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Uber zusammengesetzte Poisson-Prozesse
und jhre Anwendungen in der Unfallversicherung

Von Martin Hofmann, Ziirich

Einleitung

Die Theorie der stochastischen Prozesse gehort zu jenen Gebieten
der M&themati k, welche ihre Iintwicklung, besonders in den Anfingen,
W einem grogsen Meil den Anwendungen verdanken. Viele Frschei-
Dung'en aus dem Versicherungswesen, der Physik und Biologie kénnen
&15 Systeme dargestellt werden, die sich im Laufe der Zeit nach be-
’Stlmm_th Wahrscheinlichkeitsgesetzen veriindern. Das Modell, welches
an sich vom Ablauf eines solchen (teschehens macht, charakterisiort
91ne1_1 stochastischen Prozess.

Fir die Versicherungsmathematik kommen vor allem Prozesse in
P"etltacht, bei denen eine Variable, die man als F'unktion eines kon-
tnuierlichen Zeitparameters aufzufassen hat, in zuféilligen Zeitpunkten
W endliche Betrige findert, sogenannte unstetige stochastische Pro-
4esse. Kin wichtiges und zugleich das erste Beispiel eines solehen Modells
Stellt d_ie kollektive Risikotheorie dar, wie sie von I. Lundberqg zur ratio-
Nellen Behandlung von Risikoproblemen der Liebensversicherung auf-
8ebaut wurde. Riebesell und seine Schiiler zeigten, wie auch die Mathe-
matik der Sachversicherung auf einem stochastischen Modell begriindet
Wel;”den kann. Die meisten dieser Untersuchungen sind vor allem theo-
retischer Natur und bediirfen noch ausgedehnter statistischer Priifung,
bevO.r sie fiir die Praxis von Bedeutung werden konnen.

g o In der vorliegenden Arbeit beschiiftigte uns die I'rage, ob in der
mdlf’iduellen Unfallversicherung die Voraussetzungen fiir eine mathe-
matigche Behandlung versicherungstechnischer Probleme gegeben sind,
Oflel‘ eventuell geschaffen werden kionnen. Wir haben zu diesem Zweck
die verschiedenen Faktoren, welche das Unfallrisiko beeinflussen,
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untersucht und nach dem Modell gefragt, das zur Darstellung der An-
zahl Unfallereignisse und des Gesamtschadens zu verwenden 1ist. Die
mathematischen Grundlagen fir die statistischen Untersuchungen
wurden in enger Verbindung mit den praktischen Iirgebnissen ent-
wickelt. Tndessen haben wir, zur Iirreichung einer besseren Ubersicht-
lichkeit, die Arbeit in einen ersten, mathematischen und einen zweiten,
statistischen Teil gegliedert. Dieser kann im wesentlichen ohne Kennt-
nis des ersten Teils verstanden werden.

In einer grundlegenden Arbeit iber die Mathematik der Unfall-
versicherung zeigte Dubowrdien, dass in der Unfallstatistik einem spe-
ziellen stochastischen Prozess besondere Bedeutung zukommt: dem
zusammengesetzten Poisson-Prozess. Dieser ist im wesentlichen eine
Verallgemeinerung des Poissonschen Gesetzes fiir die Wahrscheinlich-
keit seltener Tireignisse. Auch die Dissertation von O. Lundberg hat die
mathematische Behandlung von Unfallstatistiken zum Thema; sie
enthiilt eine eingehende Untersuchung iiber elementare stochastische
Prozesse und deren Anwendungen. Die praktischen lrgebnisse ge-
statten es indessen nicht, die von uns gestellte I'rage eindeutig zu be-
antworten.

Besonders interessant in Untersuchungen solcher Art ist die 1'rage
nach der Verteilung der Anzahl Unfille innerhalb eines gegebenen Per-
sonenbestandes. Sie wurde erstmals von den Statistikern Greenwood
und Yule systematisch studiert. Die beiden Autoren stellten drei Hypo-
thesen tiiber das Zustandekommen von Unfillen auf, die sie mathema-
tisch formulierten und die daraus abgeleiteten Wahrscheinlichkeitsver-
teillungen mit empirischen Daten von Arbeitsunfillen aus der englischen
Industrie verglichen. lines dieser Modelle fithrte zu einem Wahr-
scheinlichkeitsgesetz, das auch in andern Zusammenhiingen wichtig
wurde, der sogenannten negativen Binomialverteilung. Im Ifalle von
Gireenwood und Yule ist sie als zusammengesetzte Poisson-Verteilung
zu interpretieren. Sie entspricht der Annahme eines Personenbestandes,
den man sich zusammengesetzt denkt aus Teilbestinden mit konstan-
tem Unfallrisiko, das indessen von einem Teilbestand zum andern
variiert. Da die untersuchten Bestinde bereits so gruppiert waren, dass
in 1thnen fiir alle Personen gleiches fdusseres Unfallrisiko bestand, muss
die Verschiedenheit der Teilbestindoe als durch subjektive Ursachen
bedingt angesehen werden. Greenwood und Yule sprachen daher von
verschiedener individueller Unfallneigung. Durch ihnliche, jedoch
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Nicht mathematische Untersuchungen an einem deutschen Versicherton-
bef;tand wurde der Psychologe K.Marbe zur Bildung von Personlich-
keitsgefahron klagsen veranlagst, ein den Teilbestiinden bei Greenwood
Wd Yule entsprechendeor Begriff.

Es stellte sich heraus, dass dem Modell der individuell verschie-
denen Unfallneigungen gegeniitber andern Modellen der Vorzug zu
geben ist. Die Problematik dieser theoretischen Betrachtungsweise
bes.teht indessen darin, dass versucht wird, eine komplizierte psycho-
1C_>glsche Eirscheinung durch das verhiltnismiissig einfache mathemas-
tls.che) Schema deg zusammengesetzten Poisson-Prozegses darzustellen.
Wir haben gezeigt, dass dieses Schema im Hinblick auf die Bediirfnisse
df}r _Versicherung angewendet werden darf. Dabei wurden wir auf
die Betr&chtl.mg von zweidimensionalen zusammengesetzten Poisson-
Verteilungen gefiihrt.

Neben der Anzahl Unfiille tritt in der Unfallversicherung auch die
Schadenhéhe als stochastisehe Grosse auf. Um sie fiir die Berech-
nungen berﬁcksichtigen zuw konnen, muss der zusammengesetzte Pois-
Soni-ljrozess verallgemeinert werden; diese Verallgemeinerung ent-
Spricht der Khintchineschen Erweiterung der gewohnlichen Poisson-

erteilung,

Der erste Teil unserer Arbeit enthiilt die mathematischen Uber-
lrﬂgungen, auf denen sich die statistischen Untersuchungen autbauen.
Zuerst, zeigen wir, wie der zweidimensionale zusammengesetzte Pois-
S(.)n'Prozess aus einer einfachen Annahme iitber die betrachteten Iireig-
Nsse abgeleitet werden kann. Da, von einem andern Ausgangspunkt
her, diegor Prozess schon von Comnsael untersucht wurde, fithren wir
U einige wenige Tigenschaften desselben an. Wir geben sodann zwei
leue zweidimensionale zusammengesetzte Poisson-Verteilungen an, die
man glg negativ-binomiale Korrelationsfunktionen bezeichnen kann.
Schliesslieh befassen wir uns noch mit eindimensionalen zusammen-
gesetzteon Poisson—Vertei’lungen- Wir leiten eine Schar von Verteilungen
her, _die sich in verschiedener Hinsicht gut eignen zur Anwendung auf
®Ipirische Daten. In dieser Schar sind einige bekannte zusammen-
ggsetzte Poisson-Verteilungen als Spezialfille enthalten, so vor allem
i negative Binomialverteilung, “um Schluss erweitern wir die zu-
Sammengesetste Poisgson-Verteilung und zeigen, unter welchen Vor-
sglsietzungen die erweiterte Verteilung gegen die Normalverteilung

rent,
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Im zweiten Teil grenzen wir zuerst die Voraussetzungen fiir ein®
mathematisch-statistische Untersuchung der Unfille innerhalb eines
geschlossenen  Personenbestandes ab. Iis stand uns eine Unfall-
statistilc itber die Betriebs- und Nichtbetriebsuntille withrend der Jahre
1944 bis 1952 von 1196 Arbeitern der stiidtischen Verkehrsbetriebe
Ziirich zur Verfiggung. Wir prifen allgemein die Anwendbarkeit der
zusammengesetzten Poisson-Verteilung auf die Vertetlungen der Anzahl
Betriebs- und Nichtbetriebsunfillle und bestimmen auf CGrund der
positiven Hrgebnisse die speziellen Verteilungen aus der im ersten Teil
abgeleiteten Schar zur Darstellung dieser empirvischen Verteilungen-
Zudem zeigen wir, dass die gemeinsame Verteilung der Betrichs- und
Nichtbetriebsunfille durch eine zweidimensionale Korrelationsfunktion
wiedergegeben werden kann. Am Beispiel der Betriebsunfille ver-
gleichen wir die theoretische und praktische Verteilung der summarem
Schadenhohe je Person wihrend der ganzen Beobachtungsperiode. Wit
geben ferner an, wie die Verteilungsfunktion des Gesamtschadens fir
den ganzen Bestand berechnet werden kann.

Die Frgebnisse, welche wir auf Grund der Untersuchungen an
ungerem verhiltnismissig kleinen Bestand erhalten, berechtigen #ur
Schlussfolgerung, dass es moglich ist, die individuelle Unfallversiche-
rung auf mathematische Grundlagen aufzubauen. Wir verzichten in-
dessen auf die Behandlung der einzelnen versicherungsmathematischen
Probleme, sondern verweisen, was die Berechnung der Nettopriimie
anbetrifft, auf die Arbeit von Dubourdiew und bemerken, dass mib
Hilfe der Verteilungsfunktion des (tesamtschadens die interessierenden
risikotheoretischen I'ragen nach bekannten Uberlegungen gelost werden
kénnen.

Iis bleibt mir noch die angenehme Pflicht, meinem verehrten
Liehrer, Herrn Prof. Dr. W. Sazer, den besten Dank auszusprechen fitr
die Anregung zu dieser Arbeit und fiir die Unterstittzung und Forde-
rung, die er thr wihrend ihres Iintstehens zuteil werden liess. libenso
danke ich Herrn PD Dr. P. Nolft sowie dem stiadtischen Strassenver-
kehrsamt Zirich tir die Hilfe bei der Auffindung und Zugammen-
stellung des statistischen Materials.
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I, Teil

L. Ein spezieller elementarer stochastischer Prozess

..Einen mehrdimengionalen unstetigen stochastisch-definiten Prozess
].Dezemhneﬂ wir aly elementar, wenn bei jeder Anderung der Variablen
Jede ihror Komponenten nur um die Finheit (+ 1) zunehmen kann,

In den Anwendungen wird ein solcher Prozess dargestellt durch
m.ehmre verschiedenartige 1'olgen von Freignissen, die in einem ge-
Wissen Intervall zu beliebigen Zeitpunkten eintreffen kénnen.

Wir befassen uns in den nachfolgenden Untersuchungen mit einem
PrOZGSS: bei dem zwei I'olgen von lreignissen betrachtet werden mit
der Eigensclmft, dass sowohl die Kreignisse der gleichen Iolge, als
Such diejenigen, welche zu verschiedenen Ifolgen gehoren, voneinander
Stochagtiseh abhiingen koénnen. Die betreffenden Ireignisse unter-
werfen wir der Bedingung:

(B) In jedem endlichen Intervall sind die Zeitpunkte des Fintreffens
der Freignigse rein zufallsmissig verteilt.

. Um diege Bedingung analytisch zu formulieren, fithren wir die
beiden Variablen M(#) und N(9) ein, welche die Anzahl der Ireignisse
?Ster bzw. zweiter Art bezeichnen, die im Intervall O bis & eintreffen.

U8 way -
o M(0) = N@O) =0 wund M) =m' N{)=n"

Der Prozess kann anstatt durch die Variablen M () und N(®)
durch (e Zeitpunkte ihrer Spriinge: S; bzw. T'; gekennzeichnet wer-
den, dje wiy S0 numerieren, dass:

s <,

m = = (11)
T, <t <.

n

IA

I

IA

0=8,<8=...
0<T,<T, <

IA

Die Bedingung (B) bedeutet, dass alle Iireignisfolgen, die gemiiss
(1.1 eintreffen, gleich wahrscheinlich sind.

In einfacher Weise lisst sich die bedingte Wahrscheinlichkeit fiir
das Bintreffen von m Freignissen der ersten Art bis zur Zeit s berechnen
unter der Voraussetzung: M(s") = m/', wobei s << s und daher m < m/’
6. 'Wir nennen sie inverse 0 bergangswahrscheinlichkeit. Fs ist die
Wf?h1'scheinlicl'1kei1;, dass von m’ unabhingigen Variablen S;, die alle
8leich vorteilt sind iiber dem Intervall (0,s"), m Variable < s sind.



Daher wird

l o o m'\ [ 8 m B S. m~m.
PIM(s) = miM(s') = m'} = (m)(y) (1 :

Mit den Definitionen

P(m;sim';s’) = P{M(s) = m/M(s") = m'}

un d s - ’ ; s m o s m/-m
B m\Ms— ) = ’ de= ’
S m S S

w4 /

erhalten wir /g
Pm;sim';s"y = B,, (‘m; ,) (1.2a)
S
und ganz analog /o
° ° Plngin'st") = Bn,(n; t’)l (1,2b)

Aus (B) folgt zudem die Unabhingigkeit der inversen Ubergangswabr-
scheinlichkeiten fiir die Variablen M und N

P{M(s) = m,N(t) = n/M(s') =m/,N{t') = n'} = Bm,(m; j) Bn,(n; ;,)
oder, wenn wir die Bezeichnung

P(mn;stim',n';8',t") = P{M(s) = m,N(t) = n/M(s") = m/,N(t') = n'}
einfithren:

S\ . t .
Plmm;stim’,n';s' 1) = Bm,(m; ,) B"'(n;t’>' (1.3)
$

Um den Ausdruck fiir die absolute Wahrscheinlichkeitsfunktion
des Prozesses P(m,mn;s,t) = P{M(s) = m,N(t) = n|
zu finden, betrachten wir die Wahrscheinlichkeit des Iireignisses
$ S <s Hdsy, Sy <ssptdsy, ooy S < S < Syt Ay

tl é f[]]_ < tl _i_ dtl’ l‘2 é Tz < tz ‘l’“ fztz, soney tn,: g 1]}1’ < tﬂf ‘l_ dtnl

unter der Bedingung M(s) = m' N(t) =’

und unter Beachtung der Relationen:
(s;,8; + ds;) O (8,8, + ds,) = 0
(t;,t; + dt) O (bt + dt,) = 0
DL &L vuin L &
D<th <ty ... <, <t

%o I,
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- Auf Grund der Natur des betrachteten Plozcsses ist sie unab-
4ngig von den Werten sund £, 1=1, ..., m'; 5=1, ..., 7') und
hat deshalb die CGegtalt

him’,n';s",¢") ds, ... ds,, dt, ... dt,
araus ergibt gich sofort -

P(M’,n’;s’,t’) = h(m',n';s,t') j C j j C J'dsl coodsy, dt L. dt,

08 <T... s/ <s! 0Tty <. <Up' <!

D

m! tfu’

P(,rnl,lnl’_sr, tl) = /l,(’fnr’, TL’;S’, t’) .
Allgemein gilt

(1.4)

m'! n'!

©0 [ele]
P(m,n;s,b) = D1 DV P(m',n';s,t') Plm,nss,tim/,n';s',1') .

m'=mun'=n

Sotzon wiy (1.3) und (1.4) in diese Beziehung ein, so ergibt sich:

P(m fm,’ m! ’ ' m n m'-m L\ nl-n

n; LYY b s ¢

ist) = 2_, Zh (m',n';8',t) —— — — ,> = ,> ]
M= = m'! 't \m)\n)\s b, s, v

p(m 5?” 6” . i) o k
M3s,8) (S s) (t f)
T ZU Sl -+ gn - ') - TR T
und gpeziel]
oo o0 #—g) W —g
P(0,0;s,t) =5y h(j,k;s’,t') ( _r) ( Y ) (1.6)
j=0k=0 7 k!
VVGgen ©0  ©o sfj tk )
DV D A, ks, 1) ..—>“2Pj,k-s’t')~1
J'=Ulc=0 ! k! j=0 k=

darf (g Reihe (1.6) im Bereich (0 < s<s’,0<t=1") beliebig oft
Nach s und ¢ differenziert werden. Setzt man

am }»nP(O 0 S t)

P(m,n) 0 : ,'ﬁ -
%0 gilt: 008 = =5 mopm
co oo m ! k-n
i) (0 Os5,8) = D' N h(5,k;8", ¢ Tyt (77 )? ‘ (t )
=0 =0 Gk, ) 1) (j—m! (k—m)!
©o oo . ( )9 moo( )Icm
= > SR Jes, ) (— 1y
j=mk=n (? )( ) (1— )' (]"_n)
myn ' 3 3" ( — t—1
BOM0,0;5,1) = ymte Z wm + g, Av;s' ) - il i il (1.7)

o e ! w!
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Aus (1.5) und (1.7) erhalten wir
m tﬂ-

s
Panugs ) = (-1)m+" e P‘”""’(0,0;s,t). (1-8)

Speziell folgt fir P(0,0;s,f)
(—1)m+n Pmn(0 0:5,8) = 0
in (0<s<<s,0<t<t) Zudem muss

lim lim P(0,0;s,t) = 1

sY0 tYo0
gein, da M(0) = 0 und N(0) = 0 vorausgesetzt wurde,

Von emer unktion f(s,f), welche in der Viertelsebene
(0 < s<Coo,0<<t<<Too) den Bedingungen geniigt

(az) (__ 1)m+n f(m’n)(S,t) ; 0
(by) lim lim f(s,f) = 1

sYo tYo
sagen wir, sie gehore zur Klagse Vy: [(s,t) € V,. Da die Darstellung
(1.8) fiir jedes beliebige endliche © > 0 und damit fiir allo positiven s’
und ¢ gilt, so gehort P(0,0;s,t) zu V.

