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Über zusammengesetzte Poisson-Prozesse
und ihre Anwendungen in der Unfallversicherung

Von .MflrJm Ho/ma/m, Zürich

Einleitung

Die Theorie der stochastischen Prozesse gehört zu jenen Gebieten
ter Mathematik, welche ihre Entwicklung, besonders in den Anfängen,^ ®mem grossen Teil den Anwendungen verdanken. Viele Erschei-
fangen aus dem Versicherungswesen, der Physik und Biologie können
* Systeme dargestellt werden, die sich im Laufe der Zeit nach be-
stimmten Wahrscheinlichkeitsgesetzen verändern. Das Modell, welches

an sich vom Ablauf eines solchen Geschehens macht, charakterisiert
einen stochastischen Prozess.

bür die Versicherungsmathematik kommen vor allem Prozesse in
e rächt, bei denen eine Variable, die man als Funktion eines kon-

hnuierlichen Zeitparameters aufzufassen hat, in zufälligen Zeitpunkten
ntn endliche Beträge ändert, sogenannte unstetige stochastische Pro-
-esse. Ein wichtiges und zugleich das erste Beispiel eines solchen Modells
stellt die kollektive Bisikotheorie dar, wie sie von F. Lwrad&erg zur ratio-
trollen Behandlung von Risikoproblemen der Lebensversicherung auf-
gebaut wurde. PheheseK und seine Schüler zeigten, wie auch die Mathe-
eratik der Sachversicherung auf einem stochastischen Modell begründet
beulen kann. Die meisten dieser Untersuchungen sind vor allem theo-
tetischer Natur und bedürfen noch ausgedehnter statistischer Prüfung,
evor sie für die Praxis von Bedeutung werden können.

In der vorliegenden Arbeit beschäftigte uns die Frage, ob in der
ttdividuellen Unfallversicherung die Voraussetzungen für eine mathe-
ttiatische Behandlung versicherungstechnischer Probleme gegeben sind,
oder eventuell geschaffen werden können. Wir haben zu diesem Zweck
tie verschiedenen Faktoren, welche das Unfallrisiko beeinflussen,
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untersucht und nach dem Modell gefragt, das zur Darstellung der An-

zahl Unfallereignisse und des Gesamtsehadens zu verwenden ist. Die

mathematischen Grundlagen für die statistischen Untersuchungen
wurden in enger Verbindung mit den praktischen Ergebnissen out-

wickelt. Indessen haben wir, zur Erreichung einer besseren Übersicht-

lichkeit, die Arbeit in einen ersten, mathematischen und einen zweiten,

statistischen Teil gegliedert. Dieser kann im wesentlichen ohne Kennt-
nis des ersten Teils verstanden werden.

In einer grundlegenden Arbeit über die Mathematik der Unfall-

Versicherung zeigte /la/wm/icM, dass in der Unfallstatistik einein spc-

ziehen stochastischen Prozess besondere Bedeutung zukommt: dem

zusammengesetzten Poisson-Prozess. Dieser ist im wesentlichen eine

Verallgemeinerung des Poissonschen Gesetzes für die Wahrscheinlich-
keit seltener Ereignisse. Auch die Dissertation von 0. LwntZberjf hat die

mathematische Behandlung von Unfallstatistiken zum Thema; sie

enthält eine eingehende Untersuchung über elementare stochastische
Prozesse und deren Anwendungen. Die praktischen Ergebnisse ge-

statten es indessen nicht, die von uns gestellte Frage eindeutig zu he-

antworten.
Besonders interessant in Untersuchungen solcher Art ist, die Frage

nach der Verteilung der Anzahl Unfälle innerhalb eines gegebenen Per-
sonenbestandes. Sie wurde erstmals von den Statistikern Greenwood

und Ytt/e systematisch studiert. Die beiden Autoren stellten drei Hy po-
thesen über das Zustandekommen von Unfällen auf, die sie mathoma-
tisch formulierten und die daraus abgeleiteten Wahrscheinlichkeitsver-
teilungen mit empirischen Daten von Arbeitsunfällen aus der englischen
Industrie verglichen. Eines dieser Modelle führte zu einem Wahr-
scheinlichkeitsgesetz, das auch in andern Zusammenhängen wichtig
wurde, der sogenannten negativen Binomialverteilung. Im Falle von
Greenwood und Y«fe ist sie als zusammengesetzte Poisson-Verteilung
zu interpretieren. Sie entspricht der Annahme eines Personenbestandes,
den man sich zusammengesetzt denkt aus Teilbeständen mit konstan-
tem Unfallrisiko, das indessen von einem Teilbestand zum andern
variiert. Da die untersuchten Bestände bereits so gruppiert waren, dass

in ihnen für alle Personen gleiches äusseres Unfallrisiko bestand, muss
die Verschiedenheit der Teilbestände als durch subjektive Ursachen

bedingt angesehen werden. Greenwood und Yn/e sprachen daher von
verschiedener individueller Unfallneigung. Durch ähnliche, jedoch
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nie t mathematische Untersuchungen an einem deutschen Versicherten-
estancl wurde der Psychologe iLMar&e zur Bildung von Persönlich-

te.itsgefahrenklassen veranlasst, ein den Teilbeständen bei ßrecmooocZ
und YttZc entsprechender Begriff.

Bs stellte sich heraus, dass dem Modell der individuell verschie-
enen Unfallneigungen gegenüber andern Modellen der Vorzug zu

S^ben ist. Die Problematik dieser theoretischen Betrachtungsweise
s eht indessen darin, dass versucht wird, eine komplizierte psycho-
gische Erscheinung durch das verhältnismässig einfache mathema-

'ische Schema des zusammengesetzten Poisson-Prozesses darzustellen.
haben gezeigt, dass dieses Schema im Hinblick auf die Bedürfnisse

t ei Versicherung angewendet werden darf. Dabei wurden wir auf
tie Betrachtung von zweidimensionalen zusammengesetzten Poisson-
Verteilungen geführt.

Neben der Anzahl Unfälle tritt in der Unfallversicherung auch die
adenhölio als stochastische Grösse auf. Um sie für die Berech-

Hungen berücksichtigen zu können, muss der zusammengesetzte Pois-
son-Prozoss verallgemeinert werden ; diese Verallgemeinerung eut-
spricht der Khintchineschen Erweiterung der gewöhnlichen Poisson-
Verteilung.o

Der erste Teil unserer Arbeit enthält die mathematischen Über-
gungen, auf denen sich die statistischen Untersuchungen aufbauen,

merst zeigen wir, wie der zweidimensionale zusammengesetzte Pois-
son-Prozoss aus einer einfachen Annahme über die betrachteten Ereig-
jüsse abgeleitet werden kann. Da, von einem andern Ausgangspunkt

dieser Prozess schon von CowsaeZ untersucht wurde, führen wir
mu einige wenige Eigenschaften desselben an. Wir geben sodann zwei
üeue zweidimensionale zusammengesetzte Poisson-Verteilungen an, die
man als negativ-binomiale Korrelationsfunktionen bezeichnen kann.

miesslich befassen wir uns noch mit eindimensionalen zusammen-
gesetzten Poisson-Verteilungen. Wir leiten eine Schar von Verteilungen

er, die sich in verschiedener Hinsicht gut eignen zur Anwendung auf
empirische Daten. In dieser Schar sind einige bekannte zusammen-
gesetzte Poisson-Verteilungen als Spezialfälle enthalten, so vor allem

ie negative Binomialverteilung. Zum Schluss erweitern wir die zu-
s&Wmengesetzte Poisson-Verteilung und zeigen, unter welchen Vor-
Aussetzungen die erweiterte Verteilung gegen die NormalVerteilung
»Uebt.
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Im zweiten Teil grenzen wir zuerst die Voraussetzungen für eine

mathematisch-statistische Untersuchung der Unfälle innerhalb eines

geschlossenen Personenbestandes ab. Es stand uns eine Unfall-

Statistik über die Betriebs- und Nichtbetriebsunfälle während der Jahre

1944 bis 1952 von 1190 Arbeitern der städtischen Verkehrsbetriebe

Zürich zur Verfügung. Wir prüfen allgemein die Anwendbarkeit der

zusammengesetzten Poisson-Verteilung auf die Verteilungen der Anzahl

Betriebs- und Nichtbetriebsunfälle und bestimmen auf Grund der

positiven Ergebnisse die speziellen Verteilungen aus der im ersten Toil

abgeleiteten Schar zur Darstellung dieser empirischen Verteilungen-
Zudem zeigen wir, class die gemeinsame Verteilung der Betriebs- und

Nichtbetriebsunfälle durch eine zweidimensionale Korrelationsfunktion
wiedergegeben werden kann. Am Beispiel der Betriebsunfälle ver-

gleichen wir die theoretische und praktische Verteilung der summaren
Schadenhöhe je Person während cler ganzen Beobachtungsperiode. Wir

geben ferner an, wie die Verteilungsfunktion des Gesamtschadens für
den ganzen Bestand berechnet werden kann.

Die Ergebnisse, welche wir auf Gruncl der Untersuchungen an

unserem verhältnismässig kleinen Bestand erhalten, berechtigen zur

Schlussfolgerung, dass es möglich ist, die individuelle Unfallversiehe-

rung auf mathematische Grundlagen aufzubauen. Wir verzichten in-
dessen auf die Behandlung cler einzelnen versicherungsmathematischen
Probleme, sondern verweisen, was die Berechnung der Nettoprämie
anbetrifft, auf die Arbeit von Dat&owrZim und bemerken, class mit
Hilfe der Verteilungsfunktion des Gesamtschadens die interessierenden

risikotheoretischen Fragen nach bekannten Überlegungen gelöst werden

können.
Es bleibt mir noch die angenehme Pflicht, meinem verehrten

Lehrer, Horm Prof. Dr. IF. S'axer, den besten Dank auszusprechen für
die Anregung zu dieser Arbeit und für die Unterstützung und Förde-

rung, die er ihr während ihres Entstehens zuteil werden liess. Ebenso
danke ich Herrn BD Dr. P. tVoZ/i sowie dem städtischen Strassenver-
kehrsamt Zürich für die Hilfe bei der Auffindung und Zusammen-

Stellung des statistischen Materials.
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I. Teil

1. Ein spezieller elementarer stochastischer Prozess

Einen mehrdimensionalen unstetigen stoehastisch-definiten Prozess
^zeichnen wir als elementar, wenn bei jeder Änderung der Variablen

Jode ihrer Komponenten nur um die Einheit (+1) zunehmen kann.
In den Anwendungen wird ein solcher Prozess dargestellt durch

mehrere verschiedenartige Eolgen von Ereignissen, die in einem go-
Wissen Intervall zu beliebigen Zeitpunkten eintreffen können.

Wir befassen uns in den nachfolgenden Untersuchungen mit einem
lozess, bei dem zwei Eolgen von Ereignissen betrachtet werden mit

dot Eigenschaft, dass sowohl die Ereignisse der gleichen Eolgo, als
mich diejenigen, weiche zu verschiedenen Eolgen gehören, voneinander
®tochastisch abhängen können. Die betreffenden Ereignisse unter-
Werfen wir der Bedingung:
(II) In jedem endlichen Intervall sind die Zeitpunkte des Eintreffens

der Ereignisse rein zufallsmässig verteilt.
Uni diese Bedingung analytisch zu formulieren, führen wir die

eiden Variablen M(0) und jV(^) ein, welche die Anzahl der Ereignisse
erster bzw. zweiter Art bezeichnen, die im Intervall 0 bis # eintreffen.
Es sei:

Af(0) W(0) 0 und -M(s') m' iV(f')

Per Prozess kann anstatt durch die Variablen M($) und JV($)
durch die Zeitpunkte ihrer Sprünge: Sk bzw. 2k gekennzeichnet wer-
den, die wir so numerieren, dass:

0 N, Sk < < : ; s' < i?,~ ~ ~~ ~
(1.1)

0 • V, - 7o • • : T„, ^ ^ 1?.

Die Bedingung (71) bedeutet, dass alle Ereignisfolgen, die gemäss
' '^) eintreffen, gleich wahrscheinlich sind.

In einfacher Weise lässt sich die bedingte Wahrscheinlichkeit für
das Eintreffen von m Ereignissen der ersten Art bis zur Zeit s berechnen
Unter der Voraussetzung: M(s') m', wobei s < s' und daher m <g m'
*st. Wir nennen sie inverse Übergangswahrscheinlichkeit. Es ist die
Wahrscheinlichkeit, dass von m' unabhängigen Variablen £k, die alle

gleich verteilt sind über dem Intervall (0,s'), m Variable *;k s sind.
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Daher wird
\wi / ^ \ m'-m

P{M(s) m/M(s') m'} ()(-,) (l
Mit den Definitionen

P(m;s/m';s') P{M(s) m/M(s') m'}

,s' / \ m,/ \ s / \ .5

erhalten wir / s \ „P(m;s/m'; s') m j (1.2 a)

und ganz analog / i \ „, \
P(»;i/«'U') B,«;y. (1.2 b)

Aus (P) folgt zudem die Unabhängigkeit der inversen Übergangswahr-
scheinlichkeiten für die Variablen M und iV

P(M(s) m,iV(i) n/M(s') w'} ß,„,(wi;

oder, wenn wir die Bezeichnung

P(m,n;s,</m',«';s',i') P{M(s) m,iV(<) — w'}

einführen :

P(m,n;s,t/m',ra';s'/) B„,(m;---) (1.8)

Um den Ausdruck für die absolute Wahrscheinlichkeitsfunktion
des Prozesses

p{M(s) m,iV(t) n}

zu finden, betrachten wir die Wahrscheinlichkeit des Ereignisses

6'j ^ /Sj <C Sj -f~ ^2 ^ S2 ^2 -|- É&>2 j • • • > 5^/

*1 ^ ï'i < h + dy '2 < ï'2 < «2 + dy • •. :d ï'c < y,' +
unter der Bedingung ^und unter Beachtung der Relationen:

(««.«i + &<) O («*,«* + ds,,) 0

(<.,<. + dt.) n (yt,, + dy 0

0 < Sj < .Sg < < s„, < s

0 < «i < t., < < < f.

(' =/= fc,
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Auf Grund der Natur des betrachteten Prozesses ist sie unab-
ängig von den Werten und ^ (i 1, m'; y 1, «') und

deshalb die Gestalt

Ä(m',w';s',<') d.Vj

Daraus ergibt sich sofort :

D(w ,n';s',f) Ä(m',w';s',t') J J J J <^
0<si <... <C s '<C s' 0<i J <C... < *C /'

p/W ,n ; s'G') n';s', /') (1.4)
m

'
w

Allgemein gilt
OO CO

P(m,n;s,£) 2 2
m'=m rt'=n

Setzen wir (1.3) und (1.4) in diese Beziehung ein, so ergibt sieb:

oo oo „/m' ^/n'

2 2 ''(>«',»';«'/) „m'=«i <m. ' -w.

»! »!'è,à + '•"+ '
j! ÏT e-5)

und speziell
oo oo /g' A&

P(0,0;.v,i) 2 2 ÄÖ'.^-s'.0 - •,
* - - • (1 • 6)

;=0/c 0 /'
Wegen oo oo 4'A-' oo oo

22%/cWO ,,=22W) I
j'=oft=o y! fc: ^-=o/c=o

darf die Eeihe (1. 6) im Bereich (0 < s ^ s', 0 < < ^ £') beliebig oft
wach s und < differenziert werden. Setzt man

3+"P(0,0;s,t)

»gm: * -war -

^•'"(0,0;,= 2 2 ^(yVc;s',0(~l)"'^"
,6ojtTo (y-m)! (/c — w)

oo oo (g'-«)'"» (f -£)*"»-£»'OHrlpA 1_L.

pi'")(o,o;.s,j) (-ir2 2^+^+»;«',o ("'7-(1-7)
4=o Ü=o 1 V
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Ans (1.5) und (1.7) erhalten wir

P(m,n;s,t) (—1)+"- P<"'D(0,0;s,f). (1-8)
m! n!

