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Uber eine allgemeine Methode der Losung
deg Zinsfussproblems fiir verschiedene Versicherungs-
formen und die Darstellung der darin

auftretenden Momente

Von Hermann Gubler, Basel

1. Einleitung

Das Zinsfussproblem gehort wohl zu den bekanntesten Problemen
der Versicherungsmathematik. Es hat nicht nur theoretische Bedeu-
bung, sondern tritt in dieser oder jener Iorm immer wieder an den

Taktiker heran. Und zwar stellen sich die praktischen F'ragen nicht
Mar deswegen, weil die Zinsen auf den Kapitalanlagen stots gewissen
Markthedingten Schwankungen unterworfen sind, sondern vor allem
deshalb, weil viele technische Grundlagen nur fiir spezielle Zinsfiisse
8erechnet sind.

Fast alle bisher bekannten Methoden zur Lésung des Zinsfuss-
pl_'oblems zielen darauf ab, den Leibrenten-Barwert nach dem neuen

WMssatz anzugeben, um dann daraus die andern versicherungsmathe-
Matischen (frissen zu bestimmen. Kin Verfahren von Lotka [1]Y) zur
®rechnung der Vermehrungsrate der stabilen Bevolkerung wurde nun
von Zwinggs [2] beniitzt, um das Problem auf eine neuartige Weise
2 behandeln. Die neue Methode geht darauf aus, mit Hilfe der ge-
g_ebenen Kommutationszahlen zum alten Zinsfuss aus einer ver-
slCherungstechnischen Grosse direkt auf die entsprechende Grosse
na“fh dem neuen Zinsfuss zu schliessen, ohne den Umweg iiber den
e{brentenbarwert zu machen. Das Verfahren wurde von Zwinggi im
®18piel der Nettopriimie fiir die gemischte Versicherung beschrieben.

In der vorliegenden Untersuchung soll zunsichst gezeigt werden,

W Verfahren anwenden lisst auf die Bruttoprimie gemischter

1 . . - ¥
) Siehe Literaturverzeichnis.
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Versicherungen mit steigender Dividende sowie auf das Nettodeckungs-
kapital der gemischten Versicherung. Im letztern Fall wird unsere
Darstellung eine gewisse Ahnlichkeit mit der von Vajda hergeleiteten
Formel fiir die Umrechnung des Deckungskapitals von gemischten
Versicherungen und lebenslianglichen Todesfallversicherungen erhalten.
Ausfiihrliche numerische Kontrollbeispiele illustrieren die Brauchbar-
keit und Genauigkeit der Methode.

Um nicht wie bisher die kontinuierliche und diskontinuierliche
Darstellung unterscheiden zu miissen, haben wir systematisch den
Schdrfschen Integralbegriff beniitzt, der vom Verfasser speziell fir
versicherungstechnische Funktionen geschaffen wurde. Zum bessern
Verstindnis geben wir in einem besondern Abschnitt die wichtigsten
Figenschaften dieses Integralbegriffes an.

Bei der obigen Methode der Behandlung des Zinsfussproblems
spielen die Zeitmomente der diskontierten Zahlen der Lebenden und
der Toten eine wesentliche Rolle. Wir zeigen, wie dieselben entweder
mit Hilfe partieller Summation oder mit den Stirlingschen Zahlen
berechnet werden kénnen. Zudem geben wir fiir die Absterbeordnungen
SM und SF 89/44, 39, eine Momenten-Tafel.

Bevor ich die Einleitung schliesse, méchte ich allen, die mir bei
der Arbeit ihre Unterstiitzung angedeihen liessen, bestens danken.
Speziell Herrn Prof. Zwinggi fiir die Problemstellung, Herrn Prof. Saxer
fiir den Hinweis auf den Schérfschen Integralbegriff und meinem ehe-
maligen Studienkollegen, Herrn Prof. Specker, fiir seine praktischen
Ratschliage.

2. Die Theorie des neuen Verfahrens

In allen Formeln fiir versicherungstechnische Grossen, in welchen
der Zins eine Rolle spielt, tritt die Zinsintensitit ¢ als exponentieller
Faktor auf. Iis ist daher naheliegend, fiir die Losung des Zinsfuss-
problems einen Ansatz von der Form

f (8 = / (8) ¢0079) (1)

zu wihlen, wobel vorausgesetzt werden kann, dass fiir die Zinsinten-
gitit d, nicht nur der Punktionswert selbst, sondern auch alle notigen
Kommutationszahlen vorhanden sind. Die gesuchte Funktion g, e
soll also eine Funktion der alten Kommutationszahlen und der Dif-
ferenz d,— ¢ sein.
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Wir logarithmieren die Gleichung (1) und erhalten

In f(a) = In f(o.,) + Gis5-0)- (2)
Wenn wir nun do— 0 = r setzen, schreibt sich Gleichung (2):

In f(r) = In f(0) 4 g(r).

Dflrch Differentiation nach der Variablen r erhalten wir fiir g(r) eine
leferentialgleichung, in welcher f(0) nur noch als Integrationskon-

sta 1bb:
nte auftritt: 2 In f(r) ag(r)

. or or
Oder, etwas anders dargestellt:
, 0 f(r)
g =—FF—-
f(r) or

Mit Hilfe dieser Differentialgleichung soll nun die Funktion g(r)
Aus der Funktion f(r) und deren Ableitung bestimmt werden. Nun sind
aber die in der praktischen Versicherungsmathematik vorkommenden
lTf“nktionem f(r) selten in einfacher Weise durch analytische I'unk-
tionen darstellbar, so dass sich die 'unktion ¢’(r) kaum in der sich
Aus der Ableitung ergebenden rohen Form integrieren liesse. Wir miis-
“n daher versuchen, fiir ¢'(r) gute Niherungslosungen zu finden,
Welche sich zur Integration eignen.

In der klassischen Versicherungsmathematik muss stets unter-
S_Chieden werden zwischen der kontinuierlichen und der diskontinuier-
Ichen Methode. Die einzelnen Formeln miissen jewells getrennt ab-
8eleitet werden. Im folgenden Abschnitt wollen wir nun den Integral-

egriff von Schiirf einfiihren, mit dessen Hilfe sich die beiden Methoden
Ormel]] vereinigen lassen.

3. Der Integralbegriff von Schirf

Der neue Integralbegritf von Schérf [3] geht durch eine Verall-
8emeinerung aus dem Riemann-Stieltjesschen Integral hervor. Er gibt
s die Moglichkeit, die traditionelle Doppelspurigkeit der kontinuier-
tthen und der diskontinuierlichen Methode in der Versicherungsmathe-
Matik zu iiberwinden.

Das Riemann-Stieltjessche Integral wurde durch Loewy [4] in der

ersicherungsmathematik eingefiihrt. Die Voraussetzungen fiir seine
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Existenz sind aber in der diskontinuierlichen Methode nicht immer
erfiillt. Die fiir die diskontinuierliche Versicherungsmathematik typi-
schen Treppenfunktionen kénnen nicht ohne weiteres nach der Me-
thode von Riemann-Stieltjes iiber eine andere Iunktion integriert
werden. Der von Schirf entwickelte Integralbegriff hat nun diesen
Mangel behoben. Durch geeignete Definition sogenannter ¢einseitiger?
Stieltjes-Integrale hat Schirf es ermdglicht, auch diese fiir die Ver-
sicherungsmathematik wichtigsten Funktionen zu integrieren.

Wir betrachten zwei Funktionen f() und ¢(t) in einem Intervall
[a,b]). Es sei D, eine Binteilung von [¢,b] mit den Teilungspunkten
@ =1y, ty, ty, ..., t, =b. Dabei nennen wir eine Folge {D,} von
Finteilungen «normaly, wenn die maximale Liinge der Teilintervalle
fiir m- co gegen O konvergiert. Mit Hilfe der Funktionswerte von f
und ¢ in diesen Teilungspunkten bilden wir nun folgende Summen:

) n-1
AD,,(I[:S’) == Z f(£) [9(5;4-1) ‘“”g(ti)] ) ]
=0 ()

+) n—1

Ap (f9) = _;) ftir0) [9tis) — 9(t)]- [

Konvergiert fiir jede (normale» Kinteilungsfolge {D,} die Zahlenfolge
{94, (f,9)} baw. {M4, (f,9}, so setzen wir
) 2
lim 4, (f,9) = j}‘dg = linksseitiges Stieltjes-Integral,

N Co a

(+) (+) b
lim 4,, (f,q) = f f dg = rechtsseitiges Stieltjes-Integral.
T o0 a

Aus den funktionentheoretischen Untersuchungen von Schiirf
greifen wir folgenden, fiir unsere Entwicklungen wichtigen Satz heraus:
Satz: Ist im Intervall [a,b] die Funktion f beschrinkt, die Funk-
tion ¢ von beschrinkter Schwankung, so ist fiir die Fxistenz von
()b
[fdg
a

notwendig und hinreichend, dass

Y Fiir die Intervallea =<t < b, a = t<<b, a<<t < b, a<t<<b verwendel
wir entsprechend die Bezeichnungen [ab], [a,b), (ab], (a,b).



L. In jedem linksseitigen, im Intervall (a,b] gelegenen Unstetigkeits-
punkt der Funktion ¢ die Funktion f eine linksseitige Grenze
f(z—0) hat.

2. Die Menge N der linksseitigen, im Innern von [a,b] gelegenen
Unstetiglkeitspunkte der Tunktion f eine Nullmenge beziiglich
der linksseitigen Kontinuititsfunktion g, von ¢ ist.

Dany exigtiert das Lebesgue-Stieltjessche Integral j fdg, tiber dem
Intervall [a b), und es ist [a,b)

a<<z;<b

f fdg = f fag,+ S fa—0) [ge) — gz 0], @
[a,b)

W(_)bei die Summation sich auf alle im Intervall (a,b] gelegenen links-
Seitigen Unstetigkeitspunkte x; der Funktion ¢ erstreckt.

Fiir die in der kontinuierlichen Betrachtungsweise der Versicho-
"ungsmathomatik auftretenden Funktionen sind die Bedingungen 1.
Und 2. trivial. Ts lisst sich leicht zeigen, dass sie auch von den in der
diskontinuierlichen Methode auttretenden Funktionen erfiills werden.

Die diskontinuierlichen Funktionen der Versicherungsmathematilk
Sing ausgesprochene Treppenfunktionen mit den Sprungstellen am Ende
dor Zeitintervalle. Wenn t,, ty die Grenzen eines solchen Intervalles
Slnd, g0 gind diese Funktionen konstant im Intervall [t1,ts). Die Funk-
thnen sind in den Sprungstellen rechtsseitig stetig, hingegen linksseitig
Wstetig, Sehr wichtig ist nun die Tatsache, dass sie in den Sprung-
Stellen stots eine linksseitige Grenze besitzen, indem f(t,—0) = f(t,) 1st.

lso ist o 1. Bedingung auch in der diskontinuierlichen Betrachtungs-
Veise stets erfillt. Da die Menge N der Unstetigkeitsstellen in jedem
Fa)y endlich ist, stellt sie beztiglich jeder andern Funktion eine Null-
Menge dar, womit auch Bedingung 2 erfiillt ist.

Der Anwendung der Formel (2) des obigen Satzes auf alle ver-
Q‘mherungsteczhmschen Funktionen steht also nichts im Wege. In den
fOlgenden Entwicklungen brauchen wir im wesentlichen die temporire

¢ibrente und die temporire Todesfallversicherung. Wir wollen daher
“uergt, zeigen, wie sich diese beiden Funktionen mit Hilfe des Schérf-
Schen Integralbegriffes darstellen lassen.

. Es bedeute w(t) im kontinuierlichen Fall ¢, im diskontinuier-
‘chen Fall »!. Wenn R(t) den bis zum Zeitpunlkt ¢ zu zahlenden Renten-
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betrag darstellt, so konnen wir fiir den Barwert einer temporiren

Leibrente schreiben: i

. :
Ly W(E) A1)

z
0

Ist die Hohe der Rente unabhingig von ¢, so ist R(f) = Rf. Damib
wird, wenn wir R =1 setzen, (=) n

1
(i) = T flxﬂ w(t) di.
0

Dabei miissen wir wohl beachten, dass d¢ nicht ein Differential, sondern
einfach der integrierende Faktor des Schiirfschen Integrals ist. Handelb
es sich um stetige Funktionen, so geht das Integral iiber in ein Riemann-
Stieltjessches, bzw. bei Differenzierbarkeit in ein gewohnliches Rie-
mannsches Integral. Im diskontinuierlichen Fall hingegen erhalten wir
gemiiss Formel (2):

) 1
yim) = iﬂ

x

|

n—1

L wt) [E+1)—t] = n Db w(t).

