Zeitschrift: Mitteilungen / Vereinigung Schweizerischer Versicherungsmathematiker

= Bulletin / Association des Actuaires Suisses = Bulletin / Association of

Swiss Actuaries

Herausgeber: Vereinigung Schweizerischer Versicherungsmathematiker

Band: 55 (1955)

Artikel: Die maschinelle Berechnung der Erneuerungsfunktion

Autor: Spring, O.W.

DOI: https://doi.org/10.5169/seals-551556

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die maschinelle Berechnung der Erneuerungsfunktion

Von Osc. W. Spring, Zürich

In seiner Arbeit über das Erneuerungsproblem und dessen Erweiterung auf stochastische Prozesse hat $Hans\ Ammeter\ ^1)$ darauf hingewiesen, dass die Erneuerungsfunktion $m_1(t)$ als Mittelwert der Erneuerungszahl r berechnet werden kann nach der Formel

$$m_1(t) = \sum_{r=0}^{\infty} r f(r,t).$$
 (1)

Die in dieser Formel auftretenden Werte der Frequenzfunktion f(r,t) der Erneuerungszahl r im Zeitpunkt t ergeben sich aus dem Faltungsintegral

 $f(r,t) = \int_{0}^{t} f(r-1,t-\tau) \, q(\tau) \, d\tau. \tag{2}$

Als Ausgangswerte für die numerische Auswertung dieses Faltungsintegrals dienten bei dem von Ammeter gewählten Beispiel die folgenden zwei Zahlenreihen:

t	q(t)	l(t) = f(0,t)	t	q(t)	l(t) = f(0,t)
0	0,000 000	1,000 000	9	0,101 013	0,700244
1	$0,006\ 245$	0,993755	10	$0,\!140633$	0,559 611
2	$0,007\ 548$	$0,986\ 207$	11	$0,\!174937$	0,384 674
3 4	0,009 771	$0,976\ 436$	12	$0,\!179546$	0,205 128
5	0,013 449	$0,962\ 987$	13	0,133 816	0,071 312
6	0,019 471	0,943 516	14	$0,059\ 255$	0,012 057
7	0,029 282	0,914 234	$\frac{15}{16}$	0,011 452	0,000 605
8	0,044772 $0,068205$	$0,869\ 462$ $0,801\ 257$	16	0,000 605	0,000 000

^{1) «}Mitteilungen», 55. Band, Heft 2, Seite 296 ff.

Es gelten die Festsetzungen

$$f(0,t) = l(t) = \sum_{\tau=t+1}^{16} q(\tau)$$
 für $t < 16$.

Für die praktische Berechnung wird die Formel (2) folgendermassen umgestellt

 $f(r,t) = \sum_{\tau=a}^{b} f(r-1, t-\tau) q(\tau)$ (3)

mit den folgenden Summationsgrenzen, die sich auf Grund der vorliegenden Ausgangswertereihen ergeben:

Allgemein ist a = 1, b = 16.

Für die Randgebiete aber gilt

$$a = t - 16r + 1,$$

 $b = t - r + 1.$

Die Berechnungen werden mit Hilfe von Lochkarten durchgeführt. Dabei werden drei Kartenarten verwendet:

Kartenart 1: Faktorenkarten mit den Werten $q(\tau)$,

Kartenart 2: Funktionenkarten mit den Werten f(r,t),

Kartenart 3: Arbeitskarten mit den Zwischenwerten $f(r-1,t-\tau)$.

Für diese drei Kartenarten wird folgende Einteilung der Kolonnen gewählt (siehe Tabelle 1).

Aus den Faktorenkarten, die für jede Faltung wieder verwendet werden können, und aus den Funktionenkarten der (r-1)-ten Faltung werden maschinell die Arbeitskarten für die r-te Faltung erstellt. Aus diesen Arbeitskarten entstehen alsdann bei der weiteren Verarbeitung die Funktionenkarten der r-ten Faltung. Im einzelnen erfolgt der Arbeitsablauf in folgenden Schritten:

- 1. Die Faktorenkarten für die $q(\tau)$ werden so oft mal reproduziert, als Funktionswerte f(r-1,t) für eine Faltung zur Verfügung stehen. Sie werden in jedem Paket nach steigendem τ geordnet.
- 2. Vor jedes Paket wird eine Funktionenkarte der (r-1)-ten Faltung als Meisterkarte gestellt. Für die erste Faltung (r=1) sieht

Faktoren-	Karten-	art				τ														q(τ)														
Karte		Ş	9	9	9	9 9	9	9	9	9 9	9	9	9	9	9 9	9 9	9	9	9	9	9	9 9	9 9	9 9	9	9 9	9 9	9 9	9 9	9 9	9 9	9	9	9	9
		1	2	3	4	5 6	7	8	9 1	0	12	2	14		16	1	8	20	0	22	2	24	26	28	3	30	3	32	34	3	36	38		40	
Funktionen-	Karten-	art		r				— 7					f	(r,	t —	τ)																			_
Karte		ç	9	9	9	9 9	9	9	9	9 9	9 9	9	9	9	9	9 9	9 9	9	9	9	9	9 9	9 9	9 9	9	9 9	9 9	9 9	9 9	9 9	9 9	9	9	9	9
		1	2	3	4	5 6	7	8	9	10	12	2	14		16	1	8	20	0	22	2	24	26	28	3	30	3	32	34		36	38		40	Ĭ
Arbeits-	Karten-	art		r		τ		<u>—</u> 1			t		t	f(r,	t —	·τ)			Þ	$q(\tau$	τ)														_
Karte		9	9	9	9	9 9	9	9	9	9 9	9 9	9	9	9	9	9 9	9	9	9	9	9	9 9	9 9	9	9	9 9	9 9	9 9	9 9	9 9	9 9	9	9	9	9
		1	2	3	4	5 6	7	8	9	10	12	2	14		16	1	8	20	0	22	2	24	26	28	3	30	3	32	34	3	36	38		40	

