde die Umrechnung, abgesehen von Rundungsdiffe-
renzen, überhaupt genaue Resultate ergeben.

Die Beispiele zeigen also, dass das neue Näherungsverfahren zur
Uösung des Zinsfussproblems auch bei der ziemlich komplizierten vor-
Slcherungstechnischen Funktion der Bruttoprämie für die gemischte
Versicherung mit steigender Dividende zu sehr guten Resultaten führt.

6. Das abgekürzte Verfahren

Bei der Berechnung von praktischen Beispielen sieht man, dass
der Einfluss des zweiten Gliedes der Potenzroihenentwicklung auf das

ßdresultat schon ziemlich gering ist. Es erhebt sich daher die Frage,
°b es nicht zweckmässig wäre, wenn man sich überhaupt auf das erste
Glied beschränken würde. Das Zinsfussproblom ist ja, wie wir schon in
der Einleitung betont haben, ein Problem, das sich in der Praxis immer
feeler stellt. Wir müssen daher darnach trachten, Formeln zu finden,

Reiche dio Umrechnung auf andere Zinsfüsse möglichst einfach gestalten.
a zudem die Forderungen in bezug auf die Genauigkeit der gesuchten
erte meistens nicht allzu streng sind, wollen wir dio Formel in ihrer

®rsten Näherung ebenfalls auf ihre Brauchbarkeit hin untorsuchon. Da-
61 wollen wir von der Annahme ausgehen, dass nicht die Zinsintensität,

s°ndern der Zinsfuss variiert werde.

Wenn wir uns in allen Potonzreihenentwicklungen nach h nur auf
as erste Glied beschränken, so reduziert sich die Formel für die neue

Br'uttoprämie auf
"(0 rMp' p' „ah

*- I > \ -*• (l'„

^°bei Formel (5) entsprechend

W, 1\
a -

W0 + aI)x T0
Bt.

8
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Nachstehende Tabelle zeigt, was für Näherungswerte mit Hilf0
dieser Umrechnungsformel erzielt werden. Den Berechnungen liegen

wieder dieselben Daten zugrunde wie im vorhergehenden Kapitel-
Ausgehend von der Bruttoprämie zum Zinsfuss von 3% wurden
diejenigen zu den Zinsfüssen von 2l/2, 3l/2 und 4% bestimmt. Neben

den Näherungswerten gehen wir wieder auch die genauen Werte an-

Jahresni'ümic für den Zinsfuss

Eintritts- Dauer - - - - _
alter i=2'/2% i Vi % i 4%

X n Näherung genau Näherung genau Näherung genau

20 20 520,8 520,9 473,6 473,5 451,9 451,7
30 363,3 363,5 316,9 316,9 296,3 296,6
40 291,7 292,1 246,0 246,3 226,3 227,4
50 257,9 258,7 212,9 213,5 193,6 195,8

30 20 524,9 525,0 477,8 477,7 456,1 456,0
30 374,2 374,4 328,1 328,1 307,6 308,0
40 312,7 313,2 267,5 267,8 247,7 249,0

40 20 547,9 547,9 501,3 501,4 480,2 480,1
30 412,9 413,1 368,2 308,3 348,0 348,6

50 10 1058,0 1057,9 1009,6 1009,4 986,6 986,2
20 609,9 610,0 565,6 565,6 545,0 545,1

Das neue Verfahren bringt sogar in erster Näherung noch sehr gut0

Besultate. In den weitaus meisten Fällen würde in der Praxis dies0

Genauigkeit vollauf genügen. Hier können wir nun aber schon deutlich

konstatieren, wie die Fehler mit zunehmender Versicherungsdauer sovvi0

mit steigender Zinsdifferenz grösser werden.

Wir könnten aber noch weiter gehen und die nicht sehr handlich0

Exponentialfunktion noch nach h entwickeln.

d* 1 -|- ah-\-

Damit lässt sich der neue Funktionswert in folgender einfacher Weis0

darstellen:
P'(i) P'{i0)(l+ah).

Von dieser abgekürzten Formel lassen sich natürlich nicht mehr so

gute Besultate erwarten wie von der ersten Näherung mit Hilfe d@r
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Exponentialfunktion. Es lohnt sich aber doch, auch diese Ergebnisse
öoeh kurz zu betrachten. Wir wollen die Prämien aber nur auf ganze
Einheiten genau berechnen. In der Praxis kommt es oft vor, dass

Versicherungswerte zu einem Zinsfuss zu berechnen sind, für den
^ie technischen Grundlagen fehlen. Wenn diese aber, was in vielen
Eallen zutrifft, zu zwei andern Zinsfüssen vorhanden sind, hilft

sich meistens mit einer einfachen Extrapolation. Wir wollen
daher in der nachstehenden Tabelle neben den nach unserer
abkürzten Formel berechneten Näherungswerten nicht nur die
genauen Werte anführen, sondern auch die durch Extrapolation
kundenen. Dies gibt uns einen gewissen Maßstab für die
Genauigkeit.

—
Jahresprämie für den Zinsfusa

a i 2'/. % i 314 % i — 4 %

Nähe¬
genau

Nähe¬
genau

Nähe¬
genau

polation rung polation rung polation rung

20 20 520 520 521 472 473 473 448 450 452
30 361 362 363 315 316 317 291 293 297
40 28!) 291 292 244 245 246 219 223 227
50 255 257 259 210 212 214 185 190 196

30 20 524 524 525 476 477 478 452 454 456
30 372 373 374 326 327 328 302 305 308
40 310 312 313 265 267 268 241 244 249

40 20 547 547 548 500 501 501 476 478 480
30 411 412 413 367 368 368 343 346 349

50 10 1057 1058 1058 1009 1009 1009 984 986 986
20 609 609 610 564 565 566 542 543 545

Die Tabelle zeigt, dass die Abweichungen der Näherungswerte
v°n den genauen Werten nur etwa halb so gross sind wie die
Eehler, die bei der linearen Extrapolation gemacht werden. Und
^enn man berücksichtigt, dass die Näherungslösungen ausgehend von
den Funktionsworten und Kommutationszahlen zu einem einzigen
Einsfuss berechnet wurden, während wir uns bei der Extrapolation
a"f zwei zu verschiedenen Zinsfüssen berechnete Funktionswerte

mussten, darf das orreichte Resultat immer noch als gut
Zeichnet werden.