Speziell folgt für P(0,0;s,f)

(_!)".+« p(m,«)(0,0;s,f) • 0

in (0< s W s',0< f • <'). Zudem muss

lim Um P(0,0;.s',<) 1

8 r 0 /TO

sein, da M(0) 0 und jV(0) 0 vorausgesetzt wurde.

Von einer Funktion /(s,<), welche in der Viertelsebene

(0<s<oo,0< <<oo) den Bedingungen genügt

(ßa) (— !)»"+» /<-»>(s,i) ;> 0

(&a) lim lim /(s,f) 1

S t 0 MO

sagen wir, sie gehöre zur Klasse Fj: /(«,<) e Fg. Da die Darstellung

(1.8) für jedes beliebige endliche # > 0 und damit für alle positiven s

und 1' gilt, so gehört P(0,0;s,i) zu Fg.

Die absolute Wahrscheinlichkeitsfunktion des betrachteten Pro-

zesses ist also gegeben durch die Funktion P(0,0;s,<) e Fj, welche den

Prozess vollständig bestimmt. Wir nennen sie erzeugende Funktion,
ein Name, der sich auch dadurch rechtfertigt, dass sie im wesentlichen
die momenterzeugende Funktion für die faktoriellen Momente von
P(m,w;s,f) darstellt. (Vgl. Abschnitt 2).

Eine Funktion /(s,<) e Fg hat die Eigenschaft, dass sie für s> 0,
<>0 in der Form eines Laplace-Stieltjesschen Integrales dargestellt
werden kann

CO CO

/(S,0 J Je-*"*' fiP/(M) <P7(M) d^?7(M)
0 0

in dem f7(/c,A) eine zweidimensionale Verteilungsfunktion mit (7(0,0) 0

bezeichnet.

Dies ist eine Verallgemeinerung des folgenden Satzes von Widder-
Bernstein über vollmonotone Funktionen:
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^ einer auf dem Intervall 0 < f < oo vollmonotonen Funktion
)> d. h. einer Funktion mit der Eigenschaft

(«0 (-1)7""(<) 7 0 für *>0
bibt es eine nicht-fallende, beschränkte Funktion 17(A) mit 17(0) 0
so, dass /(*) für i > 0 in der Form

CO

/(/) JV'dl7(A)
0

dargestellt werden kann. Gilt zudem

(&i) lim /(l) 1

so ist £7(A) eine Verteilungsfunktion.
l'iir eine vollmonotone Funktion auf 1 > 0 mit der Eigenschaft

(°i) schreiben wir /(«) e F,.
Der Beweis des Satzes von Widder-Bernstein, wie er von Dubour-

lou (4a) oder Feller (5) gegeben wurde, kann ohne Schwierigkeit auf
Zweidimensionale übertragen werden. Wir führen diese Verall-

gemeinerung deshalb hier nicht durch.

Wir erhalten also für die Funktion P(0,0;s,f) die Darstellung

CO CO

P(0,0;s,f) /' / <T*^' cP7(/c,A) (1.9)
0 0

^üs der Formel (1.8) folgt daher für die absolute Wahrscheinlichkeits-
Funktion :

CO CO

P(m,»;«,*) f f —f- dP(/i,A). (1.10)
/ / m n

o o

Der hier betrachtete Prozess kann auf Grund der Darstellung
(1-10) als ein mit Hilfe der Verteilungsfunktion P(/c,A) zusammen-
besetzter zweidimensionaler Poisson-Prozess aufgefasst werden. Dieser

ozess wurde von Consael (2 a) untersucht. Wir beschränken uns des-
auf die Angabe einiger Eigenschaften, welche wir für die weiteren

utoisuchungon brauchen werden.
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2. Eigenschaften des zusammengesetzten Poisson-Prozesses

aj Die Momente von P(m,ra;s,t)

Die faktoriellen Momente einer zweidimensionalen Wahrschein-

lichkeitsfunktion sind definiert durch

V] 2 w(w—1) (m-j -h 1) »(«-1) • • (n-/c +1) P(to,«;s,0
m=?n=A;

Sie besitzen die faktorielle momenterzeugende Punktion

CO CO

2 2 (1 — m)'" (1 — u)" P(w,n;,s,f)
m=0»=0 .v

(0 < « < 1,0 < -r < 1) '

das heisst
^ ^ ^

did dt/'"
— -1)'

Durch eine einfache Rechnung ergibt sich

</('«,u;s,f) P(0,0;.SM,fr).

Palis die (j + /c)-te Ableitung von P(0,0;s,f) im Nullpunkt existiert,

erhalt man ^ (_ 1)'+" V t* pW-«(0,0;0,0).

Das (y /c)-te Nullpunktsmoment von Z7(fe,A)

CO CO

/ |/PA"dP(/c,A)
0 0

berechnet sich, unter Voraussetzung der Existenz, aus

«** (— 1)'** P"'"(0,0;0,0). (2.1)

Also gilt die Momentenrelation

Wir führen die Momente bis zur zweiten Ordnung explizite auf:

m(s) Je s w(<) Äi

<4(«) <>* s« + /es <r*(f) oj P + Äf (2 •
2 »)
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I ür den Korrelationskoeffizienten

rW)
°m(«) V,Ü)

®rgibt sich

r(*.0 .7 (2.2b)
[/(Oft -f- fcs) (cr^ B -f- AI)

6y Bedingte Verteilungen

Die direkte Übergangswahrscheinlichkeit P(m',w';s'.,'/»i,«is,<) be-
rechnen wir aus der Beziehung

,n w;.s,l) P(m,»;*,<) P(m,»;s,</ra',w';s',l') P

Setzen wir die Formel (1.3) für die inverse Übergangswahrscheinlich-
so ergibt sich

m,»»,') - a,,(»d.)^{«u') ' <">

^"r Berechnung der bedingten Verteilungsfunktion

ü(fc,A/m,»;s,f) P{A < /c,/l < A/M(s) m,V(<) w}

benützen wir die Verteilung

^(«) m,^(() <fc + f?M</l<^ + fW} e"^'~--y^ü(M).
Aus ihr folgt

m n

nU«;«',,«
' / m! w!

Ü(M/m,w;s,f) " " (2.4)
P(m,n;s,l)

Schliesslich erhalten wir für die bedingte Walirscheinlichkeits-
Auktion von M und iV unter der Voraussetzung A /c,/l A

PK«,M) ^
(2 5)

m! »! A(V/fc,A) Al.
^ '

35
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Sind die Werte der Variablen Ii und /l. gegebene feste Grössen:

fr bzw. A, so treffen die Ereignisse unabhängig voneinander nach einem

Poissonschen Gesetz ein. /c bzw. A sind die spezifischen Mittelwerte der

entsprechenden Art von Ereignissen.

Eine statistische Gesamtheit, in welcher die Ereignisse gemäss dem

Gesetz (2.5) eintreffen, bezeichnen wir als homogen, da für alle Indi-

viduen der Gesamtheit die spezifischen Mittelwerte & und A theoretisch

die gleichen sind. Im allgemeinen Fall, wo 10 und /I. entsprechend der

Verteilungsfunktion f/(fe,A) über die Gesamtheit verteilt sind (und so-

mit die Wahrscheinlichkeitsfunktion (1.10) gilt) betrachten wir die

Gesamtheit als inhomogen in dem Sinne, dass jedem Individuum je
ein gewisser Wert von A" und /I zugeschrieben werden kann: fr bzw. A.

die wir als Suszeptibilitäten des Individuums für die Ereignisse erster

bzw. zweiter Art bezeichnen. rff/(fr,A) ist die Wahrscheinlichkeit dafür,
dass die Suszeptibilitäten eines beliebig aus der Gesamtheit gegriffenen
Individuums im Bereich /J(fr W Ii </c + d/c,A :G /l < A + r/A) liegen.

Statistisch liefert dieser Ausdruck den Bruchteil der Gesamtheit,

dessen Suszeptibilitäten in II liegen. t/(fc,A) gibt an, wie man sich die

Gesamtheit im Hinblick auf die zwei betrachteten Ereignisse zusammen-

gesetzt zu denken hat; wir nennen sie die Strukturfunktion.

cJ Stockas tische Abhängigkeit zwischen AI und iV

Die absolute Wahrscheinlichkeitsfunktion P(m,'w;.s,f), welche defi-

niert wurde als die Wahrscheinlichkeit, dass m Ereignisse der ersten

Art im Intervall 0 bis .s-, und « Ereignisse der zweiten Art im Intervall 0

bis f eintreffen, stellt allgemein die Wahrscheinlichkeit für das Eintreffen
von m und » Ereignissen in beliebigen Intervallen der Länge s bzw. <

dar, d. h. sie ist unabhängig vom Anfangspunkt der Intervalle (was

in der Bezeichnung antizipiert wurde).

Um dies zu zeigen, berechnen wir die Wahrscheinlichkeit
PjAI(<r + s) — M(u) »t,iV(T 4- /) — iY(r) — «}, wobei M(ff) y und

1V(t) - fr sei.

P{M(ff + s)—M(ff) m,jV(T + i)—N(t) »}
OO OO

22 -|- wi.fc + «;ff + s,t + /) P(y + wi.fr «;cr + s,r + <)

?' 0 'c 0



Setzt man (1.3) und (1.8) ein, so erhält man:

/? + m\ //c + rA/ er F r * ");r *
m

I If.
« \

\ A Her W + F/
' i 1 1

V t + < /

/ 5^ oo _y oo _/c*
-, 2 (-I)''' -, 2 (-1)* P"'+"^+")(0,0;cT-M,r-M),
" • ?=o 1 «-o «!

n"' Jfi cX)^ ^-1)'"+" - V (_1)# ptf+«M)(0 0;«y + S,<)
m w /rj, j

^ '

- (-1)"'+» p(m,«)(o 0-5 e P(ot,M;.S',0-
w! w!

Ans diesem Ergebnis folgt, class die bedingte Strukturfunktion
•t) nur abhängt von den Anzahlen w und » und der Länge der

entsprechenden Intervalle s bzw. <, und unabhängig ist davon, wo
ese Intervalle liegen. Die stochastische Abhängigkeit zwischen M

""d iV kann deshalb nicht durch eine tatsächliche gegenseitige Be-
einfhissung der Ereignisse erklärt werden, sondern beruht darauf,

<ys die Anzahl der eingetroffenen Ereignisse Aufschluss über die

jj
A' unci /I der Teilgesamtheit erteilt, ans welcher das

^
rachtete Individuum stammt. Eine ähnliche Überlegung gilt auch
die Anzahlen der Ereignisse gleicher Art in zwei verschiedenen

< Punkten Zeitintervallen.

</i Unabhängigkeit

Notwendig und hinreichend dafür, dass die beiden Variablen M($)
Und iV($) gowie auch II und /I stochastisch unabhängig sind von-
"lancier, ist die Beziehung

P(0,0;s,f) =Pi(0;s)Pa(0;f)
*°*>ei Pj(0;g) e Fj und 11,(01) e Fj-

(2.6)
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Nach dem Satz von Widder-Bernstein kann die Relation (2.6) m

folgender Gestalt geschrieben werden

CO CO CO CO

J jY'"P7,(fc) Je"*'dü^A)
0 0 0 0

wobei Z7i(/c) und Verteilungsfunktionen sind mit t^(0) 0-

Daraus folgt sofort ^
Wegen (1.8) erhalten wir aus (2.6)

P(w,«;»,<) (-1)'"+"
'

,-If»(0;s)lf'(();t) P,(•/»;») Pa(»;*)>
m n

P((m;.s) undPg(n;<) sind Wahrscheinlichkeitsfunktionen von eindimen-

sionalen zusammengesetzten Poisson-Verteilungen.
Umgekehrt folgt aus der Unabhängigkeit von Ii und /I sofort die-

jenige von M und W und damit die Relation (2.6).
Der eindimensionale zusammengesetzte Poisson-Prozess wurde

von Dubourdieu (4) und O.Lundberg (8) untersucht. Die meisten Eigeß'
Schäften, welche wir im folgenden benützen werden, ergeben sich aus

den entsprechenden Eigenschaften des zweidimensionalen Prozesses

durch Spezialisierung.

e^) Funktionelle Abhängigkeit zwischen /v und /I

Von einer erzeugenden Funktion einer eindimensionalen zusammen-

gesetzten Poisson-Verteilung ausgehend, kann auf einfache Weise eine

spezielle Klasse von zweidimensionalen Verteilungen gebildet werden-

Falls 12(0:14) e Fp dann gilt R(0;as -f- fei) e Up was man leicht aus

der (m-(-Tj)-ten Ableitung von 12 nach s bzw. 2 ersieht. 72(0;as+ &')

kann deshalb als erzeugende Funktion P(0,0;s,2) einer zweidimensio-

nalen zusammengesetzten Poisson-Verteilung aufgefasst werden. Für

die absolute Wahrscheinlichkeitsfunktion des zweidimensionalen Pro-

zesses ergibt sich nach (1.8)

m f d"'+"/2(0;a)
P(m,n;s,Q (-1)'"+" '

m! n! dit"*""

(as)'" (/k)" (m + ri)
P(m,w;s,2) - „ P(m + »;a» + M). (2.7)

m! rt! («s -|- M) '
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Unter der Voraussetzung, class die Momente zweiter Ordnung
existieren, wird der Korrelationskoeffizient von K und /I nach (2.1)

___
"fcA

__
(B"(0;0)-B'»(0;0))o6

[ /•/"(();()) • yf'VOjO) u |. /)'"(();())- - /»"-(();()) b

^ und /I sind linear abhängig voneinander und variieren im gleichen
Sinne. Für den Korrelationskoeffizienten von M und W ergibt sich aus
(2.2b)

r(s,f) < 1.

Da für P(0;w) die Darstellung gilt

oo

Ji (();«) | e~'"' d F(/<),
0

so ist
oo

P(0,0;s,f) dF(,u).
0

Anderseits giltO " OO oo

P(0,0;s,i) | | dü(M).
0 0

Also folgt aus der Eindeutigkeit der Darstellung von P(0,0;s,i) als

aplace-Stieltjessches Integral
K

_
M

a

** unabhängig von der Existenz clor Momente gilt.

Die Randverteilungen

OO OO

P|(w;s) 2 P(m,«;s,l) sowie Pa(w$ 2
)i=0 '»=0

errechnen sich ohne Schwierigkeit zu:

Pj(m;s) P(wi;as),
(2.8)

Pa(«;t) P(w;bi).
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3. Beispiele von zusammengesetzten Poisson-Verteilungen

"Das bekannteste Beispiel einer eindimensionalen zusammen-

gesetzten Poisson-Verteilung wurde von Greenwood und Yulo (ß) und»

in einem anderen Zusammenhang, von Pölya gefunden, und wird in der

Literatur meist negative Binomialverteilung, gelegentlich auch Pölya-

Verteilung genannt.

Die erzeugende Punktion
<7/4

P(0;<)
/' 1 v'
(t+w) ^

ist die Laplace-Transformierte tier Strukturfunktion

rU ^ U / P(tj/6)

mit den Momenten - „ m
/ '/ • Oa 3&- (8-^

Die Wahrscheiniichkeitsfunktion besitzt die einfache Gestalt

rw i )*'( M
Aus (2.2a) erhält man für ihre Momente:

m (//,

ff' r//(h/ + 1)

(3.5)

Wir geben im folgenden einige Erweiterungen auf zweidimensionale

Wahrscheinlichkeitsverteilungen mit negativ-binomialen Randvertei-
lungen an.

la) In Abschnitt 2e) haben wir ein Verfahren zur Bildung von
zweidimensionalen Verteilungen betrachtet. Wir wenden es an auf die

negative Binomialverteilung, und setzen daher

BIO;«) G,,)° «><).