Die absolute Wahrscheinlichkeitsfunktion des betrachteten Pro-
zesses st also gegeben durch die Funktion P(0,0;5,t) € V,, welche den
Prozess vollstindig bestimmt. Wir nennen sie erzeugende I"unktion,
ein Name, der sich auch dadureh rechtfertigt, dass sie im wesentlichen
die momenterzeugende Hunktion fir die faktoriellen Momente von
P(mmn;s,t) darstellt. (Vgl. Abschnitt 2).

Eine unktion f(s,t) e ¥, hat die Figenschaft, dass sie fiir s >0,
t>0 in der Form eines Laplace-Stieltjesschen Integrales dargestellt
werden kann

fst) = [ [ a0k aUk) = 4, UkA)
0 0

in dem U(k,4) eine zweidimensionale Verteilungsfunktion mit U(0,0) = 0
bezeichnet.

Dies st eine Verallgemeinerung des folgenden Satzes von Widder-
Bernstein tiber vollmonotone Funktionen:



e BOT s

Zu einer auf dem Intervall 0 < t << oo vollmonotonen I'unktion
1), d. h. einer Funktion mit der Kigenschaft

(@) (=)™ =0 fiir >0

8ibt es eing nicht-fallende, beschrinkte Funktion U(4) mit U(0) =
%0, dass f(t) tiir ¢>0 in der Form

(o)

1) = [ e du(a)

0

da'l‘gestellt werden kann. Gilt zudem

(b) Hm f(t) =1
£Yo

80 186 U(2) eine Verteilungsfunktion.

Fiir eine vollmonotone Munktion auf ¢ >0 mit der Iiigenschaft
(b)) schroiben wir f(f) e V,.

Der Beweis des Satzes von Widder-Bernstein, wie er von Dubour-
diey (4a) oder Feller (5) gegeben wurde, kann ohne Schwierigkeit auf
das Ziweidimensionale iibertragen werden. Wir fihren diese Verall-

8¥Mmeinerung deshalb hier nicht durch.
Wir erhalten also fiir die Funktion P(0,0;5,) die Darstellung

co ©o

P(0,035,) = j j e qU(k,A) . (1.9)
0

0

Aus der Tormel (L.8) folgt daher fir die absolute Wahrscheinlichkeits-

fllnktion:
Plmn;s,t) = [ f oAt Uﬁs), (Jt) -AU(k,2) . (1.10)
0 0

m! n!

Der hier betrachtete Prozess kann auf Grund der Darstellung
(1-10) als ein mit Hilte der Verteilungsfunktion U(k,4) zusammen-
sesetater zwoidimensionaler Poisson-Prozess aufgefasst werden. Dieser

*0zess wurde von Consael (2a) untersucht. Wir beschranken uns des-
halb gyt die Angabe einiger Iigenschaften, welche wir fiir die weiteren

ntel‘Suchungen brauchen werden.
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2. Eigenschaften des zusammengesetzten Poisson-Prozesses
a) Die Momente von P(m,n;s,t)
Die faktoriellen Momente einer zweidimensionalen Wahrschein-

lichkeitsfunktion sind definiert durch

Ny = Z 2‘ mm—1) ... (m—)+Dnn-1) ... (n—k+41) Plmmns t).

m=jn=k

Sie besitzen die faktorielle momenterzeugende unktion

g (1,0;8,8) Z‘ \‘ )™ (1 — )" Pm,n;s,t)
m= ()n 0

O<u<l0<v<])

das heisst [y o’ T g (u,0;8,8)
77(9'/‘;) - ( ) au'} f)'UIL im0
Durch eine einfache Rechnung ergibt sich
glrw,v;8,8) = P(0,0;5u,tv) .

I'alls die (j + k)-te Ableitung von P(0,0;s,t) im Nullpunlkt existiert,
erhélt man

Mgy — (—1)HE s 1 PUR(0,00,0).
Das (j -+ k)-te Nullpunktsmoment von U(k,4)

CQ CaD

— j J K A¥ AU (k,2)
0 0

berechnet sich, unter Voraussetzung der [ixistenz, aus

oy = (—1)7* PUR0,0;0,0) . (2.1)
Also gilt die Momentenrelation
Niy(S:t) = oy 8715 2.2)
Wir fithren die Momente big zur zweiten Ordnung explizite auf:
m(s) = ks nt) = it
0% (s) = o} 8+ ks () = o2 2+ Tt (2.22)

mn(b l) % G.’w'l st.
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F.. . L.
ur den Korrelationskoeffizienten

O (St
’I‘(S,t) mn( )

0,(5) 0, ()

(
sl — . omd (2.2b)

V(o252 1 Fis) (2 1 7t)

ergibt gich

b) Bedingte Verteilungen

Die direkte Ubergangswahrscheinlichkeit Pm',n';s',t jm,n;s,t) be-
re
chnen wir aus der Beziehung

Py

mLn3s' ¥ imngs, ) P(mmssyt) = P(mm;s,tim/,n';s',¢') P(m',n';s',t).

Eet zon wir die Formel (1.8) fiir die inverse Ubergangswahrscheinlich-
el ein, so ergibt sich

T P(m 738 t)
P(m’ n's s Yimaeg ) — i B L (2.6
MR = o T s) o\ P(m,n;s,t) (3-9)

Zur Berechnung der bedingten Verteilungsfunktion
U(k',/"l/m,n;s,t) P‘K <k, A<AM(s) = m,N(t) = n}

benutzen wir die Verteilung

Plaagy) (les)™ (at)"

=Mm,N(l) = mk <K <k+dkd<A<A+dA} = ¥ m! n!

}.t n
T L T
“m!  n!

Uk, l/mrnst — : (2.4)
P(fm n;$ t)

AU (k3.
Aug ihy folgt

; Schliesslich erhalten wir fiir die bedingte Wahrscheinlichkeits-
unktion von M und N unter der Voraussetzung K = kA = 2

Plmnk 3) = oo ,U”S) | (lt)"_ mit (M k,A) = ks
B m! nl E(N/k,A) = M.
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Sind die Werte der Variablen K und A gegebene feste Grossen:
k baw. A, so treffen die Freignisse unabhiingig voneinander nach emnen
Poissonschen Gesetz ein. k baw. 4 sind die spezitischen Mitbelwerte der
entsprechenden Art von [ireignissen.

Fine statistische Gesamtheit, in welcher die Fireignisse gemiiss def.“
Gesetz (2.5) eintreffen, bezeichnen wir als homogen, da far alle Indi-
viduen der Gesamtheit die spezifischen Mittelwerte & und A theoretiseh
die gleichen sind. Im allgemeinen Fall, wo K und A entsprechend der
Verteilungsfunktion U(k,4) iiber die Gesamtheit verteilt sind (und s0-
mit die Wahrscheinlichkeitsfunktion (1.10) gilt) betrachten wir die
(tesamtheit als inhomogen in dem Sinne, dass jedem Individuum
ein gewisser Wert von K und A zugeschrieben werden kann: k baw. 4
die wir als Suszeptibilititen des Individuums fiir die Freignisse erster
bzw. sweiter Art bezeichnen. dU(k,2) ist die Wahrscheinlichkeit dafiir,
dass die Suszeptibilititen eines beliebig aus der Gtesamtheit gegriffenent
Individuums im Bereich Bk << K<k +dkAd < A <A+ dA) liegen.
Statistisch liefert dieser Ausdruck den Bruchteil der Gesamtheit,
dessen Suszeptibilititen in B liegen. U(k,4) gibt an, wie man sich die
(resamtheit im Hinblick auf die zwei betrachteten lireignisse zusammen-
gesetzt zu denken hat; wir nennen sie die Strukturfunktion.

¢) Stochastische Abhiingigkeit zwischen M und N

Die absolute Wahrscheinlichkeitsfunktion P(m,mn;s,f), welehe defi-
niert wurde als die Wahrscheinlichkeit, dass m Iireignisse der ersten
Art im Intervall 0 bis s, und % Ereignisse der zweiten Art im Intervall 0
bis t eintreffen, stellt allgemein die Wahrscheinlichkeit fiir das intreften
von m und n Freignissen in beliebigen Intervallen der Linge s bzw. !
dar, d. h.sie ist unabhiinglg vom Anfangspunkt der Intervalle (was
in der Bezeichnung antizipiert wurde).

Um dies zu zeigen, berechnen wir die Wahrscheinlichkelt
PIM(o +s) — M(o) = m,N(v +t) — N(v) = n}, wobei M(o) = j und
N(z) = k sel.

P{M(o + s) — M(o) = m,N(z +t) — N(r) = n}

j=0k

DV PG kel + mbk 4 nio 4+ s, + 1) P+ mk -+ no + 8,7+ ) -

0
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Setat man (1.8) und (1.8) ein, so erhiilt man:

\0 (’7_}_ 'm)(k-k n\ ’ 70_ \ 7 _T | )Ia /- “5 .)m ”t n
i) / k /)(a-}«s)(r—}—tf (0—{~S (rkl—t/)

L N\ A= ﬁ)i" +n
. ( 1)i+m+k+tn (G ‘5) ( '" _ PUEmEE O g g -t
) (G+m)!  (k+mn)! et ae 44

nL\/g

_ §m o o
= (\l)nrkn __5 N >1 i T P(H_ e
e 1)* —— PUT™EN) 00 + 8,7+ 1),
'nl«! ’H/I :;JO( ) ,"k— ( ) ’i:! ( '_ I )
. g P o j
= {‘Hl)m-}-n l N (% 1)7 0 _ P(?’—I-m,n)(0,0;a ,{_ S,(f) ,
m! n! = !
i=0 ]+
. e s
(—1ymtn ° Pmn0,0;58,8) = P(m,n;s,t).
m! n!

Aus diesem T rgebnis folgt, dass die bedingte Strukturfunktion
2.4) nuy abhingt von den Anzahlen m und % und der Linge der
?ntSPIOChend(‘n Intervalle s bzw. ¢, und unabhéngig ist davon, wo
Qese Intervalle liegen. Die stochastische Abhingigkeit zwischen M
" N kann deshalb nicht durch eine tatsichliche gegenseitige Be-

einf
Iussuno der Kreignisse erklirt werden, sondern beruht darauf,

;{;SS die Anzahl der eingetroffenen lireignisse Aufschluss iiber die
beszihgfefzn IK und A der Teilgesamtheit erteilt, aus welcher das
bir g, AI? ndividuum stammt. Fine dhnliche Uberlegung gilt auch

zahlen der Tireignisse gleicher Art in zwei verschiedenen

dlSJun kten Zei tintervallen.

d) Unabhiingigkeit

- Notwendm und hinreichend dafiir, dass die beiden Variablen M (:9)
n
N(@#) sowie auch K und /A stochastisch unabhéngig sind von-

ely
lander, ist die Beziehung

P(0,0;s,8) = P,(0;5) L5 (05t) (2.6)
Wobej Pi(0:5) € ¥V, und P, (0st) e V.
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Nach dem Satz von Widder-Bernstein kann die Relation (2.6) in
folgender Gestalt geschrieben werden

J‘ j e qu (k,2) = j ¢ AU, (k) J-c"“ dU,(A)
0 0

b ¢
wobei U, (k) und Uy(4) Verteilungstunktionen sind mit U,(0) = Uy(0) = 0"

Daraus folgt sofort U(k,2) = U, (k) Uy(A).

Wegen (1.8) erhalten wir aus (2.6)

m n

— P{™(0;5) PP(0t) = Py(m;s) By(nst) »

P(m,n;s,t) = (— )™
m! n!

P, (m;s) und Py(n;t) sind Wahrscheinlichkeitsfunktionen von eindimen-
sionalen zusammengesetzten Poisson-Verteilungen.

Umgekehrt folgt aus der Unabhiingigkeit von K und A sofort die-
jenige von M und N und damit die Relation (2.6).

Der ecindimensionale zusammengesetzte Poisson-Prozess wurde
von Dubourdieu (4) und O. Lundberg (8) untersucht. Die meisten Higen
schaften, welche wir im folgenden beniitzen werden, ergeben sich aus
den entsprechenden Kigenschaften des zweidimensionalen Prozesses
durch Spezialisierung.

e¢) Funktionelle Abhiingigkeit zwischen K und /A

Von einer erzeugenden 'unktion einer eindimensionalen zugammen-
gesetzten Poisson-Verteilung ausgehend, kann auf einfache Weise eine
spezielle Klasse von zweidimensionalen Verteilungen gebildet werden:

Falls B(0;u) e V,, dann gilt R(0;as + bt) € V,, was man leicht aus
der (m - m)-ten Ableitung von B nach s bzw. ¢ ersieht. I(0;as -+ bt)
kann deshalb als erzeugende Funktion P(0,0;5,t) einer zweidimensio-
nalen zusammengesetzten Poisson-Verteilung aufgefasst werden. 1'ir
die absolute Wahrscheinlichkeitsfunktion des zweidimensionalen Pro-
zesses ergibt sich nach (1.8)

X0 n m-+n T i
P(mm;s,t) = (—1)™+" . a™ b —d , R(O’ru)-

. 1- . ', L, mAn
m! n! du S

(as)™ (b (m +n)!

Plmmis.f) = m!  nl .(al's"“;|~ [-)IZ)""k-ri R(m +mas bt (2 X
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Unter der Voraussetzung, dass die Momente zweiter Ordnung
existioren, wird der Korrelationskooffizient von K und 4 nach (2.1)

g O (R” R'2(0;0 )ab o

o R (0:0)— B0 WWOO —~R0;0) b

éf und A sind Linear abhingig voneinander und variieren im gleichen
(21nne Fiar den Korrelationskoeffizienten von M und N ergibt sich aus
2b)
r(s,t) <<1.

Da tiir B(0;u) die Darstellung gilt

[e0]

R(Ow) = [ eV,

0
S0 it

co

P(0,0;5,) = j-W“Wde)

0
Anderseits gilt
P0,0:s,) :j[e“WdUkM
0o 0

Also folgt aus der Kindeutigkeit der Darstellung von P(0,0;5,8) als
Laplace- Stieltjessches Integral

Was unabh&ngig von der Tixistenz der Momente gilt.

Die Randverteilungen

Z (m,n;s,d) sowie Py(nst) = D) P(m,n;s,t)

e . . . .
rechnen sich ohne Schwierigkeit zu:

P\ (m;s) = R(m;as), .8

Py(n;t) = R(n;bt).
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3. Beispiele von zusammengesetzten Poisson-Verteilungen

Das bekannteste Beispiel einer eindimensionalen zusammen”
gesebzten Poisson-Verteilung wurde von Greenwood und Yule (6) und,
in einem anderen Zusammenhang, von Polya gefunden, und wird in der
Literatur meist negative Binomialverteilung, gelegentlich auch Polya-

Verteilung genannt.

Die erzeugende IMunktion

1 /b
Pl0g) = ( T bt) q>0,b>0 3.1)

18t die Laplace-Transformierte der Strukturfunktion
AU (2) R Lo R
- == ) = ) e

dA b/ Iqb)

mit den Momenten — - %
A=4q, & == qb.

Die Wahrscheinlichkeitsfunktion besitzt die einfache Gestalt

1 N\"/ bt \*I'(qb
Plog) = > T (q1b + m) ‘
Lhbt) \1+bt/)  Dlgb)n!
Aus (2.2a) erhilt man fiir ihre Momente:
n — gt}

oF = qt(bt -+ 1).

n

(3.2)

(3.3)

3.4)

(3.5)

Wir geben im folgenden einige Erweiterungen auf zweidimensionale
Wahrscheinlichkeitsverteillungen mit negativ-binomialen Randvertel-

lungen an.

la) In Abschnitt 2e) haben wir ein Verfahren zur Bildung von
zweidimensionalen Verteilungen betrachtet. Wir wenden es an auf die

negabive Binomialverteilung, und setzen daher

P E . €

1

Dann ist 1 ¢
PO = ) ‘
14 as+ bt,



Aug (1.8) folat sofort

Plm s - (“S)”_‘__(?f)n Ie tmdm) |1
, m!  n! I'(e) | + as -+ btJ

Di _
16 R&ndvmtmlunﬁon sind nach (2.8) und (3.4) gegeben durch:

P (m;s) = ( ) ¢+ m) ,
L4as/) \ 1+as LI'c)ym!

c-Hm-Fn
l . (3.6)

_ (& +n)
[3)' N — s =%
2 (i) (l s bé) 1+ bL ()n'

Lb) Wir verallgemeinern nun (3.6) auf eine Verteilung, der wir

die
1e Randver ‘teilungen vorschreiben:

, | - as  \" I pla+ m)
Pi(m;s) = [ - - e g
1 as L+as/ Ip /(L) m!