^Ützen
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7. Anwendung auf das Netto-Deckungskapital
der gemischten Versicherung

Das Netto-Deckungskapital der gemischten Versicherung lässt

sich bekanntlich in der folgenden einfachen Form darstellen:

77 x:n| 2 f-1 : n-t |

(C« - - •

a^\

Es soll nun für diese Funktion eine dem Verfahren von Zwinggi
entsprechende Umrechnungsformel hergeleitet werden. Wir benützen wieder

den Integralbegriff von Schärf, wollen aber nicht die Zinsintensität,
sondern den Zinsfuss i variieren. Wenn F(t) vf, lx+t ist, können wir
das Deckungskapital darstellen als

(-)« H »

jF(t) dr - j F(r) dr

K,,t r x(i0) (-) »

JF(r) dr
o

Nun sei wieder h so definiert, dass für den Zinsfuss i gilt:

1 + h)l-k 0

1 + »

Dann geht F(x) über in (1+ k)TF(r) und für das Deckungskapital zum
Zinsfuss i ergibt sich:

(-) n (-) n

(1+h)rF(r)dr--F^F(t) J(l + Ä)*F(r) dr

y — _2
l'x(i) (-)„

f(l+ h)TF(r)dr

Dieser Ausdruck wird nun nach h differenziert.
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H» H»
t F(0) fr(l + hy-lF(T)dx+ - --J+1 (1 + h)TF(r)dt-

_
*(») 0

t F(°)
--)1 - - -

ar J (i + ^)'+1 m
8 h -(")

j (l + h)F(r)dr

(-) « H n

F(0) ' T(1 + /J)*""1 fZr I T(1 + ^(T) dt
(1 + h)'F(t)

't 0

f (l + hyF(r)dz
H»

^un bilden wir die logarithmische Ableitung von i(t) •

•) n H n

rr(l + h)^F(r)dr+ „ *Ul f ([-\-hyF(r)dr
F(0)

.,)T~1F(r)dr+ 7X,
v '

0F J (l-bA)' + l F(t)
- Fx(i) o l

'K{i)dh^ H»
^

Hn

(l + hff(t),h " (f;^)°«)F(,;) ji:+ hymdr
o 5

H » (-) n

(1-M)'f(0 / T(l + ,')"l2i,W<iT fr(i + WlF(r)dr
' - I —II.H »

f(l Fh)TF(r)dr

^ie beiden Quotienten I und II werden nun nach h entwickelt, und
Z^ar wieder nur bis zum 2. Glied.

*enn wir nun |z;t7)xhIdT Uk und JVcDx+rdT Uj. setzen, so

ergibt sich:
0



Ut+^VK-UÜ + h jüa -77, h ^ [(2l+l)Ul-t(t + l)U<-Vtt

i'YO) PYO) I"o+^ + fcjtfi+^Vi -"D)
HO
7,

77, u +«m
7'(0)

1 1 0

^

H -U'0
J'\0)

0 0

^ (C, 77,)- 77i + (2i+l)ü'l-(7 + l)77j / ^ 77, -77}

770 ~77£ \ ^ no-[7'0
F(0)

0 0 \ F(0)
0 0

_

ü. /^Yl
"

I H Wj'
S F

Die Lösung der Differentialgleichung ^ =1—11 schreiben

wir wieder in der Form ' x(l)

iK(i) tVx{i0)e""+(2- Näherung),

worin die Parameter a und b folgendermassen lauten:

^ U^ü' FtH u

a
H ~1' "* ' v" "" '

H
xM (C/a- 77,) r7' + (2t + l)77}-f(f-f-l)77j " " (.,)'+(«/•

^X+t TT Tjl U0

n
U0 -ü'0

Für die praktische Berechnung werden die U'k, die sich nicht unmittelbar

aus den Momenten ergeben, am besten als Differenz dargestellt-
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hu diskontinuierlichen Fall ist

^ 2^DI+T-2t*J)I+r.
r 0 t-{)

Um ein Bild von der Genauigkeit dieser Näherungsformel zu
erhalten, haben wir auch hier einige Beispiele gerechnet und in der Tabolle
®ßite 120 zusammengestellt. Ausgehend von den nach der Sterbetafel

1939/44 zu einem Zinsfuss von 3 % gerechneten Deckungskapitalien
Wurden die Näherungswerte für den Zinsfuss von 4% bestimmt. Dabei
Wurden die entsprechenden Werte sowohl nach der obigen vollständigen
Formel (2. Näherung) berechnet, als auch nach dem abgekürzten Vi

erfahren unter Vernachlässigung von Ii2 nach der Formelb Ö 2

(Ux(i)= tVxMe«» (I.Näherung).

Diese letztere Darstellung weist eine gewisse Ähnlichkeit auf mit der
v°n Vajda [5] hergeleiteten Formel für die Umrechnung des Deckungskapitals

von gemischten Versicherungen und lebenslänglichen Todes-
fallversicherungen. Vajda geht von der Beobachtung aus, dass sich das
Ueckungskapital dieser Versicherungsarten bei Zinsfussänderungen im
®inne einer geometrischen Folge ändert. Die Annahme, dass die Folge
der Deckungskapitalien genau geometrisch verlaufe, führt nun auf die
Folgerung, dass in der von ihm hergeleiteten Differentialgleichung für
das Deckungskapital der gemischten Versicherung

^ <UX (dd)I:7pt(Ui)x+; :l"PT|dx:7r iTT
T7

~~ t X '
iVxd% nx-:n\{ax+f.^T\ — ax-:n\)

unabhängig ist vom Zinsfuss i. Diese Annahme deckt sich also
ltl1 Prinzip mit unserm abgekürzten Verfahren, wo wir auch in erster
Näherung annehmen, die logarithmische Ableitung sei von i, be-

ziehungsweise von h, unabhängig.
Die Methode von Vajda führt daher auf eine ganz ähnliche Lösung.

Es ist
tV*i) - jVxMe'Wx{i ^ (Vajda),

^obei zur Berechnung von JK. nur die Grundlagen zum Zinsfuss i„
b"W%t „erfen.
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Neben den nach dem vollständigen (2. Näherung) und dem

abgekürzten (1. Näherung) Verfahren von Zwinggi bestimmten Näherungswerten

sind in dor nachstehenden Tabelle auch die nach der Methode

von Vajda erhaltenen Näherungswerte aufgeführt.