Dann ist / 1

P(0,0;s,Z)
1 + as V
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Aus (1.8) folgt sofort

PK«,()= <"»>"' "« + » + *> I ' I""""
m! w! i» i 1 us • hl|

' '

SandVerteilungen sind nach ('2.8) und (8.4) gegeben durch:

as Y" /\c-|-m)

(3.7)

P,(m;s) : | Ii |' ' 1+a.s/ \l+«.s/ r(c)m!

Z',(«;!)
6t \" r(c + «)

1 phlV l 1 -/'/ ' /'(')«!
1 b) Wir verallgemeinern nun (3.6) auf eine Verteilung, der wir

Randverteilungen vorschreiben:

V'C- '"
\ 1 -|- as / \ 1 + as / /"(p/a)w!

r,M —-W "-T dvvp
\ I + hl / \ I. + hl / / Y//h) '»

Dabei gehen wir aus von der erzeugenden Funktion

P(0,0»,f) f * \ ' V (3.9)
\ 1 —j— cts / \ 1 -f- &£ / \ 1 -f- ßs -f- /

mit c <; ^ M. Für die ßandverteilungen ergeben sich daraus
\ a h /die erzeugenden Funktionen:

/• 1 X p

Z\(0;s)
.1 + as,

Sie führen auf die Verteilungen (3.8). Nach (1.8) ergibt sich die abso-
Ute Wahrscheinlichkeitsfunktion aus (3.9) im wesentlichen durch Bil-
ung der (m + w)-ten Ableitung. Wir wenden die Leibnizsche Formel
ui die mehrfache Ableitung eines Produktes auf die Ableitungen nach

"® und 1 an und erhalten
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-
^ " r\ 1 + as y

' Vi + asy

I > fo/ Ei V'-'

V i + w;
'

V i + 6'

(as)' (&<)'" P(c + 7 + fc)

j fc P(c)

P(p/a — c -h m — ?')

il

P(q/fr— c + w—• '*0

/ V; I, ,,\ /,., _ /(A

J \C+7+*

1 + as "h M

Nach einigen Umformungen ergibt sich daraus

/ as V / 6f \" JL /' t + as V / 1 + *1-

mit den Koeffizienten
^

__
// + /c\ P(e + ?' + k) r(p/a—c + to — 7) P(g/& — c + w — fe)

\ i / -/ '(c) +/c) P(p/a--cj (w —y) /"(g/fc — c) (n — fcj

'2 a) Eine andere Erweiterung der negativen .BinomialVerteilung auf

zwei Dimensionen erhalten wir, indem wir ausgehen von der Eunktion

P(0,0;s,t) f — ') (3.11)
\ (1 -f- as) 1 + f'O — jôasfei /

mit c>0 und Ö<j8<l-
Sie ist die Laplace-ïransformierte der Eunktion

«m> - - f^)",-:,D E / D« y
a&(l— /S) P(c) \ ab / \ / aö (1 —/S)^ /

(Vergleiche Voelker und Doetsch (13) S. 234). bezeichnet die mo-

difizierte .Bessel-Eunktion

^l(*)
Man kann leicht nachprüfen, class m(/c,A) eine auf der positiven Halb-
achse definierte Erequenzfunktion ist. Aus

oo oo

P(0,0;s,i) | jV'"*' «(fc,A) d/c dA

0 0

folgt daher sofort: P(0,0;s,f) e Fg so class (3.11) die erzeugende

Eunktion eines zusammengesetzten Poisson-Prozesses darstellt.



We Ausdrücke: / 1

P,(0,s)
as

sind die erzeugenden Funktionen der Randverteilungen. Diese letzteren
sind also gegeben durch (3.7). Zur Berechnung von P(m,w;s,t) formen wir
(3-11) um:
^(0,0;s,t)

1

1-fl "*
[ ^

1 + as 1 /;/

° -T(c + A) / «W VY 6t
j V ' / /?

1 -f- as y 1 -{- ^ î V 1 H~ ^s / \ 1 -f-

We angeschriebene Reihe konvergiert gleichmässig in s und f, da
®<0<1. Sie darf deshalb gliedweise differenziert werden. Also wird

P(».»)(0 a v ^ i K - I 1

'
»ti ^ 1(1 + 05)'+*/ dt»|(i + 6t)'+»j"

Wir die Ableitungen unter der Summe erhalten wir:

£ L («?)" « /+A + d"'-i /' 1 \'+*
1 (1 + 0S)«+» | ~ 2

J
J ^7 H ; (+qp«5

A! P(c + Ä + m-7) 1

y§
V J (Ä—Y ^ ' ~

/'(c + ~A)
" ~ °

(1 + a,-/' ' '' l

^ 1 y+"Y' os A! m! T(c + A + w

\ 1 + OS / V 1 + US / /To ('* — — ?') P(c + A)

1 V as /
lühren wir hier die Bezeichnung (a); a(a + l) (a + t —1) ein,
so wird die betrachtete Ableitung:

(-«)»'/ iV+7 «« \*P(c + w + A)»^»-*Y (-/Y'(~H- 1/,
\ 1 + as / \ 1 + as / P(c + Àj /To (—m —A—c+ 1)^. \

^

V 1 h as / \ 1 + as / P(c -h w) \

/ / • \ a,

1

ß+Rl +
as
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Me Funktion
^

1

^
y-o (r),- y!

bezeichnet die Gaußsche hypergeometrische Reihe. Sin reduziert sich

zu einem Polynom, falls, wie hier, a oder /I eine negative ganze Zahl ist'

Setzen wir den gefundenen Ausdruck für die Ableitung des ersten l'"ak-

tors und den analogen für diejenige des zweiten Paktors ein, so erhalten

wir nach (1.8)
1 Y7 o« Y" 1 / 1 Y7 6« \" 1

P(m,n;.s',f)

Y

1 -f- as / V 1 + '«s / m \ 1 + 6i / \ 1 + /;/

/ as \iY ')

\ t + «s / l, 1 4- b< /Po P(c) /G \ 1 + as / \ 1 4- M / P(c + Y

P(c » + /i) / 1
Y ' /•'! • Y- • »,-»-//-c + 1, 1 +

r(c + /i) V M

Zur Abkürzung setzen wir

as b/

y ß - - -' ^ 1 + as I. 4- b<

und schreiben die Ausdrücke der Wahrscheinlichkeitsfunktionen der

Band Verteilungen (3.7), Pj(w;s) und la(n;<), vor das Summenzeichen.

Abgesehen vom Entwicklungskoeffizienten und von y'' erhalten wir
dann in der Summe Ausdrücke der Gestalt

P(c) P(c 4-w + Y / 1\
J.M—/(,—m,—m — // — : • 1,1

P(c 4-Y P(c + m) \ as/
^

und analoge für die Polynome in ». Wenden wir darauf eine der

Gaußschen Transformationen für die hypergeometrische Reihe an, so

ergibt sich dafür (vgl. z. B. Magnus-Öberhettinger (9) S. 13)

P — Y — wt, c, —
\ as

Die absolute Wahrscheinlichkeitsfunktion kann in der Gestalt einer hi-

linearen Entwicklung nach orthogonalen Polynomen geschrieben werden
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Die Polynome / 1

M,,(x;c,'m) in—A,—x, c,

sind auf der Zahlenmenge as 0, 1, 2, mit der Belegungsfunktion

i \y M y ry-M)
^ ^

\ 1 + « y V 1 + « / r(c) x

orthogonal. Man sieht dies leicht ein, wenn man von einer andern
Definition der M,,(x;c,m) ausgeht. Aus dem Vorangehenden folgt

(— 1)* <F f m''

M,(x;cy«) ^ j y
Anderseits können sie auch gewonnen werden aus der Beziehung

p''fP(:r) (x + chl
*««*>- 42) ' 0.14)

wobei der Operator p* die A-te absteigende Differenz bezeichnet, d. h.

F'Vfx) /y)_ + + + (_i)"/y-/y
'Wegen /(.,) P(x) (x + c)„

^ _

/(x -1) P(s- ») (« + c - t)j

P(c) P(x + Ä + c) / 1\
- P — A, — x, — A— x —c + 1, .1 + -/ (A + c) P(x -f c) \ M /

Dieser Ausdruck stimmt mit (3.12) überein. Von der Darstellung (3.14)
•losgehend ist die Orthogonalität leicht zu beweisen. Mit der Bezeichnung
f'iJi x(x —1) (x—f -)_ 1) wird

S 0]< r*/(®) 2 D4 1 MDA'i (X + cU - 0.
3 0
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Dies folgt; sofort durch Anwendung der Abelschenpartiellen Summation.

Also ist ^
2 M» 0 f < A

-, a;—0
und

CO

y, P(s) M,,(a;;c/i() M^(a;;c,w) 0 für i y fe-

x=0

Die Eandverteilungen haben die Wahrscheinlichkeitsfunktionen

(3.7), sind also negative Binomial Verteilungen. Man erhält deshalb aus

(3.5) durch Einsetzen der entsprechenden Parameter:

m cas cas (as 1)

m c6i cf, cbf(i>i 4-1),
sowie :

V m'y (*m;s) c(c -f-1) (a»)® + cas
m—0

y rP7'a(nd) c(c -)- 1) (&f)^ -f- cht.
n=0

Daraus folgt für die Kovarianz von M und N

CO CO

or„„ w » + yc y mPj(m;s) Mj(m;c,as) y M,(n;c,irf) — w «
m=0 n=0

/ oo J CO \ / CO 1 oo \

yc y mPi(w;s) — - y m^P^mjs) I y mPg(w;s) —- y '/
\ o eas o / \ o cof o

yc(cas — (c -|- 1) as —1.) (cfcf— (c -|- 1) Pi —1) yc(a.s^+ 1) (Pi + 1)

o-m« rc(as + l) (P< + 1),

und für y 1 ff„,„ ^^
c (as + 1) (Pf + 1) c of„ er*

"

Aus der Definition von y ergibt sich

(as + 1) (Pf + 1) <r„„
p y —

as casfr£

Beachten wir noch die Beziehungen (2.2a), und (3.3), so wird

ß _ _ **** _ 5**

J/ca |/cP



Die Bedingung 0 < /? < 1, welche wir am Anfang einführten, bedeutet
a so, class (3.13) eine Verteilung mit positiver Korrelation darstellt,

aus ç > 0 auch r(.?,/) > 0 folgt.
Für /? sind J£ und /I. unkorroliert und sogar unabhängig. Das

gilt ebenfalls für M und iV, wie man sofort aus (3.11) ersieht.
Im Grenzfall /I -= 1 geht die Verteilung (3.13) in (3.6) über.

2b) Wir erweitern, wie beim ersten Beispiel, die Verteilung (3.13)
auf eine solche mit den Bandverteilungen:

Pj(m;s)
1 vv OS Y"r(p/a + wj)

1 -(- as / \ 1 + as / P(p/aj m

P,„.« i VY " .)" ''("/ei-.»)
^ \l + hi/ \l + &*/ r(g/6)n!

'

Daher gehen wir aus von der Funktion

1 -(- as / \ 1 + hf / | (1 -f- as) (1 -)- hi) —ßashi j

(3.15)

^o c der Bedingung 0 < c <i m« genügt. Schreiben wir (3.10)

in der Form:

L Y'Y i )vf m+t) „
1 + as / \ 1 + hi / aTo P(c) A!

« as hi
mit y p̂

1 + as 1 + hi '

folgt ganz analog zum Vorangehenden

*W;s,f) =Pi(m;*)Z>;<)2 1)
,,to ./(s)h! \ a as/

Y). (8.16)
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Es ist m to <x,

und
p

'
*;

cao

m«
2 2

m CT,,

CT,.

Wegen ^ [/ap cr^ ]/ &g

1

folgt 0
c

p
a

3

fc *•

Ersetzen wir in (3.16) y und schreiben für das /< - to hypergeometrisebe

Polynom M,,, so erhalten wir

-- \"
,°S, P(c-|-7t) / TO \ / O \/ TOI TO CT,,,,, \

<',(»»> CM >, ,,.»)WyvÜ(
(3.17)

4. Eindimensionale zusammengesetzte Poisson-Verteilungen

Im Eindimensionalen ist ein elementarer stochastischer Prozess

mit binomialen inverseu ÜbergangsWahrscheinlichkeiten

P(to;</-«';f') ^J (4.1)

gegeben durch eine zu F[ gehörende Punktion P(0;f), die erzeugende
Punktion des Prozesses, was ohne Schwierigkeit aus den Überlegungen
des 1. Abschnittes folgt. Diese kann auf Grund des Satzes von Widder-
Bernstein als Laplace-Stieltjessche Transformierte einer Verteihmgs-
funktion f7(A) dargestellt werden

CO

P(0;f) JY*'dU(vl) mit U(0) 0. (4.2)
0

Die Wahrscheinlichkeitsfunktion ergibt sich als Spezialfall aus (1.8)

P(«;() (-1)» *. PE'(();<). (4.8)
w!

Zur Konstruktion von Beispielen wird gewöhnlich von einer spe-
ziehen Strukturfunktion ausgegangen und daraus nach (4.2) und (4.3)
die Wahrscheinlichkeitsfunktion berechnet. In den meisten Fällen ge-

langt man dadurch zu formal komplizierten Ausdrücken.
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Im folgenden leiten wir eine einparametrige Schar von Verteilungen
er nut der Eigenschaft, dass ihre Wahrscheinlichkeitsfunktionen vor-

nisnuissig einfach berechnet werden können. Wir gehen dabei in
natürlicher Weise von der erzeugenden Funktion P(0;/) aus, und
stellen den folgenden Hilfssatz an die Spitze:
Wenn /(f) e und r(<) eine Funktion ist mit den Eigenschaften:

r(0) 0,

r'(<) vollmonoton auf 0<t< oo,
dann gilt: /(t(Q) e 7^.
Her Beweis folgt sofort durch Benützung der Formel von Faà de Bruno
Hir die 'M-te Ableitung einer Funktion von einer Funktion

d'7 W! r'(<) T<"»(<)
*» d'7

1! w! dz''
(4.4)

r=r(()
,7j« Zj /. | 7. |

Hie Summation (/c) ist zu erstrecken über:

&1 -J- /i*2 -(- ^

/h*2 ~[~ 2 /^2 ~f~ • • • ~f~ ^ ^ *

Nach Voraussetzung ist:

(—> 0,

Ü7(-1)'-^ £0,

also wird das Vorzeichen des r-ten Summanden in (4.4)

(—1)" 1)''2 (_i7''a _ _ _ ^ _ ;[J"

Und daher rP/ROl
{ I t ' ' ' > 0' dt" ~

Hie Eigenschaft: lim/[r(t)] 1 folgt sofort aus den Voraussetzungen.
/ to

Aus den erzeugenden Funktionen eines zusammengesetzten Pois-
son-Prozesses können deshalb durch Anwendung von Transformationen
*(0 neue erzeugende Funktionen gebildet werden.
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Wir wählen als Ausgangsfunktion die erzeugende Punktion des

gewöhnlichen Poisson-Prozesses

und erhalten

/(0 5 > 0,

P(0;<)

Nach (4.4) ergibt sich für die w-te Ableitung

P<">(0;<) P(0;<) V £
v=0 (/c)

Aus (4.11) folgt
1—h" "

P(n;i) P(0;<)
^

/ £ ("
« rrt

«! Y(<)" Äi r<">(<)

• V 1 w! (-3)'

w! T'(<) P"'(0
"

1! »!

(4.5)

Die Wahrscheinlichkeitsfunktion (4.5) kann auch mit Hilfe einer

Eekursionsformel berechnet werden:

P(0;<)

P'(Og) -r/T'(l)e-"dO — gr'(QP(0;().

Aus der Leibnizschen Formel erhält man daraus

p(»+t)(0;f) - g 2 " T<"+"(0 P'"~*'(0;i),
fc=0

und wegen (4.3):
\n+t

P(w+ l;i) -g V ;; ^+D(t) J|îp(«_fe;i),P" v
(n + 1)! /do (n —&)!/«! M)"

u/ " rd'+b/'A
P(« + i;«) 4rSH'--, ,^-P(»—fc;0-

w + 1 /do A:
(4.6)

Wir betrachten nun die Transformation, die gegeben ist durch

1

T'(i)
1 + ci

c > 0, a > 0.