Bty — (1 v b ) Lab+n)
By Tbt) \14+0t) Igbn!

Dabei gehen wir aus von der erzeugenden Funktion
Bogf 1 Toe 1 ‘ :
P0,055,) — ( ! ) ( . 4.>b ( — ) (3.9)
1+ as 1+ bt, 1+ as bt

/7
i ¢ < m'in( p-, 'q-> . Fir die Randverteilungen ergeben sich daraus
a

C le O . .
lie erzeugenden Funktionen :

1 \f
P (0s5) = < "1% QS) .

1+ bt

Sie fithren guf die Verteilungen (3.8). Nach (1.8) ergibt sich die abso-

1 " -
dUtb Wahvscheinlichkeitsfunktion aus (3.9) im wesentlichen durch Bil-
ung der (m |- n)-ten Ableitung. Wir wenden die Leibnizsche Iformel

fi

Lll dle In()h].fch(;hb f\bl@ltung E\ln(\g PLO([HktO auf dle Ablutunﬂ'bn H&Lh
Q

und ¢ an und erhalten

(3.8)

I

B,(036)
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/

m
P(mmss,t) = > \1 (

j= 0 /t-**(]

\ m—f _[1(,1)),“ ¢ ”'_ m— ?)
| oas ) '(pla—c) (m— )

) : nk I'qb—c¢ -+ n— 1‘5)‘

( + bt ( + bt ) I'(g/b—c¢) (n— k)
(as)? (bOF I'(c+j 4 k) 1 YHM
k! ['(c) | -+ as - Ot

(65

Nach einigen Umformungen ergibt sich daraus ,
.

: : bt
as  \" bt \'m o» Clfas Y 1+ b)‘
st — P(0,0;s,1 ) ) Y ) ( co - b/
n,m;s ) ( S ) ( 1 + as , ( Y = 0/?_1 Y mnjl | as -+ [)f | |- as t
(3.10)

mibt den Koeffizienten

S . "\ . - T ; e e r?—‘l‘
o jk\ Le+g+k) Ipla—c+m—yg) Ilgtb—c-+n /u).
= . )
i) Iy G-k Tlpia—e) (m—7)! Tgh—a) (n—F)"
2a) Kine andere lirweiterung der negativen Binomialverteilung aul
zwel Dimengionen erhalten wir, indem wir ausgehen von der Funktion

(1 - as) (1 bt) — Basbt
mit ¢ >0 und 0<f< 1.

Sie st die Laplace-Transtormierte der Ifunktion

- / c—1 bk J-ai . =
u(le,2) — 1 kﬁfﬂﬂ)' 9 8—{ab([{--ﬁ) [ 9 (A \
T ab(l—p) 1)\ ab Y a(—py

(Vergleiche Voelker und Doetseh (13) S.234). [, | bezeichnel, die mo-

difizierte Bessel-I'unktion

Man kann leicht nachpriifen, dass u(k,4) eine auf der positiven Halb-
achse definterte I"requenztunktion ist. Aus

ca CcO

P(0,0;8,8) = [ J g e w(k,A) dls dA
0 0
folgh daher sofort: P(0,0;5,6) e V, so dass (3.11) die erzeugende
IMunktion eines zusammengesetzten Poisson-Prozesses davstellt.
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Die Ausdriicke: P 0 ( 1 )c
(0,8) = (———]) ,
1+ as

L(0f) == ( ._.:“..__&.)c

sind dip erzeugenden Funktionen der Randverteilungen. Diese letzteren
Sind also gegeben durch (3. 7). Zur Berechnung von P(m,n;s,t) formen wir
(3.11) um:

P(0,035,1) — ( 1 )(1 ) I S
1 F(Ié 14 bt as bt

1_ﬁ L+as 1-Fbt

(L S e Y
1} as L+bt) = 1+ as L4bt )

Die angeschriebene Reihe konvergiert gleichmissig in s und ¢, da
O<l3 < 1. Sie darf deshalb gliedweise differenziert werden. Also wird

P (0,055, — S L+ adTImMW@_lf”{<MV

= (o) h! ds™ ]( -}: as)“'“‘] it | (1 }—bt)””*"*J

1
Fiir dig Ableitungen unter der Summe erhalten wir:

¢

Fiihyen wir hier die Bezeichnung (a); = afe41) ...
80 wird die betrachtete Ableitung:

%HW%HL ym(as)UW+mFM” ho = >)1(1

ttas) \idas) Teth) £ Cm—h—otl

1+ as I + m)

1+ as

(¢ +1—1) ein,

as

= (__ 1 ¢tm
( o ( "“-) ( “ - ) P(C F m h) F( h,—m,—m—h—c-1,1-4 -._1%

dam [
) S L & ami 1\t
d e wwi e m s S
[ e = 37 i @ g (1)
Min(m, b
— O h! . . ( —|— h - m—j) y 1
== o Lo\ A ym—] m-y___ -
=\ ) (i1 @ (@)1 Meth) (1 fagriem
= o () () S e L e
1 as 1+ as el L—7) (m—1g)! I'(c + h)«—

19'
1)
as

)
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Die funktion

(o, B,y;) ; __ g

,7!

bezeichnet die GauBsche hypergeometrische Reihe. Sie reduziert sich
zu einem Polynom, falls, wie hier, o oder 8 cine negative ganze Zahl st
Setzen wir den gefundenen Ausdruck fiir die Ableitung des ersten I'ak-
tors und den analogen fiir diejenige des zweiten Faktors ein, so erhalten
wir nach (1.8)

Pomaist) — - ) — ) L/ 1 N/ b ) 1
m,m;s,t) = . : R 7 _
( 1+ as ( l4+as/ m!\ 1 bt ( 1L-bt /) n!

Llethy [/ as )’( bi ) Iledm—+h) [ L1
N b o ) Nl A i B s N
> I i ( = L b e 1 ) I ( h,—m,—m—h—c+ I
I'(c+n-+ h)
i

Zur Abkiirzung setzen wir

( 1
I( hy—%,—n—h—c-4 1,14 bt>

s bi
b L4as 140bt’
und schreiben die Ausdriicke der Wahrscheinlichkeibsfunlktionen der
Randverteilungen (3.7), P (m;s) und By(ns;t), vor das Summenzeichen.
Abgesehen vom Intwicklungskoeffizienten und von p* erhalten wir
dann in der Summe Ausdriicke der Gestalt

I'e) I'(c +m+h)
I'(c+ h) I + m)

und analoge fiir die Polynome in n. Wenden wir darauf eine der
GauBschen Transformationen fiir die hypergeometrische Reihe an, 80
ergibt sich dafiir (vgl. z. B. Magnus-Oberhettinger (9) S. 13)

1
I(—h —m, ¢, )
as

Die absolute Wahrscheinlichkeitsfunktion kann in der Gestalt einer bi-
linearen Entwicklung nach orthogonalen Polynomen geschrieben werden
e} te} te)

o [le+h 1 ' 1 1
(mn;s,t) = Py (m;s) Py(nst) h%;) 1& ;—hl) th“(—h;—m,C,—ds-)F(*h,—%, , bt) (@

’}):

. 1 ‘
P‘( h, —m, —m— h—c¢ |__ 1’ 1 _l_ ) , (3 i [9)
s
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Di@ PO] no e} ¥ 1
ynome M(z50.u) = F(_ h,_m’cj__a )

sind auf dor Zahlenmenge x = 0, 1, 2, ... mit der Belegungsfunktion

1 N/ )m e + @)
Pl) = (1 fu > ( 1+u/) Iz

orthogonal. Man sieht dies leicht ein, wenn man von einer andern
Definition der M, (x;c,u) ausgeht. Aus dem Vorangehenden folgt

(—1* @ [ W
MAEO) = By aw | (e |

Anderseits kénnen sie auch gewonnen werden aus der Beziehung

M (@) = Vﬁ[l; b P'E; Wl (3.14)

Wobei der Operator [ die h-te absteigende Ditferenz bezeichnet, d. h.

VM) = fla)— ...t (1) (}j)/(w—w b 1 .

Wogen f(a) = Pla) (2 +

folgt flo—1) = Plo=1) @+ =),

V" fa) = F(i(fc)-io( 1y? (’;) (f) i T+ ¢+ h—4) (1 I+ i)

7 h 1 i
Moy — _.,I(G) <) (h>( ) i! Iz +h+c»—a)(1 s )
I'lh o) I +0) 5 LAY u,
T 1
= F(C) [(:o f‘h +¢) F (wh,—a:,—hwm—c—l— % )
I'h |—(,) ( T - ¢) U,
Dieser Ausdruck stimmt mit (3.12) itberein. Von der Darstellung (3. 14)
ausgehend ist dje Orthogonalitiit leicht zu beweisen. Mit der Bezeichnung
2], = w(e—1) ... (z—i+1) wird

(o]

ZM 7 fe) = ) PHP@ @+ ) = 0.
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Dies folgt sofort durch Anwendung der Abelschen partiellen Summationt
Also ist -
Z [z]; P(x) My(z;e,u) = 0 fir o <l

2=0

ZP x) My(z;eu) M(zsem) = 0 fir 455 h.

und

Die Randverteilungen haben die Wahrscheinlichkeitsfunltionen
(3.7), sind also negative Binomialverteilungen. Man erhiilt deshalb aus
(3.5) durch Binsetzen der entsprechenden Parameter:

m = cas o? = cas(as | 1)

n = cbt 2 = cbt(bt+ 1),
sowie: -

D m2P(mss) = e(e -+ 1) (as)? 4 cas

m=0

i n2By(nst) = ¢(c + 1) (bt)2 - cbt.

n=0

Daraus folgt fiwr die Kovarianz von M und N

O = mn+ycz mP,(m;s) M, (m;e,as 2 M, (n;c,bt) — mmn

m=0

— yo (Z m Py (m;s) 0(113 DV m2P(mss > (2 nPy(n;s) — czt 2?‘ n2Pg(’ﬂ;S)
= ye(eas—(c + 1) as—1) (cbt— (¢ + 1) bt—1) = yelas+ 1) (bt + 1)
O = ye(as +1) (bt + 1),
und fiir p 1 - mmn Opin
T sty T ¢ et
Aus der Definition von y ergibt sich

((‘J,.S‘ =5 1) (bt s 1) . O n ]

B=r T bt

Beachten wir noch die Beziehungen (2.2a), und (3.3), so wird

g — Ok Owa . O

cab [/ca l/cb B O'RGA‘ -
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Dio Be dingung 0 < f < 1, welche wir am Anfang einfithrten, bedeutet
also, dags (8.13) eine Verteilung mit positiver Korrelation darstellt,
da aus o~ 0 auch 7(s,t) >0 folgt.

Btir B = 0 sind K wnd A ol wnid sogar unabhingig. Das
8ilt ebenfalls fiir M und N , wie man sofort aus (3.11) ersichs.

I Grenztall f = 1 geht die Verteilung (3.13) in (3.6) iiber.

2b) Wir erweitern, wie beim erston Beispiel, die Verteilung (3.13)

aut eine soleche mit den Randverteilungen:

o 1\ s \"Tlpratm
) = (l—f-as: Lplaym!

1+ as
LN/ b N\ Tqib + )
By(n;t) = (-1';"_'55') (1 i bt) I(gbyn!

Daher gehen wir aus von der Funktion
¢ L 1 1, 1 ¢
P(O,D;S,t) s __....1,,,,,, a [T ) b [ N
14 as 1 bt 1(1 + as) (1 - bt) — Basbt
(3.15)
Wo ¢ der Bedingung 0<c<mm (p " Z) geniigh. Schreiben wir (3. 10)
- a

m der Iorm:

1\ 1 % 1_)0
P(0,055,t) = (1 n as) (1_'_“4) (1—?’
+

(R s e,
\1+as (I—I—bt i=o L'(c) !

" 8 as bt
Y= P e v
80 folgt ganz analog zum Vorangehenden
o Le+h) P 1

P(I”L)’n;'g:t) = PI(WL;S) Pz('n;t’)]%') - 11(0_)' h! th<‘—— h, — 1M, a g a‘g‘)

-1 N R



——
[Ny 1st ) — mn o,
B
C O’?N;Un
und O
ceth
Wegen 0, = [/(,‘cp 0, = Vbq

/v /¢
folgt B = cl/a l/b 0.

Firsetzen wir in (3.16) » und schreiben fiwr das h-te hypergeometrische

Polynom M, so erhalten wir
h

oo T 1(() -} ]1) J P \ ' 1] \ [ m n Omn
(mm;s,t) = P (m;s) Pon;t) > ————2 M, [ m; ,as) M, n;- ,bt) 5 2 )
\ ) l.( ) 3( ) ];:(J) [1(0) h,! h( a ’ h b ¢ O‘,an O'”

(3.17)

/

4. Eindimensionale zusammengesetzte Poisson-Verteilungen

Im Hindimensionalen ist ein elementarer stochastischer Prozess
mit binomialen inversen Ubergangswahrscheinlichkeiten

’

Plnstmm';t) = B, (fn,; : > (4.1)
\
gegeben durch eine zu V| gehorende Funktion P(0;t), die erzeugende
Iunktion des Prozesses, was ohne Schwierigkeit aus den Uberlegungen
des 1. Abschnittes folgt. Diese kann auf Grund des Satzes von Widder-
Bernstein als Laplace-Stieltjessche Transformierte einer Verteilungs-
funktion U(A) dargestellt werden

[ele]

P(Of) = [ ™ aU(h)  mit V) = 0. (4.2)
0
Die Wahrscheinlichkeitsfunktion ergibt sich als Spezialfall aus (1.8)

n

Plnit) = (—1)* — P®(0;0). (4.8)

n!

Zur Konstruktion von Beispielen wird gewohnlich von einer spe-
ziellen Strukturfunktion ausgegangen und daraus nach (4.2) und (4.3)
die Wahrscheinlichkeitsfunktion berechnet. In den meisten Iillen ge-
langt man dadurch zu formal komplizierten Ausdriicken.
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b I folgenden leiten wir eine einparametrige Schar von Verteilungen
1 T it der Bigenschaft, dass ihre Wahrscheinlichkeitsfunktionen ver-
].)'| T g ©op _r ] w &
altmsmahSlg einfach berechnet werden konnen. Wir gehen dabeil in
n "~"- ) . s . =
tEmuhcher Weise von der erzeugenden TFunktion P(0;f) aus, und
Ste I | . .
ellen den folgenden Hilfssatz an die Spitze:
Wenn f(H)e V, und 7(!) eine Funlktion ist mit den lhigenschaften:
7(0) =0,
7'(f) vollmonoton auf 0 < ¢ < co,
dann gilt: f(+(n) e V,.

?er Beweis folgt sofort durch Beniitzung der Formel von Iad de Bruno
ur die n-te Ableitung einer Funktion von einer Funktion

d'foao o onl (TR [0
= S = = = (4.4)
(H v=0 () ,i'.].! PP /i‘n; ] 1~ : n. dT T=17({)

Die Summation (k) ist zu erstrecken iiber:
ky+ket+ ...+ Kk, =0,
ky+ 2k + ... +nk, = n.
Nach Voraussetzung ist:
1y =2 0,
d"f

—1n*- ' >0,
dz”

also wird das Vorzeichen des »-ten Summanden in (4.4)
(— 1) (=1 (1) (D)t = (1)

und daher d"f [T(’)]
— 1=

dat"
Die Figenschaft: lim fl[x(t)] = 1 folgt sofort aus den Voraussetzungen.
LYo

Aus den erzeugenden Iunktionen eines zusammengesetzten Pois-

4 D) § 5% 3 .
Son-Prozesses konnen deshalb durch Anwendung von Transformationen
7(f) neue erzeugende Funktionen gebildet werden.
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Wir withlen als Ausgangsfunktion die erzeugende Funkbion des
gewohnlichen Poisson-Prozesses
f(t) = e ¢>0,
und erhalten
’ P(0;t) = o0*¥),

Nach (4.4) ergibt sich fiir die n-te Ableitung

" nl [T [0
POty — P03t S kX B —q)"
O0) = PO 2, 2 v | 1 Rt
Aus (4.3) folgh
- 1k
(=)™ 2 n! T [
P(nst) — P(0st) S gl
() = PO == 2 (—a) (,Zc)kj_!.../c" 1 Tl

(4.5)

Die Wahrscheinlichkeitsfunktion (4.5) kann auch mit Hilfe einer
Rekursionsformel berechnet werden:

P(0f) = ¢*¥),
P'0;t) = —qv'(t) ™) = —qz' (t) P(O31).