0 z £=0

-

]

[

T

Wenn wir an Stelle des linksseitigen Stieltijes-Integrales das rechts-
seitige wihlen, o gelangen wir nicht zum vorschiissigen, sondern zun
nachschiissigen Rentenbarwert. Iis ist dann im diskontinuierlichen Fall

(+)n

I 1
— | Lwl)dt = —
la: x t

0
1
l

x

[
._.

Ly rrq (1) [(E+1) —t]

[V

S~

1

-
|

|
[

la:+£-l—lw(t+ 1) = a’fc:}ﬂ‘

-
I
=3

Die Zahl der innerhalb ¢ Jahren gestorbenen Versicherten mit dem
Eintrittsalter o ist [, —1 . ,. Daher ist der Barwert fiir die temporire

Todesfallversicherung n
1
a: "] ‘l' f :): :c-l—t)

)
].
Z
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Im kontinuierlichen Fall ergibt sich daraus

0
1 dl
= —— | w@) = at
L, dt
0
; dl
Nun g aber —tt — — 4y Myy, und somit

n

i 1
Am:?l'l = 'i“j{lv(t) lz+t Myt de,

T
0

Was nichts anderes darstellt als die bekannte Formel fiir die kontinuier-
tche temporiire Todesfallversicherung. Aber auch im diskontinuierlichen
F‘_]‘H fithrt das Integral auf die gebriiuchliche Darstellung. Wir beniitzen
Wieder (leichung (2).

, 1 n—L
Ax:}ﬂ . T tZlow(t + 1) i — l:r:—H]
n—1
= —Dwit+1)d,,,.
l, 1=0

Die diskontinuierlichen Funktionen der Versicherungsmathematik

“ing als Treppenfunktionen derart einfach, dass sich die Bedeutung des

_ehal'fschen Integrales im diskontinuierlichen I'all jeweils sehr leicht
rekt aug der Definitionsgleichung (1) ergibt.

4. Die Anwendung des neuen Verfahrens
auf die Bruttoprimie fiir eine gemischte Versicherung
mit steigender Dividende

@) Durch Variation der Zinsintensitit

Wie wir in der Binleitung erwiihnt haben, wurde das Verfahren von
, 0ggi auf den Fall der Nettopriimie fiir die gemischte Versicherung
) 8ewendet. Dass es sich auch auf die Bruttoprimie mit steigender
“Widende ausdehnen ligst, liegt, vom mathematischen Standpunkt

7

2w
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aus gesehen, auf der Hand. Ob es sich aber bei der Kompliziertheit
des Aufbaus dieser versicherungsmathematischen Funktion praktisch
durchfithren lisst und zu brauchbaren Resultaten fithrt, soll im fol-
genden noch untersucht werden.

Wir beniitzen folgende Abkiirzungen:
w(t) = %,
Ft) = e 1,,,.

Fiir die Abschluss-, Inkasso- und Verwaltungskosten verwenden wir die
iiblichen Symbole «, #, und y. Mit ¢ bezeichnen wir den Dividendensatz,
in dem Sinne, dass nach ¢ Jahren das ctfache der Bruttopriimie aly Ge-
winn ausgeschiittet werde. Mit der Ausschiittung des Gewinnes wird in
der Praxis erst nach Ablauf einer gewissen I'rist von zum Beispiel zwel
oder dret Jahren begonnen. Um die Ableitungen nicht unnétig zu kom-
plizieren, kénnen wir aber fiir unsere Betrachtungen ohne weiteres an-
nehmen, dass der Gewinn von Anfang an nach Massgabe der abgelau-
fenen Versicherungsdauer ausgeschiittet werde.

Unter diesen Voraussetzungen lisst sich die Bruttoprimie fiir die
gemischte Versicherung fiir die Zinsintensitit J, folgendermassen

schreiben: _— i

[0 i,y +Fn) + al, +y [ 1) at
. P(; ey 0 0

=)n (=)n
(1—p) l Of F)dt—e Of 740 dt]
Iir die varilerte Zinsintensitit ¢ = §, -+ r gilt:
e = ehu(t),
g == T,

so dass sich fiir die Bruttopriimie zur neuen Zinsintensitit & ergibt:

{(+])n (=In
[t w®) dlyy, + e Fm) +al,+y [ T dt
P' . 0 _ 0
(9 —

Cn )n
(1—p) { [enrydi—c [t 1) dt]
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Nun bilden wir die Ableitung von P('[,) nach der Variablen r.

(+)n (n
5 [ te " w(t) dl,, , +ne ™ F(n) + y fte_”F(t) dt
bl .. VSR S B
or Jan t (‘j’.‘ 1
(L—p)) [Py dt—e [te T dt}
L5 6
(-)n (n
(1—5){ [tem Py di—c [ B dt}
: ) ,
~I-_ - ”((‘)—)AT; ) (_) n Z)(‘s) '
(I—ﬁ){ [e‘”F(t) dt—e fte“” F(t) dt]
0 0

Indem wir die Gleichung durch P('(,) dividieren, gelangen wir zur ge-
Suchten logarithmischen Ableitung nach 7.

(+)n (-)n

2 p" jte"” w(t) dl, ., + ne”™F(n) + 1y f te " IP(t) dt
S L S B
Poor — (o (-)n
o f ¢ wt) dl,,, + e F(n) 4 al, -y j e " () dt
0 0
(=) =)n
JM%F@&~ct%”FmM
o L I4m

=) )n
j'a-” Ftydt—c [ te T R() dt
0 0
~ Wir miissen nun versuchen, diese Differentialgleichung zu losen.
e exakte Darstellung des Integrals in einer analytisch geschlossenen
Orm ist jedoch ausgeschlossen. Um eine Nitherungslésung zu erhalten,
Sbwickeln wir den Ausdruck auf der rechten Seite in eine Potenzreihe.
%I mathematischen Standpunkt aus wire es nun interessant zu
WI_SSGH, welchen Iehler wir begehen, wenn wir die betreffende Potenz-
lhe nach dem nten Glied abbrechen. Bei den versicherungsmathe-
mjdtisehen TFunktionen sind jedoch solche theoretische Untersuchungen
it qop Mitteln der reinen Mathematik sehr schwierig, weil die darin
Wftretenden biometrischen Funktionen meist entweder iitberhaupt nur
*Mpirisch oder dann in dusserst komplizierter analytischer Form ge-
8ben sind. In der Praxis bleibt daher in den meisten Fillen nichts
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anderes tbrig, als die entwickelten Formeln anhand von praktischen
Beispielen auf ihre Brauchbarkeit hin zu priifen. Da es sich jedoch bel
den hier zur Anwendung gelangenden biometrischen Funktionen um
beschrinkte Funktionen handelt, die im kontinuierlichen IMall stetig
und stetig differenzierbar sind und im diskontinuierlichen Fall reine
Treppenfunktionen darstellen, lassen sich aus Rechnungsbeispielen
doch ziemlich zuverlissige und fiir die Praxis durchaus hinreichende
Schliisse ziechen. Wir werden uns daher auch in unserm Fall auf die
Prifung des Verfahrens anhand praktischer Beispiele beschrinken.

Iis gilb nun also, die rechte Seite der letzten Gleichung in eine
Potenzreihe nach » zu entwickeln. Wir gehen dabet schrittweise vor,
indem wir zuerst die einzelnen Ausdriicke entwickeln. Wenn die Glieder
mit Potenzen von hoherer Ordnung als 1 vernachlissigt werden, so0
erhalten wir beispielsweise:

(+)n (+)n (+)n

[ertw) dly, = Jw® dlpy—r [tw@®dl,,, + ...,

0 0 0
(+)n (+)n (+)n

f te "t ao(t) dl,,, = j to(ty dl,, ,—r j ewltydl,,, + .. ..
0 0 0

Damit lagsen sich die mit [ und II bezeichneten Quotienten der logarith-
mischen Ableitung folgendermagsen schreiben:

(+)n ( )n (= )ﬂ‘ l
ftw —7 ftzw(t) dl, ., -+ nF(n)—rn2F(n) }«y{ jtF t) dt— Jtzf(é)d‘
T s s 0, . 0 o - L
INCT: (+)n = dl]
jw -rftw()dl b H (M) —rn B (n) 4-al, —[—yl jF clt—) jtF(t)
0 0
(—)n (=)n (=)n (=)n ]
ffr dt-rftzp dtﬁc[ Jengde—r fﬁ]“ )y
0
L = (—)T ""7’*"& O T )n T
j t)clt%vjtf t)dt—c{ tF(t) (Zt——frjtzf dt]
0

Zur Vereinfachung der Schreibweise fiithren wir folgende Symbole ein:

(+)»

(-)n
U, = { j 1k F(t) dt] e, [ j Fao(t) dl, ., -+ n F(n)] 0
0
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und erhalten damit fiir I und II

I— Vi—rV+y(U—rl)
Vot Vit aDy+y (Uy—r Ty
U—rU, mc(U rU,)

II=-
U—rU—c( —r0)’

oder, indem wir die Glieder mit r zusammenfassen:
[— — n+yU—r(h+v0)

Wh+yU+aD,—rV+9U,) ’

U—cU,—r(Uy—cl)

= T} —eU;— (ff—cU)'

Um dje Darstellung der Ausdriicke noch weiter zu vereinfachen, fithren
Wir Hilfsgrossen T, und W, ein.

T, = U,—cU,,,

W,=V,+vyU;.
Dann ist,

Nun bilden wir die Potenzreihen nach 7 fiir die beiden Quotienten I und
1L, wobei wir wieder die Glieder mit Potenzen von hiherer Ordnung als 1
Vernachlassigen.

Dig Losung der homogenen Differentialgleichung

opr .
S0 — Py (141

}iﬁfSSt sich nun leicht angeben, wenn man beriicksichtigt, dass fiir » = 0
1® Integrationskonstante Py = P, sein muss.
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b
. ' ' ar + -r2

wobei @ und b folgendermassen bestimmt werden:

(3)

. Tl)z T, ( W )1 ",

In diesen Ausdriicken treten neben der Variablen r nur noch Grossen
auf, die sich mit Hilfe derjenigen Kommutationszahlen bestimmen
lassen, welche der Zinsintensitit J, entsprechen.

Damit ist unsere Aufgabe fiir den Fall der Variation der Zins-
intensitiit gelost, und zwar sowohl fiir die kontinuierliche wie fiir die
diskontinuierliche Methode.

In der Praxis hat man es jedoch meistens nicht mit einer Anderung
der Zinsintensitit §, sondern mit einer Anderung des Zinsfusses 4 zu tun.
Natiirlich ldgst sich ohne weiteres aus der Zinsfussdifferenz die ent-
sprechende Differenz der Zinsintensitdten berechnen. Wir wollen aber
doch noch sehen, wie sich die Formeln ableiten lassen, wenn wir direkt
den Zinsfuss dndern, ohne den Umweg iiber die Zinsintensitit zu machen.

b) Durch Variation des Zinsfusses

Wihrend die kontinuierliche Methode der Versicherungsmathe-
matik mehr nur theoretische Bedeutung hat und in der Praxis selten zur
Anwendung gelangt, ist die diskontinuierliche Methode in ihrer klas-
sischen Form das tagliche Brot des Praktikers. Sie wird sich wohl kaum
durch das Schérfsche Integral, das beide Methoden vereinigt, zuriick-
driingen lassen. Wir wollen daher die folgenden Ableitungen nach der
rein diskontinuierlichen Methode, unter Verwendung der jedem Ver-
gicherungsmathematiker geldufigen Symbole durchfiihren.

Wir gehen von einer Pramiendarstellung aus, welche nicht einfach
eine genaue Ubertragung der Ableitungen des letzten Abschnittes zu-
ligst, sondern ein neues Element in die Enwicklungen hineinbringt.
Unter Zugrundelegung derselben Annahme wie unter ) kénnen wir dié
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Bruttopriimie zum Zinsfuss 1, fiir die gemischte Versicherung mit stei-
gender Dividende darstellen als

n—1 wzfl
(1 42 {;ﬂ% T D} Flr+ad) 3D,y

D! o
P, = S—

n—1 n—1
(1—-p) ‘Z;ODx-H =1 02_(.) tD:c-H]

Hier tritt im Zihler der Ausdruck adg auf. Wollten wir die Ableitung fiir
die kontinuierliche und die diskontinuierliche Methode zusammen mit
Hilfe des Schirfschen Integrals durchfiithren, so konnten wir diese Dar-
Stellung nicht beniitzen. Wir miissen uns hier durch die Wahl von d,
oder §, von Anfang an fiir eine der beiden Betrachtungsweisen ent-
Scheiden.