Dcckungskapital der gemischten Versicherung

io 3 %
i-4%

30:30

40 : 20

50: 20

b
10
15
20
25

5
10
15

5

10
15

%

11,29
24,33
39,21
50,19
75,99

19,66
42,10
68,27

19,75
41,70
67,17

1. Näherung

%

9,88
21,83
36,07
53,04
73,73

18,19
39,89
66,37

18,36
39,60
65,31

V.rjdn,

%

9,87
21,80
36,04
53,01
73,71

18,18
39,87
66,35

18,35
39,58
65,30

2. Näherung

9,85
21,76
35,97
52,93
73,65

18,16
39,84
66,32

18,34
39,56
65,27

genau

%

9,85
21,77
35,97
52,93
73,65

18,15
39,84
66,32

18,35
39,56
65,27

Die vollständige Formel (2. Näherung) ergibt auch hier wieder sehr gute
Resultate, indem die Näherungswerte fast durchwegs mit den genauen
Werten übereinstimmen. Aber auch die Genauigkeit der 1. Näherung
und der Methode von Vajda dürfte in den meisten Fällen der Praxis
durchaus genügen.

Wir haben schon betont, dass sich die Methodo von Vajda im

Prinzip mit unserm abgekürzten Verfahren deckt. Die Beispiele zeigen

jedoch, dass die Umrechnungsformeln nicht zu den gleichen Resultaten
führen. Während Vajda in seiner Formel vom genauen Wert der
logarithmischen Ableitung von F nach dem Zinsfuss i an der Stelle io

ausgeht, benützen wir im abgekürzten Verfahren von Zwinggi die

logarithmische Ableitung nach der Variablen h an dersolben Stelle io

beziehungsweise h 0. Nun wollen wir vorerst zeigen, dass sich die

beiden Ableitungen tatsächlich ineinander überführen lassen. Es ist zu

beweisen, dass für i i0 gilt:

^log,F*
di

dlog,Fx dh

8 h di
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tp„ • 1 + in äh 1 + in
ist h ~ - — 1 und damit —

1 -f- i ch (1 +1)2

P« •
dh

ur % 10 ist also - — i?0.
di

Ti W
Uftmit bleibt zu zeigen, dass a — ' x ist.

»o

^ies lässt sich durch folgende einfache Umformung zeigen:

J) «-1 n--l n -1 h-1

y,rDxvr ^ri\+r-vt^Dx+r vrDx+x
^ X T Ü r=t T=t T 0

/) h—1 n—1 n—1

xhi v n — V /) V D
7-1 2JJJX + T 2.' X\T 2JUX + X

t — 0 r=t X=0

\ H-l | n 1 f n 1 [ n-l

nih"»,-,, y,rD„,+ ^n,,, „
___

x r=0 1Jx+tx=t xf-i1—' l"D
I H-l 1 W 1 1 K 1

V /) v /) V 7)
/) ^_l

1

x + T 77 'in /-) ^—I er'jlt=0 "i+O I 1Jxr 0

(t "Ox:«, — "x.ir— (l«)xf (.jrr\ — äx^t:,rt} _ C'Oiüü-"x:n|
dx\li] dx+1: n=l| dx .TT]

^r'r erweitern den ersten Quotienten mit und den zweiten mit
a*:7ri — äx, t. jpj-j und erhalten:

n= <Jä)x-Mäx^f.irr-{ld)x H-.n-l]äx.n\
__

lWx

dx: n) (dx n | dx+1 :
«"("]) 1

0

^as zu beweisen war.
158 ist also «—^(t + io),

damit ah tWx( \ -\ i0)

oder «h -/-

die beiden Exponenten von e sind verschieden. Trotzdem die
®iden Methoden im Prinzip übereinstimmen, müssen sie daher zu

Verschiedenen Eesultaten führen. Die eigentliche Ursache der Ver-
Schiedenheit liegt im nichtlinearen Zusammenhang von i und Ji.
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Die Tatsache, dass mit der Methode von Vajda bessere Resultate

erzielt werden als mit dem abgekürzten Verfahren, zeigt, dass die Folge

der Deckungskapitalien für äquidistante i eher geometrisch verläuft
als für äquidistante h. Da die Beziehung zwischen i und h nicht linear

ist, können die sich entsprechenden Werte nicht gleichzeitig äquidi-
stant sein.

8. Verfahren bei Vorhandensein von Tabellen
nach zwei Zinsfüssen

In sehr vielen Fällen sind die auf einer Absterbeordnung
aufgebauten Kommutationszahlen nicht nur für einen einzigen Zinsfuss

gerechnet. Sind die entsprechenden Tabellen für mindestens zwei ZinS-

füsse vorhanden, so lässt sich unser Verfahren zur Berechnung
versicherungstechnischer Werte nach einem dritten Zinsfuss stark vereinfachen.

Wir setzen voraus, dass für die Zinsintensitäten d0 und dt alle

notwendigen Kommutationszahlen bekannt seien. Für eine Funktion
/(d) suchen wir nun, ausgehend von /(<50) und f{iden entsprechenden
Wert für die Zinsintensität d.

Es sei dx d0 + rx und d d0 -|- r.

Dann ist /(dx) /(d0)eOfl +2(1)und /(i)=/Ä)e"V'. (2)

Durch Logarithmieren von Gleichung (1) nach der Basis e erhalten wir;

lognat/(d^ lognat /(d0) + art + ^ r\. (3)

Daraus berechnen wir die Grösse b:

lognat/(dj)—lognat/(d0)—art
b 2 -

*1

Eingesetzt in Gleichung (2) ergibt sich:

or + {lognat -artJ l T-)

/(*) /(<*o)e /(o)
•

(4)

Die Berechnungsarbeit wird dadurch wesentlich vereinfacht. Wir haben

nur die Grösse a zur Zinsintensität d0 zu berechnen, während sich b aus 0

und den bekannten Funktionswerten ergibt.
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Noch bedeutend einfacher gestalten sich die Berechnungen, wenn
Ulls die Genauigkeit des abgekürzten Verfahrens genügt.