Aus der Leibnizschen Formel erhialt man daraus

Pn—H) O t = —q Z ( )’E(k+1) P(n~—!c)(0 t)

und wegen (4.3):

— il » ! k
P(’)’b + 1§t) = —q ((,n _: ]) \ ( b_n,;‘) | l{; T(k H)(t) ((_ t)n—)k (fn'__ k;t) ’
: qt 3 . T ()
Pin+ 1;t) = w1 ;;0 (—1) % P(n—kt). (4.6)

Wir betrachten nun die Transformation, die gegeben ist durch

1 ce
Tl(t) == (_‘l_“ﬁl:__gi“) c> O y OL s 0 ’
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Daraug folgh, wenn wir noch die Bedingung 7(0) = 0 beriicksichtigen :

t & =},

T L 1-—a_1
£ (1o ((1 +et) 1) O<a<l,

(1) :f( 1)«” -
I+ et ‘ i-log(l -+ ct) =1,
1 1 -li )a—l> I
ola—1) \ (1 + ot e

Pir ¢ - I
W die Ableitungen ergibt sich

. g Tej—=1 /1 N\
WY = 9 “'n@”(1+a> ' 4.7

Ohd.@n wir diese Ausdriicke in (4.5) ein, so erhalten wir die Wahr-
Scheinlichkeitstunktion
n n B n! ( 1 N kl /]_'(Of, 7_][_ n_—l)\ kﬂ

PW&:Hwﬁfn — ] (= e
1! I(e) m!

PNV S
a2 T

—¢ )I»‘l +2k2 +io0t iikn i 1 ) 1 )OC*I
. (1 + et (_ ¢, (1 +at)

P H N i cf n ."?1 q 1 a—1\ »

Dj . ! ; .
18 erzeugende Funktion lautet fiir o> 0:

1 \e-1
P(O;t) = (3— c(&i{—f)“ (1_(lici) ) o # 1,

S 1 qle
Im”:CﬂMJ o« =1,

ur die Koeffizienten A,,(a) ergibt sich die Darstellung

Ay — sk e 1)\
Gl ki) et I !

kl*f—. e —|-l|‘”

b

oder, wenn man den Ausdruck fiir P(0;t) in (4.9) n mal nach ¢ ableitet,
36
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die Rekursionsformel
’Am( ) Awln— ( ) _|" (O(’V —i— n—y— 1) Awa«l(a)
‘400 = 1! fl()n = O f'l'll' ( :/E O.

Die Rekursionsformel fiir die Wahrscheinlichkeitsfunktion wird, weni
wir (4.7) in (4.6) einsetzen:

. @ {1 Ve f(oc +k) /et o 10)
P(n Lt)gn—i—l( —}i_oi> > - () ( Lo >P(n—h,t). (

Um die Strukturfunktion zu bestimmen, gehen wir aus von ihrer
charakteristischen Funktion

co

1(@) = [ U ).

0
Aus (4.2) sieht man sofort, dass sie gegeben ist durch

1(2) = P(0;—1z). (4.11)
Wir betrachten, je nach dem Wert von «, die drei I'dlle
o= 1 1 ale

10 = (1 5)

Die zugehorige Frequenzfunktion ist bekanntlich

1A afe qqfe-1 A
i w(l) = (1> L e A>0. (4.19)

dA ¢ (q/c)
l<a<<oo
q q 1 o1
X(z) _ 6* efa-1) pele-1) (,,1:07,2,)
G o1 9 ow-1) |
i (UYL YLy |
T ela—1) \ 1— iz 20 \e(a—1)/ \ 1—cuz :

Dieser Entwicklung entspricht nach (4.12) die I'requenzfunktion:

k fi(o-1) Je{o=1)-1 a
1 1 A -
’l — “‘i) 2 > > - R —— R ,
=0 oc_l ¢ f'(k(cc—l)) Ie!

e & e ¢ q k /‘lk (-1
—p te1) T N )
uld) = ¢ s (c (a—l)> g (a—l))z A=0.
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Im Nullpunkt besitzt dio Verteilungstunlktion U(4) eine Unstetigkeit,
d. h, u(4) existiert dort nicht. Als Spezialfall berechnen wir w(1) fir
® =2,

_tH o k k-1 _g+i oo /g \F1 yla
i=o\¢2/ (k—1)!k! i\ e (k—1)1k!

(qﬂ f VA)MH

o e -y

= ° qz Z - — = 1 c)2lc+1]1 ] |
i k(1) q z=o B! (k1)

q+A

ud) — ¢ o VO {,‘.1_1 (2 an-).
¢ A ¢

0<o<q,

Setzon wiy - Y= 1—a (0<y<1), so wird

~ 2 ((1-eiz)?-1)
cy N

x@) = e
Zur Diskussion von %(2) tithren wir eine Hilfsfunktion ein
~ iy = g' (=iz)¥
m(e) =e @ =e 7

Sie kann auf dje I'orm gebracht werden

n(z) = o

P, Lévy (7y hat gezeigh, dass

mit ¢>0.  (4.18)

—eo(1+if- " tg Ty |2l
p(a) = ¢ ol el 2 )
mit ¢y >0, Jﬁl 1, 0<y <2
die charakteristische T7 unktion eines stabilen Verteillungsgesetzes ist.

Durch, (4.13) wird eine gewisse Klasse von stabilen Verteilungen dar-

8estellt. Zum Beweis nohmen wir vorerst an, dass y rational soi:
m
Y= mn ganz, m<n.

B {gt "

37w m m . /B om m
\min ; T % g s e ] 2 ;-
(—2)™" — cog ( 5 n k2 n) }—zsm( 9 ¢ Am n)

k=0,1,...,n—1.
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Die Lésung k = n—1 liefert:

37 m Som ‘om
cos( 2+ ml2n ) = cos( ;

2 n n 2 n
37T M m : ‘mom
gl - — 2+ m%n | = — tg( )’
2 n 2 n,
und daher —cof 11 tg(n» L Lmin
TE(Z) — ¢ ( 2 n))
mib T m
( COS
' 2 n,
m
Uoc
N

Iiir nicht-rationales y folgt die Darstellung (4.13) aus der Tatsache
dass jede Zahl beliebig nahe durch rationale Zahlen approximiert
werden kann.

Die stabilen Verteilungen sind stetig, d. h. sie besitzen eine
Frequenzfunktion, die wir mit f,4(1) bezeichnen. 7(2) ist dann die
charakteristische Funktion von f, (4)

als) = [0y (3) di.
§
Aus o i
1(z) = e n(z - )
g,
folgt -
x(2) = e*+™ f ¢t e © fi, (A)dA.
0

7 y(2) gehort also im Ialle 0 <<a<<1 die Strukturfunktion

q A
() = e e ¢ ().

108 18t big heute nur in wenigen Iéillen gelungen, die stabilen Irecquenz-
funktionen in geschlossener orm darzustellen; fiw die IFfunktionen
f,-1(2) ist insbesondere der Fall y = | bekannt (Vgl. P. Lévy (Ta)):
PR
1 q -5 -1
() = —— == %e
f-},l ) Vﬂ; VU



Also wird fiir o — L 9 3 4 ¢
2 q v —

- A
w(l) = 4 ge ) deg 0 &

V:’cc
Di 1 : s 1 e - =
Die Vel'to.tlungon, welche sich fiir =  und o = 2 mgcbon,. wml(lcn
bereits vop R. Consael (2) betrachtet. Wir fithren noch zwei andere

bekannte Spezialfille an.
=1 U@) = e(d—q),
P(0;t) = &%,
()"

n!

P(nst) = ¢

Dieg 18t die Wahrscheinlichkeitsfunktion der gewdhnlichen Poisson-
Verteih'mg_
®=1;
Stt‘ukturl’tmktion und erzeugende I'unktion sind hier gege?ben du%-ch
(4-12) bzw. (4.9). Die Koeftizienten der Wahrscheinlichkeitstunktion
(4.8) berechnen sich aug

Avn(l) = Av«ln—l(]') —’_ (n_ U sz—l(l) :
Sie stimmen im wesentlichen mit den Stirlingschen Zahlen 1. Art S”
libere; o
A1) = (1S,
Aug (4.8) ergibt sich daher

o\ Tl )
T (qe) n!

14 et

also dje Wahrscheinlichkeitsfunktion der negativen Bimomialverteilung.
Wir bemerken noch, dass die Strukturfunktion der Wahrscheinlich-

keitsverteilur.lg (4.8) einer Integralgleichung gehorcht.

P(nit) = P(030) ( -

Aug P(0st) = ¢
folgt . —qz(t) = log P(03t),
1 P(0s1)

qv’'(t) P(0st) = — P'(0;t).
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Die in dieser Relation auftretenden Funktionen kénnen als gewohnliche
Laplace Integrale geschrieben werden, da die Strukturfunktion U(x)
fiir alle o und fur x>0 eine Ableitung w(x) besitzt. lis gilt

P(0sf) = fu(w) et dx,
0
1 ) 11
"y — [ —_ T -1 —wfe ~wt Iz
v () <1+ct, & .r(a)J"‘ e
Also folgt 9
q ) -1 —ale ,~at il o~ Jae o (o p Tt
. Ja: ¢¥e dm]u(m) % g = [wu(m) ¢t dw.
# 1) (
0 0

In der Symbolik der Laplace Transformation lautet diese Gleichung

q g .
= Lla* ¢ Llu(z)} = L{zu(z)}.

Sie entspricht der folgenden Integralgleichung fiir die Ifunktion w()

z

- ]q_‘(a) j gt evle wlz—y) dy = zu(x).

0

¢

Zur Diskussion der durch (4.8) gegebenen Verteilung fithren wir
die Parametertransformation ¢ = bfe ein, und erhalten:

P03, = g g oﬁr (1-(%;?“_)0@1)

)

SE TR w (o N7V
P(nsto) = P03t e o A b \atbi) |
(niti) (0:9) (cx -+ b't) n! ;éof i) ( b (Oﬁ + bt) )

/

(4.14)

Die Strukturfunktionen haben im allgemeinen keine einfache Cie-
stalt. Wir charakterisieren sie deshalb durch die Grdssen: Mittelwert,
Streuung, Schiefe und lixzess. Diese werden in einfacher Weise aus
den Kumulanten s, berechnet. Nach Definition ist

¢ lk

#, = (—1)F . log x(2)

7

ge=() *
dz 7
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Aug (4.11) folgt y(2) = 1)
und da.her %, = (__u I)IH-I T(k)(o) .
Setzen wir in (4.7) =0 und ¢ = bj«, so wird

k-1
(0) = (— 1) (b) Llot-k—1)

o
A ‘ e
lso erhalton iy schliesslich
% = q,

%y = qb,
| ; 1\ / ) k—2
"y, = flbk“ (1 + - ) (1 -+ ) cos (1 = ﬂ') k> 2.
o o %

Darang ergeben sich:
Mittelwert: 7 = %, = q,

Streuung: o} = #y = ¢b,

. 1/6/ 1
Schiefe: 8 = %‘: = ,/ (1 4 _),
ol q o

, b 1
_EXZOSS 3 &y == p—ﬂi— e (J_ —’— == —> (1 —,— 2) .
0, q o o

D]'e Strukturfunktionen U(A;a) bilden daher eine Schar von Ver-
E?ﬂun%'sfunktionen, welche bei gegebenem Mittelwert und Streuung
U 2unehmende o abnehmende Schiefe und Fixzess aufweisen,

Pir spiiteren Gebrauch fithren wir noeh die ersten beiden Momento
von P (m;t,e) an. Sie berechnen sich aus den entsprechenden Momenten

Yon U(2;¢) nach den Formeln (2.2a):

|

t,
(4.15)
Die Funktionen
/ 1 o ’ o o
i I.l,' = | —— | = ———
7 () (1 +ct> (a-l— bt)

:ﬂdﬂln eine Schar mit der Higenschaft, dass fiir jo zwei Werte oty und
2 M6 o) <oy und fitr alle ¢ auf dem Intervall 0<¢< oo gilt

7 (Goy) < 7' (L) -



Wegen 7(0) = 0 folgt daher:
T(t0) > T(ti00)
und P(0st,0) < P(0st,0t5)
I'iir jedes feste ¢ ist P(0;t,a) eine monoton zunchmende I"unktion von &
Wir betrachten noch den Grenzfall:
o = Co,
Mit den neuen Parametern lautet die I'unktion z({):

IS S PR U
-0 G

Daraus folgt sofort:

o1

1
lim 7(t;e) = 5 (1—e™,

Da 7'(t;00) vollmonoton und 7(0;00) = 0 ist, stellt

= (ebt)
P(0jt) = e ®
auch eine erzeugende HFunktion einer zusammengesetzten Poisson-
Verteilung dar. Die Wahrscheinlichkeitstunktion kann” ganz analog
berechnet werden wie (4.8)

v

byr n ’

)
Die Koetfizienten 4,,(c0) = B, gehorchen der Rekursionsformel

B wmo B y—1n—1 _I— v[3

vn—1

und sind daher gleich den Stirlingschen Zahlen 2. Art.

Im Gegensatz zu den vorangehenden Beispielen ist die Struktur-
funktion hier durch eine diskrete Verteilung, und zwar durch eine
Poigson-Verteilung, gegeben

, b)M* ,
dU(2) = e ,,(,q/ ) - fir A== 0, b, 20, .
(A1) !
Wie haben also als Grenzfall die sogenannte Neyman-Verteilung vom
Typus 4 erhalten.
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5. Erweiterung der zusammengesetzten Poisson-Verteilung

In den Anwendungen kommt es oft vor, dass man autallsmissige
Bireignigge betrachtet, mit denen eine kontinuierliche stochastische
Y&l‘iable verbunden ist, welche man als Grosse der Wirkung eines T-
CIgnisses auffassen kann. Beispiele dafiir liefern viele Zweige der Per-
Sonen- un( Sachversicherung, wo ein Schadenfall einen Schaden aus-
1688, dessen Héhe weitgehend durch den Zufall bestimmt wird. Mathe-
Matisch wird ein solcher Prozess dargestellt durch eine Variable, welche
I zutilligen Zeitpunkten sprungweise indert, wobei die Hoéhe des
Sprunges selbst eine stochastische Variablo ist.

Wir beschriinken uns auf eine einzige Art von Lreignissen, und
Machen iiber die Natur des Prozesses folgende Annahmen:

L. Die Anzahl Lireignisse N ist gegeben durch eine eindimensionale

Zusammengegetzto Poisson-Verteilung:

e

e
n!

Pinst) = dU(2).

0

2. Die Hohe eines Sprunges X ist unabhingig von Anzahl und Grosse
der vorangehenden Spriinge. Sie besitzt die Verteilungsfunltion :

P|X <z} = S(=) mit S(0) = 0.

Die summare Sprunghéhe in einem Zeitintervall der Linge ¢ hat dann
die Verteilungstunktion

, o (1 (A" ,
H) = 5 [ o O a5, (5.1)
0

St bezeichnet die n-te Faltung von S(z).

Alg Beispiel betrachten wir den Tall:
) _ (1R
a2 b/ Ilq/b)
4508 _ 15T .
da d
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Durch Induktion findet man
&T

n-1 &
1 =z ;

S(‘”)({'E) - dn [‘l(,n) g

Pl fie m =1,
0 firmn>1.

Also folgt: [
n)(o) — l

Nach (3.1) und (3.4) ist:

o " qib -+ n)
PWW*HM<LMJ-WWM.

Wir erhalten deshalb fir 2> 0:

AH(zt) /1 NL/ b\ e ® & b @\ Ightm
""" G e = (1 +bt) (1 ;—bt) cl]‘(q/b)%‘( L+ bt d) Tn) Tn 41
ARSI et B b @\"Ilgh+nt1)

N (1 —}—bt> (1 X bt’) Z?[‘(j)b),z=0< 14 bt d) In+92n!

Die gleichmigsig konvergente Potenzreihe stellt eine konfluente hyper-
geometrische Ifunktion dar. I'ihren wir die fiir sie iibliche Bezeichnung

ein [p) & Tetn
ﬁwﬁ@m “)30“ﬁme

g0 erhalten wir schliesslich
qt 4 bt
hlzd) = PO sle) ——F (g/b-+1,2, —— —1]. 5.2
@) = POt L (e b2 S 69
Die charakteristische Trunktion von H(z;t)
wlet) = f ¢ dH (a;1)
0
driickt sich mit Hilfe der charakteristischen I'unktionen von S(z)
und U(4) oo
wle) = [ = dS(a),
0

ylu) = J g dU(4), aus.

0
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o0

fma:\j (nst) dsn)(m iP(%,t)j gizwds(n)(m) )
Wegen '
i fa) — e
wird ’ "
- - . o ‘?\o‘ . —At _(_AQH U(A n
V) = ) Plut) [p@)]" = X, | ¥~ - dUG) [p()]
n=0 n=0_ :
0
Y, 2_4 [4¢ (P ,]_ dU(A) f Ml g1 (3)
n=10 ' g
Also folgf: t[gplz) —1
p(>x{[¢“w 5-3)

Die Momente der betrachteten Verteilungen berechnen sich aus den
ezlehung
o lt) = (—iF 0,
Vi (—9)* ¢(0),
o = (—5*2M0).