Wir fiihren nun folgende Abkiirzungen ein:

D, C
Pty = =2 und  G(t) = 2"
Yo Vg

D

amit erhalten wir fiiv die Bruttoprimie:

(142) [ 360 + T + 7+ 5y S0

>)]~——
ry=

(+p[ 57005 o)

In der diskontinuierlichen Methode ist in allen Kommutationszahlen
dex Diskontierungsfaktor v® enthalten. Es ist daher zweckmissig, fiir
den Ubergang auf den Zinsfuss © an Stelle der Differenz 4 —d, den

. v
Quotlenten - zu beniitzen.

Yo
Wir definieren: R L L1
DN 141
Danp gilt fiir den Zinstuss 2:
D, D ’
Ml 0 S o ”) = (L+n)F({),
v Yo \%
¢ ¢, a
Wited o, E (Ti> = (L4 h)!' L G()
U % \%
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Wenn wir noch beriicksichtigen, dass d = 1 —wv,(1--h) ist, so erhalten
wir fiir die Bruttoprimie nach dem neuen Zinsfuss «:

n—1 )

n—1
(14 %) Z(1+h) G(t) + (1 HL)"F( )] + ‘y+oc av(,(1+h)}2](1+h)‘ﬂ‘
A SORRS——— D
(l—ﬁ)[z(l—}—h “—th L4 h)t e }
=0
Die Operationenfolge ist nun ungefihr dieselbe wie in Abschnitt a)-
Als erstes gilt es, diesen Ausdruck fiir P('i) nach h zu differenzieren.
n—1
op (14 o) :2(15 +1) (1+h)E G(t) + n(1 |—h)" lF( )]
—_ . HD -
oh (n—1 ; n—1 ;
(14 {2 (L F() —e 3 L))
t=0
n—1 n—1
——ochZ(l—l—h) (t)+ ly l—a—~owo + h) } Y L+h)!UR()
n—1 —1
Zt L) F(t) kﬁcZﬁ LR E ()
t= =0 '
I ”Bli"‘ - T Py
2(1—1—]&)‘19‘ —cEt (L4-h) F(t)
=0 1=0
Wir dividieren diese Gleichung durch P.
n—1 n—
or, (1—}—o¢)l;o(t—l—l)(l—l—h)‘G(t) n(1 HL)"F(n)}~avOZ L4-h) ‘If()*
. v R L ...
Pyoh (14-a) {\‘ (14-h) G |—(1+h)"F(n)}
i=0

n—1

+{» }'“_“Uo(l—l-h)}Et(l—Ha)‘“‘F(t)

e

,_.

+{y+a_a%1+h}2(1+h F()

-~

n—1 n—1
Z t(L4R)TEE) —c Z 2(14+h) LR
= = I—1I.

n—1 n—1

2(1+h ‘Ft)—th LR F()
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Bei dey Entwicklung der Quotienten I und IT in Potenzreihen wollen
Wir wieder schrittweise vorgehen, indem wir zuerst die einzelnen Sum-
Manden nach i entwickeln und erst dann die Quotienten selber. Wir be-
Shiigen uns auch hier mit den ersten beiden Gliedern der Entwicklungen.

n—1 a—1

(1—|-oc) lz (t—H)(‘( ) ( +1)mG(t) +nFn )—{—n(nwl)hF(n)} -

= ¥ ) Iy

{’i G(t) + 2 t-+1) h G(E) 4 1'(n) + 'nhF(fn)} +

n— n—1 n-1 n-1
%"[ZF I—ZthF }—F (y-+ad, —cxvoh)lzJ t) -+ Etzhlf ZthF t)]

t=0

n— n-1
+(y+o<d —avyh) {ZFt F}_JthF(t)}
1=0

n—1

(1+a)l§(t+1)(’(t) }—nf’(n)]mowo\ F(t) + (y+oudy) ZtF(t)+

t=0

= . o

l n—1
<1+a){ <)+F<n)] (y+ado)>“ #) +

t=0

+h{1+m
\

=T

— 0 e

n—1 n—1 n—1
ZM 0 FZtG ) -+ n2F(n )~nF(n}MavoZtF(t)Jr(y»lrocdo)-

n—1

- [ [i 011G )]+ br-+adg S EW aEFmI

!

ISFF nitF ]—-a%'{*‘w()'

------

n—1 n—1
(1 “W)IZ(”H)CW%-T&DW} O‘UOZJDxH‘f‘ (y+ody) Zth+t‘|"

[

—

n— Tn—1

(I—I—OL) {Z‘ Cx+t +Dz Hz] + y_l—o'"d Z D:c-H _F
t=0

n—1 n—1
1—|—oc[ ¢H02C,, ,— D+ C, 4 n? Dm an}~
\\_ ) f=0 t=0 ]
n— n—1 n—1
Th [(H«){MH) w+an+n]+(y+ado>_,th oo 3D,
t=0 =0

n—1 n—1 n—1 n—
—avy DtD, - (y+ady) {2 2D, ,— D)tD,. ]——aDDZtD
— =0 £=0 =0 .t

......
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Analog fiir den Quotienten II:

n—1 n—1 n—1

ZtF(t +hZ‘t (t—1) I'(t —c>“t2r ~tht3 1) 17(¢)
M= =

ip M ﬂitr )-—mi‘tzﬁ()
njl n—1 n—1 n— n—1 n—1
LI — thﬂlf +h{2t2m)—\”‘tf ~QJ¢"*F HZtZF(ﬁ)‘
t=0 £=0 ke
- T n— l o a1 o n—l1 T n 1 Ty
ZI’ oZtT +h’ZtIf c\‘mr()}
{=0

n—1 n—1 n—1 n—1 n—1
XD, , «CZ,VDW - [ (S‘tDmH 95‘5 Dwu) 1 ytzD —CZ{3D5+!
t=0 o . () ) B ,/'

-1 -1 n~l n—-L B
Al Al 1 49
S D03 mm—m[zm mme}
1=0 t=0

Nun beniitzen wir wieder die schon Seite 100 eingefiihrten Abkiirzungen

n—1 n—1

Ui = Z tli D-”c+t ’ VI, = 2 (t _{_’1)‘5 O.r ¢ + n’i ])a:r[-n ’

=0

und bilden damit noch folgende Gréssen T, und W

T, =U-—cU, ., W=(00+0)V,++ad)U,.

Mit diesen Abkiirzungen lassen sich die beiden Quotienten nun in ein-
facher Weise darstellen.

e WY —av, Uy -+ (W5 — Wi —2a0,0)
' W L h(W*—ov, U,) ’
+ h( T U

Ty+hT,

I =

Nun werden die Quotienten T und II ihrerseits in Potenzreihen nach b

entwickelt, wobei wiederum nur die beiden ersten Glieder beriicksichtigh
werden sollen. Wir erhalten

* , 1k * , * 2

[ Wi—anb, h[WZ~W1-—-2fxuoUi Wi, U\

= e ,,,,7‘,,*,77_ - * sy [ ey o )

W ] W wy /|

T [T,—T TN\
M=_"-'4n .3.......‘1.__(1) .
7t T, T,/ |
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Biir die Losung der homogenen Differentialgleichung

P, .
,),v._,(.')q = I—1T,
1 iy oh
die sich wieder in der Tform
/ ah~|~~g-h2

]

darstellon lisst, ergeben sich fiir die Grossen ¢ und b folgende Ausdriicke:

*
Wi—av,U, T,

\*: 070 To ,
. W;‘:j_ WT = QO‘NUVQ U, o (WT — &l Uo)i‘ T, — TI. 1 <T1 )2

w wE o /i 5

(4)

Diése Tormelu sind etwas komplizierter als diejenigen, welche wir im
letZten Abschnitt erhalten haben. Um leichter zu sehen, woher die

Nterschiede kommen, schreiben wir noch die Ausdriicke fiir ¢ und b
Mt die sich ergeben hiibten, wenn wir bei der Variation des Zinsfusses
Von derselben Darstellung der Priimie ausgegangen wiren wie im Ab-

: b o
Schnitf ). Wir hiitten fiir den Fixponenten ah |- 3 h% zu der Variablen

h folgende Parameter erhalten:

W, T,

T WytaD, T,

W, —W, W, )2 Py ’Tl>2
To (To

“Wiran, (i van, |

WéiJhrend die Formeln (3) (siehe Seite 102!) und (5) in der Darstellung fiir

% enaw iibereinstimmen, treten in (5) in derjenigen fiir b an Stelle von
2> baw. 7!, je die Differenzen W,—W,, baw. T,—1T auf. Dies riihrt

r::'VOIl he'r, dass sich bet der Di‘fferentiation‘ die Exponentialfunktion e "

SOP;oduztxert, wihrend in der Potenz (1 h)"'der Grl"&d um 1 abnimmt,
o 488 sich bei der darauffolgenden Potenzreihenentwicklung im ersten
AL i2 i gweiten Tall hingegen das Produkt ¢(f—1) ergibt.
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Nun wollen wir zeigen, dass im diskontinuierlichen Tall die
Ausdriicke (4) und (5) tibereinstimmen. Da die Quotienten mit den
Grossen T; schon formell gleich sind, miissen wir nur noch die andern
untersuchen.

Ks 1st W;‘ = (14-) Vo + (y +ady) U,
= Vit+yU+aVy+d,0)

n—1 n-1
e WTO “i" 0.4 2 Cfx_}_t + Da,--}-n + dO ZDKE-‘Ft
=0 t=0

— Wy + | D, A, + do Dy )
= Wy + a D, (1 —dy iy iy + dy iy )

= I/V()_;"O(-Dxa
n—1 n—1
W* = I’V ‘{‘a{Z t+1 x4 +W’Dx+n_|_ dOEtDm+t]
t=0 1=0

=
—

¥ n—-1
= a{Z*A;H-t r;_}Dx+£ '—dO/_; (RN R n——t_]D ]

0

es

—

n—

—I’Vl"‘“lzl da‘x-{-tﬁ) ﬂz+dZ“z+t in—t| xH ZID‘”"]

0

o~

n—1

= W, +a(1—d) 3D,
= W, +an Uy,
also Wi —av, U, = W,.

Damit ist gezeigt, dass die beiden Ausdriicke fiir a iibereinstimmen-
In analoger Weise lisst sich dasselbe fiir b beweisen. Zu diesem Zwecke
miissen wir nur noch zeigen, dass

Wa—Wi—2a0,U; = W,—W,
1st. Es 1st aber
W; =W, +aVy+4,U,),
wobei gilt:
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-
|
-

V2+d0UA e

M

n—1
(t +1)20x+t _!4 n2Dx+n + dO‘Z(l) (t +1)2D:c+t
h n—1

—ﬁdo}](zurl)l)m_H
=0

0

e~

—

n— n—1

= D[t +1)2—] Apry i Doy + d"Zé[(tJrl)z"tg]

- n—1
"y :mDa;-H *‘do%,) (2¢4+1) D,

n- n—1

= D> @241) A—dydyyy ) Doy + doE (2¢+41)
=0

-~
<

—

t=0
n—1
by Dot _d°?30(% +1)D,,,
n—1 -
= v, >, (2t -+1) D,
{=0

= 20, U, + v, U,.
Dami wiyq
Wy —W* 900, U, = W, + a(@v, U, + v, U) — W, — o0y Uy — 29, U,
=W,—W, q.e.d.