— 525 —

daraus folgtgt, wenn wir noch die Bedingung r(0) 0 berücksichtigen:

i a 0,

1

T(t)
-1 \"

c(l —a)
((l + d)^-l) 0 < a < 1,

1 -f- ci,
hi •

log (t + ci)

c(a—1)
' die Ableitungen ergibt sich

1

I + ci

a—1\

a I.

1 < a < co

T<»(i) (-c)>
r(a + /-l)/ 1 Va+j'-l

y
(4.7)

P(a) V 1 + ^,
Betzen wir diese Ausdrücke in (4.5) ein, so erhalten wir die Wahr-
^heinlichkoitsfunktion

P(0;i) V (_g)'»! ^ ^ V 7c„! V 1

— 6'

1 + cf

A'i -f- 2 7^2 +•••(" "/%

Die
erzeugende Funktion lautet für a>0:

7/ 1

|- ci

-¥ '

c y \i + ciy

a-l\ v

P(a •(-»— 1)Y'"

P(a) «
OC—1

(4.8)

Ci-( ' r-A
P(0;i) e d«-D k U+<P 7 »=£1,

P(0;i)
i y"

l + cij
Dür die Koeffizienten //„,(«) ergibt sich die Darstellun

(4.9)
(X .1.

Wfci!--.Ä„!U!y \ P(a) 2 /
' " \ P(«)n! j

oder, wenn man den Ausdruck für P(0;<) in (4.9) » mal nach f ableitet,
36
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d ie Rekursionsformel

^r-i»-i(«) + (av + ra —j> —lM„„_i(a)
^oo l. ^0» 0 fürw^O.

Die Rekursionsformel für die Wahrscheinlichkeitsfunktion wird, wenn

wir (4.7) in (4.6) einsetzen:

«.+»*>- 4i(i« + 1 \ 1 + ci / /Po j (a) fc \ I. + 67 /
Um die Strukturfunktion zu bestimmen, gehen wir aus von ihrer

charakteristischen Funktion
CO

*(*) j>*dU(A).
0

Aus (4.2) sieht man sofort, dass sie gegeben ist durch

*(*) P(0;-is). (4.11)

Wir betrachten, je nach dem Wert von «, die drei Fälle

« 1 : /I \«'°
z(*)

1 —

Die zugehörige Frequenzfunktion ist bekanntlich

dl/m /1\"° -A
- Ît A) - e A> 0. 4.12)

oß ^ V c / r g/c)
^

1 < a < co :

v < t \a-i
_ g

c(a-i)
g c(cc-l) U-m/

__ g c(a-l) g / 1 W* 1 / g \7 1

c(a—1)\1 — et«/
'

2! \c(a—1)/ \1— ci2

Dieser Entwicklung entspricht nach (4.12) die Frequenzfunktion:

-m»/ g \Vl\^> 1 ^(a-D-1 _A
"('") ~ " ä(c(a-i)) (c) /•(/-:«-!)) fc!

_
A

-m e « 00/ fl \* A'^>
TäW-1)) T(fc(a-l))l!
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loi Nullpunkt besitzt die Verteilungsfunktion 17(A) eine Unstetigkeit,
" ' existiert dort nicht. Als Spezialfall berechnen wir w(A) für
« 2 :

Co / „ l/(-l _?"M CXI / O \k-l j/t-1
11(A) =e « V / * Y |

'
—/jéi\cV (Zc—1)!Ä! CS.o\CV (fe—-1)!7c!

r/A
I Î AB"""

c* éi & (fc + 1) c® (/ gA éi 2®+17c (7c +1)

ii(A) xx <,
'c" I''/ 1 [ '/A,-J, 8

c |/ A V c
0 < a < 1 ;

Setzen wir: y 1—oc(0<y<l), so wird

- " ((l-cw)S-l)
*(*) « '"

ur Diskussion von ^(2) führen wir eine Hilfsfunktion ein

-*(-.»)" - W
7t (.2) e ^ e «"V

Sie kann auf die Form gebracht werden

-so(l-itg"-yV
51(2) e

1 mit > 0. (4.13)
P- Eéuy (7) hat gezeigt, class

-«o(l+0 j'rHrfj'W
97(2) e

1 kl 2 /

mite,, >0, 0 < y <7 2

die charakteristische Funktion eines stabilen Verteilungsgesetzes ist.
urch (4.13) wird eine gewisse Klasse von stabilen Verteilungen dar-

gestellt. Zum Beweis nehmen wir vorerst an, class y rational sei:

m
y= m,m ganz, to<«.

Es ist

/ /3tt to to\ /'3er to m\(-»)»/» x= cos
^ + 7r2er 4-tsin -- | 7c

\ 2 « w / \ 2 M « /
7c 0, 1, ...,« — 1.
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Die Lösung & to — 1 liefert:

cos
/ 3to m m

— 2 TO

V 2 n

/ 3 TO m m
- - 2to

V 2 n

to(,2) e

tg I — 2to -f- m 2to — tg

rmd daher

it | ^
r/ cos

TT m \
2 to /

'

7c m \
2 TO / '

2 TO

^0 —

0
n

> 0.

Für nicht-rationales y folgt die Darstellung (4.18) aus der Tatsache,
dass jede Zahl beliebig nahe durch rationale Zahlen approximiert
werden kann.

Die stabilen Verteilungen sind stetig, d. h. sie besitzen eine

Frequenzfunktion, die wir mit /^(A) bezeichnen, to (2) ist dann die

charakteristische Funktion von /j_„ i(A)

7r(*r) J

Aus « / ï
c^>to(2 +

folgt

*(*)

Zu ^(2) gehört also im Falle 0<a<l die Strukturfunktion
</ -i

u(A) « « /i-a-tW-

Es ist bis heute nur in wenigen Fällen gelungen, die stabilen Frequenz-
funktionen in geschlossener Form darzustellen; für die Funktionen

/ i(A) ist insbesondere der Fall y= ^ bekannt (Vgl. 1'. Levy (7a)):

1 (/

W) 7/ Ï/-« •
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Also wird für a '
2j

«(2) '
«

'' e •' w
(/ TTC

Die Verteilungen, welche sich für a und a 2 ergeben, wurden
,^'uts 'A Consael (2) betrachtet. Wir führen noch zwei andere
bekannte Spezialfälle an.

*
Ï7(A) e(/l-î),

P(0;f) - e"«',

P(»;f) <f"
n̂!

ist die Wahrscheinlichkeitsfunktion der gewöhnlichen Poisson-
Verteilung.

« 1 :

Stiukturfunktion und erzeugende Punktion sind hier gegeben durch
(1-12) bzw. (4.9). Die Koeffizienten der Wahrscheinlichkeitsfunktion

-8) berechnen sich aus

Q •

'o stimmen im wesentlichen mit den Stirlingschen Zahlen 1. Art
ùberein

^ji) (-i)-'-vs:.
Aus (4.8) ergibt sich daher

P(n;t) P(0;t)
et \T(g/c + w)

1 + c< / /Y'/.c) «

*ko die Wahrscheinlichkeitsfunktion der negativen Pinoinialverteilung.
Wir bemerken noch, dass die Strukturfunktion der Wahrscheinlich-

^itsverteilung (4.8) einer Integralgleichung gehorcht.
Aus

P(O;0 0 •jr(<)

_^(f) log P(0;<),

1 P'(0;f)

gr'(<)P(O;0 - -P'(0;f).
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Die in dieser Delation auftretenden Funktionen können als gewöhnliche

Laplace Integrale geschrieben werden, da die Strukturfunktion Z7(®)

für alle a und für a>0 eine Ableitung w(a;) besitzt. Es gilt

CO

P(0;<) J e"*' rte,
0

oo

T'(f)
'

1 :
^ ^

| P 1 ^^ \1+Cf/ cV/'(«)

œ" 'P'®e (te I «(») e *' (te — I «»(«) e *' rte.

Also folgt

eW(a)

In der Symbolik der Laplace Transformation lautet diese Gleichung

-"Tf- L{:mte)}.

Sie entspricht der folgenden Integralgleichung für die Funktion «(®)

a;

^
— j 7/*"*—7/) (Z?/ rata;),

c" P(a) j ^ '
0

Zur Diskussion der durch (4.8) gegebenen Verteilung führen wir
die Parametertransformation c= 6/a ein, und erhalten:

_ « A_/ « \«-K
P(0;f,a) e ' ^ V

(4.14)
a-l\ v

*"*•* - M.*J* (.+«)'

Die Strukturfunktionen haben im allgemeinen keine einfache Go-

stall;. Wir charakterisieren sie deshalb durch die Grössen: Mittelwert,
Streuung, Schiefe und Exzess. Diese werden in einfacher Weise aus

den Kumulanten ^ berechnet. Nach Definition ist

(-1)" logz(«)|.-o-
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Aus (4.11) folgt ^)
und daher ^ ^ (_ i)*+i ^<*>(0).

Setzen wir in (4.7) Z 0 und c 6/a, so wird

a,
Also erhalten wir schliesslich:

/'(«)

PC,

"a 5&,

7c> 2.

Daraus ergeben sich :

Mittelwert: Ü pcj 3,

Streuung: u] «2

Schiefe: ^ hj |/~(l+ ~
<r] |/ g V «

Exzess : Cg -J- — A -(- —^ ^ 1 + —^.
n] g V «/ \ «/

le Strukturfunktionen 77(41 ;cc) bilden daher eine Schar von Ver-
ungsfunktionen, welche bei gegebenem Mittelwert und Streuung

r zunehmende a abnehmende Schiefe und Exzess aufweisen.
' ur späteren Gebrauch führen wir noch die ersten beiden Momente

v°n I (ra;i,a) an. Sie berechnen sich aus den entsprechenden Momenten
von tl(A;cc) nach den Formeln (2.2a):

w gZ,

]y
0Ü ji(W+l).

0-15)
'010 Funktionen

t'(Z;«)
*

):,( *
\ 1 -f- eZ / \ a -|- 6Z /

bilden eine Schar mit der Eigenschaft, dass für je zwei Werte 04 und
mit ay<«2 und für alle Z auf dem Intervall 0<Z< 00 gilt

r'(Z;ai) < T'^)
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Wegen t(0) 0 folgt daher:

T(f;cq) > T^ag)

und P(0;f,a-,) < P(0;i,a2).

Für jedes feste f ist P(0;<,a) eine monoton zunehmende Funktion von a-

Wir betrachten noch den Grenzfall:

a co.

Mit den neuen Parametern lautet die Funktion r(i) :

1 /. 1
^ 1\

b

Da t'(<;oo) vollmonoton und t(0;oo) 0 ist, stellt

P(();i) e

auch eine erzeugende Funktion einer zusammengesetzten Poisson-

Verteilung dar. Die Wahrscheinlichkeitsfunktion kannganz analog

berechnet werden wie (4.8)

PW PM V").«d ,=o \o /
Die Koeffizienten G„„(co) gehorchen der Rekursionsformel

und sind daher gleich den Stirlingschen Zahlen 2. Art.
Im Gegensatz zu den vorangehenden Beispielen ist die Struktur-

funktion hier durch eine diskrete Verteilung, und zwar durch eine

Poisson-Verteilung, gegeben

dt/Yd) (W" P-' für A 0, 6, 25,^ ' (A/b)!

Wie haben also als Grenzfall die sogenannte Neyman-Verteilung vom
Typus vi erhalten.
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5. Erweiterung der zusammengesetzten Poisson-Verteilung

In den Anwendungen kommt es oft vor, dass man zufallsmässige
ceignisse betrachtet, mit denen eine kontinuierliche stochastische
aiiablo verbunden ist, welche man als Grösse der Wirkung eines Er-

oignisses auffassen kann. Beispiele dafür liefern viele Zweige der Per-
sonen- und Sachversicherung, wo ein Schadenfall einen Schaden aus-
°st, dessen Höhe weitgehend durch den Zufall bestimmt wird. Mathe-

fflatisch wird ein solcher Prozess dargestellt durch eine Variable, welche
m zufälligen Zeitpunkten sprungweise ändert, wobei die Höhe des

prunges selbst eine stochastische Variable ist.

Wir beschränken uns auf eine einzige Art von Ereignissen, und
dachen über die Natur des Prozesses folgende Annahmen:

I- Pie Anzahl Ereignisse V ist gegeben durch eine eindimensionale
zusammengesetzte Poisson-Verteilung :

P(«;Q I e-* ^ di7(d).

0

2- Die Höhe eines Sprunges Z ist unabhängig von Anzahl und Grösse
der vorangehenden Sprünge. Sie besitzt die Verteilungsfunktion:

P{Z<®} 5'(a;) mit S'(0) 0.

®io summare Sprunghöhe in einem Zeitintervall der Länge f hat dann
die Verteilungsfunktion

CO

HM V / (5.1)
«=o 7 il-

0

S),,, bezeichnet die «-te Faltung von #(»).
E Beispiel betrachten wir den Fall:

dU(A) /'1\[ A""
rU \&/ P(g/6)

<ÏS(a;) 1 -*
-, - T« «fa).

a# a
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Durch Induktion findet man

.1 a:""*

^ d" /'(a)

Also folgt: / ]

(»h

Nach (3.1) und (3.4) ist:

P(0;i)

für n 1,
s,.,f01 d

l 0 für « > 1.

j \ Ï/4

i + fe/7 '

&Z V" i'(r///> + n)
P(w;£) P(O^)^ ^

V 1 + 6/ y r(g/b)n!

Wir erhalten deshalb für r>0:
d/J(a:;0 / 1 V*-/ 6{ \ <T *' « 5/ aA""* r(#-H»L/ 1 Y|/ H \ e -, 5/ sW' r(# + "W

~~
\1 I- D V + W d/'k/A) à VI + &Î d J /un /"(« +

«

1 \®V 5/ \ e * - /' ?d s\T((|/6+«+l)

da:

yl 4- \1 + 'd7 d / '(g/6) ,fbo \1 -(- 5/ d / / '(» + 2) rt

Die gleich massig konvergente Potenzreihe stellt eine kontinente hyper-
geometrische Funktion dar. Führen wir die für sie übliche Bezeichnung

Ä«.m Y!nW(V/ (a) ,t^o d (j8 + w) «
so erhalten wir schliesslich

-P(Od) s(œ) ^ (V + 1,2, - ^. (5.2)

Die charakteristische Funktion von fi(.-r;Z)
CO

»/»(«;/) | e"*df?(a;;/)

drückt sich mit Hilfe der charakteristischen Funktionen von S'(:r)

und 17(A) co

<p(«) | e"®diS(a:),
0

CO

^(m) | e^d 17(A), aus.
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/OO
v^> I

w=«0 n=0

Wegen

j>dS<„,(s) [?>(*)]"
• o

wird
CO

oo oo

VM V p(„;i) [,;,:)|« V ^ y_^(A)[^)]»
n=0 »=0 / ^•

,-Ai v J e*'W»H]dI7(A).
«=o w! ./

folgt: f* [?>(«)-1]|
?M=Z- ; |-

(5-3)

^ie Momente der betrachteten Verteilungen berechnen sich aus den

*w - (—>)V*0,
»* M)V*'(0),
«, (-W(<>).