Man erhiilt daher aus (5.8) sofort:

I

p(t) = vyont,
Ua(l) = V2o, 82 + vy, t,
Us(t) = 3o, -+ 89 vy 0, 1% vyt
Py qig Varianz von Il(a;t) ergibt sich
palt) = y(t) — i(t) = (o —ai ') + vyt (5.4a)
oder, wenn wir die Varianz von U(A): @ = a,—a] einfithren
to(t) = V2at® | vy t.

Das dyipte Moment beziiglich dem Mittelwert

Wird Ha(t) = pa(t) — B e, (1) pot) +- 2p3(1)

”ﬂ%:ﬁmﬁ—ﬂq%ﬁ+zﬁﬁ+ﬂmw@ﬂ—ﬁﬁ+Wﬂﬁ.w4m
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Wir betrachten noch zwei Grenzfille der erweiterten zusammen-
gesetzten Poisson-Verteilung:

1. Satz von Lundberg (8).

X
Falls das Moment », existiert, so gilt tiir die Variable :

lim H(zt;t) = U( )
t»co WV
2. Grenzvertoilung fiir die standardisierte Variable

l/v% at + vy, I/t ‘

Satz: Unter der Voraussetzung, dass a, und v, existieren, gilt beim
Grenziitbergang :

b3
Xe—

aH-—Ol

at = fest

{ -» co J
lim H (:z;l/vf at —f—vzcxl [/t + v t;t) == Pl)..
a» 0

f»co

Beweis: Die Variable X7 hat die charakteristische Punktion

izvyot 7
“ost) o ¢ Veitbna VT o] t[ ( S mJ.'l-.
yHat) = e VNVt e Ve

Daher wird

4 N

log p*(zit) = — — izv,_oclt'” — -} log X( _ ’U)
I/v?ffl—vzocl I/t v

z
- — e | e fl 5
' rp(erff—kvzocll/t.)

Fr log ¢(u) beniibzen wir die Entwicklung:

mib

: (v10)?
log y(u) = oy(tu) +a - 5 + ao(u?),

t 2
log » ( V) = oyt + at? o + fto(v?).
1
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Birsetzen wir guch p(w) durch ihre Entwicklung

)2
P(w) = 1+ v, (iw) + 2, (“2 L + o(w?),
80 wird :
2 ’ 1
v =, v Y - T ( )’
Vvlf F vy 0t Vt A0 ([ + vyt £

. ; 2 =
ot el e S
V‘VfH- Vo 0y V“' V"’?f"‘ Vg %y l/t 200f vyt t

Suif (1) bt <1>
20 v, o) YRR

32
lim log p"(z1) = — & -
{»co
Die Verteilung der standardisierten Variablen X strebt also stgen
die Normalvm‘teﬂung N(0,1).
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11, Teil

Hauptprobleme der Unfallversicherungsmathematik
und der Unfallstatistik

1. Allgemeines

Damit wir die Theorie der stochastischen Prozesse auf versiche-
rungsmathematigsche Probleme anwenden kénnen, miissen wir erkliren,
wie in der Praxis das untersuchte stochastische Tireignis, also das [in-
treffen eines Schadenfalles, defintert ist. Wihrend in der Liebensver-
sicherung diese Definition in natiirlicher Weise gogeben ist, muss in der
Unfallversicherung iiber Fintritt oder Nichteintrith eines Schadenfalles
oft auf Grund von gesetzlichen Bestimmungen entschieden werden.
Der Begriff Unfall soll deshalb in den folgenden Untersuchungen im
versicherungstechnischen Sinne verstanden werden, d. h. als ein it
eignis, welches nach den einschligigen Gesetzen iiber die Unfallver-
sicherung den Versicherer zu einer Versicherungsleistung veranlasst.
ir ist daher meist sehr komplexer Natur; beispiclsweise werden im
Bundesgesetz vom 11, Juni 1911 iiber die Kranken- und Unfallversiche-
rung die Berufskrankheiten den Unfillen gleichgestellt (Art. 68).

Bei einem Unfall haben wir, streng genommen, zu unterscheiden
zwischen dem Unfallereignis (dem Schadenfall) und den Folgen des
Unfallereignisses, welche fiir den Versicherer in der Ausbezahlung der
vereinbarten Entschidigung (der Schadenhéhe) bestehen. Dem Sprach-
gebrauch folgend verwenden wir, wo keine Verwechslung moglich isbs
fir den Begriff Unfallereignis gelegentlich auch den weniger prizisen
Ausdruck Unfall.

Die Anzahl Schadenfille, welche eine Person in einer bestimmten
Zeit betreffen, sowie die Schadenhohe pro Unfall, haben wesentlich
stochastischen Charakter: sie werden indessen beeinflusst durch eine
grosse Anzahl Faktoren, welche teilweise a priori bekannt, teilweise @
posteriori feststellbar sind. Umfangreiche Statistiken, wie sie zum Bei-
spiel bei der Schweizerischen Unfallversicherungsanstalt in Luzern,
dem statistischen Biiro der englischen staatlichen Versicherung in
Newcastle und dem staatlichen Institut fiir die Versicherung gegen Be-
triebsunfille in Rom vorliegen, zeigen, dass tiir eine im voraus mogliche



— 0839 —

AbSChiitzung des Risikos folgende Hauptfaktoren zu berﬁcksichtigen
sind : Geschlecht, Alter, Beruf, ferner Nebenbeschiifticungen und
Gosundheitszustand dor Versicherten. Zu diesen objektiv erfassbaren
kommen 1001, cine Reihe von subjektiven Faktoren hinzu, iiber die
er.s b eine liingers B eobachtungszeit zuverlissigen Aufschluss geben kann,
Wio: Anfilligkeit fir Unfillo sowio Versicherungs- und Arbeitsmoral.

In der Versicherungstechnik werden auf Grund solecher Gesichts-
punkte Crefahrenklassen abgegrenzt, um dadurch den Bestand in mag-
lichgt, homogene Teile zu zorlegen, d. h. Teilbestinde, in welechen alle
Objekte annihernd gleichem Risiko ausgesetzt sind. Zur Bestimmung
der Nettopriimio geniigh es, Unfallhiufigkeit und durchschnittlicho
Schadenhéhe in jeder Gefahrenklagse zu kennen (zwei Grossen, auf
d‘el'en Definition wir im niichsten Abschnitt niiher eintroten), withrend
fiiy Risikountersuchuflgen die Wahrscheinlichkeitsverteilung des Ge-
samtschadens gebraucht wird, die sich aus der Verteillung der Anzahl
SChadenfétlle und der Verteilung der Schadenhéhen berechnet.

Diese Verteilungen miissen empirisch gefunden werden, doch wird
AN sich nicht damit begniigen, beobachtete Hiuligkeitskurven ein-
tach auszugleichen, vielmehr versucht man, durch Hypothesen, welche
der Erfahrung gerecht werden, den Charakter der theoretischen Vertei-
lungen 4, orkliren.

Die in I'rage stehenden Gréssen: Anzahl Schadenereignisse und
Schadenhisie sind neben den stochastischen Schwankungen oft auch
systematischen Verinderungen im Verlaufe der Zeit unterworfen, sei
®8 durch dio Wirkung wirtschaftlicher Einfliisse oder durch Anderungen
der allgemeinen Lebensbedingungen. Damit aus einem vorliegenden
Beobaehtungsmaterial zuliissige Schliisse auf das kiinftige Geschehen
gemacht werden konnen, soll es folgenden Bedingungen geniigen:

| T — moglich sein, zufillige von trendmissigen oder perio-
dischen Andorungen der untersuchten Grdssen zu trennen.

2. Die Verteilungsfunktionen, welche dem Trend oder der Periodi-
zitiit iiberlagert sind, miissen zeitlich stabil sein.

Diese Forderungen gelten nicht nur fiir mathematische Unter-
Suchungen, sondern in anderer Iform auch fii praktische versicherungs-
ﬁ_e.chnisc he Uberlegungen, so dass es nicht berechtigh ist, aus ihnen einen
.lﬂlnwand gegen die Anwendung mathematisch-statistischer Methoden
n der Untallversicherung abzuleiten.
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2. Formen der Unfallversicherung

Wir haben in der Unfallversicherung hauptsichlich zwei Versiche-
rungsarten zu unterscheiden, nimlich:

Finzelunfallversicherung und Betriebsunfallversicherung.

Wiihrend in der Finzelunfallversicherung die einzelno Person die
Versicherungseinheit bildet, wird bei der Betriebsunfallversicherung
die Ctesamtheit der in einem Betrieb beschiiftigten Personen als Ver-
sicherungseinheit betrachtet. Dieser Unterschied wirkt sich statistisch
zum Beispiel in der Definition der Unfallhiiufigkeit aus. Bei der Einzel-
unfallversicherung wird die Unfallhiufigkeit in natiirlicher Weise als
durchschnittliche Anzahl Untille pro Person innerhalb der betrachteten
Periode (z. B. 1 Jahr) definiert. Da bei der Betriebsunfallversicherung
der Finzelno in der Statistik als solcher gar nicht erfasst wird, da er
nur indirekt Versicherungsobjekt darstellt, ist die Anzahl versicherter
Personen unbekannt. Sie wird ersetzbt durch die Anzahl « Vollarbeiter»,
die sich aus der Anzahl Arbeitsstunden errechnet, und zwar gilb:

300 Arbeitstage zu 8 Stunden == 2400 Arbeitsstunden
= 1 Vollarbeiter

Die Anzahl der Arbeitsstunden fiir einen Betrieb wird ermittelt, in-
dem die versicherte Liohnsumme dividiert wird durch einen geschitzten
mittleren Stundenlohn. Die (jihrliche) Unfallhiufigkeit wird dann als
fiktive Grosse eingefithrt, ndmlich als Anzahl Unfille pro Vollarbeiter.

Die durchschnittliche Schadenhohe pro Unfall ist in beiden Fiillen
das Verhiltnis der gesamten withrend einer gewissen Zeitperiode aus-
bezahlten Entschidigungen zur Totalanzahl der Unfillein der betretfen-
den Zeit.

Uber die Verhiltnisse in der Betriebsunfallversicherung wurde von
Wunderlin (14) eine eingehende Studie gemacht. Der Verfasser kommb
auf Grund von Beobachtungen bei der Schweizerischen Unfallversiche-
rungsansgtalt in Luzern zum Schluss, «dass die Anwendbarkeit der Waht-
scheinlichkeitstheorie zur rfassung des Unfallrisikos und damit zur
Pramienbestimmung in der sozialen Unfallversicherung zu verneinen
seir. Unsere Untersuchungen werden hauptsiichlich im Hinblick auf
ihre Konsequenzen fiir die Finzelunfallversicherung durchgetiihrt, s0
dass wir hier nicht weiter auf Wunderling Arbeit eingehen, da keine
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B,erechtiglmg besteht, Resultate, welche sich auf die Betriebsunfallyer-
Elchel'u_ﬂg‘ beziehen, auf die Rinzelunfallversicherung zu iibertragen,
1abe d..lEES(-) nun privaten oder sozialen Charakter. Immerhin scheint uns,
d%sf‘ enige neue Tirgebnisse der Wahrscheinlichkeitsrechnung in der
fwihnten Arbeit keine Berticksichtigung fanden.

3. Der untersuchte Bestand

_EiH wichtiger Grund dafiir, dass der Unfallversicherungsmathe-
i[fmtlk von seiten der Praxis her wenig Aufmerksamkeit geschenkt wird,
lefgt wohl im Mangel an umfangreichen Statistiken, die es erlauben
fVurden, die theoretischen Iirgebnisse im einzelnen zu {iberpriifen. Um
tiber die Verteilung der Anzahl Schadentille geniigend Aufschluss zu
®rhalten, mugs eg mdoglich sein, jeden Versicherten withrend einer linge-
ref} Poriode hingichtlich seiner Unfille zu beobachten. Nun werden aber
bﬂl den privaten Gesellschatten Policen mit wiederholten Unfillen
I‘I.merhﬂ:lb kurzer Zeit bald gekiindigt. Bei obligatorischen Unfallver-
S.l Cherungen britt dieser Nachteil nicht auf, hingegen sind diese gewohn-
lich o] Betriebsunf&llvorsieherungen organisiert, bei denen die einzelne
+erson tiberhaupt nicht betrachtet werden kann.

B warde von uns ein abgeschlossener Bestand von 1196 ménn-
hf}hen Arbeitern, die mindestens withrend der Zeit vom 1. Januar 1944
r)l__S Aume 31, Dezember 1952 bei den stadtischen Verkehrsbetrieben
4“1‘1(_311 voll beschiiftigh waren, untersucht. Diese Arbeiter sind gesamt-
h‘aft bei der Schweizerischen Unfallversicherungsanstalt in Luzern ver-
Sllch()rt und wurden von dieser alle in die gleiche Gefahrenklasse (47d,
Gef&hrenstufe V) eingereiht. 1)

Nichxir .botrzmh.f;on gebrennt vone%nandﬂor BOtr.ie'bsuI.lféille_(BU)' Llrlcl
_ obriebsuntiille (NBU), welche im Ifiihrer durch die obligatorische

lleLllVGl‘Sicherung (15) wie folgt definiert sind (S. 17):

_“AES Betriebsuntille gelten Untfiille, die durch den versicherten
I%et.rleb verursacht werden oder die dem Arbeiter wihrend der Arbeit
fm' diesen Betrieb zustossen. Als Nichtbetriebsuntille gelten alle
tbrigen Unfille.y

1y - : i . .
- ) Der Bestand entstammt also der Betriebsunfallversicherung. Indessen er-
& . 5 . . - s S v
Arh © 03 uns eine interne Statistik der Verkehrsbetriebe, die Untiille Jedes einzelnen
Suol“tels au verfolgen. Dadurch ergab sich die Moglichkeit, aus unseren Unter-
“ingen Tolgerungen fiir dio Iiinzelunfallversicherung zu ziehen,
37
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Berufskrankheiten waren unter den registrierten Unfiillen in ver:
nachlissigbarer Anzahl vorhanden.

Die Schadenhéhe eines Unfalles sebzt sich zusammen aus Lohnent-
schiidigungs- und Heilungskosten. Die Lohnentschidigung hiingb
hauptsiichlich ab von der Dauer des Unfalles (Anzahl voll arbeits-
unfihiger Tage), daneben von wirtschaftlichen I"aktoren, withrend
fiir die Heilungskosten die Heilungsdauer (Zeit, die verstreicht vom
Unfalleintritt bis zur letzten drztlichen Konsultation) sowie Arab- und
Apothekerkosten massgebend sind.

Der relativ kleine Umfang unseres Bestandes gestattet es nicht, die
verschiedenen Finfliisse auf die Schadenhohe einzeln zu untersuchen-
Wir betrachten deshalb lediglich die Dauer eines Unfalles (Schaden-
dauer), gleichsam als ein Nettomass fiir die Schadenhéhe, in dem das
wesentlich stochastische lilement enthalten ist.

4. Beziehung zwischen Anzahl der Schadenfille und

Schadendauer

Um eine iibersichtliche Darstellung der Verteilung des Gesamt-
schadens zu erhalten, macht man in der Unfallversicherung dio grund-
legende Hypothese, dass die Anzahl Schadenfille und die Schaden-
dauer zwel stochastisch unabhingige Variable sind. Diese Voraus-
setzung ist zwar nicht streng erfiillt, in den meisten Fillen wegen der
Seltenheit der Unfille und der Kiirze der Dauer von Unfallverletzungen
jedoch berechtigt. Itir die Betriebsunfille unseres Bestandes betragh
die jihrliche Unfallhéufigkeit 0,098 und die durchschnittliche Dauer
eines Unfalls 13,1 Tage. Tabelle 1 zeigt die durchschnittliche Schaden-
dauer in Beziehung zur Anzahl BU.

n N, nN,, d Tabelle 1
1 288 288 15,0
2 127 254 12,5
3] 76 2928 15,2
4 22 88 12,6
= D 31 196 8,6

n: Anzahl BU in den Jahren 1944-1952,
N,,: Anzahl Personen mit n BU,
d: Durchschnittliche Dauer eines Unfalls in Tagen,



— H43 —

~ Es weisen also lediglich die 81 Arbeiter mit fiinf und mehr Unfillen

m. der neunjéhrigen Beobachtungsperiode eine wesentlich unter dem

Mltbel liegende d urchschnittliche Schadendauer auf. Der Abfall erklirt

Sich dadureh, dass diese Arbeiter vorwiegend Bagatellunfille anmelde-

tenf das sind Unfille, welche dem Versicherer nur Heilungskosten, je-

go;h keing Lohnentschidigungskosten verursachen, also die Dauer
-age haben.