Piiy qiq praktische Berechnung kénnen wir also an Stelle der Ausdriicke
(4) ohne weiteres die etwas einfacheren IFormeln (5) verwenden.
Schon an dieser Stelle seoi insbesondere noch darauf hingewiesen,
48 in den beiden Formeln (8) und (5) die Ausdriicke fiir @ abgesehen
¥om Vorgeichen iibereinstimmen. (In Formel (5) ist das Vorzoichen von a
&on abhiingig, ob h bei wachsendem Zinsfuss positiv oder negativ
8ewiihlt wird.) Die Tatsache, dass wir fiir die Ableitung der Umrech-
Mungsformel statt von der Anderung der Zinsintensitit direkt von der
And@rung des Zinsfusses ausgehen, wirkt sich demnach erst in der
‘Ormel fiir b aus. In erster N dherung, wenn wir die Potenzreihen-
em"‘vVicklungen schon nach dem ersten Glied abbrechen wiirden, konnte
50 7 qureh h, bezichungsweise —h ersetzt ersetzt werden. Wir werden
%Pitor anhand von Beispielen gehen, dass wir uns tatsiichlich in vielen
illen auf das erste Glied beschrinken kénnen, indem der Einfluss des

Madratischen Gliedes Fi h? schon so klein wird, dass es fiir die Praxis
9

Ot nicht mehr von Bedeutung ist.
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5. Die praktische Berechnung

In den Formeln fiir @ und b treten nicht die einfachen Kommuba-
tionszahlen C,, M, B, ... und D, N,, S,, ... auf, sondern durchweg?
die sogenannten Momente von C, und D, . Es ist daher naheliegend, fiir
die praktischen Berechnungen die Momente zu tabellieren. Allerdings
wird dies nur an dieser Stelle in Frage kommen, wo die Theorie anhand
von Beispielen auf ihre Brauchbarkeit hin untersucht werden soll,
withrend in der Praxis diese zeitraubende Arbeit den Wert der Um-
rechnungsmethode illugorisch machen wiirde. Denn dort geht es meistens
darum, nur einzelne Werte mdoglichst rasch umzurechnen, bzw. um-
zuschétzen.

Wir haben die Momente bis zur dritten Ordnung fiir die heute sehr
gebrivuchlichen Sterbetafeln SM und SE 1939/44 berechnet. Allerdings
im Blick auf unsere Theorie nur zu dem relativ hohen Zinsfuss von 3%
(siehe Tabellen am Schluss!).

Iis sel b — i D,
l=z

und analog M® S 140,
t=x

Damit lassen sich die U, nach folgender Rekursionsformel berechnen:

n—1

n:& " k-1 k . n_—ui
= 2, (@+1) Dz+l“2( )wmztprﬂ
i=o p=0 ‘P (=0

k-1

k
= mi—m, — > ( ) o=,
p=0 p

Nun berechnen wir U, direkt und daraus denn mit Hilfe der eben
hergeleiteten Rekursionsformel U,, U, und Uj.

n—1

3 0 0
Uy = S0, =m0,
=0
t R
Ul == m(m)mm:(c-i-nﬁ‘l’U()’
Uy = m? —m® —22U, — a0,
U; = m@—m®  — 82U, — 82U, — 23T
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1 . . .
EntSpI‘echend den U, definieren wir die ¥, folgendermassen:

n—1

Ve = >, t+1)*C,,, +n*D

t=0

z-bn"

Sie lassen sich ebenfalls durch eine Rekursionstormel auf die Momente

Mik) zuriickfiihren. Es 1st
n—1
(t +1)k O:M—t ‘}— nk ])m-}—n
t=0
7]-—1 ( k* ].
x-+t 41 -+ (x+n)*D,  — ( )
& )C ( D, ,%é P

2 H-DPC P D,

= MY M, | (@)D z(p') &,

also i konkreten Tall:

Vy= MO} D

V1 == ﬂ,/[:(:) 1\/]—&1} 5T (3’ S n) I)a:-i-n o

x-tn?

Vz = ﬂff) ﬂ[;)w. -+ (3» -+ n’)z'l)xfkn o

-2V,
2aV, —22V;.

lit Hilte der Momento lassen sich also die fiir dio Umrechnung not-
v L
Yondigen Girossen U, und ¥, (und damit auch die W) in zemlich
8

nfacher Weiso dd,rsLLllen und auch praktisch berechnen.

Damit sind wir nun in der Lage, anhand von Beispielen die Giite
ey Verfahrens zu priifen. Und da es sich nur um eine Variation des Zins-
g g handelt, sind die Resultate hichstens in ganz geringem Mass von
“er zugrunde liegenden Sterbetafel abhingig. Wir kinnen uns daher auf
®ine einzige Sterbetafel beschriinken,

Den in nachstehender Tabelle aufgefiihrten Bruttoprimien fiir die
Semischte Versicherung mit steigender Dividende liegen folgende Daten

Ngrunde:

Sterbetafel
Ausgangszinfuss 1, .
Abschlusskosten « .
Inkassokosten .
Verwaltungskosten y.
Dividendensatz ¢
Versicherungssumme .

SM 1939/44
3%
0,040
0,03
0,002
0,02

10 000
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Ausgehend vom Zinsfuss von 89, wurden die Primien nun nach dem
neuen Verfahren umgerechnet auf die Zinsfiisse von 2145 %, 3% 9%, und
49,. Neben den erhaltenen Niherungswerten fiihren wir jeweils auch die
genauen Werte auf.

Jahrespriimie fiir den Zinsfuss

Ein-
tritts- | Dauwer |~ i S il
alter 1=20% 1=3%% i=4%
i — : o ; —
z n Niherung genau | Niherung genau | Niherung | genaul

20 20 496,5 520,7 520,9 4734 473,5 451,5 | 451,7
30 339,2 363,4 363,5 317,0 316,9 296,7 | 296,6
40 267,8 292,1 292,1 246,4 246,3 2275 | 2274
50 234,2 258,7 258,7 213,6 213,5 1958 | 1958

30 | 20 | 5007 | 524,9 | 5250 | 4778 | 4777 4561 | 456,0
30 350,3 | 8744 | 8744 | 8283 | 9281 | 308,0 | 808,0
40 | 289,10 | 8131 | 3132 | 2679 | 27,8 | 249,0 | 249,0
40 | 20 | B4 | 5479 | 5479 | 5016 | 5014 | 4802 | 4801
30 3898 | 4131 | 413,1 | 3684 | 968,3 | 348,77 | 348,6
50 | 10 | 10384 | 1057,9 | 1057,9 | 1009,6 | 10094 | 986,4 | 986,2
20 5872 | 609,9 | 610,0 | 5656 | 5656 | 5453 | 545,1

N— ——

Die Niherungswerte weichen von den genauen Werten nur sehr wenig
ab. Da bei der angewandten Umrechnungsmethode mehrmals kleine
Werte als Differenzen von grossen Zahlen auftreten, muss den Nihe-
rungswerten zum Vorneherein eine gewisse Toleranz eingeriiumt werden-
Die Detailrechnung zeigt, dags die Grossenordnung dieser Toleranz un-
gefihr bei 0,1 9/, liegt. Fast alle Fehler liegen innerhalb dieser Grenze-
Daraus konnen wir schliessen, dass die Einbeziehung weiterer Glieder
der Potenzreihenentwicklung keine wesentliche Verbesserung der Re-
sultate mit sich bringen wiirde. Auffallend ist jedoch, dass die Nihe-
rungswerte beim Ubergang auf einen kleinern Zinsfuss kleiner oder
gleich, beim Ubergang auf einen grossern Zinsfuss hingegen fast durch-
wegs grosser oder gleich den genauen Werten sind. Dies zeigt immerhin
einen gewissen Iinfluss des Restgliedes.

Anderseits wiire aber zu erwarten gewesen, dass die Fehler sowobl
mit zunehmender Versicherungsdauer und damit zunehmendem Hin-
fluss des Zinses, als auch mit zunehmender Zinsdifferenz grosser wiirden-
Nun sind aber interessanterweise gerade die Differenzen bei der lingsten
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Versicherungsdauer (Eintrittsalter 20, Dauer 50) iiberall gleich Null.

0d fiiy die Zinsdifferenz von 1% sind sie kaum grosser als fiir
diejenigen von 14%. Beides weist eher wieder auf die mangelnde

fnauigkeit der Rechnungselemente hin.

_ Inder Lebensversicherung werden aber beispielsweise die Priimien
fir eine Summe von Fr. 10 000 auf Franken genau angegeben. Bei dieser
Genauigkeit wiirde die Umrechnung, abgesehen von Rundungsdiffe-
®nzen, iiberhaupt genane Resultate ergeben.

Die Beispiele zeigen also, dass das neue Niherungsverfahren zur

Osung des Zinsfussproblems auch bei der ziemlich komplizierten ver-
Sicherungstechnischen Funktion der Bruttopréamie fiir die gemischte

®sicherung mit steigender Dividende zu sehr guten Resultaten fiihrt.

6. Das abgekiirzte Verfahren

Bei der Berechnung von praktischen Beispielen sieht man, dass
der Tinflygg des zweiten Gliedes der Potenzreihenentwicklung auf das
‘Mdresultat schon ziewmlich gering 1st. lis erhebt sich daher die I'rage,
Ob‘@S nicht zweckmiissig wire, wenn man sich iiberhaupt auf das erste

lied beschriinken wiirde. Das Zinsfussproblem ist ja, wie wir schon in
e|r I‘linleihung betont haben, ein Problem, das sich in der Praxis immer
Wleder stellt. Wir miissen daher darnach trachten, Formeln zu finden,
Welehe die [J mrechnung auf andere Zinsfiisse moglichst einfach gestalten.
& zudem die FForderungen in bezug auf die Gienauigkeit der gesuchten
®rte meistens nicht allzu streng sind, wollen wir die Formel in ihrer
Brs‘t,en Niherung ebenfalls auf ihre Brauchbarkeit hin untersuchen. Da-
“Lwollen wir von der Annahme ausgehen, dass nicht die Zinsintensitit,
“ondern der Zinstuss variiert werde.

Wenn wir uns in allen Potenzreihenentwicklungen nach A nur auf

lag erste (ilied beschrinken, so reduziert sich die Formel fiir die neue
Tattopriimie auf

! 1
Py = Py

Wobei Formel (5) entsprechend

¢ = e s

ist,
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Nachstehende Tabelle zeigt, was fiir Niherungswerte mit Hilfe
dieser Umrechnungsformel erzielt werden. Den Berechnungen liegen
wieder dieselben Daten zugrunde wie im vorhergehenden Kapitel:
Ausgehend von der Bruttopriimie zum Zinsfuss von 39, wurden die-
jenigen zu den Zinsfiissen von 2%, 8% und 49, bestimmt. Neben
den Niherungswerten geben wir wieder auch die genauen Werte an-

—

Jahrespriimie fiir den Zinstuss

Ein- |
tritts- Dawer |~ T Ty
alter i=2% % i=3%% ! i=4%
x n Niherung | genau Niiherung genau Niherung genau
R

|

20 20 520,8 | 5209 ‘ 473,6 473,5 451,9 451,7
30 363,3 363,5 316,9 316,9 296,3 296,6
40 9291,7 2921 246,0 246,83 296,3 207 4
50 257.9 258,7 2192,9 213,5 193,6 195,8
30 20 594,9 5250 | 4778 4777 456,1 456,0
30 | 8742 374 4 398, 1 328,1 307,6 308,0
40 3127 313,2 267,5 267,8 2477 249,0
40 20 547,9 5479 501,3 501 4 480,2 480,1
30 412,9 418,1 368,2 368,3 348,0 348,6

50 10 | 1058,0 | 1057,9 | 1009,6 | 10094 | 986,6 | 9862
20 609,9 610,0 | 5656 565,6 5450 | 5451

Das neue Verfahren bringt sogar in erster Niherung noch sehr gute
Resultate. In den weitaus meisten Fillen wiirde in der Praxis dies®
Genauigkeit vollauf geniigen. Hier kénnen wir nun aber schon deutlich
konstatieren, wie die ehler mit zunehmender Versicherungsdauer L
mit steigender Zinsdifferenz grosser werden.

Wir kénnten aber noch weiter gehen und die nicht sehr handlich®
Exponentialfunktion noch nach & entwickeln.

P =14ah+....