419

somit die Anordnung der Faktoren- und Funktionswerte wie folgt aus:

1. Paket
$$f(0,0)$$
 $q(0), q(1), q(2), \ldots, q(16)$
2. Paket $f(0,1)$ $q(0), q(1), q(2), \ldots, q(16)$
3. Paket $f(0,2)$ $q(0), q(1), q(2), \ldots, q(16)$
 $q(0), q(1), q(2), \ldots, q(16)$

- 3. Auf dem mit dem Elektronenrechner zusammengeschalteten Reproduzierlocher werden Arbeitskarten mit den Werten $f(r-1,t-\tau)$ aus den Funktionenkarten und $q(\tau)$ aus den Faktorenkarten, sowie den Argumenten $(t-\tau)$ und τ erstellt. Gleichzeitig werden die Argumente $(t-\tau)$ und τ addiert und in die Arbeitskarten das neue Argument t eingelocht.
- 4. Nach erfolgter Erstellung der Arbeitskarten werden die Funktionenkarten aus den Faktorenkarten entfernt und die Faktorenkarten für die spätere Wiederverwendung bereitgestellt.
- 5. Die Arbeitskarten werden nach steigenden Werten des neuen Argumentes t umsortiert.
- 6. Auf der mit dem Elektronenrechner 1) und einem Blocksummenlocher zusammengeschalteten Tabelliermaschine wird das Produkt

$$f(r-1,t-\tau) q(\tau)$$

niedergeschrieben und für alle Karten mit dem (im 3. Arbeitsschritt ermittelten) gleichen Argument t die Summe dieser Produkte gebildet, auf- oder abgerundet auf 6 Dezimalstellen. Diese Summe stellt den neuen Funktionswert

$$f(r,t) = \sum_{a}^{b} f(r-1,t-\tau) q(\tau)$$

dar. Jeder dieser neu erhaltenen Funktionswerte f(r,t) der r-ten Faltung wird in einer Summenkarte (mit dem Blocksummenlocher) festgehalten, die dann wieder als Funktionenkarte für die (r+1)-te Faltung Verwendung findet.

¹) Es handelt sich um den Elektronenrechner Gamma 3 der Compagnie des Machines Bull, Paris.

Diese Arbeitsschritte wiederholen sich für jede neue Faltung. Damit ist der Berechnungsablauf vollständig mechanisiert. Obschon es sich bei den einzelnen Schritten um die Durchführung elementarer Operationen handelt, ist das Durchrechnen einer Faltung eine umfangreiche Arbeit, die wegen der vielen Fehlerquellen am besten maschinell erfolgt.

Die ermittelten Funktionswerte f(r,t) sind in Tabelle 2 auszugsweise wiedergegeben.

Im vorliegenden Falle konnte noch eine einfache Kontrolle durchgeführt werden durch die Relation

$$\sum f(r,t) = 1.$$

In der Tat ergibt die Quersumme jeder Zeile in unserer Tabelle, abgesehen von Rundungsdifferenzen, den Wert 1.

Für die Erneuerungsfunktion $m_1(t)$ selbst ergeben sich schliesslich nach Formel (1) für $t = 0, 5, 10, \ldots$ die folgenden Werte

t	$m_1(t)$	t	$m_1(t)$
0	0	55	4,872749
5	0,057 113	60	5,364 878
10	0,451 134	65	5,837 043
15	1,095 570	70	$6,\!325858$
20	1,437 474	75	$6,\!802775$
25	2,048 358	80	7,286 981
30	2,432 218	85	7,767597
35	2,972 372	90	8,249 229
40	3,423 962	95	8,731 383
45	3,915 475	100	$9,\!212\ 296$
50	4,400 168		

Nachdem die Werte der Frequenzfunktion f(r,t) berechnet sind, liessen sich ausser der Erneuerungsfunktion $m_1(t)$ noch die höheren Momente der Erneuerungszahl r leicht errechnen.

t	f(0,t)	f(1,t)	f(2,t)	f(3,t)	f(4,t)	f(5,t)	f(6,t)	f(7,t)	f(8,t)	f(9,t)	f(10,t)	f(11,t)	f(12,t)	f(13,t)
	1 000000													
	1,000000				1									
5	943516	55856	624		0,000000									
10	559611	429778	10478											
15	605	905491	91664		1	0,000000	1							
20	0	583375	396254				0,000000							
25		72074			4439	101	2							
30		14				993		0,000000						
35		0	165280			6981	224		0,000000					
40			4107	606867	351773	35516	1685	51	1					
45			0	235029		130052	9601	402		0,000000				
5 0				23629		332984		2496		200	0,000000			
55				164	287311	565647	134064	12159	633	23	1			
60				0	54596	579508	316032	46318	3383	158	5	0,000000		
65					2104	326844	519476	136054	14575	908	39	1		
70					5	89322	555093	300776	50245	4311	238	9	0,000000	
75					0	8208	355013	482015	136673	16807	1221	61	2	
80						136	123709	530155	287007	53391	5251	335	15	0,000000
85						0	19027	373427	450700	136353	18838	1562	90	4
90						100	880	155765	506297	274516	55886	6183	448	23
95						-	7	33658	384289	423945	135381	20667	1923	125
100							0	2944	184365	484025	263126	57841	7090	575

422