Man erhält daher aus (5.3) sofort:

/h(0

,«2(0 v^i® + Vg^f,
v? a., <3 + 3 r-2 «2 + "3 «1 * •

-^ür die Varianz von h/(:r;t) ergibt sich

/•<2(0 /<a(0 — ,«?(0 "?(«a ^ — «i 0 "I- *2 «i * (5 • 4 a)

oder, wenn wir die Varianz von 17(A): a «3 — «1 einführen

,«2(0 + i^a, f.
•^s dritte Moment bezüglich dem Mittelwert

wird /t'i(0 — /'3(f) 3/«|(l) ,«3(1) -f- 2/tj(i)

Ä(f) ^(«3/® — 8«1 «21" + 2a® 1®) + 3Vi Va(«21®- a? 1®) + v.,a^. (5.4b)



Wir betrachten noch zwei Grenzfälle der erweiterten zusammen-

gesetzten Poisaon-Verteilung :

1. Satz von Lundberg (8).

X,
Falls das Moment existiert, so gilt für (he Variable

^

:

lim ff(arfjf)
®

< oo \ /

2. Grenz Verteilung für die standardisierte Variable

v* -X;—»W
.A ^

— T=r
[/ Ff tt< h |m

Satz: Unter der Voraussetzung, dass und existieren, gilt beim

Grenzübergang:
a 0 1

1 ai / fest
£ —OO I

lim rf aU|-M + G «MF) 5>(a;).
a>- 0
/>-oo

Beweis: Die Variable X'* hat die charakteristische Funktion

• c
UG-àn «

*
v. | l

' U V-F+vUG .J-
Daher wird

*/ F»".«.! /'< \
log V M — y,-- -I-log X (-.»)

mit
® '/ I i/ o

' •

K"l/+ "2«r |/*

Für log %('/() benützen wir die Entwicklung:

(m)2
log^N «(('"«) -h «

2
+ '

log -U _% tu + uF + /fo('iF).
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Ersetzen wir auch <p(w) durch ihre Entwicklung

(iw)*
9>(io) 1 -l- + Vg —

^
-I- O(M)2)

so wird :

12 ^ /1 \® r"i -7==-==- — v,, - (- 0 \

P? / + "2 «i P "2 ^ ap U / '

v;2 • „a —1 _|_ 0 *').
("?/ + "2ap \P

Also folgt:

log y (£.£)__ îPjCp ^
j/i-J / + r, ai J/ < ]/y?/ + ^ oq ]/ < 2 (r? / -]- ^ «[)

+/<»P + /'»P.
2(*?/+ *,«,)< W VP

^2

lim log — •

CO

Die Verteilung der standardisierten Variablen V* strebt also gegen
«ie Normal Verteilung ZV(0,1).
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IL Teil

Hauptprobleme der Unfallversicherungsmathematik
und der Unfallstatistik

1. Allgemeines

Damit wir die Theorie der stochastischon Prozesse auf versiehe-

rungsmathematische Probleme anwenden können, müssen wir erklären,

wie in der Praxis das untersuchte stochastische Ereignis, also das Em-

treffen eines Schadentalles, definiert ist. Während in der Lebensver-

Sicherung diese Definition in natürlicher Weise gegeben ist, muss in der

Unfallversicherung über Eintritt oder Nichteintritt eines Schadenfalles

oft auf Grund von gesetzlichen Bestimmungen entschieden werden.

Der Begriff Unfall soll deshalb in den folgenden Untersuchungen im

versicherungstechnischen Sinne verstanden werden, d. h. als ein Er-

oignis, welches nach den einschlägigen Gesetzen über die Unfallver-
Sicherung den Versicherer zu einer Versicherungsleistung veranlasst.

Er ist daher meist sehr komplexer Natur; beispielsweise werden im

Bundesgesetz vom 11. Juni 1911 über die Kranken- und Unfallversiche-

rung die Berufskrankheiten den Unfällen gleichgestellt (Art. G8).

Bei einem Unfall haben wir, streng genommen, zu unterscheiden
zwischen dem Unfallereignis (dem Schadenfall) und den Dolgen des

Unfallereignisses, welche für den Versicherer in der Ausbezahlung der

vereinbarten Entschädigung (der Schadenhöhe) bestehen. Dem Sprach-

gebrauch folgend verwenden wir, wo keine Verwechslung möglich ist,

für den Begriff Unfallereignis gelegentlich auch den weniger präzisen
Ausdruck Unfall.

Die Anzahl Schadenfälle, welche ehre Person in einer bestimmten
Zeit betreffen, sowie die Schadenhöhe pro Unfall, haben wesentlich
stochastischon Charakter: sie werden indessen beeinflusst durch eine

grosse Anzahl Eaktoren, welche teilweise a priori bekannt, teilweise a

posteriori feststellbar sind. Umfangreiche Statistiken, wie sie zum Bei-

spiel bei der Schweizerischen Unfallversicherungsanstalt in Luzern,
dem statistischen Büro der englischen staatlichen Versicherung in
Newcastle und dem staatlichen Institut für die Versicherung gegen Be-

triebsunfälle in Bom vorliegen, zeigen, dass für eine im voraus mögliche
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Satzung des Risikos folgende Hauptfaktoren zu berücksichtigen
sind. Geschlecht, Alter, Beruf, ferner Nebenbeschäftigungen und

esundheitszustand der Versicherten. Zu diesen objektiv erfassbaren
onunen noch eine Reihe von subjektiven Faktoren hinzu, über die

eist eine längere Beobachtungszeit zuverlässigen Aufschluss geben kann,
^ie. Anfälligkeit für Unfälle sowie Versicherungs- und Arbeitsmoral.

In der Versicherungstechnik werden auf Grund solcher Gesichts-
Punkte Gefahrenklassen abgegrenzt, um dadurch den Bestand in mög-
udist homogene Teile zu zerlegen, d. Ii. Teilbestände, in welchen alle

jekte annähernd gleichem Risiko ausgesetzt sind. Zur Bestimmung
er Nettoprämie genügt es, Unfallhäufigkeit und durchschnittliche
c ladenhöhe in jeder Gefahrenklasse zu kennen (zwei Grössen, auf
cien Definition wir im nächsten Abschnitt näher eintreten), während

ur Bisikountersuchungen die Wahrscheinlichkeitsverteilung des Ge-
sanitschadens gebraucht wird, die sich aus der Verteilung der Anzahl

c ladenfällo und der Verteilung der Schadenhöhen berechnet.
Diese Verteilungen müssen empirisch gefunden werden, doch wird

un sich nicht damit begnügen, beobachtete Häufigkeits kurven ein-
auszugleichen, vielmehr versucht man, durch Hypothesen, welche

' Erfahrung gerecht werden, den Charakter der theoretischen Vertei-
Hungen zu erklären.

Die in Frage stehenden Grössen: Anzahl Schadenereignisse und
chadenhöhe sind neben den stochastischen Schwankungen oft auch

systematischen Veränderungen im Verlaufe der Zeit unterworfen, sei
durch die Wirkung wirtschaftlicher Einflüsse oder durch Änderungen

er allgemeinen Lebensbedingungen. Damit aus einem vorliegenden
eobachtungsmatorial zulässige Schlüsse auf das künftige Geschehen

gemacht werden können, soll es folgenden Bedingungen genügen:
1- Its muss möglich sein, zufällige von trendmässigen oder perio-

dischen Änderungen der untersuchten Grossen zu trennen.
2- Die Verteilungsfunktionen, welche dem Trend oder der Periodi-

zrtät überlagert sind, müssen zeitlich stabil sein.

Diese Forderungen gelten nicht nur für mathematische Unter-
Rehungen, sondern in anderer Form auch für praktische versicherungs-

mische Überlegungen, so dass es nicht berechtigt ist, aus ihnen einen
mwand gegen die Anwendung mathematisch-statistischer Methoden

üi der Unfallversicherung abzuleiten.



- 540 —

2. Formen der Unfallversicherung

Wir haben in der Unfallversicherung hauptsächlich zwei Versiehe*

rungsarten zu unterscheiden, nämlich:

Einzel Unfallversicherung und Betriebsunfallversicherung.

Während in der Einzelunfallversicherung die einzelne Person die

Versicherungseinheit bildet, wird bei der Betriebsunfallversicherung
die Gesamtheit der in einem Betrieb beschäftigten Personen als Ver-

Sicherungseinheit betrachtet. Dieser Unterschied wirkt sich statistisch

zum Beispiel in der Definition der Unfallhäufigkeit aus. Bei der Einzel-

Unfallversicherung wird die Unfallhäufigkeit in natürlicher Weise als

durchschnittliche Anzahl Unfälle pro Person innerhalb der betrachteten
Periode (z. B. 1 Jahr) definiert. Da bei der Betriebsunfallversicherung
der Einzelne in der Statistik als solcher gar nicht erfasst wird, da er

nur indirekt Versicherungsobjekt darstellt, ist die Anzahl versicherter
Personen unbekannt. Sie wird ersetzt durch die Anzahl «Vollarbeiter»,
die sich aus der Anzahl Arbeitsstunden errechnet, und zwar gilt:

300 Arbeitstage zu S Stunden 2400 Arbeitsstunden
• 1 Vollarbeiter

Die Anzahl der Arbeitsstunden für einen Betrieb wird ermittelt, in*

dem die versicherte Lohnsumme dividiert wird durch einen geschätzten
mittleren Stundenlohn. Die (jährliche) Unfallhäufigkeit wird dann als

fiktive Grösse eingeführt, nämlich als Anzahl Unfälle pro Vollarbeiter.

Die durchschnittliche Schadenhöhe pro Unfall ist in beiden Fällen
das Verhältnis der gesamten während einer gewissen Zeitperiode aus-

bezahlten Entschädigungen zur Totalanzahl der Unfälle in der betreffen-
den Zeit.

Über die Verhältnisse in der Betriebsunfallversicherung wurde von

Wunderlin (14) eine eingehende Studio gemacht. Der Verfasser kommt
auf Grund von Beobachtungen bei der Schweizerischen Unfallversiehe-

rungsanstalt in Luzern zum Schluss, «dass die Anwendbarkeit der Wahr-
scheinlichkeitstheorie zur Erfassung des Unfallrisikos und damit zur

Prämienbestimmung in der sozialen Unfallversicherung zu verneinen
sei». Unsere Untersuchungen werden hauptsächlich im Hinblick auf

ihre Konsequenzen für die Einzelunfallversicherung durchgeführt, so

dass wir hier nicht weiter auf Wunderlins Arbeit eingehen, da keine



®reehtigung besteht, .Resultate, welche sich auf die Betrieb,sunfallver-

hab"^'"" beziehen, '«if die Einzelunfallversicherung zu übertragen,
® e diese nun privaten oder sozialen Charakter. Immerhin scheint uns,' ®'Wge neue Ergebnisse der Wahrscheinlichkeitsrechnung in der

^wähnten Arbeit keine Berücksichtigung fanden.

3. Der untersuchte Bestand

Bin wichtiger Grund dafür, dass der Unfallversicherungsmathe-
von Seiten der Praxis her wenig Aufmerksamkeit geschenkt wird,

*®gt Wold im Mangel an umfangreichen Statistiken, die es erlauben
Wnden, die theoretischen Ergebnisse im einzelnen zu überprüfen. Um
^ et die Verteilung der Anzahl Schadenfälle genügend Aufschluss zu

' ®'h muss es möglich sein, jeden Versicherten während einer länge-
W 1 eriode hinsichtlich seiner Unfälle zu beobachten. Nun werden aber

den privaten Gesellschaften Policen mit wiederholten Unfällen
mneihalb kurzer Zeit bald gekündigt. Bei obligatorischen Unfallver-

j.
' Hungen tritt dieser Nachteil nicht auf, hingegen sind diese gewöhn-

° » als Betriebsunfallversicherungen organisiert, bei denen die einzelne
®rson überhaupt nicht betrachtet werden kann.

wurde von uns ein abgeschlossener Bestand von 1196 mann-

bu T "^^itern, dio mindestens während der Zeit vom 1. Januar 1944
" zum 31. Dezember 1952 bei den städtischen Verkehrsbetrieben
nch voll beschäftigt waren, untersucht. Diese Arbeiter sind gesamt-

® ' bei der Schweizerischen Unfallversicherungsanstalt in Luzern ver-
wit und wurden von dieser alle in die gleiche Gefahrenklasse (47d,

® ahrenstufe V) eingereiht, *)
Wir betrachten getrennt voneinander Betriebsunfälle (BU) und

iGitbotriobsunfälle (NBU), welche im Eührer durch die obligatorische
idallversichorung (15) wie folgt definiert sind (S. 17):

Bet
^®^®B>sutifälle gelten Unfälle, die durch den versicherten

neb verursacht werden oder die dem Arbeiter während der Arbeit
Miosen Betrieb zustossen. Als Nichtbetriebsunfälle gelten alle

übrigen Unfälle.»

laubt
^ '^tand entstammt also der Betriebsunfallversioherung. Indessen er-

Arbe't 'Sterne Statistik der Verkehrsbetriebe, die Unfälle jedes einzelnen
3^." erfolgen. Dadurch ergab sich die Möglichkeit, aus unseren Unter-

""gen Folgerungen für die Einzelunfallversicherung zu ziehen.

37
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Berufskrankheiten waren unter den registrierten Unfällen in ver-

nachlässigbarer Anzahl vorhanden.

Die Schadenhöhe eines Unfalles setzt sich zusammen aus Lohnent-

seluidigungs- und Heilungskosten. Die Lohnentschädigung hängt

hauptsächlich ab von der Dauer des Unfalles (Anzahl voll arbeits-

unfähiger Tage), daneben von wirtschaftliehen Faktoren, während

für die Heilungskosteu die Heilungsdauer (Zeit, die verstreicht vom

Unfalleintritt bis zur letzten ärztlichen Konsultation) sowie Arzt- und

Apothekerkosten massgebend sind.

Der relativ kleine Umfang unseres Bestandes gestattet es nicht, die

verschiedenen Einflüsse auf die Schadenhöhe einzeln zu untersuchen-

Wir betrachten deshalb lediglich die Dauer eines Unfalles (Schaden-

datier), gleichsam als ein Nettomass für die Schadenhöhe, in dem das

wesentlich stochastische Element enthalten ist.

4. Beziehung zwischen Anzahl der Schadenfälle und
Schadendauer

Um eine übersichtliche Darstellung der Verteilung ties Gesamt-

Schadens zu erhalten, macht man in der Unfallversicherung die gruud-

legende Hypothese, dass die Anzahl Schadenfälle und die Schaden-

datier zwei stochastisch unabhängige Variable sind. Diese Voraus-

Setzung ist zwar nicht streng erfüllt, in den meisten Fällen wegen der

Seltenheit der Unfälle und der Kürze der Dauer von Unfallverlotzungen
jedoch berechtigt. Für die Betriebsunfälle unseres Bestandes beträgt
die jährliche Unfallhäufigkeit 0,098 und die durchschnittliche Dauer
eines Unfalls 1.3,1 Tage. Tabelle 1 zeigt die durchschnittliche Schaden-

dauer in Beziehung zur Anzahl BU.

w AU «AU tZ

1 288 288 15,0
2 127 254 12,5
3 76 228 15,2
4 22 88 12,6

K 5 31 196 8,6

»: Anzahl BU in den Jahren 1944-1952,
;Y„: Anzahl Personen mit « BU,

d: Durchschnittliche Dauer eines Unfalls in Tagen.
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weisen also lediglich die 31 Arbeiter mit fünf und mehr Unfällen
c

neunjährigen Beobachtungsperiode eine wesentlich unter dem
^

Ittel liegende durchschnittliche Schadendauer auf. Der Abfall erklärt

^ dadurch, dass diese Arbeiter vorwiegend Bagatellunfälle anmelde-
das sind Unfälle, welche dem Versicherer nur Heilungskosten, je-

n°rr, Lohnentschädigungskosten verursachen, also die Dauer
läge haben.

5. Der Einfluss des Alters auf die Unfälle

Die grossen Statistiken, die wir eingangs erwähnten, zeigen, dass
generell gesprochen, die Unfallhäufigkeit mit zunehmendem Alter
sin vt, während die mittlere Schadendauer zunimmt. Eiir einen go-
& ' '"-tien Bestand hat man zu untersuchen, ob diese Erscheinung so

^geprägt ist, dass man sie durch Gruppierung des Bestandes nach
oisklassen berücksichtigen muss, und wie die Gruppierung zu ge-

®chehen hat.

In der Tabelle '2 sind die Unfallhäufigkeiten der BU und NBU im
usammenhang mit dein Geburtsjahr des Verunfallten dargestellt.