Wir berechnen a aus (3), indem wir b 0 setzen.

i t
f{dl)

og natö m

^amit erhalten wir

°der

m m)«

m m

log nat

m
m

/(<h) r
t(»o) n

(5)

•^iese Interpolationsformel, in welcher selbstverständlich die
kontinuierlichen r ohne weiteres durch die diskontinuierlichen h ersetzt
^erden können, enthält nun keine Parameter a und b mehr und ist
daher für die praktische Anwendung sehr bequem.

Auch hier wollen wir einige Beispiele rechnen, um die Genauigkeit
der Formel zu prüfen. Wir benützen dazu die in der Tabelle Seite 111
berechneten Werte der Bruttoprämie für die Gemischte Versicherung,
losgehend von den beiden Zinsfüssen 2 % und 3 % wollen wir auf die
entsprechenden Prämien für die Zinsfüsse Sl/2 und 4% schliosson. Den
s° erhaltenen Näherungswerten stellen wir die durch lineare
Extrapolation berechneten Werte gegenüber.

Jahrospriimie flir den Zinsfus»

X n t 3y,% i 4 %

lineare
extrapolation

Näherung genau
lineare
Extrapolation

Näherung genau

20 20
30
40
50

472
315
244
210

473
317
240
212

473
317
240
214

448
291

219
185

452
290
220
193

452
297
227
190

30 20
30
40

470
320
205

478
328
207

478
328
208

452
302
241

450
307
247

450
308
249

40 20
30

500
307

501
308

501
308

470
343

480
348

480
349

50 10
20

1009
504

1010
500

1009
500

984
542

987
545

980
545
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Wie die Zahlen zeigen, ist die Genauigkeit der neuen
Extrapolationsformel grösser als diejenige der sehr häufig angewandten
linearen Methode. Mit nur wenig mehr Bechenarbeit werden also damit

bedeutend bessere Resultate erzielt. Biese Extrapolationsformel dürfte
daher in der Praxis Verwendung finden.

9. Berechnung der Momente aus den Kommutationszahlen

Die Momente der diskontierten Zahlen der Lebenden lassen sich

folgendermassen darstellen:
CO

et) nach der kontinuierlichen Methode m^ jtkDtdt,
X

CO

b) nach der diskontinuierlichen Methode ^ Dt.
t —x

Beide Darstellungen lassen sich vereinigen, wenn wir den Schärfscheß

Integralbegriff verwenden. Es ist dann

(-> 00

•m
(k) - flkdNt.

(Bei allen Entwicklungen ist stets zu berücksichtigen, dass bei der

Berechnung der Kommutationszahlen in der Itichtung des abnehmenden

Alters integriert, bzw. summiert wird. Bei deren Verwendung muS9

also bei jeder Integration das Vorzeichen gewechselt werden.)
Der Gedanke ist naheliegend, dieses Integral durch partielle

Integration zu lösen. Analog zum Riemannschen Integral gilt nämlich

für das Stieltjessche, bzw. für das Sclüirfsche Integral

|-)i + 6

fßg /sm'—J <)df-

In unserm Fall können wir daher schreiben:

(-)<

— f tk dN t

(+) °°

-^v( r+ j'Ntdtk
X

(+) °°

xkNx + (Ntdtk.

(10)
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Nach der kontinuierlichen Methode können wir das verbleibende Literal

überführen in das entsprechende Eiemannsche Integral:

(-|-) CO oo oo

Nt dt" J Nt - -dt k I t"'lNtdt. (11)
dt

®ind hingegen die Funktionen diskontinuierlich, so erhalten wiwir

(+) °°

I Ntät"
J t=x

(12)

®°Wohl im kontinuierlichen wie im diskontinuierlichen Fall gelangen
auf diese Weise zu Ausdrücken, in welchen t" nicht mehr vorkommt.

TV •le weitere Entwicklung der beiden Darstellungen kann aber nun nicht
*üehr durch einen einheitlichen Formalismus erfolgen, weil sich dt"
1 ormel 10) nicht in derselben Weise auswerten lässt. Wir stehen also
ler vor der Tatsache, dass wir die Entwicklung trotz des Schiirfschen
ntegralbegriffes nach der kontinuierlichen und der diskontinuierlichen
ethode getrennt durchführen müssen.

a) Nach der kontinuierlichen Methode

Wir sind für mmit (10) und (11) schon zu der folgenden
Darstellung gelangt:

m('c) x"Nx-\-k f t""1 JV dt.

^irch fortgesetzte partielle Integration können wir den Grad der
otenz von t sukzessive kleiner werden lassen.

—... CO

x"Nx^kt"-iSt |~+fc(7c-l) fl"-2Stdt
X

oo

x"Nx + kx"-lSx-k(k~l)t"-2sf)\+k(k-l) (k — 2) jt"~3 sf dt
X

x"Nx + k x"~l Sx + k (Ä -1) x"~2 Sfl + + k!



— 126

Wenn wir Nx mit und Sx mit S*' bezeichnen, so lässf sich diese

Summe folgendermassen schreiben:
?->

* klWw_v w ÜB
X — Zj n. -M '

i=o (k — i)!

Die Momente der diskontierten Zahlen der Toten

oo

Wk) f(t + l)kc,dl
X

lassen sich ganz analog aus den entsprechenden Kommutationszahlefl
rechnen:

2 nkl^ (x + ^W-
i=0 («-»)!

Diese Darstellung der Momente lässt sich nicht von der kontinuiei"
liehen Methode auf die diskontinuierliche übertragen. Es lässt sich leicht

zeigen, dass diese Formeln für die diskontinuierlichen Momente und

Kommutationszahlen schon für k 1 nicht auf das richtige Besultat

führen würden.

b) Nach der diskontinuierlichen Methode

ba) Mit partieller Summation

Analog zur partiellen Integration wenden wir hier die partiell0
Summation an, um den Grad der Potenz von t zu senken. Die von uflS

zur Anwendung gelangende Formel für die partielle Summation leite11

wir analog zu derjenigen von Knopp [6] ab.

Zu diesem Zwecke betrachten wir zwei Folgen ax, a2 <V

bltb2 bn, und deren Produkt,

K} IM 2°A-
V=1

71

Es sei Ai y]av; dann ist a; A{ — Ai+1 und damit erhalten
v= i

2aA ~ (A-A) h + (A~~AA + ••• + (An—An+l)bn.
V 1

Für i>n ist aber Ai 0.
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Daher ist
n

;OaiA + A3(b2 — bl) + A3(b3 — b3) +...-)- An(bn — bn^

y,avbv
V-1 1=2

^ Hilfe dieser Formel für die partielle Summation lassen sich nun die
0lnente auf die Kommutationszahlcn zurückführen.