Damit liasst sich der neue Funktionswert in folgender einfacher Weise

darstellen: ) ,

Von dieser abgekiirzten Formel lassen sich natiirlich nicht mehr 80
gute Resultate erwarten wie von der ersten Niherung mit Hilfe der
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Bxponentialtunktion. Bs lohnt sich aber doch, auch diese lirgebnisse
n(.’Ch kurz zu betrachten. Wir wollen die Priimien aber nur auf ganzo
“inheiten genau berechnen. In der Praxis kommt es oft vor, dass
V_el”Sicherungswerte zu einem Zinsfuss zu berechnen sind, fiir den
die technischen Grundlagen fehlen. Wenn diese aber, was in vielen
Fillen rutrifft, zu zwet andern Zinsfiissen vorhanden sind, hilft
Man sich meistens mit einer einfachen Extrapolation. Wir wollen
daher in der nachstehenden Tabelle neben den nach unserer ab-
8ekiirzten Formel berechneten Niherungswerten nicht nur die ge-
lauen Werte anfiihren, sondern auch die durch Extrapolation
8efundenen. Dies gibt uns einen gewissen Malstab fir die Ge-
Dauigkeit,

Jahresprimie fiir den Zinsfuss

& n i=2%% i=3%% B d T
Iixtra- | Nilhe-
polation| rung

Hixtra- | Niihe- Tixtra- | Nihe-

. enau . enau
—— polation; rung 8 po[utlonf rung g

genau

20 | 20 | 520 | 520 | 2L | 472 | 473 | 473 | 448 | 450 | 452
30 | 861 | 862 | 8363 | 815 | 316 | 817 | 201 | 293 | 297
40 | 289 | 201 | 292 | 244 | 245 | 246 | 219 | 223 | 297
50 | 255 | 257 | 259 | 210 | 212 | 214 | 185 | 190 | 196
30 | 90 | 524 | 524 | 525 | 476 | 477 | 478 | 452 | 454 | 456
30 | 872 | 373 | 874, 326! 827 | 828 | 302 305 | 808
40 | 810 | 812 | 818 | 265 | 267 | 268 241 | 244 | 249
40 | 90 | 547 | 547 | 548 | 500 | 501 | 501 | 476 | 478 | 480
30 | 411 | 412 | 418 | 367 | 368 | 868 | 843 | 846 | 349
50 | 10 | 1057 | 1058 | 1058 | 1009 | 1009 | 1009 | 984 | 986 | 986
20 | 609 | 609 | 610 | 564 | 565 | 566 542 543 545

L |

Die Tabelle zeigt, dass die Abweichungen der Niherungswerte
den genauen Werten nur etwa halb so gross sind wie die
‘ehler, die bei der linearen Extrapolation gemacht werden. Und
Wenn man beriicksichtigt, dass die Niherungslosungen ausgehend von
“en Punktionswerten und Kommutationszahlen zu einem einzigen

Von

Nsfuss berechnet wurden, withrend wir uns bei der Extrapolation

8 zwei zu verschiedenen Zinsfiissen berechnete IFunktionswerte
Stiitzen mussten, darf das erreichte Resultat immer noch als gut
®Zeichnet werden.
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7. Anwendung auf das Netto-Deckungskapital
der gemischten Versicherung

Das Netto-Deckungskapital der gemischten Versicherung lisst
gich bekanntlich in der folgenden einfachen Form darstellen:
G—m%ax_ tn—1 |
S
Uztm)

Iis soll nun fiir diese Funktion eine dem Verfahren von Zwinggi ent-
sprechende Umrechnungsformel hergeleitet werden. Wir beniitzen wie-
der den Integralbegriff von Schiirf, wollen aber nicht die Zinsintensitét,
sondern den Zinsfuss ¢ variieren. Wenn F(t) = v§l,., ist, konnen wir
das Deckungskapital darstellen als

(=) n (=) n

[ ?JF

0 ¢
Vatig) = '

z(io) (~)n

Of F(x

Nun sei wieder h so definiert, dass fiir den Zinsfuss ¢ gilt:

1-+1
14+h =- flﬂ
149
Dann geht FF(z) iiber in (14 k)" F(z) und fiir das Deckungskapital zum
Zinsfuss ¢ ergibt sich:

)n

f(1+h)’F(r) TMTW{:ﬁﬁ— f( +h)F

=)n
f (14 k)7 F () d
0

Dieser Ausdruck wird nun nach b differenziert.
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(=)}n )71
L+ 1) F(7)d L ) + B F () dr —
2 T(1+h) (v) dv + '(i';{_h)prl F(t) (14-h)" L (z) ¢
N I o b
oh —(n
j(p+mF@yh.“
0
() n (=)n
— M—Ii(() ) (1) () de (1} k)" F(7) dr
I+n'Fy | '
- A "(_)—”;-—-———-— D
...... fufkmfF@yh
0

Nun bilden wir die logarithmische Ableitung von ,V,:

(=)n (—)n
f (1+h)y " F(r)dr -+ (0) [(H— h)* F(z)dr —
o, R ,
!
N TR o
(1 1) F(z) dt - ——P(—) (14+ ) F(r)dr ...
Ty )
i
)n ()
- ‘If(“) : t(1-+h) ' Fz) dv (1 h)* ' F(z) dr
(-1t F(t)
S R— o () : - = [—1II.

...... _ﬂyuwﬁmdr

Dig beiden Quotienten T und IT werden nun nach h entwickelt, und
V4 s : :
War wieder nur bis zum 2. Glied.

y (—)n (—)n
Venn wir nun {r"]) Ldr = U, und f =D
0

e T = UL setzen, so
®rgibt sich:
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F(O I'o
U+ - ,( ) (tUL—UY + h,‘Ugm- U, + -,,( ) [(2t-+1) Ut —t(t+ il)U;——Ué]l
F() l I(t)
oy (. By,
U, -+ If(t) Us+hiU, + 'F(ti)m (tUp— Ul)]
G
) Uf | ¢
#(0) i U,
b : .Af._
ne o
e (= U
1(0)
G Bt 4
F((D)) (U, ) — U+ @E+1) ULt +1) U} ],,((0))- U, U} +10;
Ft Ft
Uy, vt RICR A
F(0) 7(0)
. N
| - U‘ 4 AR (U‘-) [
v | U U,/ |
e g - - NeT K :
Die Losung der Differentialgleichung = [-—1I schreiben
,Vzmah

wir wieder in der Form

b
B, b2 .
Yoty = 1V, Aty (2. Niherung),

x(2p)

worin die Parameter ¢ und b folgendermassen lauten:

D
IR U, — 1 iU
D, 1 1+t U, -
a = - — == () — (),
v g, = ()~
B tu—U;
D:c Lt 1Y t
(U,~—U) — U+ (2t +1) Ul —t(t-+1) Ug
D, - U,— U, ‘ )
h— S . o simamen <o T8 i (R
[)I-l-l [] . Ut UO
])z 0 0

Tiir die praktische Berechnung werden die U}, die sich nicht unmittel-
bar aus den Momenten ergeben, am besten als Ditferenz dargestellt.
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Im diskontinuierlichen Fall ist

n—1 t—1

i N\Y Lk NV Sk

Wy = Y0, LA DN
=0 =10

Um ein Bild von der Genauigkeit dieser Niherungsformel zu er-
halten’ haben wir auch hier einige Beispiele gerechnet und in der Tabelle
Seite 120 zusammengestellt. Ausgehend von den nach der Sterbetafel
SM 1989/44 zu einemn Zinsfuss von 8 %, gerechneten Deckungskapitalien
Wurden die Naherungswerte fiir den Zinsfuss von 49/, bestimmt. Dabei
Wurden die entsprechenden Werte sowohl nach der obigen vollstindigen
Forme] (2. Néherung) berechnet, als auch nach dem abgekiirzten Ver-

fahren untor Vernachldssigung von ) h? nach der Formel

th(-i) == tV (}ah (J.. Néiherung).

z(ip)

Diese letztere Darstellung weist eine gewisse Ahnlichkeit auf mit der
Von Vajda [5] hergeleiteten Formel fiir die Umrechnung des Deckungs-
kapitals von gemischten Versicherungen und lebenslinglichen Todes-
fauversicherungen. Vajda geht von der Beobachtung aus, dass sich das
D.eckungskapital dieser Versicherungsarten bei Zinsfussinderungen im
ne einer geometrischen Folge dndert. Die Annahme, dass die Folge
der Deckungskapitalien genau geometrisch verlaufe, fiithrt nun auf die
E‘Olgerung, dass in der von ihm hergeleiteten Differentialgleichung fiir
dag Deckungskapital der gemischten Versicherung

e L i U T e L) - W

BB e g -
tVz 1 (:i'z;}t] (”z}-t T dw:’rﬂ)
me unabhingig ist vom Zinsfuss ¢. Diese Annahme deckt sich also
M Pringip mit unserm abgekiiraten Verfahren, wo wir auch in erster
‘dherung annchmen, die logarithmische Ableitung sei von ¢, be-
“lehunggweise von h, unabhiingig.
Die Methode von Vajda fiihrt daher auf eine ganz dhnliche Lisung.
U st
Vi = V€, (Vajda),

z(ip)

Wobei zyy Berechnung von W, nur die Grundlagen zum Zinsfuss ¢,
®notigt werden.
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Neben den nach dem vollstindigen (2. Niherung) und dem ab-
gekiirzten (1. Naherung) Verfahren von Zwinggi bestimmten Niherungs-
werten sind in der nachstehenden Tabelle auch die nach der Methode
von Vajda erhaltenen Naherungswerte aufgefiihrt.

Deckungskapital der gemischten Versicherung
| i
ZT:n t ig=3% S
! L. Niherung i Vajda 2. Nitherung genau
% | % % % %
30:30 5 11,29 9,88 9,87 9,85 9,85
i 10 24,33 21,83 21,80 21,76 91,77
15 39,21 36,07 36,04 356,97 35,97
20 56,19 53,04 53,01 52,93 52,93
25 75,99 73,73 73,71 73,65 73,65
40: 20 5 | 19,66 18,19 18,18 18,16 18,15
10 | 42,10 39,89 39,87 39,84 39,84
15 68,27 66,37 606,35 66,32 66,32
50: 20 5 19,75 18,36 18,35 18,34 18,35
‘ P10 41,70 39,60 89,58 39,56 39,56
| 15 | 67,17 | 6531 65,30 65,27 65,27

Die vollstindige Formel (2. Niherung) ergibt auch hier wieder sehr gute
Resultate, indem die Niherungswerte fast durchwegs mit den genauen
Werten iibereinstimmen. Aber auch die Genauigkeit der 1. Néherung
und der Methode von Vajda diirfte in den meisten Fillen der Praxis
durchaus geniigen.

Wir haben schon betont, dass sich die Methode von Vajda im
Prinzip mit unserm abgekiirsten Verfahren deckt. Die Beispiele zeigen
jedoch, dass die Umrechnungsformeln nicht zu den gleichen Resultaten
fithren. Wéhrend Vajda in seiner Formel vom genauen Wert der log-
arithmischen Ableibfung von |V nach dem Zinsfuss 1 an der Stelle )
ausgeht, beniitzen wir im abgekiirzten Verfahren von Zwinggi die
logarithmische Ableitung nach der Variablen & an derselben Stelle %
beziechungsweise h = 0. Nun wollen wir vorerst zeigen, dass sich die
beiden Ableitungen tatsichlich ineinander iiberfithren lassen. s ist zt

beweisen, dass fiir 1 = 2, gilt:
dlog ,V, dlog,V,

i w (h
o1 ok di’
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: 1 th + 1
Bs ist b= el 0~—1 und damit (— = L 0.,
141 dr (1 + ’L)
il dh
Fiiy 1 =1, ist also —- = —u,.
v
. w.
Damit bleibt zu zeigon, dass a = — % ist,
0,

Dies ligst sich durch folgende einfache Umformung zeigen:

j) " n—1 -1 n—1 n-1
A N O 2
= D, — el 8 O, 2,7 Do .
]);;; 0 T=1 =1 =0
0 =.__* = 5 : B S A T
]) b n—1 n—l ’?T&
- B T :
D \ D — l ”x+r >_| Dyye
z r=0 T={ =0
1 »-t 1 nt o ont 1 n-l
RN RN " AN
b, S Pe e Pt ) Bhe S
Tk =0 x+gr—! Lt T=1 Tx =0
1 » l 1 nl 1 wt
A N AN
D \S [) ]) ol [)xfkr D i ])m-kt
x T=0 -t Tt “xT=0
- ([(01 n _T @jﬁ“ ([a/nlt =t ?@jﬁ;i?ﬁw ([(0 ’x:d
aw n) " Uyt int) ux.M
Wir en\(‘ltem den ersten Quotienten mit @, ;; und den zweiten mit
G
#in) = Gy 4 ;=) und erhalten:
0 — (Ia)x .'z| Fdin—t, (] a’).’E—H :i;-fl(l;v:m fI/Vz
T ‘e . e Ty B . b
“z:n} (u’:s:m Ty :}i'-_-f]) Yo

Was zn beweigen war.