Geburtsjahr (f) (2) (3) Tabelle 2

1886-1892 122 0,75 0,84

1893-1895 114 0,90 0,83

1896-1897 104 0,76 0,96
1898-1900 99 0,65 0,93

1901-1902 107 1,03 0,87
1903 84 1,00 0,93
1904 100 0,73 0,97
1905 120 0,77 0,98
1906 119 0,82 0,98
1907 119 1,16 1,00

1908-1922 108 1,13 0,99

1886-1922 1196 0,88 0,93

(1): Bestand der betreffenden Altersgruppe,
(2): Unfallhäufigkeit der BU, 1

Ol): Unfallhüüfigkeit der NBU ^ ^hren 1944-1952.
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Die BU verteilen sich ziemlich gleichmässig auf die verschiedenen

Altersgruppen mit Ausnahme cler beiden jüngsten Gruppen, welche eine

stark erhöhte Unfallfroquonz aulweisen. Diese ist indessen wohl eher

auf den Mangel an Erfahrung zurückzuführen als auf den Einfluss des

Alters. Bei den NBU ist die Abnahme der Unfallhäufigkeit mit zu-

nehmendem Alter deutlicher, was sich dadurch erklärt, dass sich die

älteren Jahrgänge in ihrer Eroizo.it im allgemeinen kleineren .Risiken

aussetzen als die jüngeren. Die Unterschiede sind jedoch nicht so gross,

dass sie eine weitere Unterteilung des Bestandes notwendig machen

würden.

Die Abhängigkeit der durchschnittlichen Schadondauer pro Unfall

vom Alter dos Verunfallten bei den BU ist aus der folgenden Tabelle

zu ersehen.
Alter (1) (2)

25-40 Jahre. 136 7,6

41-42 >> 11.7 10,5

43 -44 »... 137 12,5

45 -46 » 145 11,8

47-48 » 128 11,1

49-52 »... 148 17,6

53-56 » 118 1.6,4

57-64 » 125 16,7

25-64Jahre. 1054 13,1

(1): Anzahl BU in den Jahren 1944 1952,

(2): Durchschnittliche Schaclendauer pro Unfall in Tagen.

Uiir die Alter unter 49 Jahren liegt die durchschnittliche Schaden-

dauer unter dem Mittel von 13,1 Tagen, für die anderen darüber.

6. Innere Abhängigkeiten

Eine auffallende Erscheinung tritt bei der Untersuchimg der Sclia-

denfälle in zwei angrenzenden Beobachtungsperioden zutage. Es zeigt

sich, dass die Unfallhäufigkeit in der zweiten Periode (1949-1952)

monoton zunimmt mit der Anzahl Unfälle in der ersten Periode

(1944—1948).
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BU NBU T
ft (1) (2) (8) (1) (2) (3)
0 811 200 0,25 736 245 0,33
1 244 125 0,51 325 147 0,45
2 96 G5 0,68 107 71 0,66

> 3 45 55 1,22 28 20 0,71

0,37 0,40

«: Anzahl Unfälle in den Jahren 1.0 U 19 K
('): Anzahl Personen mit « Unfällen in der I.Periode,
(4): Anzahl Unfälle der betreffenden Personen in der '2. Periode,
(•"*)• *JnfallliäLifigkeiten in den Jahren 10:19-1952.

Das gleiche Verhalten der Unfallhäufigkeiten zeigt sich übrigens
schon, wenn man die ganze Periode aufteilt in eine erste Periode von^ci Jahren und eine daran angrenzende von sieben Jahren.

Ds besteht demnach stochastische Abhängigkeit zwischen den
mallen einer Person in zwei angrenzenden Zeitintervallen; man kann

ßicht allen Personen des Bestandes das gleiche Unfallrisiko zuschreiben.
dieser Urnstand nicht einfach durch eine Verschiedenheit der

äusseren Bedingungen (welche trotz aller Bestrebungen zur Homogeni-
lerung eines Bestandes bis zu einem gewissen Grad immer besteht)

erklärt werden kann, zeigt der Zusammenhang zwischen den BU und
en NBU in den Jahren 1944-1952: Personen mit einer relativ grossen
ttzahl BU haben im Durchschnitt auch viele NBU. Vgl. Tabelle 5.

0

1

2

3

>4

Tabelle 5

(U (2 a) (Ja) ft (1) (2 b) (3 b)
652 502 0,77 0 547 359 0,66
288 274 0,95 1 359 329 0,92
127 157 1,24 2 169 188 1,11
76 102 1,34 3 85 126 1,48
53 82 1,55 (>4 36 52 1,44

w: Anzahl BU in den Jahren 1944-1052,
Anzahl NBU in den Jahren 1944-1952,

(1): Anzahl Personen mit der entsprechenden Anzahl Unfälle,
(2a): Anzahl NBU I

fqnï. TT c in •• n- I •. i ,rntt } m «en Jahren 1944-1952,(Ja). Unfallhaufigkeit der NBU
(2h): Anzahl BU
(3b): Unfallhäufigkeit der BU ^ 1944.1952.
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Diese Abhängigkeiten logen die Idee nahe, class für einen Bestand

von Unfallversicherten neben den äussern, objektiv abgrenzbaren, noch

innere Gefahrenklassen existieren. Auf Grund einer ähnlichen Unter-

suchung hat übrigens der Psychologe K. Marke (10) den Begriff der

Persönlichkeitsgefahrenklassen eingeführt.

7. Untersuchungen über clie Verteilung der Anzahl Schadenfälle

Von den beiden stochastischen Grössen, welche zusammen das

Risiko in der Unfallversicherung bestimmen: Anzahl der Schadenfälle

und Schadenhöhe, ist die erstere die statistisch einfachere und auf-

schlussreichere. Wir werden uns daher in erster Linie mit ihr befassen.

Beim Versuch, in der Einzelunfallversicherung auf Grund der

a priori zur Verfügung stehenden Daten Gefahrenklassen zu bilden,

welche homogene Gesamtheiten darstellen in dem Sinne, dass der Er-

wartungswert der Anzahl Schadenfälle für alle Versicherten einer Ge-

fahrenklasse der gleiche ist, macht man die Feststellung, dass dieser

aus prinzipiellen Gründen versagt. Selbstverständlich stellt die ge-

forderte Homogenität in allen Versicherungszweigen eine Idealisierung
der Tatsachen dar und kann in der Wirklichkeit nicht streng realisiert
werden. In unserem Fall jedoch geht man am Wesentlichen vorbei,

wenn man nur die objektiven Gefahrenklassen berücksichtigt, weil

unter den Unfallursachen subjektive Faktoren eine viel grössere Bolle

spielen als man gewöhnlich annimmt.
Mit dem Ziel, einen theoretischen Beitrag zur Unfallverhütung z«

geben, untersuchten Greenwood und Yule (6) die Unfallstatistiken
einer Beiho von weiblichen Belegschaften in der Munitionsfabrikation
während des ersten Weltkrieges. Die Frage, ob die Unfälle gleichmässig
unter die Arbeiterinnen verteilt seien, führte sie zur Aufstellung von
drei Modellen für eine theoretische Verteilung der Anzahl Unfälle, die

aus folgenden Hypothesen abgeleitet wurden:

1. Die Unfallereignisse innerhalb einer Gruppe von Arbeiterinnen
unterliegen dem reinen Zufall.

2. Die Personen einer Gruppe haben anfänglich alle die gleiche Wahr-
scheinlichkeit, einen Unfall zu erleiden. Trifft jedoch ein solcher

ein, so ändert sich dadurch die Wahrscheinlichkeit für das Ein-
troffen des nächsten Unfalles.
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• Die Personen einer Gruppe haben verschiedene Anfälligkeit gegen-
über Unfällen und damit von Beginn an verschiedene Wahrschein-
hchkeiten, einen Unfall zu erleiden.

Diese Annahmen bilden die Grundlage für eine theoretische Be-
^andlung der Statistik der Unfallereignisse. Wir geben eine kurze

ersieht, wie sie im Lichte der neueren Ergebnisse der Wahrscheinlich-
^tsrechnung mathematisch zu formulieren sind.

Der Hypothese, welche die Schadenfälle als reine Zufallsereignisse
® lachtet, entspricht die Poisson-Verteilung. Die Wahrscheinlichkeit,
äss eine Person in einer Zeitperiode der Länge i von » Schadenfällen
® roffen wird, ist gegeben durch den Ausdruck:

» W
P(to;<)

>

-,
w!

worm A die mittlere Anzahl Unfälle pro Zeiteinheit (die spezifische
«fallhäufigkeifc) angibt. Die Poisson-Verteilung ist die Wahrschein-

c i vejfcsvorfceihtng der Schadenfälle innerhalb einer homogenen
Gruppe.

Im zweiten Falle werden die Unfälle als Ereignisse mit Wahr-
scheinlichkeitsansteckung aufgefasst. Ein neues und bedeutend all-
bßmeineres Modell als das ursprüngliche von Greenwood und Yule für

solche Ansteckungsverteilung stammt von J. Neyman (11). Es

^ud definiert auf Grund der bedingten Wahrscheinlichkeit P(w';f'/w;<),
^ss eine Person in der Zeit 0 bis <' genau n' Unfälle erleidet unter der
oraussetzung, dass sie « Schadenfälle erfahren hat in der Zeit 0 bis f.
W P /to;/) wird auch als direkte Übergangswahrscheinlichkeit be-

^Dehnet. Sie habe die Eigenschaften:
(") P(to';/'/to;/) hängt nur von 1 und « ab, jedoch nicht davon, zu

welchen Zeitpunkten die » Schadenfälle eingetroffen sind.
(*>) P(to',•/'/«,;/) ist im Punkte /' / nach 1' differenzierbar, und

zwar gilt:

0P(m';/'/«;*) I *(»)

*r~ -i + i' +

0 für to' > TO -f 1,

Wobei die ä(to) beliebige nicht-negative Zahlen bedeuten und c > 0 ist.
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p(w;l) wird als Intensitätsfunktion der Ereignisse bezeichnet, dft

die bedingte Wahrscheinlichkeit dafür angibt, dass im Zeit-

Intervall f bis 1 + r/1 ein weiterer Unfall eintritt. Sie hängt, ab von der

Anzahl der in 0 bis 1 eingetroffenen Ereignisse und, falls c > 0 ist, von

der Länge dieses Zeitintervalles. Das Modoll berücksichtigt also An-

Stockung zwischen den Ereignissen und eine zeitliche Wirkung auf Sie-

Die dritte Hypothese führt zu einer gedanklichen Aufspaltung der

untersuchten Gruppen in homogene Teilgruppen, innerhalb derer die

spezifische Unfallhäufigkeit A einen konstanten Wert besitzt, während

sie von Teilgruppe zu Teilgruppe variiert. Der Wert von A für eine be-

liebige Teilgruppe ist gegeben durch eine Verteilungsfunktion 17(A),

definiert auf dem Intervall 0VA<co, die sogenannte Struktur-
funktion. Innerhalb jeder Teilgruppe ist die Anzahl Schadenfälle

nach Poisson verteilt, so dass die Wahrscheinlichkeit für irgendeine
Person aus der Gruppe, » Schadenfälle in einein Zeitintervall der

Länge f zu erleiden, gegeben ist durch:

oo

P(n;l) J 6"*' d17(A).
I w!

0

Dies ist die absolute Wahrscheinlichkeitsfunktion einer zusammen-

gesetzten Poisson-Verteilung.
Greenwood und Yule wählten, hauptsächlich um formal einfache

Ausdrücke zu erhalten, für 17(A) eine Punktion vorn Pearsonschen

Typus III
/IV®- A®'^'

dZ7(A)= -)» W'VlA A>0, g>0, fe > 0,
V 6 y / (<///>)

damit ergibt sich nach 1(3.1) und 1(3.4) *) die Wahrscheinlichkeits-
funktion

P(0;1)
1 + fei

fei V M + »
P(n;<) P(0;1) — -Y '

^ ^ ^1 + fel/ rg/6)»

*) Auf Formeln aus dem ersten Teil wird mit einem vorangesetzten I Bezug
genommen.
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döi sogenannten negativen Binoinialverteilung, die auch von E.New-
° d (12) und O.Lundberg (8) zur Untersuchung von Unfallstatistiken

verwendet wurde.
Her Nachteil der negativen Binoinialverteilung liegt darin, dass

sowohl als Ansteckungsverteilung wie auch als zusammengesetzte
- oisson-Verteilung interpretiert werden kann. Die Intensitätsfunktion
einer zusammengesetzten Poisson-Verteilung erfüllt nach O.Lundberg

S. 72 die Eelation

?/(ng)
p(n + l;ü) p(n;i) — -

Hiese Beziehung ist auch hinreichend für eine zusammengesetzte
Intel

2(n)

^isson-Verteilung. Setzen wir die Intensitätsfunktion der Neyman-
»erteilung

ein, so folgt;

also :

»w i + „
2(w + 1) ä'(M) h c,

2(«) 2(0) + CM,

2(0) + CM

l+«(-
ies ist gerade die Intensitätsfunktion der negativen Binomialvertei-

^ng, falls 2(0) > 0 und c > 0 ist. Vgl. O.Lundberg (8) S. 83.

^urch Anwendung der negativen Binoinialverteilung kann also
nicht entschieden werden, ob die Hypothese 2 oder 3 die zutreffende ist.

8* Allgemeines über die Anwendung von zusammengesetzten
P 00oisson-Verteilungen zur Darstellung von Unfallhäufigkeiten

Di® Tabellen des Abschnittes 6 zeigen, dass auf unsere Unfall-
® atistiken die Hypothese des reinen Zufalls nicht zutrifft; indessen geht
j^is ihnen nicht hervor, ob sie durch die Annahme einer Wahrscheinlich-

01 sansteckung im Sinne positiver Chancenvermehrung oder durch che
Dnahmo verschiedener individueller Anfälligkeiten ersetzt werden

Diiiss. Die Entsclieidung darüber, welche Hypothese man zu akzep-
'®ien hat, muss auf Grund von statistischen Tests gefällt werden.
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Wir haben uns vor allem mit der Prüfung der dritten Hypothese

nach Greenwood und Yule befasst, indem wir uns von der Überlegung

leiten Hessen, dass bei jährlichen Unfallhäufigkeiten von nur 0,098

(BU) und 0,104 (NEU) der Einfluss eines Unfalles auf den nächsten

kaum von grosser Bedeutung sein kann, und dass kein plausibler Grund

für die starke Chancenvermehrung angegeben werden kann, wie sie

aus den Tabellen 4 und 5 im Gallo von Ansteckung zwischen den Un-

fällen folgen müsste. Also nehmen wir an, dass die Wahrscheinlichkeits-

funktion der theoretischen Verteilung die Gestalt habe

CO

P(n;i) I e-*' ----- dü(A).
J
0

Ohne die spezielle Form von U(A) zu kennen, können wir auf Grund

der Eigenschaften des zusammengesetzten Poisson-Prozesses generell

prüfen, ob ein solcher angewendet werden darf.

Einen Anhaltspunkt, der wenig Arbeitsaufwand erfordert, erhalten

wir durch Betrachtung einer Eolge von Ungleichungen zwischen den

absoluten Wahrscheinlichkeitsfunktionen. Es gilt:

l P(«--!;/) 1 P(«G)
— • - - —- — n 1, 2, • ••

w P(n;t) " '
7i -j- 1 P(« + IG)

Der Beweis kann ganz analog geführt werden wie derjenige für die be-

kannten Ungleichungen zwischen den absoluten Momenten einer Ver-

teilung. Vgl. Cramer (3) S. 176. Das Gleichheitszeichen gilt im Falle der

gewöhnlichen Poisson-Verteilung und nur dann.