Nach Gleichung (12) ist unter Berücksichtigung von (10)

CO

m<*> a*Nx+
t=X \ I

/?'

Nach der partiellen Summationsformel ist

^ M i*«+1 IM

'»-i
*

\-y /J,\ CO \

(*-! >S',+1 + ^ ^[«^'-(i-l)*'-«]
lasl M7 l / =£-b2 j

ft
ft 7 to

,^ (-l)il + 1('C)(a; + l/£ i'ÄI+1 + i(-iri + 1(-C) 2 -l' H)'^]
1=1 "1 »,= [ Ul' t=x+2

Ä2

^ V,=V+2 '^1 ^ F /

i äl(-i)ii+i,ha(^(/c~"'1) 2 V"1 ia

'»-KpV ; V\ >2 /,-V+a
/ j.\ /7. 2 \ f 0}

•<J .^(-oilhi,+a( 'S'i2|2(^-i-2)'£-i^t2-i- y sf ((_i)*-h-i.]'l=al >2=i V(r 4

12 M 1=^+3

si+a2 '2V i)ii+'2+a (J) fy*1) +2)""iVi2+
' 1 i — i l 2

'£ Ä-ii //. \ /!• \ «> '£ ü-»a /l. i _» \+ y v f)'i+ »s+2 I j / 1 V V (— 1)£3^| 7 2\

H ü^U \%i' \ 't=x+3i^ 1 \ h '
ll3
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Aus diesen Entwicklungen lässt sich das Bildungsgesetz für die
endgültige Formel schon deutlich ablesen. Es ist

m<f> 4°) z* + 44 4 (-14+1 ?c) (X + 1)*-H +
n=i wr

+ SS, S 2 <-D'1*'" C'7'') («+2)*-'-" +
it U2 l ^1' \ «2 '

+«ui44w,+',+,,4) C'7'') ("44 +
-l ^'3—12 3

Damit erhalten wir für das fc-te Moment der diskontierten Zahlen der

Lebenden folgenden Ausdruck:
k Je Je—Je——i'2 Je—t"i~* • •—i/i—i4- 2 •

tl — 0 ii l »2=1 13 1

A)H + ...+in+n^ V) _ _ _ (x + n)*-h-
In analoger Weise lassen sich die diskontierten Zahlen der Toten durch

die entsprechenden Kommutationszahlen darstellen.
Damit haben wir die Darstellung der Momente durch die KominU-

tationszahlen auch für den diskontinuierlichen Fall abgeleitet. Für die

praktische Rechnung ist diese Formel aber nicht sehr handlich. Wif
wollen daher im folgenden noch nach einer einfachem Darstellung
suchen.

bb) Mit Hilfe der Stirlingschen Zahlen

Wir wollen auch hier zuerst die Momente der diskontierten Zahle11

der Lebenden betrachten.

Es ist m{k) y^tkDt.
t=X

Für unsere Entwicklungen schreiben wir die Momente besser in der

folgenden Form: U)_x

2 {x+t)kDx+t
1=0
k /J,<\ oj-x

2 ^
U/ *=0

Darin müssen wir für t — i 0 den unbestimmten Faktor f® 1 setzet
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Zunächst betrachten wir folgenden Satz aus cler Kombinatorik:

Es jgj. ii + k\
_ in + i + 1

i l~ \ i + 1

j®t Hilfe dieses Satzes wollen wir nach der Methode der vollständigen
Auktion zeigen, dass

w_xst"ft')»« m
m- &> Bt nämlich

W-« ,n 0\
S? ^.+l ^oV.+l-

< 0 /=o v u 7

5* nehmen nun an, der Satz sei für S'l) bewiesen und schliessen auf
X

^x+t kommt in allen vor, für welche k + t ist. Nach unserer

^nahnie ist die Anzahl der Dx+l in S^+k gleich \ Also ist

Cü-X Ol-X t I \
y; + D y yo y x1 /T + + nx ZJ 'J+I ~~ x-j zJ \ 1 'A+f-

i=0 /=0 r=0 \ 1 '
Each dem angeführten Satz aus der Kombinatorik ist somit

y;+D vV + 't + "l\/)
x itf)\ i + 1 / xM' was zu beweisen war.

D a,~'a;

atlnt bietet sich uns die Möglichkeit, die Summe y]t'l)x+t auf
g f=0

^nmen zurückzuführen, in welchen nur noch solche Potenzen von t
v°rkommen, deren Exponenten kleiner als i sind:

(o-x (j>-x a j_ A i—1 co -x

T "»<-24, IE»,
<=0 l=*0 v ' 7 /c —0 /=0

i—l co—x

^lS<i^>^VJAkylikDx+t.
k=0 /=0

(8)

bleibt uns nun die Aufgabe, die Koeffizienten Ak zu bestimmen.
lese stimmen überein mit den Koeffizienten von t, die sich ergeben,

;VeHn wir den folgenden Ausdruck in eine Potenzreihe entwickeln:

-t* (f + l)(< + 2)(f + 8) (l + i)-t\ (4)
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Dazu leisten uns die Stirlingschen Zahlen [7] wertvolle Dienste.

Die Zahlen dienen zur Transformation der nach unten gebildeten
Faktoriellen _(x)n x(x — l) (as— 2) (x — n + 1)

n

in eine Potenzreihe (x)n — Sk xk.
k= 1

Sie können mit Hilfe der Rekursionsformel

S'nhi ^rl~n^n berechnet werden.

Die Stirlingschen Zahlen (erster Art) Sk

\fc 1 2 3 4 5 G 7

1 1

2

3

-1
2

1

— 3 1

4 -G IL — G 1

5 24 — 50 35 -10 L

(5 - 120 274 -225 85 -15 1

7 720 - 17G4 1G24 -735 L75 — 21 1

Mit Hilfe dieser Zahlen lässt sich nun der Ausdruck (4) folgendennasseO

in eine Summe von Potenzen umformen:

,!('+')-(< 2 (i+o'S'-r
oder, indem wir (f+f)Ä entwickeln:

y\siy\ (/cW--p.^ '„tiW
Für n i ist auch k i und dann ist der entsprechende Summand

der Doppelsumme tl. Statt am Schluss tl zu subtrahieren, können

wir daher die Bedingung aufnehmen, dass stets n < / sei. Wir erhalte'1

damit für Gleichung (3) folgende Darstellung:
Cü-X i k 7, \ ÜJ-X

(5)

*=0 /c=ln«ü w t-0
?Kl



dem gegebenen i suchen wir für jedes n<t den Koeffizienten

(JÜ-X

al von ^]tnDxtt.
t — Q

Es« < (o)
1c=n

w°bei o? für unsero Zwecke nur definiert ist für n<.i.
Tn der folgenden Tabelle führen wir jedoch in Klammern auch die

"6rte von er'? auf für n ;.