B 18t also a =— W (1+41),

nd damit ah = W, (141 %—m "y
L W (1 0)1_‘_1_@

Oder ah == W (i—1),

gh die beiden Exponenten von e sind verschieden. Trotzdem die

®lden Mothoden im Prinzip iibereinstimmen, miissen sie daher zu

:sschledmon Resultaten fithren. Die eigentliche Ursache der Ver-
edenheit liegt im nichtlincaren 7 usammenhang von 7 und h.
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Die Tatsache, dass mit der Methode von Vajda bessere Resultat
erzielt werden als mit dem abgekiirzten Verfahren, zeigt, dass die Folge
der Deckungskapitalien fiir #quidistante ¢ eher geometrisch verliutt
als fiir dquidistante k. Da die Beziehung zwischen ¢ und . nicht linear
ist, konnen die sich entsprechenden Werte nicht gleichzeitig dquidi-
stant sein.

8. Yerfahren bei Vorhandensein von Tabellen
nach zwei Zinsfiissen

In sehr vielen Fillen sind die auf einer Absterbeordnung auf-
gebauten Kommutationszahlen nicht nur fiir einen einzigen Zinsfuss
gerechnet. Sind die entsprechenden Tabellen fiir mindestens zwei Zins-
fiisse vorhanden, so lisst sich unser Verfahren zur Berechnung versiche-
rungstechnischer Werte nach einem dritten Zinsfuss stark vereinfachen-

Wir setzen voraus, dass fiir die Zinsintensititen §, und o, alle
notwendigen Kommutationszahlen bekannt seien. Fiir eine Funktion
{(9) suchen wir nun, ausgehend von f(d,) und f(d;), den entsprechenden
Wert fiir die Zinsintensitit o.

Es sei 0, = -1, und & = §,+4r.
Dann ist f(6) = () grit gt (1)
und HB) = F(d) T @)

Durch Logarithmieren von Gleichung (1) nach der Basis ¢ erhalten wir:

lognat f(d,) = lognat f(d,) + ar, 4 Z s (3)

Daraus berechnen wir die Grosse b:

lognat f(é,) — lognat f(64) — ar,
hp—9 ©° TNV R
1

Eingesetzt in Gleichung (2) ergibt sich:

ar 4 {log nat ;Egl; —ar,_} (-:~) ’
0 1

f(8) = f(So) ¢ (4)

Die Berechnungsarbeit wird dadurch wesentlich vereinfacht. Wir haben
nur die Grosse a zur Zinsintensitit d, zu berechnen, withrend sich b aus @
und den bekannten Funktionswerten ergibt.
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Noch bedeutend einfacher gestalten sich die Berechnungen, wenn
s die Grenauigkeit des abgekiirzten Verfahrens geniigt.
Wir berechnen @ aus (8), indem wir b = 0 setzen.

[(9,)
lognat * >~
. f(5)
fl ==
""1
D . log nat fidg) &
dmit erhalten wir  f(d) = f(d,) e [(30) 71
P (3 ”T”
Oer 1) = 1669 (Jos ) o)

Diege Interpolationsformel, in welcher selbstverstiandlich die konti-
Wierlichen » ohne weiteres durch die diskontinuierlichen h ersetzt
Wel”den konnen, enthilt nun keine Parameter ¢ und b mehr und ist
daher fiir die praktische Anwondung sehr bequem.

Auch hier wollen wir einige Beispiele rechnen, um die Genauigkeit

o Formel zu priifen. Wir beniitzen dazu die in der Tabelle Seite 111

®rechneton Werte der Bruttopriimie fiir die Gemischte Versicherung.

Usgehend von den beiden Zinstiissen 21 und 8%, wollen wir auf die

®htsprechenden Primien fiir die Zinsfiisse 814 und 49, schliessen. Den
%0 erhaltenen Niherungswerten stellen wir die durch lineare HKxtra-
pohtlon berechneten Werte ﬂegenubp

Johrespriimie fiir den Zinsfuss
% e T e
lincare Bx- | xer o | | lincare Bx- | gy |
| Al \tlnn Niitherung genau P———— Niherung genau
20 20 472 473 473 448 452 452
30 315 317 317 291 296 297
40 244 246 246 219 296 097
50 210 219 214 185 193 196
30 20 476 478 478 452 456 456
30 396 308 398 302 307 308
40 265 267 268 241 047 249
40 20 500 501 501 476 480 480
30 367 368 368 343 348 349
50 10 | 1009 1010 1009 984 987 986
20 564 566 5606 542 545 545
e~ — ]
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Wie die Zahlen zeigen, ist die Genauigkeit der neuen Iixtra-
polationsformel grosser als diejenige der sehr hiufig angewandten
linearen Methode. Mit nur wenig mehr Rechenarbeit werden also damit
bedeutend bessere Resultate erzielt. Diese Hxtrapolationsformel diirfte
daher in der Praxis Verwendung finden.

9. Berechnung der Momente aus den Kommutationszahlen

Die Momente der diskontierten Zahlen der Tiebenden lagsen sich
folgendermassen darstellen:

a) nach der kontinuierlichen Methode —m{ = f t"ﬁtclt,

w
b) nach der diskontinuierlichen Methode m{ = > ¢ D,.
t=x
Beide Darstellungen lassen sich vereinigen, wenn wir den Schirfschen
Integralbegriff verwenden. s ist dann
(—)eo
amF) 15N
My = — IL dN,.
(Bei allen Entwicklungen ist stets zu beriicksichtigen, dass bei der
Berechnung der Kommutationszahlen in der Richtung des abnehmen-
den Alters integriert, bzw. summiert wird. Bei deren Verwendung muss
also bei jeder Integration das Vorzeichen gewechselt werden.)
Der Gedanke ist naheliegend, dieses Integral durch partielle Inte-
gration zu léson. Analog zum Riemannschen Integral gilt nimlich
fiir das Stieltjessche, bzw. fiir das Schirfsche Integral

)b , (F
[ 1dg = 19— [ gat.

In unserm Fall konnen wir daher schreiben:

(=) co - (-F) oo
— j #dN, = —FN, |7+ [ N, at
(+) 0 (

= ;r;sz -} INe dt®,
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Na@h der kontinuierlichen Methode konnen wir das verbleibende Inte-
8tal iiberfiihren in das entsprechende Riemannsche Integral:

{(+) o0 oo o
. l ] dtk » . l
Nt = | N,-odt =k [ 47N, at. (11)
dt

Sing hingegen die Funktionen diskontinuierlich, so erhalten wir

(+) oo
' A
J N, dff = f,\,_!N,n,_l{(t +1)F—¥, (12)

Sowon] ; 1m kontinuierlichen wie im diskontinuierlichen T'all gelangen

Wir auf diese Weise zu Ausdr ticken, in welchen ¢* nicht mehr vorkommt.
& weitere Tintw icklung der beiden Darstellungen kann aber nun nicht

Mehr durch einen einheitlichen Formalismus erfolgen, weil sich dt*
EOrmel 10) nicht in derselben Weise auswerten lisst. Wir stehen also
1Y vor der Tatsache, dass wir die Entwicklung trotz des Schirfschen
Iltegrztlbegri‘ffes nach der kontinuierlichen und der diskontinuierlichen
ethode getrennt durchfiihren miissen.

a) Nach der kontinuierlichen Methode

Wir sind fiir m® mit (10) und (11) schon zu der folgenden Dar-
s elhlng gelangt:

m® = 2" N_ -k f AN dt.

T

D . . . )
Wrch fortgesetate partiello Integration kénnen wir den CGrad der
Oteny, von ¢ sukzessive kleiner werden lassen.

“ b k(k—1) f 25, dt

x

= a* N, + ka5, — o (b —1) #2527+ e (ke —1) (b —2) jt”S‘2 dt

mk) - .
M =< ok N, — ki1,

= gk N +ka* 'S, +E(E—1)a il Sf)-}— ...~|—k.b‘¢c
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Wenn wir N, mit S und S, mit S bezeichnen, so lissp sich diese
Summe folgendermassen schreiben:

_ g k! .
k) __ >‘ R = B ()]

W = e T G,
* =0 (]1, — ’b) T *

Die Momente der diskontierten Zahlen der Toten

[ee]

M = f (t+1)kC,dt

T

lassen sich ganz analog aus den entsprechenden Kommutationgzahler

rechnen: .

MP = Z B O B
<_ ij__"

Diese Darstellung der Momente liisst sich nicht von der kontinuier”
lichen Methode auf die diskontinuierliche iibertragen. Bs lisst sich leichb
zeigen, dass diese Formeln fiir die diskontinuierlichen Momente und
Kommutationszahlen schon fiir k = 1 nicht auf dag richtige Resultat
fiihren wiirden.

b) Nach der diskontinuierlichen Methode

ba) Mit partieller Summation

Analog zur partiellen Integration wenden wir hier die partiell®
Summation an, um den Grad der Potenz von ¢ zu senken. Die von un®
zur Anwendung gelangende Formel fiir die partielle Summation leite?
wir analog zu derjenigen von Knopp [6] ab.

Zu diesem Zwecke betrachten wir zwei IFolgen a,, ay ... &
by, by ... b, und deren Produkt,

n’

n
Es sei 4; = D\ a,; dann ist a; = A, — A4, , und damit erhalten wi*

v=1

Eavbv - (fll— )b + (A A3)b + (A An I-l) bn

=1

-

Far ¢ >mn ist aber 4; = 0.
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Daher jt

n

Za b = A b -+ A, (b _‘b)+A (b _[)z) + ..+ “ln(bng‘b:hl)?

V=]
Z n“v bv - Albl + _/\:] jlt (1)'i_bi7~l) §
1=2

Mit Hilfe dieser Formel fiir die particlle Summation lassen sich nun die
i\
Omente auf die Kommutationszahlen zuriickfiihren.
Nach Gleichung (12) ist unter Beriicksichtigung von (10)

w
m# = F N, + D N, [tF— (t—1)]

Lza;ﬁ -
i
Nach der partiellen Summationsformel ist
\‘ ( ) 1 kY o k

= 2, N, \‘( 1)inHt (k)tk—n

Sehe T Y

=~ 2 (“1)““(,?) E} Nttk——i.l

I‘.l t=x-+1

B+ 1S, + Y8, [ — (t_ﬁ])k—h]}

| =x+2

- ke £ KN 8 o prenn o gk
0 (F) @ DF S+ S DR ) S S [ 1]
t__

s i1=1

S-‘ u)‘ k- i‘l { I ____:’:_l‘ i
(— “H()\ S, 3 (1) (P i
1=y Wisztie =t L

ko g 7
2 }ll ﬁml Py b ia b2 (’L) (ff 1) i JS’g ticﬁit.._ia
/l)

1
151y =y t t=2}2

!" kl .
=N K o k\ (—1\ | & e Y Q@) [ it
2 (- pyiris ) y ) [,sﬁg(a:-;-z)’ iy UG [t g1y 2]}

% § 7
150i,=y 1 {—243
ko ki,

= Sg:z-{-z 2_1 Bﬁ %1+zn}2 (k) (,‘;"1 7‘1) ( -+ 2)ku-n-~-bz yE

=1 12ﬂ1 Y
ko ki, X A S I o T — B
+ NN gyt (]1) (k .71) DA (k " 7’2) fhir-izia
=1y h to /1 1ZT43 i5=1 3

T
kg
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Aus diesen Entwicklungen lisst sich das Bildungsgesetz fiir die end-
giiltige F'ormel schon deutlich ablesen. Es ist

k

m = S04 80, 3 () () ook

ZI—'].

idy

+ S@ ér N 1)intist? (7") ( ) (@ 2)F i 4

= \y
k"‘blk—”l]_—’lg ] .
—1,\ (k—1,—1 .
u +ig-fiz+3 b 1 2 ~ k—i1—ig—18 +
58,3 5 S Mo T
z1=1112—1 ig=1 1 9 3

Damit erhalten wir fiir das k-te Moment der diskontierten Zahlen der
Lebenden folgenden Ausdruck:

(k) k1 k':l;l ’G—“l.l_;’i:g ]0—'1:1"..2‘.—‘57;,_1
s |
e LSWZL 2 e 2
i1=1lip=1 iy=1 in=1
Ty s o .
T I (k) (k . h) . (/t e Jn—1> (& m)ie
)\ i,

In analoger Weise lassen sich die diskontierten Zahlen der Toten dureh
die entsprechenden Kommutationszahlen darstellen.

Damit haben wir die Darstellung der Momente durch die KKommu-
tationszahlen auch fiir den diskontinuierlichen Fall abgeleitet. Iiir dié
praktische Rechnung ist diese Formel aber nicht sehr handlich. Wwir
wollen daher im folgenden noch nach einer einfachern Darstellung

suchen.

bb) Mit Hilfe der Stirlingschen Zahlen

Wir wollen auch hier zuerst die Momente der diskontierten Zahlen
der Lebenden betrachten.