Sei: 7i Anzahl Unfälle in den Jahren 1944-1952,

Anzahl Personen mit ti Unfällen,

dann bilden die Grössen

1

» + 1 #„+1

theoretisch eine mit wachsendem 74 monoton abnehmende Zahlenfolge-
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Bü NBU
ft A/"

0 G52 547
1 288 589
2 127 1(19

3 76 85

4 22 20

5 14 12

6 5 3

7 7 1

gehen nicht weiter auf den Aussagenwert der Zahlen r/„ ein, die
Natürlich für kleine IV„ (und also grosse«) mit einem grossen wahrschein-

c en Fehler behaftet sind. Die Ergebnisse legen es nahe, die eingeschla-
fc>®fte Linie weiter zu verfolgen.

Aus den Überlegungen des ersten Teiles folgt, dass die zusammen-
besetzten Poisson-Verteilungen eindeutig charakterisiert sind durch die
momialen inversen Übergangswahrscheinlichkeiten, d. h. die Wahr-

sc einlichkeit, dass eine Person « Unfälle gehabt hat in der Zeit 0 bis i,
unter der Voraussetzung, dass sie im Intervall 0 bis 1' genau n' Unfälle
nV, wobei < < <' und daher « <t «' ist, ist gegeben durch :

/ ,\ \ « / » \ n'-n

(1-7) (8.1)

r I" der nachfolgenden Tabelle sind die theoretisch berechneten
Heiligkeiten mit den empirisch gegebenen verglichen für die Teil-

Penode 1944-1948 und die ganze Periode 1944-1952.

Um zufällige oder eventuelle systematische Änderungen in der
mihäufigkeit während der Beobachtungsperiode auszuschalten,

c en en wir uns eine zeitliche Transformation so ausgeführt, dass der
citparameter die durchschnittliche Anzahl Schadenfälle pro Person

entsprechenden Zeitintervall angibt, d. h. wir setzen:

< «, 1' «',

BU NBU Tabelle G

?»

2,26 1,52

1,13 1,06

0,56 0,67

0,86 1,06

0,31 0,33

0,47 0,67

0,10 0,43
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wobei n die durchschnittliche Schadenhäufigkeit in der Zeit 1944-1948

und w' diejenige in der Zeit 1944-1952 bezeichnet. Der Parameter der

Binomial Verteilung
f

i' ~ w'

wird daher abgeschätzt durch:

«

__

Wir erhalten so

für die 13 U :

*
0,57780,

für die NEU: - 0,56759.
«'

Die Übereinstimmung wird mit Hilfe des ^-Tests geprüft, wobei

man für jede Gruppe mit festem n' berechnet und die Additionsregel

für ^ benutzt:
CO

'A V «2
/C6 Xn'*

«' 0

Die Anzahl Freiheitsgrade ist deshalb: / Anzahl der Beobachtungen
-Anzahl der Gruppen - 1. ^ ist ein beobachteter Wert von

Tabelle 7 a

Vergleich der theoretischen Häufigkeiten

nMülr)K
mit den empirischen für die BU 1944-1952.
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Häufigkeiten
w' beobachtet theoretisc

0 1 288 127 121,59
1 161 166,41
0 2 127 24 22,64
l 52 61,96
2 51 42,40
0 3 76 7 5,72
1 23 23,48
2 32 32,14
3 14 14,66

0

1

4 22 1

5
J 4,53

2 8 7,86
3 7 7,17
4 1 2,45

0

1

5 14 0

3
1,47

2 3 3,52
3 2 4,81
4

5

5

1
J 4,19

0 6 5 0
1 0 > 1,03
2 2

3 1 1,45
4 2 1,49
5

6 1,01

0 7 7 0
1

2
0

0
2,34

3 2

4 3 2,06
5 0 |

6 1 2,61
7 1 1

0,42

1,85

0,59

1,84

3,46

2,21

10,5

0,62

/ 16 P(z">zD 83,9%
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Tabelle 7 b

Vergleich der theoretischen Häufigkeiten mit den empirischen für

die NEU 1944-1952.
Häufigkeiten

beobachtet theoretisch7t

0

1

0

1

2

0

1

2

3

0

1

2

3

4

0

1

2

3

4

5

0

1

2

3

4

5

6

'V,/

359

169

85

20

12

144

215

34

32

53

11

23

40

11

0

2

11

6

1

0

2

3

3

4
0

0

1

0

0

1

1

0

155,24

203,76

31,60
82,96

54,45

6,87

27,06

35,52

15,54

4,37

7,23

6,33

2,08

1,37

3,13

4,10

3,40

1,57

V,

1,43

0,23

4,99

3,79

0,70

0,48

1,43

% - 11,6 / 12 > 2?) > 44,6%

Um keine theoretischen Häufigkeiten zu erhalten, die kleiner als 1

sind, wurden einige Beobachtungen sinngemäss zusammengefasst.
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^

i® vorangehenden Untersuchungen berechtigen zum Schlüsse,
Ms die betrachteten Unfallverteilungen einer zusammengesetzten
oisson-Verteilung folgen. Wir akzeptieren daher die dritte Hypothese

von Greenwood und Yule, formulieren sie jedoch wie folgt:
Die Personen des Bestandes haben von Beginn an verschiedene

Unfall-Suszoptibilität.
Wir schliessen in diesen Begriff eine subjektiv begründete ver-

îedene Disposition zu Unfällen sowie die Möglichkeit verschiedenen
äusseren Risikos bei verschiedenen Personen ein.

Selbstverständlich handelt es sich hier um eine starke Verein-
ung eines komplizierten psychologischen Phänomens. Indessen ver-

suchen wir nicht, die erhaltenen Ergebnisse in dieser Richtung näher
?" interpretieren. Uns interessiert lediglich die Frage, ob das Modell
rauchbar ist als Grundlage für die Berechnungen in der Unfallver-

Sicherung
o*

Damit dies der Fall ist, muss insbesondere verlangt werden, dass
Verteilung der Suszeptibilitäten im Bestand zeitlich stabil sei. Das

ann geprüft werden, indem man die Streuungen der Strukturfunktion
^wei angrenzenden Perioden miteinander vergleicht. Wir

rucken, wie vorhin, die Länge der Perioden durch die durchschnittliche
uzahl Schadenfälle pro Person aus.

Aus der Momentenrelation I(2.2a):

« IG

«Ü- 'U r • zG

wegen der speziellen Wahl des Zeitparameters

I 1

u;
.2 __

2

« l

'War kennt man die Stichprobenverteilung von nicht, doch kann
uach einer Methode von Tschuprow die Varianz von uj (der wahrschein-
ic e Fehler) berechnet werden. Für grosse Stichproben gilt:

/ 2,
1 /' 4«» 10uf. 6 \

\ w w y

mit % /<,'(« — rä)®. Vgl. E.Newbold (12).
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Nehmen wir als 1. Periode: 1944-1948, als 2. Periode: 1949-1952, so

erhalten wir:

PU: < 1,47 ± 0,26, o?, 1,16,

NBU : 0,856 + 0,114, ^ 0,456.

Bei den PU liegt innerhalb dos doppelten, bei den NBU sogar

innerhalb des einfachen wahrscheinlichen Fehlers, was zur Annahme
einer stabilen Strukturfunktion berechtigt.

9. Zeitliche Schwankungen der Unfallhäufigkeit

Eine theoretische Verteilung kann im allgemeinen nicht auf jedes

beliebige Teilintervall der Periode, für welche sie berechnet wurde, an-

gewendet werden, da die spezifische Unfallhäufigkoit Schwankungen

unterliegt, die um so grösser sind, je kleiner das betrachtete Inter-
vall ist.

Wir untersuchen nun speziell das Verhalten der jährlichen Unfall-

häufigkeiten. Zu diesem Zweck befrachten wir einen Bestand von IV

Personen während 7c Jahren und berechnen die Stichprobenverteilung
der jährlichen Unfallhäufigkoit unter der Annahme, dass die theore-
tische jährliche Unfallhäufigkeit konstant sei.

Sei die Anzahl Unfälle der r-ten Person im j-ten Jahr. Dann ist

I iV &

die jährliche Unfallhäufigkeit des Bestandes. Für alle y gilt:

P{»„ r} e"^ 1, %,.).

Die charakteristische Funktion dieser Verteilung ist

die charakteristische Funktion der Verteilung von r/ wird deshalb

2V

/c >]
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iV

wobei 2 JV97 ist, so class sich für die Verteilung von »7

pL vi
I' ftiVj r!

mit Sfo) i 0* -^r.

Die charakteristische Funktion der standardisierten Variablen f——
|/ 7?//cW

]/ /ciVr; («*2/ / -l) —12 ]/ /tiVrç ig ]/ /ciVrç —
1 -(-•••

e
2 3 I (/ AWif

strebt für jV-»- 00 gegen die charakteristische Funktion der Normal-
Verteilung

•Die beobachtete jährliche Häufigkeit ist also unter der gemachten
Annahme annähernd normal verteilt mit dem Mittelwert >7 und der

Streuung
fciV

Der p%-Wert einer Normalverteilung ist gegeben durch die
Gleichung _,P{ |?7 — >7| >/pCr,} p%.
Er kann bei vorgeschriebenem 7) einer Tabelle entnommen werden.
P gibt die Prozentwahrscheinlichkeit an, class ein beobachteter Wert
von 77 ausserhalb clés Intervalles

liegt. <*-/,«,.» +W
Für die Verteilungen der BU und NBU erhalten wir:

BU: 0,098, NBU: 0,104,

und daraus:

5 % Intervall
BU : 0,092 < 77 < 0,104, NBU : 0,098 < 77 < 0,110.

0,1 % Intervall
BU: 0,088 < 77 < 0,108, NBU: 0,094 < 77 < 0,114.

ÜB
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Die Tabelle 8 zeigt, dass bei den EU 4, bei den NEU 5 Werte ausserhalb

des 5% Intervalles, und 1 Wert bei den EU, 4 Werte bei den NEU

sogar ausserhalb des 0,1 % Intervalles liegen.

Jahr BU NBU Tabelle 8

(1) (2) (1) (2)

1944 120 0,100 102 0,085

1945 108 0,090 188 0,115

1946 122 0,102 121 0,101

1947 127 0,106 162 0,135

1948 182 0,110 111 0,093

1949 121 0,101 121 0,101

1950 112 0,094 133 0,111

1951 106 0,089 116 0,097

1952 106 0,089 113 0,094

(I.): Anzahl Unfälle,
(2) : Unfallhäufigkeiten.

Für Betrachtungen, welche sich auf eine 1-Jahr-Periode beziehen,

darf also die Unfallhäufigkeit nicht als konstant angenommen werden-

Da aus den Beobachtungen weder ein Trend noch eine Periodizität zu

erkennen ist, so müssten die Schwankungen durch eine zusätzliche

Wahrscheinlichkeitsverteilung erfasst werden, eine Idee, die bereits

von FI. Ammeter (1) zur Behandlung von Kisikoproblemen benützt
wurde. Mathematisch bedeutet die Berücksichtigung dieser Schwan-

kungen keine Schwierigkeit. Wir schreiben die Wahrscheinlichkeit^-
funktion der Anzahl Schadenfälle in der Form

CO

P(n;ii I <iU(A;a),
J
0

wo <x Ä wegen w «< die spezifische Unfallhäufigkeit bedeutet.
Nehmen wir an, dass a eine dem Zufall unterworfene, durch die Vor-

teilungsfunktion F(a) gegebene Variable sei, so wird:
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P*(w;<) f dF(cc) J e"*' -?-dî7(A;a)
' '

"1.W!

I U(A;a)dF(a)
n! J

0

I e-* ^ -dff(yl)
WÏ

0

mit FT(/l) | ?7(/l;a) c/F(a).

chwieriger wäre bei unserer Beobachtungsperiode von nur neun
' ähren die statistische Bestimmung von F(a). Für unsere Unter-
suchungen kommen wir jedoch mit der Annahme einer konstanten
spezifischen Unfallhäufigkeit aus, da wir keine kleineren Zeitintervalle
®ls die Perioden 1944-1948 und 1949-1952 betrachten und die spezi-
Aschen Unfallhäufigkeiten in diesen Intervallen (bezogen auf ein Jahr)
die Werte haben

BU: ^ 0,102, ^2 0,093,

NBU : ^i 0,106, 0,101.

und somit innerhalb des 5%-Intervalles liegen.

10. Anwendung spezieller zusammengesetzter Poisson-

Verteilungen

l'ür jede zusammengesetzte Poisson-Verteilung gilt, wie leicht zu
feigen ist: „ „ „ _+ /tf»

oo oo

P(0;<) :> <f* mit I J'jdU(J)
"nd somit: „ _'i

P(0;<) • e"".
Uus Gleichheitszeichen gilt nur im Falle der einfachen Poisson-Ver-
teilung.
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Bei vielen Untersuchungen von Unfallstatistiken mit Hilfe der

einfachen Poisson-Verteilung folgte aus den angewendeten Tests un-

genügende Übereinstimmung mit den empirischen Daten. Es neigte

sich im besonderen, dass die empirische Streuung grösser ist als der

Mittelwert (und daher als die theoretische Streuung) und die Null-

klasse (d. h. die Anzahl Personen mit 0 Schadenfällen in der Beobach-

tungsperiode) grösser als die nach Poisson berechnete. Dadurch wird

die Anwendung einer zusammengesetzten Poisson-Verteilung nahe-

gelegt. Zur Verbesserung der Resultate wurde fast durchwegs die nega-

tive Binomialverteilung verwendet. Diese Wahl geschah aus Gründen

formaler Einfachheit; indessen hat O.Lundberg (8) eine theoretische

Begründung dafür gegeben, indem er zeigte, dass die negative Binomial-

Verteilung die einzige zusammengesetzte Poisson-Verteilung ist nut
linearer Regression, d. h. mit der Eigenschaft, dass der bedingte Er-

wartungswert der Anzahl Ereignisse in einer Zeitporiode der Länge ^
unter der Voraussetzung, dass in einer vorangehenden Zeitperiode der

Länge G genau Ereignisse eingetroffen sind, linear von Wj abhängt,
und zwar gilt:

^
lg

In diesem Sinne kann sie als erste Approximation für jede zu-

sammengesetzte Poisson-Verteilung gelten.
Die berechneten Regressionsgeraden für die BU und NßU sind

LUVa^/riiV,) 0,124 + 0,30 «j

2 »

1 -

2
wa

4

0,33 + 0,41 %



0,45 + 0,18^

Die im ersten Teil eingeführte Schar von zusammengesetzten

Poisson-Verteilungen, die wir zur Darstellung der empirischen Vertei-

lungen verwenden, hat die Wahrscheinhchkeitsfunktion (vgl. 1(4.1

_? « .DJ Jt V")
P(0;i,cc) e

»
> (10.1)

V 1 /«3
1

'

\« + H*(»*«) P(0;^^)^2/«('
mit dem Scharparameter 0 < a < °o und 6,fjf > 0.

Alle Verteilungen der Schar haben gleichen Mittelwert und gleiche

Streuung wie die in ihr enthaltene negative Bmomialverteilung (a

Für jedes feste t nehmen die Wahrscheinlichkeiten der Nullklasse mi

"wachsendem a monoton zu

P(0;(,ai)<P(0;<,«a) fürai<«2-

Die untere Grenze wird dnrch die Nullklasse der Porsson-Verteilung

P(0;i,0) gebildet.

Zu, praktischen Berechnung der theoretischen Wahrscheinlich-

keiten benützen wir die Bekursionsformel I (4.10), welche mit unseren

Parametern die Gestalt hat :

»„h.,« Î' i i VvhVAVVP+"p(»-fe<).
P(n + 1;0 _ .^,) S /Ya+: \l + h/ai/
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Die Abschätzung der Parameter & und g geschieht mit Hilfe von

empirischem Mittelwert und empirischer Streuung, während der Wert

von a aus der beobachteten Nullklasse ermittelt wird. Sei:

w: Anzahl Unfälle,

N: Anzahl Personen des Bestandes,

JV„: Anzahl Personen mit ?t Unfällen.