Tabelle der er'?

\n
6s 0 l 2 3 4

0 (1)
1 1 (D
2 2 3 (t)
3 ß 11 6 (1)
4 24 50 35 10 (1)
5 120 274 225 85 15

6 720 1764 1624 735 175

(1)
21

(i

(t)

Tn dieser Tabelle treten dio genau gleichen Zahlen auf wie in
erjenigen für die Stirlingschon Zahlen (erster Art) Sf nur mit dem
Mörschied, dass alle positiv sind.

wollen nun vorerst die neuen Zahlen a" etwas näher betrachten.

Behauptung: Die Zahlen a" dienen zur Transformation der nach
0 en gebildeten Paktoriellen

ff (x + t) (x-\-l) (x + 2) (x + i)
t i

111 eine Summe von Potenzen:

ff(x + l) 2<'xn (V
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BeiveAs: Es ist

fl (x +1) fj (®+ i — l) +
t=1 1=0 k =l

O c<k ('c\ -k-

k= l»i=0
,k^Xn

k\

_ _ ~tX".
n—0 I k=n

Der Klammerinhalt stellt aber nichts anderes dar, als er". Also i3'

Gleichung (7) bewiesen.

Wir können also Gleichung (7) als Definitionsgleichung der Zahle11

er" betrachten. Daraus ergibt sich:

i-i

n=0 n=0

^0?-l®"+l+
n 0 n=0

Durch Koeffizientenvergleich erhalten wir folgende Eekursionsforru0'

für die Zahlen an:\
o? o£[ + iaU. (8)

(Auf diese Weise liesse sich auch der Beweis der Eekursionsformol h11'

die Stirlingschen Zahlen erster Art von Jordan [7 | vereinfachen.)

Diese Zahlen a" ermöglichen nun eine einfachere Darstellung von

Gleichung (5). Es ist

co—x t-i oj -x
(9)

i—l oj--x

2X2'
J 0 n«0 t=0

Was wir aber suchen, ist eine Form, in welcher nicht mehr die Summen
Cü-X

2 t"Dx+t aufDeten» sondern direkt die Koimnutationszahlen. Wo'
0

suchen für Gleichung (9) eine Darstellung von der Form

co-x i

V,t<Dx+l ^ W-
t 0 >n~ 0
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Unter Verwendung dieser noch unbekannten Zahlen <5 können wir
Gleichung (9) folgendermassen schreiben:

v := a» s<i>_ d\ y, a* sLm)-

m 0 «=0 m - 0

daraus schliessen wir:

1. <5j

2. V a» ,S'(») _ V a'lj] cV: S£>\ (10)
m=0 H—0 m 0

Uurch Koeffizientenvergleich in (10) erhalten wir

«5 (11)
)i — m

Uamit haben wir schon das Bildungsgesetz, nach welchem sich die
ö"1o
i aus den an; berechnen lassen. Wir wollen aber noch versuchen, eine
°rtüel zu erhalten, welche eine direkte Berechnung der öf erlaubt,

°hne Zuhilfenahme der Zahlen a".
Zu diesem Zwecke betrachten wir eine Funktion Dh(x), die fol-

S^dermassen definiert ist:
H

X'

^Us dieser Definition folgt

I\[x) «!F'~V
j» — 0 {t — v

«!®»-V^^a^a:'
/< 0 i> 0

n-l
— v I V /)— II,. X 2-1 "n1 >(r) '

/< 0

wollen wir zeigen, dass für diese Funktion Dn^ gilt:

d
^n(x)

cjx
('r Ai-l(x))"

Beweis: Wir führen den Beweis wieder durch nach der Methode
r "Vollständigen Induktion. Für n 0 ist die Aussage trivial, denn

Opl © O 3

11°n aus der Definition geht hervor, dass für 0 die Funktion
'i(x) 5 0 ist.
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Nun setzen wir voraus, der Satz sei bewiesen für alle
Ks ist dann

n -2

*Am(x, («-!)! s"-2 fl{x) X •

II-- 0

(I' l) ixDn-i(x>) nix'1— w!a:"-1— ^)Gf«-i(®~1) ^ (^W'
Nach Induktionsvoraussetzung ist aber

d
(a;—"1)

cix
(xl\i(x)) —

Also ist

(« —'1) f (x D»-I(x)) »! »! ®"-1 - <-1 D„+i(x)
/« 0

«== l

nlxnA—
"(x) '

1

Für die Zahlen avn gilt aber nach (8):

<-[ <~n<-v
Fingosetzt in obiger Gleichung erhalten wir

(x—1) 7_ (xDn_m)
d

dx

n! x'1- n l x"'A — § < l)v{x) -b « § < I\{x)
v-- L v=l

|n! xn- < D,(I)J -h oj Dü(x)-»|(n — 1) xn"L- N] <_ t Dv{x) j — moJ., D<0

D„(x) + K—"ffü-ll D0(x)-«i (n— 1) X" l- >] <_t — <C_l />„-!(«)} •

{ v — 0

Nun ist aber cr° no®

und (w -1) er"
1 - V a"n i J)v{x) 7))i iw.

v 0

Damit werden die Klammerinhalte der letzten Gleichung 0 und wir

erhalten tatsächlich
d

(x l) — - (xnn_i{x)) Dn(x),
dx was zu beweisen wai«-
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Grund dieses Satzes liisst sich nun die Funktion 7), zerlegen.
Es ist

n

''
- 2 K*'

v 0

n-1

- (JC-1) 2(^ +1)^®'
?l—i

y^ + l)^^11 V(rfl)dy;

y d'„ x'-^v d-[ z"-y (r + 1) C, z'
v=*i) v=l v 0

^•üs dieser Darstellung für die Funktion 1)„M erhalten wir nun durch
"T> J

^oeffizientenvergleich eine Rekursionsformol für die Zahlen <5*. Ks ist

Eamit lässt sich nun leicht eine Tabelle dor Zahlen ö'} aufstellen.