Bs ist m{® — \‘ t*D,.

l =

Fiir unsere Entwicklungen schreiben wir die Momente besser in deF

folgenden Form: oz
mP = D\ (x+ 1D,y
=0
" i N\ 1)
= >, ) ot _Zt D,, (
i=0 =0

Darin miissen wir fiir ¢ = ¢ = 0 den unbestimmten Iaktor t* — 1 setzen
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Zuniichst betrachten wir folgenden Satz aus der Kombinatorik:

By ist ,;—5 (l, i— k‘) B (’n }; T 1) .

Mit Hilte dieses Satzes wollen wir nach der Methode der vollstindigen
Dduktion zeigen, dass

11 w':?: t_i— L ] .
S %( : )pm (2)

I8 st ol
b Es ist nimlich

, e < E40)
S§ = Z]")a:-H - .}_.I( 0 )'Dw-H

1=0

Wip
r nehmen nun an, der Satz sei fiir b bewiesen und schliessen auf

S
1' z+¢ kommt in allen S§ , vor, fiir welehe k =< ¢ ist. Nach unserer
8 . . i o ft—k 4 :
Annahme ist die Anzahl der D, in S¥), gleich ( ; a ) Also ist
w- w—r |
QU+ \ ',‘ 31\1{T+1')”
- = o e RO

Ach dem angefiihrten Satz aus der Kombinatorik ist somit

s = S |
e =N 141 THET was zu beweisen war.
Damig ; - o “{;f . _
letet sich uns die Mdoglichkeit, die Swmme > D, ., auf

=0
Sy
Mmen zuriickzufithren, in welchen nur noch solehe Potenzen von ¢

Vo
l"l\Ommen deren Fxponenten kleiner als 2 sind:

@ @ F'L ' .
3 HD:H = 9! \ ( ) erﬁZAk‘\_’Jthl')me

0 k=0 t=0
(3)
) i—1 w— .L
= 18P D14, DD,
k=0 £:0

Y bleibt, uns nun die Aufgabe, die Koeffizienten 4, zu bestimmen.
leso stimmen iiberein mit den Koeffizienten von t, dle sich ergeben,
Wenn wir den folgenden Ausdruck in eine Potenzreihe entwickeln:

() = e ety o er -t @
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Dazu leisten uns die Stirlingsehen Zahlen [7] wertvolle Dienste:
Die Zahlen S% dienen zur Transformation der nach unten gebildete?

Faktoriell
FEEVREREEE (), = z(z—1) (z—2) ... (x—n-}1)
in eine Potenzreihe (@), = 3 Sk,

Sie konnen mit Hilfe der Rekursionsformel

n+l Sk lﬁ”Sk berechnet werden:

Dre Stlrlmgschen Zahlen ( erster Art ) Sk

=]

Nk 1 9 3 4 6 7 |

5
B .
1 1
—1 1
3 9 —3 i
4 6 11 —6 1
5 24 | —50 35 | —10 1
6 | —120 274 | — 995 85 | —15 1
7 790 | —1764 | 1624 | —1735 175 | —21 1

Mit Hilfe dieser Zahlen lisst sich nun der Ausdruck (4) folgendermasse!
in eine Summe von Potenzen wmnformen:

(5 T )ﬂtb N i S

k=1

oder, indem wir (¢£--1)* entwickeln:

=SS (s
=1 n= U n
Fiir » = 1 18t auch k =1 und dann ist der entsprechende Summand
der Doppelsumme = t!. Statt am Schluss ' zu subtrahieren, konne?
wir daher die Bedingung aufnehmen, dass stets n << i sei. Wir erhalte?
damit fiir Gleichung (3) folgende Darstellung:

w—
ﬂﬂi
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. dem gegebenen ¢ suchen wir fiir jedes n <<t den Koeffizienten

w—T

n \NY

oy von > "D, .
i=0

E 1 n l k K o
8 18, &) = ’;‘1 (n) [ (“ (6)

Wobe; - e :
Obe o} fiir unsere Zwecke nur definiert 1st fiir n<C1.
In der folgenden Tabelle fiihren wir jedoch in Klammern auch die

erte von o't auf fiir n = 1.

Tabelle der o

\"-'—ﬂ.“.‘____ B - — P — S
\i" 0 1 9 3 4 5 6
T\ o o I B -

01

1 1 (1)

2 p) 3 (1) [

3 6 11 6 1)

4 24 50 35 10 (1)

5 1 120 274 225 85 15 (1)

6 | 720 1764 | 1624 | 735 175 21 (1)

|

~— | |

In dieser Tabelle treten dic genau gleichen Zahlen auf wie in
erien: a1 ;
Yenigen fiir die Stirlingschen Zahlen (erster Art) S¥, nur mit dem
Dterschied, dass alle positiv sind.

I wollen nun vorerst die neuen Zahlen o" etwas nither betrachten.

. Bchaupmmg: Die Zahlen o} dienen zur Transformation der nach
®n gebildeten Faktoriellen

i

J[ @+t = (@4+1)(@+2) ... (z+10)

=1
111 %
®Ine Sumine von Potenzen:
% 1

I (@+8 = > oya". (7)

t=1 n=0



Beweis: Bs 1st

v i1 ;
H(!L—I—t) = (J, —|-—i—t) — ZS’: ($+l)k
t=1 =0 =

k=1n=0 .
) ) 3
e WEREY
'\n
n=0 k=n

Der Klammerinhalt stellt aber nichts anderes dar, als o7. Also igh
Gleichung (7) bewiesen.

Wir kinnen also Gleichung (7) als Definitionsgleichung der Zahlen
o} betrachten. Daraus ergibt sich:

) 1—1
Ny non e ) N X
> ot = (x+1) D o x
n=0 n=>0

i1 i—L
N\ n o ntl SNY v,
- Z{ tji—l & + ! ;>_J iy ‘L'n'
n=0 n=0
Durch Koetfizientenvergleich erhalten wir folgende Rekursionsformel
fiir die Zahlen o7:
n__ L |~ n (8)
0p = 0 1107
(Auf diese Weise liesse sich auch der Beweis der Rekursionsformel fiiX
die Stirlingschen Zahlen erster Art von Jordan [7] vereinfachen.)

Diese Zahlen ¢} ermdglichen nun eine einfachere Darstellung voP
Gleichung (5). s 1st

Wz ‘ il W= 7 ¢
DD, =8Nt > D, ()
t=0 n=0 t=0

Was wir aber suchen, ist eine Form, in welcher nicht mehr die Summe?
w—T 2 L)
Etan-H auftreten, sondern direkt die Kommutationszahlen, Wit
i=o

suchen fiir Gleichung (9) eine Darstellung von der Form

8 d
> 6D, = 2 0TS

t=0 m=0
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gnt@l‘ Verwendung dieser noch unbekannten Zahlen 67" konnen wir
’lelchunﬂ (9) folgendermassen schreiben:

i—1 n

i
VUosm Qim) o s Qld) Y 0 N sme Q)
m=0 n=10 m=0
Dﬂl‘&us schliessen wir:
1. (3:; = q!
i—1 i—1 n
Y osmoQlim) n XY om Qm)
2. DVOrSI = N a} > s s (10)
m=0 n=0 m=0

Dureh Koettizientenvergleich in (10) erhalten wir
| i1
8 = — S atar. (11)
n=m
DTmlt haben wir schon das Bildungsgesetz, nach welchem sich die
07 aug den ¢’ berechnen lassen. Wir wollen aber noch versuchen, eine
Ormel zu erhalten, welche eine direkte Berechnung der 3" erlaubt,
Ohne Zuhilfenahme der Zahlen a}.
Zu diesem Zwecke betrachten wir eine Funktion D,y die fol-
8ndermassen definiert ist: .
D= : o) a’

y=0

n(x)

Ang dieger Definition folgt

D

n—1 n—1
= nla"— D Dlahd 2’

v—(),u:v

n(x)

S
R R | N 1 |
=nla"— Dok D S
=0 p=0
n—1

. (W S N R Ty
= nla"— D ol D

=0

nix)

Nup wollen wir zeigen, dass fiir diese I'unktion D, gilt:
d
I) = (-B—l) CILL (!’])n 1('5))
a Bewess: Wir fiihren den Beweis wieder durch nach der Methode
ser Vollst%ndmen Induktion. Fiir #n = 0 ist die Aussage trivial, denn
Chop aus der Definition geht hervor, dass fiir n << 0 die Funktion

n) = 0 1st.
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Nun setzen wir voraus, der Satz sei bewiesen fiir alle g <<%

s 15t dann

aD, A

n—-2

= (n—1)!2" %Zan_

.ll_

([ n—2

>j Un 1 l_l)

dx o

(1) (@D ) = nla"—nla g
Nach Induktionsvoraussetzung ist aber

d ,
(x—1)—— (zD
dx
Also 1st

— pl gt —n! gt

d
i ("L ani(a;))

(x—1) =

= nla*—nl "1 —

nach (8):

vl
01

Fiir die Zahlen o7 gilt aber

R v
= 0,—N0,_,-

Tlingesetzt in obiger Gleichung erhalten wir

d
(7;—1) g (:‘U Dn—l(a:)) =
dx
n—1 n—1
= nla"—nlz 2" Gn D wlz) ~ - N E (j)vrl j)v(cc)
y=1
n—L
— Inl g Z 0, Dyt -+ ap Dy, {(n—l) A \‘

n—2

= Dy {oh—mnan_,} Dyy—n {(n —1) gt E
v

=5
Nun 1st aber Oy = N0y g
n-32
und (n—1) 2" ' — Z Tnt Dy

y=0

=D

d
dz (@ DMI)) '

;:(x)) =D pA()

n—2
\1

,u*()

?hl -k )

n==

N t
Z G, Dv(v)'

r=1

n-1

0
O 1 y( ')’ o 750‘”__1[)0(5]

v 7 L
Oy Du(x) Oyt ])n 1(3:)] '

n—L(z)*

Damit werden die Klammerinhalte der letzten Gleichung = 0 und w!*

erhalten tatsichlich
{
(1) —

dz

('1’ Dra,~ ) I)n(x) !

was zu bewelsen wire



Auf Grund dieses Satzes lisst sich nun die Funktion D,y zerlegen.
ES ISt n
Y Qv v
])n(a:) stem 2-1 6‘)& -’1/
p=10
d §1 o
e & (S
( ) CkB ;:10 n—1
n—-1
== (x—1) > (»+1)d,_ 2"
r=0
n—1 n—1
Al QY -+ v v
= \ (’V 7|— 1) ();z—l a’-" L 2 (Tvﬁ]"l) (sn—l"l"
=0 y=0
n n n_—l
Dionat = Dlvoy i’ — D v+ 1) 0 2
y=() =l r=0

i\us dieser Darstellung tiir die I'unktion D, erhalten wir nun durch
(Ofoizientenvergleich eine Rekursionsformel fiir die Zahlen 8. Es 1st

& =vd - (v+1)0,

n—1L"

D

amit ligst sich nun leicht eine Tabelle der Zahlen o7 aufstellen.

Tabelle der &}

\;L 0 l 2 3 4 T 5 ' 6 i
| | | !
0| 1 o
O 1 |
2 1 3 2 | |
3 | 7 —12 6
4 'Y 50 | 60 24 l
5 1 .1 | st | —180 | 390 | —360 il‘.%()i
6 L | —63 602 |--2100 | 3360 | —2520 720
| |
| | | |

V{lt Hilfe dieser Zahlen konnen wir jetzt Gleichung (9) in folgender
e .
Wfacher Form schreiben:

w—r 1

N iy 2 (1
DD, = Do,
TP

n=0
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Damit ist es uns gelungen, die Momente der diskontierten Zahlen
der Lebenden aus den gewohnlichen Kommutationszahlen zu berechnen-
Bis gilt fiir das k-te Moment

w—x
i \U )
'7?'2(;) - 24 (;E 7'— t)k [):1:+! ]
=0

k
B )
mF =N (

i-0

I‘) gk S_: g, (12)

L, n—=0

Fiir die Momente der diskontierten Zahlen der Toten ergibt sich
ganz analog

T koik .
ﬂffgv) P ;16(31 _i_ 1 & If)k C:H—’ s Z (:) (.’E*I—l)"”"’l 2.(1) (S;ia ,Rgl),
= p=0 ‘" N=
| N
hY k) N0 () b . ‘.k——t—i N\ sn ’.("). 13
4 2\ ;;:JO( j )1 );,:Joéthm (13)

Damit ist die Aufgabe geldst. Diese Darstellung ist nun bedeutend ein-
facher und fiir den praktischen Gebrauch handlicher als diejenige, die
wir mit Hilfe der partiellen Summation abgeleitet haben.



