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Uber das Renditenproblem festverzinslicher Titel

Von H, Kreis, Winterthur

Die vorliegende Untersuchung stellt einen Versuch dar, das
Renditenproblem festverzinslicher Titel rein-algebraisch mit Hilfe
quadratischer Gleichungen, d. h. weder durch Rethenentwicklung
noch durch Tteration, zu lésen.

Unter Verwendung folgender Bezeichnungen

K = Kurswert des Titels in Prozenten;

po = Nominalzinsfuss pro Jahr in Prozenten;
n — Laufzeit in Jahren und

p = gesuchte Rendite in Prozenten,

besteht folgende Ndherungsformel

100 (1004 po—K)\* 100 (n—1)? 100 p,
(p— I{ > — _ﬁ_-....R p—pﬂ)( M'[lr_“-“)' (]’)

Diese Gleichung liefert fiir » = 1, 2 und co exakte Werte tir p.

I'ir m = 1 ergibt sich unmittelbar

100 (100 -+ py— K)

e
I'ir n = 2 lautet die Gleichung
100 (100 -} p,—K)\2 100 y 100 p,
(o MOWOL R} 10 10n)

oder, wenn zur Abkiirzung 1 - lg 5= gesetzt und umgeformt wird:
100pp\® 1 ) Po
o (100 — 100 — i —
(T K ) i 4 o (T K)’

i PO_T_ - {09~+p°
K K
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Hieraus folgt die selbstverstindliche Grundgleichung fiir K :

' 100
Ko Po

r r2 re

Betrachtet man schliesslich den Grenzfall n = co, so geht die
Bezmhung (1) in die Gleichung iiber

100 p,
7 — —— 20 T =i
(P pﬂ) (p I( ) '
100 p,

deren erste Wurzel P = p, formeller Natur, die zweite Wurzel p = - e

hingegen die bekannte Rendite der ewigen Rente von p, 9%, zum Kurs-
Wert J{ ist.

Zur Ableitung der erwiithnten Beziehung (1), gehen wir von der
D@finitionsgleichung aus

; K = pya;+ 10027, (2)
I der
%) = Barwert der ganzjihrigen n-maligen, nachschiissigen Iiinheits-
rente;
100 : i
V= = Abzinsungsfaktor ist.
100 4 p

Anderseits gilt die identische Gleichung
100 = pam + 100 ’Un, (2,)
%0 dass durch Subtraktion folgt

100—K = (p—po) az
Odey
p—py 1 )

100—[{ o G/;ﬂ ’

Die gesuchte Rendite p ist die Abszisse des Schnittpunktes der

Gel‘aden
P—"Po
o — b 10 4
Y= J00—xK @
Wit der Kurve n-ten Grades
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Wir bringen die Kurve €', zum Schnitt mit den Koordinatenachsen
und erhalten
1. tir die p-Achse y =0 :9* =0, also p = —100.
Bei Werten n = 2 ist somit die p-Achse eine Tangente der

Kurve C,,.

R 1
2. Ifiir die y-Achse p=0:9y = .

n
Schreibt man ferner die Gleichung (5) in der I'orm

1
i = r—1 _'I_ n—1 9
Al Tv
0

so erkennt man, dass wenn p - oo, also auch r-> co wird, die Gerade

P
s el g 6
y=r 100’ (6)

eine Asymptote der Kurve C, ist.

Diese Asymptote, die Tangente im Punkte P, = P, (-~ 100;0)

1
auf der p-Achse und der Schnittpunkt S, (();---- ) bestimmen eine
n

Hyperbel H,, die man als Ersatzkurve fiir die Kurve C, nehmen kann.

Diese Kurve H

, gehort einem Hyperbelnbiischel an, deren vier
Grundpunkte sind
1. P, und P, auf der p-Achse und

2. U, und U, im Unendlichen auf der Asymptote y = lg()"

Sind allgemein H —= 0 und H* =0 die Gleichungen von zwel
beliebigen Exemplaren des Hyperbelnbiischels, so lautet die Gleichung
desselben: oo aH* 0.

Als besondere Kegelschnitte wiithlen wir die beiden Geradenpaare
P, U, x PyU, und P Py x U, U,. Da P, U, = P,U, die Parallele zur
Asymptote durch den Punkt P, bzw. P, ist, lautet die Gleichung des
ersten Linienpaares .

p - 100
H=ly—" - ]=0
100
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Die zweite Hyperbel P, P, x U, U, setzt sich aus der p-Achse und der
Asymptoto U, U, zusammen, so dass ihre Gleichung folglich lautet

' P
H* = y(y— ) —o0.
y(y 100)

Die Gleichung des Hyperbelnbiischels ist also von der Form

p 100 )2 p
Y —— - — ) — ;{ = - =
(” wo )M\ T 00

. 1
Die Hyperbel H, geht durch den Schnittpunkt S, ( 0; ~~-—->, so dass
.M

Sich fiir den Paramoter A folgende Bestimmungsgleichung ergibt

(i | '"1>2_’1;<-;--“0> -

= (n—1)2.