5. Der Einfluss des Alters auf die Unfille

Die grosgen Statistiken, die wir eingangs erwihnten, zeigen, dags
genorel] gesprochen, die Unfallhiufigkeit mit zunehmendem Alter
sinkt, ooy die mittlere Schadendauer zunimms. Iiir einen ge-
8ebenen Begtand hat man zu untersuchen, ob diese Irscheinung so
AUSgeprigh ist, dass man sie durch Gruppierung des Bestandes nach
Altersklassen beriicksichtigen muss, und wie die Gruppierung zu ge-
Schehen hay,

, In der Tabelle 2 sind die Unfallhiufigkeiten der BU und NBU im
Jusammenhang mit dem Geburtsjahr des Verunfallten dargestellt.

Geburtsjahy (1) (2) (3) Tabelle 2
1886-1892 . . . 1922 0,75 0,84
1893-1895 . . . 114 0,90 0,83
1896-1897 . . . 104 0,76 0,96
18981900 . . . 99 0,65 0,93
19011902 . . . 107 1,03 0,87
903 . . . ... 84 1,00 0,93
mo4. . . . . . 100 0,73 3,97
1905. . . . .. 120 0,77 0,98
mo6. . .. . . 119 0,82 0,98
907 . . ... 119 1,16 1,00
19081922 . . . 108 1,13 0,99
1886-1922 . . . 1196 0,88 0,93

(1): Bestand der betreffenden Altersgruppe,

(2): Unfallhiuftigkeit der BU, _ ; .
(3): Unfallhiiutigkeit der NBU } n den Jahren 1944-1952.
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Die BU verteilen sich ziemlich gleichmiissie auf die verschiedenen
Altersgruppen mit Ausnahme der beiden jingsten Gruppen, welche eine
stark erhohte Unfallfrequenz aufweisen. Diese ist indesson wohl eher
auf den Mangel an Erfahrung zuriickzufithren als auf den Iinfluss des
Alters. Bei den NBU ist die Abnahme der Unfallhiiufiglkeit mib o
nehmendem Alter deutlicher, was sich dadurch erklivt, dass sich di®
dlteren Jahrgiinge in ihrer I'reizeit im allgemeinen kleineren Risiken
aussetzen als die jiingeren. Die Unterschiede sind jedoch nicht so gross;
dass sie eine weitere Unterteilung des Bestandes notwendig machen
witrden.

Die Abhiingigkeit der durchschnittlichen Schadendauer pro Unfall
vom Alter des Verunfallten bei den BU ist aug der folgenden MTabelle
zu erschen.

Alter (1) (2) Tabelle 3
25-40 Jahre. . . . . 136 7,6
41-42 » . .. L. 117 10,5
43-44  » . .. L. 137 12,5
45-46  » . . . L. 145 11,8
4748 » . . . L. 128 11,1
4952 » ... .. 148 17,6
53-56 » . . . . . 118 16,4
57-64 » . . . . . 125 16,7
25-64 Jahre. . . . . 1054 13,1

(1): Anzahl BU in den Jahren 1944-1952,
(2): Durchschnittliche Schadendauer pro Unfall in Tagen.

it die Alter unter 49 Jahren liegt die durchschuittliche Schaden-
dauer untor dem Mittel von 13,1 Tagen, fiir die anderen dariiber.

6. Innere Abhingigkeiten

Iiine auffallende Frscheinung tritt bei der Untersuchung der Scha-
denfiille in #zwei angrenzenden Beobachtungsperioden zutage. s zeigh
sich, dass die Unfallhiiutigheit in der zweiten Periode (1949-1952)
monoton zunimmt mit der Anzahl Unfille in der ersten Periode
(1944—-1948).



BU NBU Tabelle 4
K (t) (2) (3) 1) (2) (3)
0 811 200 0,25 736 245 0,383
1 244 195 0,51 325 147 0,45
2 96 65 0,68 107 71 0,66
=3 45 55 1,22 98 20 0,71
0,37 0,40

n: Anzahl Unfiille in den Jahren 19441948,
(1): Anzahl Pergonen mit n Unfiillen in der 1. Periode,
(2): Anzahl Unfiille der betreffenden Personen in der 2. Periode,
(3): Unfallhiiutigkeiten in den Jahren 1949-1952.

Das gleiche Verhalten der Un fallhéiufigkeiten zeigt sich iibrigens
sehon, wonn man die ganze Periode aufteilt in eine erste Periode von
awel Ja,hron und eine (Lu an angrenzende von sieben Jahren.

s besteht demmnach stochastische Abhéingigkeit zwischen den
Unfa, llen einer Person in zwei angrenzenden Zeitintervallen ; man kann
nicht gllen Personen des Bestandes das gleiche Unfallvisiko 2 /uscht eiben.
Dass diegor Umsgtand nicht einfach durch eine Verschiedenheit der
&u&aomn Bodmﬂ ungen (welche trotz aller Bestrebungen zur Homogeni-
Sierung eineg Bestandes bis zu einem gewissen Grad immer besteht)
Olklzut werden kann, zeigh der Zusammenhang zwischen den BU und
den NBU in den Jahren 1944-1952: Personen mit einer relativ grossen
Anzahl py haben im Durchschnitt auch viele NBU. Vgl. Tabelle 5.

Tabelle 5
o (1) (2a) (3a) " (1) (2D) (3b)

0 652 502 0,77 0 54T 359 0,66
1 288 QT4 0,95 1 359 329 0,92
2 127 57 1,24 9 169 188 1,11
3 % 102 1,34 3 85 126 148
=4 53 82 1,55 >4 36 52 1,44

m: Anzahl BU in den Jahren 1944-1952,
n: Anzahl NBU in den Jahren 19441952, o
(1): Anzahl Personen mit der entsprechenden Anzahl Unfiille,

(2a): Anzahl NBU L i dosii Tadmen 19441952
(3a): Unfallhiufigkeit der NBU |

(2b): Anzahl BU - } in den Jahren 19441952,
(3b): Unfallhiutigkeit der BU
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Diese Abhingiglkeiten legen die Idee nahe, dass fitr einen Bestand
von Unfallversicherten neben den fiussern, objektiv abgrenzbaren, noch
innere Crefahrenklassen existieren. Auf Crrund einer ghnlichen Unter-
suchung hat iibrigens der Psychologe K.Marbe (10) den Begriff der
Persénlichkeitsgefahrenklassen eingefithvt.

7. Untersuchungen iiber die Verteilung der Anzahl Schadenfille

Von den beiden stochastischen Crossen, welche zusammen das
Risiko in der Unfallversicherung bestimmen: Anzahl der Schadentfille
und Schadenhohe, ist die erstere die statistisch einfachere und auf-
schlussreichere. Wir werden uns daher in erster Linie mit ihr befagsen-

Beim Versuch, in der Finzelunfallversicherung auf Grund der
a priori zur Verfiigung stehenden Daten Gefahrenklassen zu bilden,
welche homogene Gresamtheiten darstellen in dem Sinne, dags der -
wartungswert der Anzahl Schadentille fir alle Versicherten einer Ge-
tahrenklagse der gleiche ist, macht man die Teststellung, dass dieser
aus prinzipiellen CGriinden versagt. Selbstverstindlich stellt die ge-
forderte Homogenitit in allen Versicherungszweigen eine Idealisierung
der Tatsachen dar und kann in der Wirklichkeit nicht streng realisiert
werden. Tn unserem I'all jedoch goht man am Wesentlichen vorbel,
wenn man nur die objektiven Gefahrenklassen beriicksichtigt, weil
unter den Unfallursachen subjektive Ifaktoren eine viel grossere Rolle
gpielen als man gewohnlich annimmt.

Mit dem Ziel, einen theoretischen Beitrag zur Unfallverhittung 2t
geben, untersuchten Greenwood und Yule (6) die Unfallstatistiken
einer Reihe von weiblichen Belegschaften in der Munitionsfabrikation
withrend des ersten Weltkrieges. Die I'rage, ob die Unfille gleichmiissig
unter die Arbeiterinnen verteilt seien, fithrte sie zur Aufstellung von
drei Modellen fiir eine theoretische Verteilung der Anzahl Unftille, die
aus folgenden Hypothesen abgeleitet wurden:

1. Die Untallereignisse innerhalb einer Gruppe von Arbeiterinnen
unterliegen dem reinen Zufall.

2. Die Personen einer Gruppe haben anfiinglich alle die gleiche Wahr-
scheinlichkeit, einen Unfall zu erleiden. Trifft jedoch ein solcher
ein, so dndert sich dadurch die Wahrscheinlichkeit fiie das Hin-
treffen des nichsten Unfalles.
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8. Die Personon einer Gruppe haben verschiedene Anfilligkeit gegen-
iiber Unfiillen und damit von Beginn an verschiedene Wahrschein-
lichkeiten, einon Unfall #u erleiden.

Diese Annahmen bilden die Grundlage fir eine theoretische Be-
}_{Emdhmg der Statistik der Unfallereignisse. Wir geben eine kurze
U bersicht, wie sie im Lichte der neueren Ergebnisse der Wahrscheinlich-
keitsrechnung mathematisch zu formulieren sind.

Der Hypothese, welche die Schadentiille als reino Zufallsereignisse
betl‘&chtet, entspricht die Poisson-Verteilung. Die Wahrscheinlichlkeit,
dagg eine Person in einer Zeitperiode der Linge ¢ von n Schadenfillen
betrotton wird, ist gegeben durch den Ausdruck:

A"

Plnst) = ™ (n')
Worin 7 die mittlere Anzahl Untille pro Zeiteinheit (die spezifische
Unfallhétufiglmit) angibt. Die Poisson-Verteilung ist die Wahrschein-
llchkeitsverteilung der Schadenfille innerhalb einer homogenen
G'rruppe,

[m zweiten Falle werden die Unfille als Iireignisse mit Wahr-
Scheinlichkeitszmsi;eckung aufgefagst. Hin neues und bedeutend all-
8emeineres Modell als dag urspriingliche von Greenwood und Yule fiir
eine golche Ansteckungsverteilung stammt von J. Neyman (11). g
Wird definiert guf Grund der bedingten Wahrscheinlichkeit P(n’; ' jn; ),
dass eing Person in der Zeit 0 bis ¢’ genau n” Unfille erleidet unter der
VOl‘émsssetzung, dass sie n Schadenfiille erfahren hat in der Zeit 0 bis ¢
P (W3t Inst) wird auch als direkte Ubergangswahrscheinlichkeit be-
aeichnet. Sie habe die Iligenschaften:

(@) P(w'3t' imst) hiingt nur von ¢ und n ab, jedoch nicht davon, zu

welchen Zeitpunkten die # Schadentille eingetroffen sind.

) P(n';¢ m; t) ist im Punkte ¢ = ¢t nach ¢ differenzierbar, und

zwar gilt :

ap(n’;t’/”;t) { A _Z(%)__ fir n’ = n 1
| = p(mst) = 11 ot = dsy

o
=10 fir " >n 41,

Wobei die #(n) beliebige nicht-negative Zahlen bedeuten und ¢ = 0 ist.
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p(nit) wird als Intensititsfunktion der reignisse bezeichnet, d&
p(nit) dt die bedingte Wahrscheinlichkeit dafir angibt, dass im Zeit-
intervall ¢ bis t + dt ein weiterer Unfall eintritt. Sie hiingt ab von der
Anzahl der in 0 big ¢ eingetroffenen Freignigse und, falls ¢ > 0 ist, von
der Liinge dieses Zeitintervalles. Das Modell beriicksichtigh also An-
steckung #wischen den Freignissen und eine zeitliche Wirkung auf sie-

Die dritte Hypothese fithrt zu einer gedanklichen Aufspaltung der
untersuchten Gruppen in homogene Teilgruppen, mnerhalb dever die
spezifische Unfallhiiufigkeit A einen konstanten Wert besitat, withrend
sio von Teilgruppe zu Teilgruppe variiert. Der Wert von A fiir cine be-
liebige Teilgruppe 18t gegeben durch eine Verteilungsfunktion U(A),
definiert auf dem Intervall 0 =< 1< oo, die sogenannte Strulkbur-
funktion. Innerhalb jeder Teilgruppe ist die Anzahl Schadentille
nach Poisson verteilt, so dass die Wahrscheinlichkeit fiir irgencdeine
Person aus der Gruppe, n Schadenfille in einem Zeitintervall der
Linge ¢ zu erleiden, gegeben igt durch:

co

Plngt)y = | e*

(At)‘n

AU,

e

0

Dies ist die absolute Wahrscheinlichkeitsfunktion einer zusammen-
gesetzten Poisson-Verteilung.
Greenwood und Yule withlten, hauptsichlich um formal einfache

Augdriicke zu erhalten, fiw U(4) eine Ifunktion vom Pearsonschen
Typus I1I

1\ 2L /'{q/b—l
) ¢MdA 1>0,¢>0,b>0,

W = (b b I(g/b)

damit ergibt sich nach I(3.1) und I(3.4) *) die Wahrscheinlichkeits-

funktion
1 /b
POty = [—
1| bt

Plust) = -P(O;t)( 'l b: bz> Halb )

I'(q/b) n!

*) Auf Formeln aus dem ersten Teil wird mit einem vorangesetzten I Bezug
genormen.
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der sogenannten negativen Binomialverteilung, die auch von F. New-
bold (12) und O. Lundberg (8) zur Untersuchung von Unfallstatistiken
verwendet wurde.

~ Der Nachteil der negativen Binomialverteilung liegt darin, dass
516 sowohl alg Ansteckungsverteilung wie auch als zusammengesetate
POiSSOH~Verteilung interpretiert werden kann. Die Intensititsfunlktion
einey Ausammengesotzten Poisson-Verteilung erfiillt nach O.Lundberg
(8) 8. 72 die Rolation

p'(n;t)

p(n -+ 1) = p(nst) pinst)

Dioge Beziehung ist auch hinreichend fiir eine zusammengesetzto
POiSSOIl-Verteilung. Setzen wir die Intensitdtsfunktion der Neyman-

Vorteilung 2(n)

o) =)y
el folot -
0, so folgt dn+1) = z(n) +c,
als : |
0 z(n) = 2(0) 4 on,
2(0) + ¢en
Bl =~ 1+

Dies igt gerade die Intensititsfunktion der negativen Binomialvertei-
lung, talig #(0) > 0 und ¢ > 0 ist. Vgl. O.Lundberg (8) 8. 83.

Durch Anwendung der negativen Binomialverteilung kann also
nicht entsehieden werden, ob die Hypothese 2 oder 3 die zutreffende ist.

8. Allgemgines iiber die Anwendung von zusammengesetzten
Poisson-VerteiIungen zur Darstellung von Unfallhiufigkeiten

Die Tabollen des Abschnittes 6 zeigen, dass auf unsere Unfall-
Sbatistiken die Hypothese des reinen Zufalls nicht zutrifft ; indessen geht
U8 thnon nicht, hervor, ob sio durch die Annahme einer Wahrscheinlich-
keitsansteckung 1m Sinne positiver Chancenvermehrung oder durch die
Annahmg verschiedener individueller Anfilligkeiten ersetzt werden
muss, Die [y tscheidung dariiber, welche Hypothese man zu akzep-
tieren hat, mysg auf Grund von statistischen Tests gefillt werdon.
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Wir haben uns vor allem mit der Priifung der dritten Hypothese
nach Greenwood und Yule befasst, indem wir uns von der Uberlegung
leiten liessen, dass bei jihrlichen Unfallhdufigkeiten von nur 0,098
(BU) und 0,104 (NBU) der Binfluss eines Unfalles auf den nichsten
kaum von grosser Bedeutung sein kann, und dass kein plausibler (}L"Llll.d
fiir die starke Chancenvermehrung angegeben werden kann, wie 510
aus den Tabellen 4 und 5 im Falle von Ansteckung zwischen den Un-
tillen folgen miisste. Also nehmen wir an, dass die Wahrscheinlichkeits-
funktion der theoretischen Verteilung die Gestalt habe

(o8]

(/’U\} n

Pty = | e™ 0 au().

n!
0

Ohne die spezielle Iform von U(A) zu kennen, kénnen wir auf (trund
der Iligenschaften des zusammengesetzten Poisson-Prozesses generell
priifen, ob ein solecher angewendet werden darf.

Ilinen Anhaltspunkt, der wenig Arbeitsautwand erfordert, erhalten
wir durch Betrachtung einer Iolge von Ungleichungen zwischen den
absoluten Wahrscheinlichkeitsfunktionen. Tis gilt:

1 Pn—1;) i P(n;t)
— =z =192, ...
n P(n;t) n-+1 Pln4 1)
Der Beweis kann ganz analog gefithrt werden wie derjenige fiir die be-
kannten Ungleichungen zwischen den absoluten Momenten einer Ver-
teilung. Vgl. Cramér (3) 8. 176. Das Gleichheitszeichen gilt im Halle der
gewohnlichen Poisson-Verteilung und nur dann.

Sei: m Anzahl Unfille in den Jahren 1944-1952,

N, Anzahl Personen mit » Unfiillen,

dann bilden die Grossen

theoretisch eine mit wachsendem n monoton abnehmende Zahlenfolge.