Momententafeln

SM und SI 1939/44, 39,



20
21
22
23

25
26
27

29

30
31
32
38

35
36
37
38

40
41
42
43
44

45
46
47

49

50
51
52
53
54

55
56
o7
58

59
60
62
63
64

49 362 151
48 345 871
47 312 797
46 265 157
45 205 041

44 134 401
43 055 026
41 968 616
40 876 736
39 780 788

38 682 094
37 581 904
36 481 466
35 381 946
34 284 465

33 190 073
32 099 823
31 014 747
29 935 753
28 863 773

27799 697
26 744 377
25 698 713
24 664 623
23 640 008

22 628 756
21 630 746
20 640 852
19 677 853
18 724 477

17787 499
16 867 614
15 965 592
15082 185
14 218 142

13374 181
12 551 057
11749 563
10 970 498
10 214 654

9 482 788
8775 664
8094 050
T 438 629
6 810 021

138

—

mi2)
"

2182 260 010
2161 934 410
2 140 239 856
2117 191 776
2 092 809 108

2 067 113 748
2 040 129 373
2011 882713
1 982 401 953
1 951 715 409

1 919 853 283
1 886 847 583
1 852 734 005
1 817 549 365
1781 832 492

1744 123 164
1705 964 414
1 666 901 678
1626 978 900
1 586 243 660

1 544 744 696
1 502 531 896
1 459 659 672
1416 185 892
1 872 170 447

1 327 675 359
1 282 764 909
1237 505 785
1 191 962 832
1 146 200 784

1 100 288 862
1054 294 612
1 008 291 505
962 354 331
916 560 047

870 986 175
825 T14 327
T80 830 641
736 423 959
692 584 984

649 404 920
606 977 480
565 399 026
524 762 949
485 160 664

m® . 1078

x

108 807 462
108 400 950
107 945 364
107 438 306
106 877 505

106 260 816
105 586 207
104 851 794
104 055 813
103 196 590

102 272 588
101 282 417
100 224 896
99 098 988
97 903 831

96 638 714
95 303 158
93 896 900
02 419 757
90 871 818

89 253 358
87 564 846
85 807 085
83 981 186
82 088 522

80 130 738
78109 768
76 027 848
73 887 329
71 690 751

69 441 067
67 141 355
64 795 197
62 400 464
59 979 367

57518 378
55 028 426
52 514 940
49 983 759
47 441 098

44 893 474
42 347 828
39 811 542
37292 105
34797 161




0

6 208 786
5635 499
5090 755
4 575 089
4 088 930

3632 626
3206 459
2810 634
2445 212
2110 032

1804 767
1 528 955
1281 970
1 063 005

370 992

704 618
562 314
442 288
342 543
260 954

195 333
143 482
103 284
T2 744
50 045

33 564
21 902
13 870
8 503
5033

2 867
1 566
318
405
188

883
36
15

5

139 —

(2)
m;

446 681 611
409 417 956
373 464 839
338 915 921
305 857 095

274 372 126
244 540 436
216 436 861
190 126 506
165 658 402

143 068 807
122 382 869
103 612 024
86 751 727
71774 744

58 631 198
47 246 878
37 524 788
29 345 714
22 573 827

17 061 680
12 654 362
9 197 325
6 540 301
4 542 815

3 076 006
2 026 408
1295 523
801 814
479123

275 453
151 896
80 107
40 027
18 800

8 316
3 616
1576

536

mg‘) L1078

32 334 502
29 912 364
27 539 458
25 224 680
22 976 680

20 804 217
18715 999
16 720 645
14 826 299
13 040 127

11 368 497
9817 062
8 390 468
7092 225
5924 020

4 885 443
3974 697
3187 208
2516 524
1 954 457

1 491 437
1116 815
819 510
588 349
412 570

282 024
187 560
121 049
75 628
45 618

26 473
14735
7 843
3 955
1 875

837
367
161

55




20
21
22
23
24

25
26
27
28
29

30
31
32
33
34

64

819 598
816 658
813 556
810 313
806 977

803 577
800 145
TI6 716
793 300
789 965

786 665
783 379
780 051
776 685
773 251

796 T16
766 080
762 343
T58 467
754 411

750 171
T45 620
740 748
T35 502
729 826

723 706
717128
710 125
702 685
694 796

686 396
677 461
66T 945
657 822
647 076

635 647
623 462
610 477
596 679
582 064

566 597
550 242
533 050
515 064
496 312

A (2
MP

53 85T 262
53 795 522
53727 278
53 652 689
53 572 625

53 487 625
53 398 393
53 305 810
53 210 162
53 113 447

53 014 447
52 912 581
52 806 085
52 695 007
52 578 251

52 454 526
52 123 630
52185 361
52038 073
51 879 889

51710 289
51 523 698
51319 074
51 093 496
50 843 752

50 568 852
50 265 T64
49 936 623
49 579 503
49 192 942

48 T72 942
48 317 247
47 822 415
47 285 896
46 705 612

46 077 028
45 394 635
44 654 501
43 854 223
42 991 955

42 063 888
41 066 287
40 000 365
38 867 216
37 667 088

65
66

AL
M

476 753
456 346
435 114
413 157
390 518

367 256
343 407
319 122
294 594
269 982

245 419
221 053
197 068
173 731
151 295

130 023
110 162
91 983
75 499
60 950

48 336
37 601
28 660
21 367

15559

11 040
7623
5107
3310
2072

1246
718
398
209
103

45
20
10

53

36 395 759
35 048 884
33 626 347
32133 278
30571 180

28 942 888
27 249 616
25 501 075
23710 531
21 889 199

20047 011
18 195 225
16 348 342
14 528 041
12755 597

11053 845
9 445 088
7950 367
G 586 345
5364 212

4291 988
3 368 793
2 590 946
1949 173
1432 238

1 025 509
714 603
483 099
315 948
199 560

121 128
70 440
39 390
20 856
10 365

4 666
2116
1076

546




59

63

53 170 805
52 134 625
51 080 278
50010 022
48 925 986

47 830 170
46 724 445
45 610 579
44 490 214
43 364 922

42 236 126
41 105 246
39 973 498
38 842 106
37712 186

36 584 814
35 461 034
34 341 866
33 228 203
32120 997

31 021 080
29 929 280
28 846 388
27773 162
26 710 374

25 658 T30
24 618 915
23 591 597
22 577 431
21577 111

20 591 280
19 620 630
18 665 849
17727 634
16 806 653

15 903 562
15018 947
14153 316
14 307 191
12 481 161

11675 917
10 892 221
10 130 862
9 392 653
8 678 460

2)
Y

nt

2411 018 487
2 390 294 887
2 368 153 600
2 344 607 968
2 319 675 140

2 293 375 550
2 265 732 431
2236 771 915
2 206 522 060
2175 013 884

2 142 278 800
2 108 352 400
2 073 268 212
2 037 063 668
1 999 776 308

1 961 445 660
1 922 113 360
I 881 823 312
1 840 617 781
1798 543 953

L 755 647 190
1711 975 190
1 667 576 618
1 622 501 126
L 576 801 242

1 530 528 906
1 483 737 231
1 436 480 6GO3
[ 388 814 801
1 340 799 441

L 292 493 722
1 243 961 222
1195 267 381
1 146 480 191
1 097 668 198

1 048 901 306
1 000 247 508
951 772 161
903 543 030
855 633 278

808 123 894
761 102 134
714 659 217
668 890 247
623 896 075

m(,jn - 1072

123 671 640
123 257 168
122 792 201
122 274 197
121 700 742

121 069 552
120 378 474
119 625 501
118 808 755
117 926 526

116 977 209
115959 417
114 871 807
113 713 262
112482 779

101179 537
109 802 906
108 352 464
106 827 859
105 229 054

103 556 080
101 809 200
99 988 859
98 095 688
96 130 593

94 094 610
091 988 985
89 815 180
87 574 887
82 270 150

82903 170
80 476 545
77993 159
T5 4506 225
72869 189

70235 777
67 559 818
64 845 199
62 096 139
59 317373

56 514 319
53 693 013
50 859 995
48 022 319
45 187 (686




65
66
67
68
69

70
71
72
T

T4

75
76
7

79

80
81
82
83
84

85
86

88
89

90
91

93
94

95
96
97
98
99

100
101
102
103
104

105

m
¥

7989 161
7325 602
6 688 517
6 078 670
5496 869

4 944 034
4421 127
3 929 062
3468 608
3040 346

2 644 609
2 281 392
1 950 328
1 650 852
1 382 259

1143 726
934 286
752708
597 523
466 956

358 907
271 059
200 944
146 059
103 970

72 387
49 226
32 650
21 086
13 236

8 061
4 755
2708
1 484

780

393
190
88
38
13

4

142 —
nt®

579 780 926
536 649 591
494 GO1 994
453 742 218
414 179 736

376 034 128
339 430 638
304 493 988
271 341 271
240 078 160

210 793 607
183 552 295
158 391 461
135 331 801
114 381 547

95 537 472
78 T82 272
64 074 478
51 349 308
40 512 222

31 436 089
23 969 051
17 939 170
13 164 192

9 460 395

6 649 472
4 565 018
3056 638
1992713
1 262 654

776 232
462 162
265 679
146 941

77 988

39 665
19 365
9063
3 963
1419

441

42 364 316
39 560 779
36 785 638
34 048 033
31 357 784

28 7925 737
26 163 493
23 682 991
21 295 995
19013 788

16 846 731
14 803 633
12 891 410
11 115 816

9481 696

7993 014
6 652 598
5461 267
4 417 803
3518 325

2755 930
2121 232
1 602 662
1187 239

861 305

611 133
423 532
286 269
188 388
120 493

T4 769
44 932
26 070
14 552

7795

4 001
1971
930
410
148

46




(1)
My

TI7 749
795 796
793 662
791 385
788 985

786 485
783 885
T81 212
778 496
775 741

172921
770 100
T67 284
T64 446
T61 556

758 616
755 592
752 484
749 254
745 900

T492 4920
738 812
735 032
731 076
726 896

722 486
T17 840
T12 905
707 673
702 087

696 087
689 635
682 T04
675 279
667 346

658 936
650 099
640 797
630 937
(G20 388

6G0Y 042
596 848
H83 Th4
569 680
554 576

|
l
|
i

1(2)
Mu

55 056 292
55 015 279
54 968 331
54 915 960
54 858 360

54 795 860
54 728 260
54 656 089
54 580 041
54 500 146

54 415 546
54 328 095
54 237 983
54 144 329
54 046 069

53 943 169
53 834 305
53 719 309
53 596 569
53 465 763

53 326 563
53 178 635
53 019 875
52 849 767
52 665 847

52467 397
52 253 681
52 021 736
51770 GOO
51 496 886

51 196 886
50 867 834
50 507 422
50 113 897
49 685 515

49 222 965
48 728 093
48 197 879
47 625 999
47 003 608

46 322 848
45579 014
44 767 186
43 880 524
42 913 868

65
66
67
68
69

70

72
73
T4

75
76
77
78
79

80
81
82
84
85
836
87

89

90
9
92
93
94

95
96
97
98
99

100
101
102
103
104

105

ey
My

534 462
521 394
503 345
484 224
463 904

442 295
419 433
395 421
370 433
344 681

318 499
292 218
266 046
240 112
214 524

189 452
165 144
141 864
119 936

99 684

81 384
65 197
51 217
39 408
29 665

21 817
15 657
10 951
7451
4 929

3151
1 954
1171
673
371

194
97
47
22

8

4

=

1(2)
M

41 866 458
40739 970
39 530 687
39 230 459
36 828 379

35 315 749
33 692 547
31 943 683
30 139 559
28 233 911

26 270 261
24 272 905
22 257 661
20 234 809
18 213 357

16 207 597
14 238 649
12 329 689
10 509 665

8 808 497

7252 997
5860 915
4 644 655
3 605 463
2738 336

2 032 016
1471 456
1 038 504
713 004
475 278

307 033
192 121
116 170
67 366
37 463

19 768
9971
4 871
2 296

840

420
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