&ISQ

Die gesuchte Hypergleichung heisst demnach

_ p—l— 100) A
O s 1t )= @

Durch Differentiation nach p der Gleichung (5) fiir €, und (7)
. n]
tiiy H, ergeben sich gleiche Richtungskoeffizienten, ~2~0(})—, fiir die
' n
T&noenten im Schnittpunkt S, der beiden Kurven mit der y-Achse.
N&Ghtraﬂhch stellt man also fost dass die beiden Kurven ), und I,
I drei Punkben sich beriihren.
~ Indem aus den Gleichungen (4) und (7) die Grosse y eliminiert,
Wird, resultiert die eingangs erwiihnte Beziehung

(M‘P_-ﬁpo 77+100> 1y P (p Po 1_9___> —0

100 — )¢ 100 100—K \ 100—K 100
Odep
100(100+p,—K) \*  100(n—1)? 100 p,
B e £ L T N e ey g .
( P R (-5

Allgemein liefert die aufgestellte Tormel (1) zu grosse Werte von
P bei K < 100 baw. zu kleine Werte bes I > 100. Digso [iigenschaft
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folgt aus der Tatsache, dass im allgemeinen die Gleichung (7) fiir ¥
zu grosse Werte ergibt.

. ; . 1 _—
Macht man in (7) die Substitution y = s 50 ergibt sich

(m—1)2p—2007r m—1)2—1
2 _| e
“+ 100 #2 : r2 =0 ®)

Weil definitionsgemiiss y = —— ist, liefert die positive Wurzel der
Gleichung (8) einen Néi,herungslwert fiir den Rentenbarwert ag;. Fir
n =1, 2 und oo ist dieser Wert exakt; fiir die itbrigen Werte von 7
1st das Ergebnis stets zu klein. Lassen wir nidmlich auf der linken
Seite der (ileichung (8) ¢ von 0 bis a;; variieren, so wiichst die linke
Seite von

(n—1)2—1
i M-——,‘r2 e
bis 1)2 200 1 1
ai—l—(nu)pw _..?:“ (b_)' o
d 10072 e
(n—1)%0%p
= ()t + g = (et

= af;ﬂv2+ (n—1)202 (1 —2") — (n—1)20?

=1k
= tre () -

das Gleichheitszeichen gilt fiir n =1, 2 und co, d. h. die positive
Wurzel der Gleichung (8) liegt, jene drei Fille ausgenommen, unter
dem wahren Wert von ag.

=0

= ’

In der Gleichung (3)

p—py o m—p _ 1

100—K "™ K100 T ay

1 : ;
ist der Niherungswert fiir —— demzufolge 1im allgemeinen zu gross,

n|
so dass der erhaltene Wert fiir p zu gross bzw. zu klein, je nachdem

K Kkleiner bzw. grosser als 100 ist.



Zahlenbeispiele fiir die Formel (8)

P n ay] nach Genauer Fehler
% Formel (8) Wert von a

3 15 11,876 11,938 0,062
4 15 11,026 11,118 0,092
) 15 10,258 10,380 0,122
3 20 14,757 14,877 0,120
b 20 12,246 12,462 0,216

Zahlenbeisprele fiir die Renditenformel (1)

Rendite p nach Genaue

K n Po TFormel (1) Rendite Fehler
% %o %
109,71 o 3 1,000 1 0,000
127,738 15 3 0,999 1 — 0,001
144,05 25 3 0,997 1 — 0,003
158,82 35 3 0,994 1 — 0,006
104,71 5 3 2,000 2 0,000
112,85 15 3 1,998 2 — 0,002
119,52 25 3 1,994 2 — 0,006
125,00 35 3 1,989 2 — 0,011
95,55 5 3 4,000 4 0,000
88,88 15 3 4,006 4 -+ 0,006
84,38 25 3 4,025 4 -+ 0,025
81,34 35 3 4,063 4 -+ 0,063
91,34 5 3 5,003 5 -+ 0,003
79,24 15 3 5,028 5 -+ 0,028
71,81 25 3 5,066 5 -+ 0,066
67,25 35 3 5,101 9] -+ 0,101
87,36 3 6,005 6 -+ 0,005
70,86 15 3 6,059 6 -+ 0,059
61,65 25 3 6,134 6 + 0,134
56,51 35 3 6,194 6 + 0,194
83,59 5 3 7,012 7 -+ 0,012
63,37 15 3 - 7,096 7 -+ 0,096
53,39 25 3 7,229 7 4+ 0,229
48,21 35 3 7,315 7 -+ 0,315
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Die beigegebene schematische Zeichnung gestattet die Veran-
schaulichung des entwickelten Verfahrens. In der Gleichung des
Strahlenbiischels um den Punlkt Ty(p, ; 0)

y = P—Po

100 -K’ g

variiert der Parameter K zwischen 0 und 100 4 np,.

i I -::.O ist der Strahl parallel zur Asymptote y — lﬁ(j’ d.h. p ist
unendlich gross;

tir /C << 100, steigh der Strahl: p ist grisser als p,, aber zu gross;

fiir K =100, ist der Strahl parallel zur y-Achse: p ist gleich py;

fiir & > 100, fallt der Strahl: p ist kleiner als p,, aber zu klein;

fiir K == 100 +np, 1st die Rendite p gleich 0.

Y K=100

K<100

K>100

P=1pD F

p zu klein
p genau
b genau
p zu gross



	Über das Renditenproblem festverzinslicher Titel