— 5bl —

BU NBU BU NBU  Tabelle 6

L N, In

0 652 547 2,26 1,52

1 288 539 1,13 1,06

2 127 169 0,56 0,67

3 76 85 0,86 1,06

4 22 20 0,31 0,33

b 14 12 0,47 0,67

6 5 3 0,10 0,43

7 q 1

Wit goher vips | _
' gehen nicht weiter auf den Aussagenwert der Zahlen ¢, ein, die
natirly S i . . .
I“}turhch fitr kleine N, (und also grosse n) mit einem grossen wahrschein-
Uehen Takt... : ; ; i
1en Fehler behattet sind. Die Iirgebnisse legen es nahe, die eingeschla,.-

50 Linie weiter zu verfolgen.

Aus den Uberlegungen des ersten Teiles folgt, dass die zusammen-
sesetzten Pojgson-V erteilungen eindeutig charakterisiert sind durch die
bmo_mialen inversen Ubergangswahrscheinlichkeiten, d. h. die Wahu-
Sehelnlichkeit, dass eine Person n Unfille gehabt hat in der Zeit 0 bis ¢,
Unter dep Voraussetzung, dass sie im Intervall 0 bis ¢ genau n’ Unfille
hat, wobei t<t' und daher n < n’' ist, ist gegeben durch:

NN
P(n;t/'n;i):(n 'y (1“t, - (8.1)

i I'n der nachfolgenden Tabelle sind die theoretisch berechneten
a%lflgkelten mit den empirisch gegebenen verglichen fiir die Teil-
Periode 19441948 und die ganze Periode 1944-1952.

Um zutiillige oder eventuelle systematische Anderungen in der
clér;f]ihilr}lli_ill? igkeib __Wﬁ‘hre_nq dei Be‘)b%htl}ﬂgfipm‘mde ?uszuscha,lten,
Zeitpar.:m:tufls. eine ze1thche. J,1:ansformat10n S0 ausgc’)_fuhrt, dass der
i entsc I‘m,el die d111?0'hschn_1tthche. Anzahl S(.:hadenfaﬂe pro Person

brechenden Zeitintervall angibt, d. h. wir setzen:

)

f = W, = n',



— 502 —

wobei 7 dio durchschnittliche Schadenhiufigkeit in der Zoit 19441948
und 7’ diejenige in der Zeit 1944-1952 bezeichnot, Der Parameter der
Binomialverteilung

¢ n
[5/ = %l—
wird daher abgeschitzt durch:
g T
t >\nN,

i = >’ N,
Wir erhalten so

t
fir die BU: -, = 0,57780,

t
fir die NBU: — - = 0,56759.

’

Die Ubereinstimmung wird mit Hilfe des y2-Tests gepriift, wobel
man fiir jede Gruppe mit festem n” 42, berechnet und die Additionsregel
fiir 4% benutzt:

w
2 1,2
Xb - 1\_1 Xnte
n/=0

Die Anzahl Ireiheitsgrade ist deshalb: f == Anzahl der Beobachtungen
— Anzahl der Gruppen — 1. #7 ist ein beobachteter Wert von

Tabelle Ta

Vergleich der theoretischen Hiufigkeiten

7 ¢ n i n'-n
%) () (1)
n l [

mit den empirischen fiir die BU 1944-1952,



n )
0 1
1
0 2
1
2
0 3
1
2
3
0 4
1
2
3
4
0 5
1
2
3
4
5
0 6
1
2
3
4
5
6
0 7
1
2
3
4
5
6
7

1 = 10,5

N,»  beobachtet

288

127

76

bo
o

14

f =16

553

Hiufigkeiten

127
161
24
52
51
7

121,59
166,41
22,64
61,96
42,40
5,72
23,48
82,14
14,66

} 4,53

7,86
7,17
2,45

] 4y

3,52
4,81

} 4,19

'- 1,03

1,45
1,49

1,01

},
l

2,06

2,61

I

theoretisch

2
X

0,42

0,59

1,34

3,46

2,21

0,62

Py > y3) = 88,09,



Tabelle Th

Vergleich der theoretischen Hiufigkeiten mit den empirischen filr

die NBU 1944-1952.

IHiufigkeiten

!

7 n N, beobachtet

0 1 359 144

, 215
0 2 169 34
i 82
2 58
0 3 85 11
1 23
40
3 11
0 4 20 0
1 9
2 11
¢ 6
4 1
0 5 12 0
1 2
2 :
3 ;
4 4
5. 0
0 6 9 0
1 1
2 0
3 0
4 1
5 1
6 0

45 = 11,8 f =19

P(y

theoretisch

155,24
203,76
31,60
82,96
54,45
6,87
27,06
86,52
15,54
} 4,37
7,23
6,33
2,08
} 1,87

3,13
4,10

} 3,40
} 1,57
2>

1,43

n

1,43

0,23

4,99

3,79

0,70

0,48

1) > 44,6 %,

Um keine theoretischen Hiufigkeiten zu erhalten, die kleiner als 1
sind, wurden einige Beobachtungen sinngemiss zusammengefasst.
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le.! vorangehenden Untersuchungen berechtigen zum Schlusse,
gﬂ?S die betrachteten Unfallverteilungen einer zusammengesetzten
+01880n-V erteillung folgen. Wir akzeptieren daher die dritte Hypothese
von _Grl.‘eenwood und Yule, formulieren sie jedoch wie folgt:

Die Personen des Bestandes haben von Beginn an verschiedene
Unfall—Suszeptibilititt.

. Wir schliessen in diesen Begriff eine subjektiv begriindete ver-
ichledene Disposition zu Unfillen sowie die Moglichkeit verschiedenen
dusseren Risikos bei verschiedenen Personen ein.
; Selbstverstindlich handelt es sich hier um eine starke Verein-
"‘Lchung eines komplizierten psychologischen Phinomens. Indessen ver-
5“0_}1911 wir nicht, die erhaltenen Iirgebnisse in dieser Richtung nither
W mberpretioren. Uns interessiert lediglich die Frage, ob das Model]
b‘muehbar 18t als Grundlage fiir die Berechnungen in der Unfallver-
Slcherung.
I Damit dieg der Ifall ist, muss insbesondere verlangt werden, dags
1“6 Verteilung der Suszeptibilititen im Bestand zeitlich stabil sei. Dag
g‘mn geprift werden, indem man die Streuungen der Strukturfunktion
(/1) aus zwei angrenzenden Perioden miteinander vergleicht. Wiy
dl-ucken, wie vorhin, die Linge der Perioden durch die durchschnittliche
Anzah] Schadentfiille pro Person aus.

Aus der Momentenrelation 1(2.24):

n = A,
of = oi* + M,
folgt Wegen der speziellen Wahl des Zeitparameters
A=1,
o1
oy = =

Zway ; : ; ;
; ar kennt man die Stichprobenverteilung von o} nicht, doch kann
l'clih éiner Methode von Tschuprow die Varianz von o} (der wahrschein-
iche Jiahl. e ; _

1 Iehler) berechnet werden. Iiir grosse Btichproben gilt:
. 1 /4n 1062 4¢° 6 |
var (o’i) == _.373—* e n _,_ '_____n. + D9
n2 72 N n
mit 73 = Fi(n—mn)® Vgl It. Newbold (12).
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Nehmen wir als 1. Periode: 1944-1948, als 2. Periode: 1949-1952, 0
erhalten wir:

BU: o} = 1,47 + 0,26, ;. = 1,16,
NBU: o}, = 0,356 + 0,114, o3, = 0,456.

Bei den BU liegt of, innerhalb des doppelten, bei den NBU sogar
innerhalb des einfachen wahrscheinlichen Tehlers, was zur Annahme
einer stabilen Strukbturfunktion berechtigt.

0. Zeitliche Schwankungen der Unfallhiufigkeit

Idine theoretische Verteilung kann im allgemeinen nicht auf jedes
beliebige Teilintervall der Periode, fiir welche sie berechnet wurde, an-
gewendet werden, da die spezifische Unfallhiufigkeit Sechwankungen
unterliegt, die um so grosser sind, je kleiner das betrachtete Inter-
vall 1st.

Wir untersuchen nun speziell das Verhalten der jihrlichen Unfall-
haufigkeiten. %u diesem Zweek betrachten wir einen Bestand von N
Personen wiithrend % Jahren und berechnen die Stichprobenverteilung
der jihrlichen Unfallhiufigkeit unter der Annahme, dass die theoro-
tische jihrliche Unfallhiufigkeit konstant set.

Sei n,; die Anzahl Unfille der »-ten Person im j-ten Jahr. Dann ist

1 N &

N=-— D N0
1. o 1’9.
KN A A

die jihrliche Unfallhdufigkeit des Bestandes. Ifir alle 7 gilt:

Die charakteristische Funktion dieser Verteilung ist

Clv(eizwl),
die charakteristische I'unktion der Verteilung von # wird deshalb

N .
le Y a,(et2/kN_yq)
e v=1
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N
Wobei Z A, = NE(n) = N7 ist, so dass sich fiir die Verteilung von n
. 11=_l
erglbt: [ r l ]CN’E)T

— i Wobi)

Pin=-——
mit Fi(n) =7, of = .
# kN
Die charakteristische IPunktion der standardisierten Variablen Vn;;ﬂzf ﬁ
n/

----- A

~iz Vung kv (il V kN7 ) iz Vidy  ia VNG 5 e
. —p e 31V kN
strebt fiir N > oo gegen die charakteristische Funktion der Normal-
-
ertetlung -
e 2.
Die beobachtete jahrliche Hiufigkeit ist also unter der gemachten

Annahme annithernd normal verteilt mit dem Mittelwert 77 und der

Streuung - _

kN
Der p%-Wert einer Normalverteilung f, ist gegeben durch die

Gilei o
eichung P{‘ﬁ—?ﬂ > f0,) = p%-

Er kann bei vorgeschriebenem p einer Tabelle entnommen werden.
P gibt die Prozentwahrscheinlichkeit an, dass ein beobachteter Wert
Von 7 ausserhalb des Intervalles

liegt. (n—1Fp0,sm + fp0)
Fiir die Verteilungen der BU und NBU erhalten wir:
BU: 5 = 0,098, NBU: 9 = 0,104,
und daraus:

5% Intervall

BU: 0,092 < 9 < 0,104, NBU: 0,098 <9 < 0,110,
0,1%, Intervall
BU: 0,088 < 5 < 0,108, NBU: 0,094 <5 << 0,114,

38
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Die Tabelle 8 zeigt, dass bei den BU 4, bei den NBU 5 Werte ausserh_‘cblb
des 5%, Intervalles, und 1 Wert bei den BU, 4 Werte bei den NBU
sogar ausserhalb des 0,1%, Intervalles liegen.

Jahr BU NBU Pabelle 8
(1) (2) (1) (2)
1944 . . . . . 120 0,100 102 0,085
s . . - & = 108 0,090 138 0,115
1946 . . . . . 122 0,102 121 0,101
1947 . = s & 127 0,106 162 0,135
1948 ;. . o « 132 0,110 111 0,093
1949 . . . . . 121 0,101 121 0,101
1950 . . . . . 112 0,094 133 0,111
1951, . . . . 106 0,089 116 0,097
1952, . . . . 106 0,089 113 0,094

(1): Anzahl Untille,
(2): Unfallhiiufigkeiten.

I"iir Betrachtungen, welche sich auf eine 1-Jahr-Periode bezichen,
darf also die Unfallhiufigkeit nicht als kongtant angenommen werden.
Da ans den Beobachtungen weder ein T'rend noch eine Periodizitit U
erkennen ist, so miissten die Schwankungen durch eine zusitzliche
Wahrscheinlichkeitsverteilung erfasst werden, eine Idee, die bereits
von H. Ammeter (1) zar Behandlung von Risikoproblemen beniibzb
wurde. Mathematisch bedeutet die Berticksichtigung dieser Schwan-
kungen keine Schwierigkeit. Wir schreiben die Wahrscheinlichkeits-
funktion der Anzahl Schadenfélle in der Iform

. s TR
Pnity = J e (,) AU (ka),
n!
0
wo o == } wegen n = At = al die spezifische Unfallhiufigkeit bedeutet.

Nehmen wir an, dass « eine dem Zufall unterworfene, durch die Ver-
teilungsfunktion V(«) gegebene Variable sei, so wird:
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co

P*(n;t) :de(a) e M .%?id[](g;a)

0
My
_m:fewu (!)de(ﬂ;oc) dV(a)
n.
0 0

- j ot M an)

n!

mit H(l) = j?U(;t;a) dV(a).

Schwieriger wire bei unserer Beobachtungsperiode von nur neun
Jahren i statistische Bestimmung von V(x). I'ur unsere Unter-
Suchungen kommen wir jedoch mit der Annahme einer konstanten
Spezifigchen Unfallhéufigkeit aus, da wir keine kleineren Zeitintervalle
a‘ls die Perioden 1944-1948 und 1949-1952 betrachten und die spezi-
f1's chen Unfa]lhétufigkeiten in diesen Intervallen (bezogen auf ein Jahr)
die Werto haben

BU: #, = 0,102, 1y = 0,098,
NBU: #%, = 0,106, 7y = 0,101,

und somit innerhalb des 5 9%,-Intervalles liegen.

10. Anwendung spezieller zusammengesetzter Poisson.-
Verteilungen

Fiir jede zusammengesetzte Poisson-Verteilung gilt, wie leicht zu

Zeigen gt -
of = o2t + At

P0t) = [¢*aU(®) =™ mib 7 = J2auy
0 0

und somit - —
0'2 =N ’

P(0;t) =™,

s (leichheitszeichen gilt nur im Falle der einfachen Poisgson-Ver-
tellung.
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Bei vielen Untersuchungen von Unfallstatistiken mit Hilfe der
einfachen Poisson-Verteilung folgte aus den angewendeten Tests un:
geniigende Ubereinstimmung mit den empirischen Daten. Fs zeigte
sich im besonderen, dass die empirische Streuung grosser ist als der
Mittelwert (und daher als die theoretische Streuung) und die Null-
klasse (d. h. die Anzahl Personen mit 0 Schadentillon in der Beobach
tungsperiode) grosser als die nach Poisson berechnoete. Dadurch wird
die Anwendung einer zusammengesetzten Poisson-Verteilung nahe-
gelegt. Zur Verbesserung der Resultate wurde fast durchwegs die nega-
tive Binomialverteilung verwendet. Diese Wahl geschah aus Griinden
formaler Hinfachheit; indessen hat O.Lundberg (8) eine theoretische
Begriindung dafiir gegeben, indem er zeigte, dass die negative Binomial-
verteilung die einzige zusammengesetzte Poisson-Verteilung ist mib
linearer Regression, d. h. mit der Iligenschaft, dass der bedingte Iir-
wartungswert der Anzahl Freignisse in einer Zeitperiode der Liinge fa
unter der Voraussetzung, dass in einer vorangehenden Zeitperiode der
Liinge ¢, genau n, Freignisse eingetroffen sind, linear von n, abhingt
und zwar gilt:

q+ bmy
1+ bty

In diesem Sinne kann sie als erste Approximation fiir jede zu-
sammengesetzte Poisson-Verteilung gelten.

Die berechneten Regressionsgeraden fiir die BU und NBU sind
in den nachstehenden Figuren dargestellt.

E(Nqitainst) = b bg>0.

BU

s L L N A A A iy Ny
2 4 6 8

Ii(Ngsta/nyst,) = 0,24 + 0,30m

E(N 5t mgsty) = 0,38 - 0,41 19

A I A L

> Ng




NBU
1 /
S— ) - E(Nytangty) = 0,34 +0,14n,
2 4 6
! /
AP B(N sty ngly) = 0,450,187,
2 4

Die im ersten Teil ecingefithrte Schar von zusammengesetzten
Poisson-Verteilungen, die wir zur Darstellung der empirischen Vertei-
lungen verwenden, hat die Wahrscheinlichkeitsfunlktion (vgl. T (4.14))

q o

POste) = ¢ * o ("”(&-EH‘)“—L),

1 o1\ ¥
Cp \" 1 & ag [ o
Flite) = Bitsel (‘;;a) al 24 (b (‘orrr BE) ) ’

mit dem Scharparameter 0 <o << o0 und b,q > 0.

(10.1)

Alle Verteilungen der Schar haben gleichen Mittelwert und gleiche
Streuung wie die in ihr enthaltene negative Binomialverteilung (& = 1).
Fiir jedes feste ¢ nehmen die Wahrscheinlichkeiten der Nullklasse mit

Wachgendem « monoton zu
P(0st,00) < P(05¢,05) fiir o <og.

Die untere Grenze wird durch die Nullklasse der Poisson-Verteilung
P(0;1,0) gebildet.

Zur praktischen Berechnung der theoretischen Wahrscheinlich-
keiten beniitzen wir die Rekursionsformel I (4.10), welche mit unseren
Parametern die Grestalt hat:

k
Pl 41 — & 1 V& etk (_.__J?I?E_EAH) Pln—k:
13y = A ( ._ﬁ.,) 3 e (T o) PO

o=
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Die Abschiitzung der Parameter b und ¢ geschieht mit Hilfe von
empirischem Mittelwert und empirischer Streuung, withrend der Wert
von « aus der beobachteten Nullklagse ermittelt wird. Sei:

n: Anzahl Unfalle,
N: Anzahl Personen des Bestandes,
N,: Anzahl Personen mit n Unféllen.