Tabelle der d'/

\nJ\ 0 l 2 3

0 1

1 - 1 1

2 1 --3 2

2 - 1 7 - 12 ß

4 i - 15 50 -ßO
5 - 1 31 — 180 390
(i 1 — 03 002 - 2100

24

- 300

33G0

120

- 2520 720

Hilfe dieser Zahlen können wir jetzt Gleichung (9) in folgender
eißfacher Form schreiben:

Cü-X l2^, 2 W-
< 0 n=0
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Damit ist es uns gelungen, die Momente clor diskontierten Zahlen

der Lebenden aus den gewöhnlichen Kommutationszahlen zu berechnen.

Es gilt für das k-te Moment

CO—£

m*} Z(X + Ok/).T+l>

(i2)
t -0 n -0

Für die Momente der diskontierten Zahlen der Toten ergibt sich

ganz analog

Mf V (s+l + tfCx+t =-. £ (J) (*+1)''" 1 V d« R(»)

t 0 1 0 u/ rt=0

«t" - 2 (•) § (47') ä «" (»)
i=0 j=0 v / ' n=0

Damit ist die Aufgabe gelöst. Diese Darstellung ist nun bedeutend
einfacher und für den praktischen Gebrauch handlicher als diejenige, che

wir mit Hilfe der partiellen Summation abgeleitet haben.



Momententafeln

SM und SF 1939/44, 3%

o>

mx]
I =X

10

MW ^(i + l)f6'(
/ —X
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»I1' „(2)

60
Gl
62
63
64

49 362 151
48 345 871
47 312 797
46 265 157
45 205 041

44134 401
43 055 026
41 968 616
40 876 736
39 780 788

38 682 094
37 581 904
36 481 466
35 381 946
34 284 465

33 190 073
32 099 823
31 014 747
29 935 753
28 863 773

27 799 697
26 744 377
25 698 713
24 664 623
23 640 008

22 628 756
21 630 746
20 646 852
19 677 853
18 724 477

17 787 499
16 867 614
15 965 592
15 082 185
14 218 142

13 374 181
12 551 057
11 749 563
10 970 498
10 214 654

9 482 788
8 775 664
8 094 050
7 438 629
6 810 021

2 182 260 010
2 161 934 410
2 140 239 856
2 117 191 776
2 092 809 108

2 067 113 748
2 040 129 373
2 011 882 713
1 982 401 953
1 951 715 409

1 919 853 283
1 886 847 583
1 852 734 005
1 817 549 365
1 781 332 492

1 744123 164
1 705 964 414
1 666 901 678
1 626 978 900
1 586 243 660

1 544 744 696
1 502 531 896
1 459 659 672
1 416 185 892
1 372 170 447

1 327 675 359
1 282 764 909
1 237 505 785
I 191 962 832
1 146 200 784

1 100 288 862
1 054 294 612
1 008 291 505

962 354 331
916 560 047

870 986 175
825 714 327
780 830 641
736 423 959
692 584 984

649 404 920
606 977 480
565 399 026
524 762 949
485 160 664
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X »il) mf1 »0 10":!
X

65

"
6 208 786 446 681 611 32 334 502

66 5 635 499 409 417 956 29 912 364
67 5 090 755 373 461 839 27 539 458
68 4 575 089 338 915 921 25 224 680
69 4 088 930 305 857 095 22 976 680

70 3 632 626 274 372 126 20 804 217
71 3 206 459 244 540 436 18 715 999
72 2810 634 216 436 861 16 720 645
73 2 445 212 190 126 506 14 826 299
74 2110 032 165 658 402 13 040 127

75 1 804 767 143 068 807 11 368 497
76 1 528 955 122 382 869 9 817 052
77 1 281 970 103 612 024 8 390 468
78 1 063 005 86 751 727 7 092 225
79 870 992 71 774 744 5 924 020

80 704 618 58 631 198 4 885 443
81 562 314 47 246 878 3 974 697
82 442 288 37 524 788 3 187 208
83 342 543 29 345 714 2 516 524
84 260 954 22 573 827 1 954 457

85 195 333 17 061 680 1 491 437
86 143 482 12 654 362 1116 815
87 103 284 9 197 325 819 510
88 72 744 6 540 301 588 349
89 50 045 4 542 815 412 570

90 33 564 3 076 006 282 024
9t 21 902 2 026 408 187 560
92 13 870 1 295 523 121 049
93 8 503 801 814 75 628
94 5 033 479 123 45 618

95 2 867 275 453 26 473
96 1 566 151 896 14 735
97 818 80 107 7 843
98 405 40 027 3 955
99 188 18 800 1 875

too 883 8 316 837
101 36 3 616 367
102 15 1 576 161
103 5 536 55
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X A/<2>
X

X Mx] a42)

20 819 598 53 857 262 65 476 753 30 395 759
21 810 658 53 795 522 66 456 346 35 048 884
22 813 556 53 727 278 67 435 114 33 020 347
2:i 810 313 53 652 689 68 413 157 32 133 278
24 806 977 53 572 025 69 390 518 30 571 180

25 803 577 53 487 625 70 367 256 28 942 888
2(1 800 145 53 398 393 71 343 407 27 249 610
27 796 710 53 305 810 72 319 122 25 501 075
28 793 300 53 210 162 73 294 594 23 710 531
2!) 789 965 53 113 447 74 269 982 21 889 199

30 786 665 53 014 447 75 245 419 20 047 Oil
31 783 379 52 912 581 76 221 053 18 195 225
32 780 051 52 806 085 77 197 068 16 348 342
33 776 685 52 695 007 78 173 731 14 528 041
34 773 251 52 578 251 79 151 295 12 755 597

35 796 716 52 454 526 80 130 023 11 053 845
30 766 080 52 323 630 81 110 102 9 445 088
37 762 343 52 185 361 82 91 933 7 950 367
38 758 467 52 038 073 83 75 499 6 586 345
39 754 411 51 879 889 84 00 950 5 304 212