Aus den Beziehungen 1(4.15):

w gi,

o» gf(&f + 1),

und der Pormel (10.1) ergeben sich die Abschätzungen:

s' ^ 2
o* E(»*) _5/ 1 —1 — n —1,
w n

1

=* r; —.. 2*2 '
•

* G '< '") A7
ô a-1 V 0

w '

a wird deshalb aus der transzendenten Gleichung

g ot / / a

»-i
bestimmt. Wir erhalten (wenn wir für die BU p anstatt g und a anstatt 1)

verwenden) die folgenden numerischen Werte:

BU : pf 0,88127, ai 1,10545, 0,76603,

NBU : g< 0,93395, fei 0,37313, 5,72312.

Die Tabelle 9 zeigt die empirischen Verteilungen, die theoretischen

Häufigkeitsverteilungen und die entsprechenden negativen Binomial-
Verteilungen (a 1).
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m: Anzahl BU in den Jahren 1944-1952

Häufigkeiten
w beobachtet a 0,76003 a 1

0 652 652,00 660,63
1 288 289,86 276,52
2 127 130,01 130,46
3 76 61,50 63,87
4 22 30,29 31,83
5 14 15,35 16,04
6 5 7,95 8,13
7 7 4,18 4,15
8 0

9 5 / 4,86 4,37

usw. 0

« 0,70603 x? 9,00 / 5 P(x > Zi) > 10,1 %

a 1 ZÏ 9,54 A2sCOII *(,)> 14,3%

ra: Anzahl NBU in den Jahren 1944-1952

Häufigkeiten
n beobachtet a 5,72312 a 1

0 547 547,00 540,80

l 359 355,90 367,83
2 169 178,11 175,07
3 85 74,22 71,41

4 20 27,40 26,70
5 12 9,25 9,44
6 3

7 1 4,12 4,75

usw. 0
1

a 5,72312 xs 4,89

a 1 ^ 5,57

/ 3 W >*5) >17,2%

/ « *(**>*!) >23,1%
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Die Übereinstimmung darf in beiden Fällen als befriedigend be-

zeichnet werden; wir bemerken speziell, dass schon die negative Bino-

mialverteilung genügend gute Resultate liefert.

Um die Hypothese der individuell verschiedenen Suszeptibilitäten
sinnvoll zu verwenden, bilden wir nach einer gewissen Beobachtung»-
zeit (1944-1948) auf Grund der eingetroffenen Unfälle subjektive Go-

fahrenklassen und berechnen in ihnen die a posteriori Wahrscheinlich-
keiten der Anzahl Schadenfälle für die angrenzende Periode (1949—1952).

Sie sind gegeben durch die direkten Übergangswahrscheinlichkeiten
P(m';f'/r&;0* Diese berechnen sich aus der Beziehung

Da die inversen Übergangswahrscheinlichkeiten binomial sind, erhalten
wir daraus nach (8.1):

P(n';f'/w;f) P(w;f) P(n;f/n';t') P(n';f').
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Tabelle 10 a

Vergleich der theoretischen Häufigkeiten jV„P(w';f'/«;<) mit den
empirischen für die BU.

Häufigkeiten

m m'-» beobachtet theoretisch

0 0 811 652 649,93
1 127 128,42
2 24 25,60
3 7 5,38

4 1

> 5 0

0,92

1,54

0 244 161 154,85
1 52 61,74
2 23 19,47

3 5 5,68

4 3

>5 0

4 2

>5 0

4 2

>5 0

2,21

0 96 51 46,52
1 32 29,34
2 8 12,84

3 3 4,82

2,48

0 26 14 9,48
1 7 8,30

2 2 4,67
3 1 2,15

1,40

2,74

3,27

4,76

0 11 1 3,00
1 5 3,38
2 2 2,33 5,53
3 3 1,27

l> 4 0 1,02

17,2 / 17 FV > > 42,1 %
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Tabelle 10 b

Vergleich der theoretischen Häufigkeiten P(n';/'/w;f) mit den

empirischen für die NBU. Häufigkeiten
ri

o

re'-ri iV„ beobachtet theoretisch V
An

0 736 547 538,13
1 144 155,62
2

8

34

11

34,61

6,41

5,55

; 4 0 1,28

0 325 215 202,93
1 32 90,28
2 23 25,07
8 2 5,49 6,41
4 2

1|

5 1 1,23
• 6 o 1I

0 107 53 59,60
1 40 33,11

2 11 10,86 2,21
3

V 4 o
j| 3,43

0 20 11 10,05
1

9

6

3 1

6,59
I

0,18

> 3 0 j 3,36

0 6 1 2,73
1

2

3

4

»
i

2,05

| 1,22

2,99

17,3 / 12 P(**>zï)>13,2%%6

Aus der Tabelle 5 geht hervor, dass zwischen der Anzahl BU und

der Anzahl NBU einer Person ein enger Zusammenhang bestehen muss.

Dies ist in Übereinstimmung mit dem Modell verschiedener indivi-
dueller Suszeptibilitäten, die ja wesentlich auf der Verschiedenheit der

Anfälligkeit einer Person gegenüber Unfällen beruhen. Es muss deshalb

möglich sein, die gemeinsame Verteilung der BU und NBU durch eine
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zweidimensionale Korrelationsfunktion darzustellen. AlsBeobachtungs-
Periode wählen wir die Jahre 1944-1952. Die Bandverteilungen sind
deshalb die in Tabelle 9a und 9b wiedergegebenen Verteilungen, welche
m genügend guter Weise durch negative Binomialverteilungen dar-
gestellt werden können. Wir versuchen deshalb, auf die gemeinsame

erteilung der BU und NBU die im ersten Teil abgeleitete negativ-
inomiale Korrelationsfunktion I (3.13) anzuwenden. Wir schreiben

sie in der Gestalt I (3.17) und setzen noch s h

*(0,0;f) / i_\W i _VÏ—/ L _ V
\ 1 + at / \ 1 -|- ht / \ (1 + at) (1 + ht) — ßatht / '

=^WAW S 'Jî ^ .!/„( m; ot) jj, ht) *'<»ff *

r(c)/i! V « / V 0 /WiX

i + «i7 VU-*/

Ibro Bandverteilungen sind :

/ 1 w at \"^(a+)
Pi(m;f)

i^Mjt)
1 \-/ ht

1 + M/ U+W/
» ^(y+»)

Für die Parameter at, ht, gt, pt verwenden wir die Werte von
ubelle 9, während cr,„„ abgeschätzt wird durch

"»» S S »^- 0,28480
-<* m n

Anzahl Personen mit m BU und w NBU in der Beobachtung3-
Periode.

ßer Parameter c wird eingeschränkt durch die Bedingungen:

1. c W 0,79721,

2. /? <1 c > 0,69046.
catht

Wir wählen c=
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Tabelle 11

Vergleich der theoretischen Häufigkeiten jVP(m,n;<) mit den ein-

pirischen V,„„ für die BU (m) und die NBU (n).

TO\ 0 1

343 181
0 331,99 198,39

(0,37) (1,60)

122 94
1 121,08 87,34

(0,01) (0,51)

46 45
2 49,81 42,02

(0,29) (0,21)

24 24
3 21,25 20,52

(0,36) (0,59)

2 10
4 9,26 10,04

(5,69) -
5 1

5 4,08 4,89
(0,21) (3,09)

1 2

6 1,81 2,38
(0,36) (0,06)

2 1

7 1,16

Ö

(0,28)

o

9 t

10 2

83 31

84,01 30,83
(0,01)

4L 27

42,03 16,88

(0,03) (6,07)

16 10

22,71 9,98
(1,98) -
14 9

12,32 5,87
(0,28) (1,67)

7 1

6,63 3,42
(0,02) (1.71)

5 2

3,53 1,97

(0,61) -
1 1

1,86 1,12
(0,40) (0,18)

2 2

9

10,48
(0,21)

3

6,12
(1,59)

3

3,87
(0,20)

3

2,45
(0,12)

1

1,52
(0,15)

4

3,39
(0,11)

1

2,08
(0,56)

5

1,39
(9,37)

1

1,06

(Der beobachtete Wert steht oben, der theoretische, sofern er

grösser als 1 ist, darunter. In Klammern ist der zugehörige Wert von

^ beigefügt.)
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Für den jATest verwenden wir nur die Beobachtungen, bei denen
der theoretische Wert grösser als 1 ist. Auf eine Gruppierung der rest-
lichen Beobachtungen verzichten wir, da diese willkürlich geschehen
ühisste.

Es ist:

Z? 38,46, / 32, P(/ > *J) > 18,4%.

Wir treten noch kurz auf die Interpretation der hier angewendeten
Verteilung ein. Die Funktion

^

1—fas j ^ 1 —J i (1 —fas) (1 — fh<) -f- /?asf><

ist die charakteristische Funktion der Strukturfunktion (7(/c,/l). Aus
ihrer Gestalt geht hervor, dass man sich die Variablen If und /I als
Summen zu denken hat:

If Ifi + Z„,
/I /lj + /Iji

m denen die Summanden folgende charakteristische Funktionen haben:

If,:

Ed

1

1—fas

i M-
i—f&<

(Ifj,, /J.,,) ;

(1—fas) (1 — ffei) + /dashf,

Es besteht also nur zwischen /f„ und M,, stochastische Abhängigkeit.
Wir können uns die Suszeptibilitäten einer Person gegenüber den BU (/c)
und den NBU (H) zusammengesetzt denken aus subjektiver Unfall-
neigung und objektivem Unfallrisiko: An und /!„ beziehen sich auf das
subjektive, If, und /l, auf das objektive Risiko für BU bzw. NBU. Die
beiden letzteren Grössen müssen deshalb unabhängig sein voneinander.
Ehe gemeinsame Verteilung von BU und NBU liefert eine weitere
Bestätigung für das Modell der individuell verschiedenen Unfall-
Suszeptibilitäten.
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11. Die Verteilung der Schadenhöhen

Wir haben bereits darauf hingewiesen, dass der Umfang des Be-

Standes keine eingehende Analyse des Problems der Schadenhöhen ge-

stattet. Wir beschränkten uns deshalb darauf, die Schadendauer allem

zu betrachten. Dabei machte sich der Umstand störend bemerkbar,

dass die Zahlung des Krankengeldes erst am dritten Tag nach dem Un-

fall beginnt. Dadurch wird in der Statistik die Anzahl Unfälle der

Schadendauer 0 unverhältnismässig gross, da darin alle Unfälle der

effektiven Schadendauer 0, 1 und 2 Tage enthalten sind.
In der Tabelle 12 ist die Verteilung der Schadendauer pro Unfall

für die DU der Jahre 1944-1952 mit der Frequenzfunktion:

1

a(œ) : -- 6 *

verglichen, wobei rü die durchschnittliche Schadendauer pro Unfall ist.

Mit dieser Funktion und der Darstellung der Anzahl 11U durch eine

negative Binomialverteilung erhalten wir für die Verteilung der sum-

maren Schadendauer für eine Person die Frequenzfunktion (vgl. I (5.2)) :

</t / 1 \-f- / (7

----- .1 s(a:) : 1,2.
1 + bf V 1 + / V 5 1 + 6Z d

Fl V U(« + «)

i («) n=o 7 (n 1) / (/? -)- w)

ist die kontinente hypergeometrische Reihe. Sie wird für kleine 2

direkt, für grosso aus einer asymptotischen Entwicklung berechnet.
Tabelle 13 zeigt die theoretische und empirische Verteilung der

Schadendauer pro Person.
Die Übereinstimmung ist in beiden Tabellen aus den eingangs er-

wähnten Gründen für kleine Werte von a; unbefriedigend.
Die Funktion /((:;;;<) ist allerdings für versicherungsmathematische

Überlegungen weniger wichtig als die Verteilung der gesamten Scha-

denhöhe für den ganzen Bestand.
Wir betrachten zunächst den allgemeinen Fall, wo P(w;Z) die

Wahrscheinlichkeitsfunktion der Schadenfälle und,S'(:r) die Verteilungs-
funktion der Schadenhöhe ist.
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Tabelle 12

Dauer in Tagen

Tabelle 13
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Dann wird die Verteilungsfunktion der summaren Schadenhöhe für

eine Person:
CO

ïï(œ;0 2 S,„,(a;) P(rc;<).
n=0

Für zwei Personen ergibt sich durch Addition von zwei unabhängige®

Variablen:
CO

PI(2)(.rg) Jiï(a: —z/;i) diî(î/;i)

o
' CO CO

w=0 m=»0

CO

oo A*

2 2 ®w(®—y) ^'(m)(y)
n=0 m=»0

0

- 2 2 S<m+»>(*) P(m;<) P(n;t)
n=o w=0

oo oo

o vi22 W PM
«=>0ft=n

oo oo oo

~ 2 2 2 ^(2)(^>0 '
fc=0 r»=0 ft=«0

da P(—i;<) 0 für i 1, 2,

Für einen Bestand von IV Personen erhält man daher

oo

i?(#)(ä:;<) 2 ^(n)(®) -P(N)(^'0 •

n=0

Wir nennen H^(a:;<) die Verteilungsfunktion des Gesamtschadens für
den Bestand.

Zur numerischen Berechnung der Verteilung des Gesamtschadens

verwenden wir die Beihe von Cramér-Edgeworth. Wir gehen aus von
JV Variablen X-, (i 1,2, V), welche alle die Verteilungsfunktion

den Mittelwert œ, und die Streuung besitzen. Unter der

Voraussetzung, dass S'(;c) eine absolut stetige Komponente enthält, d. h.

J S'(a:) da: > 0,
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fcilt für die Verteilungsfunktion G(j/;<,iV) der Variablen

S (*«-«<)
y _ ' il _N ~ 1 /

asymptotische Entwicklung:

G(?y;h,V) 0(,y) -i- V (-1)'^ + o f ,-).'
v=i iV'^ vv'^y

(#) bezeichnet die Verteilungsfunktion der standardisierten Normal-
'iteilung, sind Polynome in den Grössen A,(/)/^®(<) wobei A,(f)

' r-lo Semiinvariante von D(,rg) ist.

Speziell gilt im Falle /c 3:

3 [/ 2 TT 2f(/) |/ iV \J/JV/
Stellt P(/(;/,) die Wahrscheinlichkeitsfunktion einer zusammen-

gesetzten Poisson-Verteilung dar, so ist dadurch, wie wir im ersten Teil
gesehen haben, die Wahrscheinlichkeit für « Schadenfälle in einem be-

igen Intervall der Länge / gegeben. Man darf deshalb für die Be-
Rechnung der Verteilungsfunktion des Gesamtschadens die Kontrakte
unabhängig von ihrer Laufzeit und ihrer Vorgeschichte zusammen-
fassen.

Die zweite und dritte Semiinvariante einer Verteilung sind gleich
zweiten bzw. dritten Moment bezüglich dem Nullpunkt. Also ist

2(0 durch I (5.4a) und Vj(/) durch I (5.4b) gegeben. Um sie durch die
Momente von ,S'(.r) und P(n;f):

00

"* / :D'd.S'(:r)
0

00

%)(0 S »(»—i) • • («—* +1)
n=/c

M^szudrücken, benützen wir die Momentenrelation I (2.2), die im
indimonsionalen wie folgt lautet:

%)(0
39
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Damit erhalten wir:

^(0 : ^1)(0) + "2 %)(<)>

Ag(<) vf(»7(3)(0 — S»7(2)(0 »7(1)(0 -r- 2t7|\)(0) i-•''^iDC'?(2)(0 - 1(i)W) + '

Setzen wir diese Werte in (11.1) ein, so erhalten wir eine approximative
Darstellung der Verteilungsfunktion des (losamtschadens (ausgedrückt

in der standardisierten Variablen) des Bestandes in einem Zeitintervall
der Länge i, die auf Grund der ersten drei Momente der Verteilung^-
funktion der Schadenhöhe: S'(.t) und der Wahrschoinlichkeitsfunkfciou
der Sehadenfälle in der Zeit <: P('«;i) berechnet werden kann.
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