Aus den Beziehungen I (4.15):

und der I'ormel (10.1) ergeben sich die Abschétzungen:

L &

e SN,

q ] N Z‘n n
2 T2

P R G B
n T

N2 ;

e‘%‘ ar e ™) ~ Yo
—_— N ’

o wird deshalb aus der transzendenten Gleichung

T % (4 « \7 1 log N, —log N = 0
el e 0 — i
b a—1 o - bt & o108

bestimmt. Wir erhalten (wenn wir tiir die BU p anstatt ¢ und a anstatt b
verwenden) die folgenden numerischen Werte:

BU: pt = 0,88127, at = 1,10545, o, = 0,76603,
NBU: gt = 0,93395, bt = 0,37313, ay, = 5,72312.
Die Tabelle 9 zeigt die empirischen Verteilungen, die theoretischen

Hiaufigkeitsverteilungen und die entsprechenden negativen Binomial-
verteilungen (o = 1).
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n: Anzahl BU in den Jahren 1944-1952
Hiufigkeiten

n beobachtet o = 0,76603 o =1
0 652 652,00 660,63
1 288 289,86 276,52
2 127 130,01 130,46
3 76 61,50 63,87
4 22 30,29 31,83
it 14 15,35 16,04
6 5 7,95 8,13
7 7 4,18 4,15
8 0 ]

g 5 4,86 4,37
usw. 0 f

I

@ =0,76603  x} =906 f
f

5 Py > x) > 10,19
=1 x5 = 9,54 6

Py > 1) > 14,8%

Tabelle 94

Tabelle 9b

n: Anzahl NBU in den Jahren 1944-1952

Hiutigkeiten
n beobachtet o = 5,72312 a=1
0 547 547,00 540,80
1 359 355,90 367,83
2 169 178,11 175,07
3 85 74,22 71,41
4 20 27,40 26,70
5 12 9,25 9,44
6 3
7 1 4,12 4,75
usw.

o = 572312 =48 f=3 P2 > x3) > 172%
f=4 PQ*>xh)>231%

I

=1 2} = 557
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Die Ubereinstimmung darf in beiden Ifillen als befriedigend be-
zeichnet werden; wir bemerken speziell, dass schon die negative Bino-
mialverteilung gentigend gute Resultate liefert.

Um die Hypothese der individuell verschiedenen Suszeptibilititen
sinnvoll zu verwenden, bilden wir nach einer gewissen Beobachtungs-
zeit (1944-1948) auf Grund der eingetroffenen Unfille subjektive (re-
fahrenklassen und berechnen in ihnen die a posteriori Wahrscheinlich-
keiten der Anzahl Schadentille fiir die angrenzende Periode (1949—1952)-
Sie sind gegeben durch die direkten Ubergangswahrscheinlichkeiten
P(n';t' In;t). Diese berechnen sich aus der Beziehung

P(n';t' mst) P(nst) = P(nstin';t") P(n'5t').

Da die inversen Ubergangswahrscheinlichkeiten binomial sind, erhalten
wir daraus nach (8.1):

- » " £A\" ¢ n'-n P('n’;t')
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Tabelle 104,

Vergleich der theoretischen Hiufigkeiten N, P(n';t'In;t) mit den

®mpirischen fiir die BU.
Hiufigkeiten
2

n n'-n N, beobachtet theoretisch o
0 0 811 652 649,93
1 127 128,42
2 24 25,60
3 7 5ag 092
4 1 )
> 5 0 ]1,a4
1 0 244 161 154,85
1 52 61,74
2 99 19,47
3 5 5,68 2,74
4 3
- : } 9,91
2 0 96 51 46,52
1 892 29,34
0 8 12,84
3 3 180 7
4 2
- ; } 2,48
3 0 26 14 9,48
1 T 8,30
2 ) 4,67 ,
3 1 015 b70
4 2
" . }1,40
4 0 11 1 3,00
1 5 3,38
D 9 2,38 553
3 3 1,27
=4 0 1,02

f=17 P(y? > x3) > 42,19

=2

e
I
k.

;\'l
bo
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Tabelle 10b
Vergleich der theoretischen Hiufigkeiten N, P(n';¢'/n;t) mit den
empirischen fiir die NBU.

Haufigkeiten
n n'-n N,  beobachtet theoretisch xi
0 0 756 547 538,13
1 144 155,62
2 34 34,61 5,65
B 11 6,41
=4 0 1,23
1 0 325 215 202,93
1 82 90,28
2 23 25,07
3 2 5,49 6,41
4 2 l
5 1 1,23
= o
2 0 107 53 59,60
1 40 33,11
2 11 10,86 2,21
3 3 Q
~ 4 0 ] 3,43
3 0 20 11 10,05
; ‘? 6,59 0,18
., ’ } 3,56
4 0 6 il 2,73
1 l; 2,05 9,99
=3 0 ] hide

y2 = 17,3 f=12 P(y? > ) > 13,29,

Aus der Tabelle 5 geht hervor, dass zwischen der Anzahl BU und
der Anzahl NBU einer Person ein enger Zusammenhang bestehen muss.
Dies ist in Ubereinstimmung mit dem Modell verschiedener indivi-
dueller Suszeptibilititen, die ja wesentlich auf der Verschiedenheit der
Anfiilligkeit einer Person gegeniiber Untfillen beruhen. I muss deshalb
moglich sein, die gemeinsame Verteilung der BU und NBU durch eine
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Zweidimensionale Korrelationsfunlkstion darzustellen. Als Beobachtungs-
beriode wiihlen wir die Jahre 1944-1952. Die Randverteilungen sind
deshalb die in Tabelle 9a und 9b wiedergegebenen Verteilungen, welche
in geniigend guter Weise durch negative Binomialverteilungen dar-
8ostellt werden konnen. Wir versuchen deshalb, aut die gemeinsame
Verteihmg der BU und NBU die im ersten Teil abgeleitete negativ-
binomialg Korrelationsfunktion I (3.13) anzuwenden. Wir schreiben
Sie in dor Grestalt T (3.17) und setzen noch s = t.

POOY — (1 Yoo L Vel 1 _>
g <1+ at) (1+ bt) ((H-ac) (1+ bt)— Patbt

t ey b
g I h q Cpn MM
P(m’mt) = L\ (m;t) Py(n;t) > ---—-(Gj-“ ) M, ('m; ap, at) M, (n; )’ bt) ( L )
h=0

I'(c) h! co’ o?

Thre Randverteilungen sind:

TR

5w = () (1) r(%m
a

) 1\ B r(y +n)

Bt = () (i) r(f)e

Fir die Parameter at, bt, qt, pt verwenden wir die Werte von
Tabelle 9, wihrend Opn @bgeschiitzt wird durch

Gy ;7 S SV maN,, = 0,28480

m n
N mn * Anzahl Personen mit m BU und » NBU in der Beobachtungs-
periode.
Der p arameter ¢ wird eingeschriinkt durch die Bedingungen:

1. ¢ < mn (p-, q") -— 0,79721,
o a b

9 f = mm ¢ > 0,69046.
catbt
Wir withlen ¢ E
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Tabelle 11

Vergleich der theoretischen Hiufigkeiben NP(m,n;t) mit den em-
fir die BU (m) und die NBU (n).

pirischen N

N

N

10

mn

0

343
381,99
(0,37)

192
121,08
(0,01)

46
49,81
(0,29)

24
91,95
(0,36)

)
9,26
(5,69)

5
4,08
(0,21)

1
1,81
(0,36)

2

1

181
198,39
(1,60)

94
87,34
(0,51)

45
42,02
(0,21)

24
20,52
(0,59)

10
10,04

1
4,89
(3,09)

2
2,38
(0,06)

1
1,16
(0,28)

2

83
84,01
(0,01)

41
42,03
(0,03)
16
92,71
(1,98)
14

12,32
(0,23)

6,63
(0,02)

3,53
(0,61)

1,86
(0,40)

3

31
30,88

97
16,88
(6,07)

10
9,98

9
5,87
(1,67)

1
3,49
(1,71)

)
1,97

1
1,12
(0,13)

2

4

9
10,48
(0,21)

6,12
(1,59)
3

8,87
(0,20)

9,45
(0,12)

1,52
(0,15)

L1

3,39
(0,11)

2,08
(0,56)

1,39
(9,37)

(Der beobachtete Wert steht oben, der theoretische, sofern er
grosser als 1 ist, darunter. In Klammern ist der zugehérige Wert von
¥* beigefiigt.)



— 569 —

Fir den 42 Test verwenden wir nur die Beobachtungen, bei denen
der theoretische Wert grosser alg 1 igt. Auf eine Gruppierung der rest-
lichen Beobachtungen verzichten wir, da diese willkiirlich geschehen
Miigste,

s ist:

Wir treten noch kurz auf die Interpretation der hier angewendeten
Vertellung ein. Die Funktion

P00, S '1' _@y
) :(‘1‘_‘@&;) (1—%;' (1 —1as) (1—1dbt) - fasht

8t dio charakteristische Funltion der Strulburfunktion U(k,4). Aus
threr Gegtalt geht hervor, dass man sich die Variablen K und 4 als
Summen zu denken hat:

K = K;+ Ky,

A = /1; -+ AH;

W denen die Summanden folgende charalkteristische Funktionen haben :

1 2
1—n1as ,

PRV
I'(1;vjbt ;

1 )
(Ki» Ay) ( (1—1as) (1 —1bt) + Basbt )’

B besteht also nur zwischen Ky und Ay stochastische Abhiingigkeit,
Wir kénnen uns die Suszeptibilititen einer Person gegeniiber den BU (k)
und den NBU (1) zusammengesetzt denken aus subjektiver Unfall-
neigung und objektivem Unfallrisiko: Ky und Ay bezichen sich auf das
subjektive, X und A aut das objektive Risiko fiir BU bzw. NBU. Die
beiden letsteren Girossen miissen deshalb unabhiingig sein voneinander.
Die gemeinsame Verteilung von BU und NBU liefert eine weitere
Bestiitigung fiir das Modell der individuell verschiedenen Unfall-
Suszeptibilititen.




— B0 —
11. Die Verteilung der Schadenhéhen

Wir haben bereits darauf hingewiesen, dass der Umfang des Be-
standes keine eingehende Analyse des Problems der Schadenhéhen ge-
stattet. Wir beschrinkten uns deshalb darauf, die Schadendauer allein
zu betrachten. Dabei machte sich der Umstand stérend bemerkbar,
dass die Zahlung des Krankengeldes erst am dritten Tag nach dem Un-

fall beginnt. Dadurch wird in der Statistik die Anzahl Unfille der
Schtbdondd,uor 0 unverhiiltnismissig gross, da darin alle Unfille der
effektiven Schadendauer 0, 1 und 2 Tage enthalten sind.

In der Tabelle 12 ist die Verteilung der Schadendauer pro Unfall
fiir die BU der Jahre 1944-1952 mit der l'requenzfunktion:

1 ==
§(x) = —¢
d
verglichen, wobei d die durchschnittliche Schadendauer pro Unfall ist.
Mit dieser [funktion und der Darstellung der Anzahl BU durch eine
negative Binomialverteilung erhalten wir fiir die Verteilung der sum-
maren Schadendauer fiir eine Person die I'requenzfunktion (val. T(5.2)):

qt 1 N\ q bt w
Blt) = | VP ) B 1, B — s
a3t 1+bt( —|—bt> @) 1(b - L+t d

- I
o) = o S e
(e} =4 'n|— )[(,8—|—n
18t die konfluente hypergeometrische Reihe. Sie wird fiir kleine £
direkt, fiir grosse aus einer asymptotischen intwicklung berechnet.

Tabelle 13 zeigt die theoretische und empirische Verteilung der
Schadendauer pro Person.

Die Ubereinstimmung ist in beiden Tabellen aus den eingangs er-
withnten Gritnden fiir kleine Werte von x unbefriedigend.

Die Funktion 2(x;t) ist allerdings fiir versicherungsmathematische
Uberlegungen weniger wichtig als die Verteilung der gesamten Scha-
denhohe fiir den ganzen Bestand.

Wir betrachten zuniichst den allgemeinen all, wo P(n;t) die
Wahrscheinlichkeitsfunktion der Schadentille und S(z) die Verteilungs-
funktion der Schadenhéhe ist.
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Tabelle 12

80

70

60

50 |

40 L

30 |

20 L

10 |

A

. % 30 40 50 60

Dauer in Ta.gen .

Tabelle 13

iO éO 30 40 50 GO 70

Dauer in Tagen —»



— 572 —

Dann wird die Verteilungsfunktion der summaren Schadenhéhe fir
eine Person:

co

H(x;t) = D Spy(x) Pnst).

n=0

Tiir zwei Personen ergibt sich durch Addition von zwel unabhingigen
Variablen:

Hy(wst) = J'H(m—y;z) dH (y3t)
0
_ j N Sy (@— 1) Pst) S dSe(y) Plonst
g n=0 m=0
= 35, [ Sua—1) aSius) Plonst) Pl
n=0m=0 P
= N EDS(,RM)(SC) P(m;t) P(nst)
n=() m=
= '7‘0 k"‘ Spy(@) Pk—mnst) P(nst)
= k;o S () 7% P(k—mn;t) P(n;t) = z;os(k)(m) Po(fst) »

da P(—ist) =0 fiir 5 =1, 2, ..

Fiir einen Bestand von N Personen erhilt man daher

Wir nennen H y,(z3t) die Verteilungsfunktion des Gesamtschadens fir
den Bestand.

Zur numerischen Berechnung der Verteilung des Gesamtschadens
verwenden wir die Reihe von Cramér-lidgeworth. Wir gehen aus von
N Variablen X;, (i =1,2, ..., N), welche alle die Verteilungsfunktion
H(z;t), den Mittelwert z, und die Streuung of, besitzen. Unter der
Voraussetzung, dass S(x) eine absolut stetige Komponente enthiil, d. b

cQ

f S'(z) da >0,

0
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gt fiir die Verteilungsfunktion (/(y;t, N) der Variablen

N _
2_‘, (X —2,)

: =1
/A S
: Gy, [/N
i aSymptotische Fntwicklung:
v
N\Y o plr 2,
-2 A ¢, @ (%) q
G(y;t’N) = o + %(*I)V nN”/_?f —— (Nfc/‘a:l-’ ’

D(y) bezeichnet die Verteilungsfunktion der standardisierten Normal-

‘ter . ~ % . 19 .
Veltelhmg, ¢;, sind Polynome in den Grossen /1,(&)/22/ (t) wobei A,(t)
die y-tq Semiinvariante von H(z;t) ist.

Speziell gilt im alle f — 8:

s

Aty (1—y?) et 1
Gyt Ny — gy 4 L Al (=)™ -F—O( — . (11,1)
& 8l 2m AP [N /N

Stellt P(n;t) die Wahrscheinlichkeitsfunktion einer zusammen-
8esetaten Poisson-Verteilung dar, so ist dadurch, wie wir im ersten Teil
gesehen haben, die Wahrscheinlichkeit fiir » Schadenfille in einem be-
lichigen Intervall der Liinge t gegeben. Man darf deshalb fiir die Be-
rﬂchnung der Verteilungsfunktion des Gesamtschadens die Kontrakte
““&bhéingig von ihrer Laufzeit und ihrer Vorgeschichte zusammen-
faggen .

Die zweite und dritte Semiinvariante einer Verteilung sind gleich
dem zwoiten hyyy. dritten Moment beziiglich dem Nullpunkt. Also ist
’12(?5) durch 1 (5.4a) und A4(t) durch I (5.4b) gegeben. Um sie durch die
Momente von S(x) und P(ngt):

ok 3Q
v, = | ¥ dS(x)
/
Nwy(t) = D) nn—1) ... (n—k+ 1) P(n;t)
n=rk

‘rLUSZlIdI‘ﬁGkDI], beniitzen wir die Momentenrelation I (2.2), die im
‘\‘ 1 . .
L‘mdlmenmonalm wie folgt lautet:
k
77(1;)('5) = oyt
39



Damit erhalten wir:

A5(t) = ?’? (77(2)(‘) 77?1)(5)) vy 77(1)(5) )
B 3 ¢ I I n [ p t !
A3(t) = v (y(8) — By (O muy (&) -+ 2y(6) + Bvwy (ny(t) — W(Zx)(t)) e 71(1)()

Setzen wir diese Werte in (11.1) ein, so erhalten wir eme zL_pproximative
Darstellung der Verteillungsfunlktion des Gresamtschadens (;msgedl"t'wkt
in der standardisierten Variablen) des Bestandes in einem Zeitintorvall
der Liinge ¢, die auf Grund der ersten drei Momente der Verteilungs:
funktion der Schadenhshe: S(z) und der Wahrscheinlichkeitsfunkbion
der Schadentiille in der Zeit ¢: P(n;t) berechnet werden kann.
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