40 750 171 51710 289 85 48 336 4 291 988
41 745 620 51 523 698 86 37 601 3 368 793
42 740 748 51319 074 87 28 600 2 590 946
43 735 502 51 093 496 88 21 367 1 949 173
44 729 826 50 843 752 89 15 559 1 432 238

45 723 706 50 568 352 90 11 040 1 025 509
40 717 128 50 265 764 91 7 623 714 603
47 710 125 49 936 623 92 5 107 483 099
48 702 685 49 579 503 93 3 310 315 948
49 694 796 49 192 942 94 2 072 199 500

50 086 396 48 772 942 95 1 240 121 128
51 677 401 48 317 247 96 718 70 440
52 067 945 47 822 415 97 398 39 390
53 657 822 47 285 896 98 209 20 850
54 647 076 46 705 612 99 103 10 365

55 635 647 46 077 028 100 45 4 666
50 623 462 45 394 035 101 20 2116
57 010 477 44 654 501 102 10 1 076
58 596 679 43 854 223 103 5 546
59 582 004 42 991 955

00 566 597 42 063 888
01 550 242 41 060 287
62 533 050 40 000 365
63 515 004 38 867 216
64 496 312 37 667 088



— 141 —

y -I/' (2)
mv »»(?> Iff"3

20
21
22
23
24

53 170 805
52 L34 625
51 080 278
50 010 022
48 925 986

2 411 018 487
2 390 294 887
2 368 153 600
2 344 607 968
2 319 675 140

123 671 640
123 257 168
122 792 201
122 274 197
121700 742

25
26
27
28
29

47 830 170
46 721445
45 610 579
44 490 214
43 364 922

2 293 375 556
2 265 732 431
2 236 771 915
2 206 522 060
2 175 013 884

121 069 552
120 378 474
119 625 501
118 808 755
117 926 526

30
31
32
33
34

42 236 126
41 105 246
39 973 498
38 842 106
37 712 186

2 142 278 800
2 108 352 400
2 073 268 212
2 037 063 668
1 999 776 308

116 977 209
115 959 417
114 871 807
113 713 262
112 482 779

35
36
37
38
39

36 584 814
35 461 034
34 341 866
33 228 203
32120 997

1 961 415 660
1 922 113 360
1 881 823 312
1 840 617 781
1 798 543 953

1 It 179 537
109 802 906
108 352 464
106 827 859
105 229 054

40
4L
42
43
44

31 021 080
29 929 280
28 846 388
27 773 162
26 710 374

t 755 647 190
1711 975 190
1 667 576 618
1 622 501 126
1 576 801 242

103 556 080
101 809 200
99 988 859
98 095 688
96 130 593

45
46
47
48
49

25 658 730
24 618 915
23 591 597
22 577 431
21 577 111

1 530 528 906
I 483 737 231
1 436 480 603
1 388 814 801
1 340 799 141

94 094 610
91 988 985
89 815 180
87 574 887
82 270 150

50
5L
52
53
54

20 591 280
19 620 630
18 665 849
17 727 634
16 806 653

1 292 493 722
1 243 961 222
1 195 267 381
1 146 480 191
1 097 668 198

82 903 170
80 476 545
77 993 159
75 456 225
72 869 189

55
56
57
58
59

15 903 562
15 018 947
14153 316
13 307 191
12 481 161

1 018 901 306
1 000 247 508

951 772 161

903 543 030
855 633 278

70 235 777
67 559 818
64 845 199
62 096 139
59 317 373

60
61
62
63
64

11 675 917
10 892 221
10 130 862

9 392 653
8 678 460

808 123 894
761 102 134
714 659 217
668 890 247
623 896 075

56 514 319
53 693 013
50 859 995
48 022 319
45 187 686
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,C> „(2)

7 98!) UiL
7 825 602
6 688 517
6 078 670
5 496 869

4 944 034
4 421 127
8 929 062
3 468 608
3 040 346

2 644 609
2 281 392
1 950 328
1 650 852
1 382 259

1 143 726
934 286
752 708
597 523
466 956

358 907
271 059
200 944
146 059
.103 970

72 387
49 226
32 650
21 086
13 236

8 061
4 755
2 708
1 484

780

393
190
88
38
13

105

579 780 926
536 649 591
494 601 994
453 742 218
414 179 736

376 034 128
339 430 638
304 493 988
271 341 271
240 078 160

210 793 607
183 552 295
158 391 461
135 331 801
114 381 547

95 537 472
78 782 272
64 074 478
51 349 308
40 512 222

3 t 436 089
23 969 051
17 939 170
13 164 192

9 460 395

6 649 472
4 565 018
3 056 638
1 992 713
1 262 654

776 232
462 162
265 679
146 941
77 988

39 665
19 365

9 063
3 963
t 419

441
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M(0 Mf

20
21

22
23
2d

25
20
27
28
29

30
31
32
33
34

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53
54

55
56
57
58
59

eo
61
62
63
64

797 749
795 796
793 662
791 385
788 985

786 485
783 885
781 212
778 496
775 741

772 92 L

770 100
767 284
764 446
761 556

758 616
755 592
752 484
749 254
745 900

742 420
738 812
735 032
731 076
726 896

722 486
717 840
712 905
707 673
702 087

696 087
689 635
682 704
675 279
667 346

658 936
650 099
640 797
630 937
620 388

609 042
596 848
583 754
569 680
554 576

55 056 292
55 015 279
54 968 331
54 915 960
54 858 360

54 795 860
54 728 260
54 656 089
54 580 041
54 500 146

54 415 546
54 328 095
54 237 983
54144 329
54 046 069

53 943 169
53 834 305
53 719 309
53 596 569
53 465 763

53 326 563
53 178 635
53 019 875
52 849 767
52 665 847

52 467 397
52 253 681
52 021 736
51 770 600
51 496 886

51 196 886
50 867 834
50 507 422
50 113 897
49 685 515

49 222 965
48 728 093
48 197 879
47 625 999
47 003 608

46 322 848
45 579 014
44767 186
43 880 524
42 913 868

65
66
67
68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

95
96
97
98
99

100
101
102
103
104

105

538 462
521 394
503 345
484 224
463 904

442 295
419 433
395 421
370 433
344 681

318 499
292 218
266 046
240 112
214 524

189 452
165 144
141 864
119 936

99 684

81 384
65 197
51 217
39 408
29 665

21 817
15 657
10 951
7 451
4 922

3 151
1 954
1 171

673
371

194
97
47
22

8
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