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Some notes on Lidstone's and other approximations to

temporary life annuities when the force of mortality is

(J. + A') /^a; f

By BengJ yl/cer6erg,
Actuary, Life Assurance Company Skandia-Nordstjernan Ltd. Stockholm

Suppose that the force of mortality is (1 -+-&)/<*+<> then wo have
for an endowment assurance

After multiplying both sides with - we get
«

'(%' .ra)~»a''r ' o->iss>*
^ a: / B'a; -^a: «

'Oui after integrating from 0 to w
«

0

Hence
n

*
f a)/:('') «
'

/ï I '»+' 71
^a?n| I ^W] '

0

This formula turns out to bo the key formula, from which a

group of approximations can be deduced fairly easily.

ßi(&) ß
If we replace the expression 1 — ,F®[

' by
«Vi
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we obtain 1 1 fc à,,--, —a.n .m '

C| Cj C C|
1 + 7f fc

I

and for fc 1, Lidstone's formula

1 2 1

CiTj | ®/7|

/j(Ä) ^
Supposing ~ — we have, by (1)

Ci Cl
1 1 '• C| —C;

-ft I -
I ^xn| ^xn ^xn|

1 —& d
• -|- /b

^xnjCi (CC
and for /t 1

_ («^-) 2

d,

^(ft) ^
And finally if '"C is replaced by ?' wo obtain

nd) ' #>
xn| xn|

1 1
I

^ C|-Ci
Ci ft,',Ti «,Cmj "xn| ""xn| ^xn|

Hence
C| ~ (i + fe) a^ —

and
^axn I ^xn I I *

The formulas (2a), (3a) and (4a) may also be written

2
(2 a) ~ —— (the harmotiical mean),

+ _

draiTj ®n"|

(3 a) ^C«lC| (thß geometrical mean),

(4 a) âj,^j ~ " h ""
(the arithmetical mean).



(2 a)

(3 a)

(4 a)

Denoting now —"J. by i _|_ ^ (A>0) it is easily seen that by

1

®a»ij ~ g ^
I '

(1 + A) 2

1 —A
— à-,.

l-M
Since 1—A 1 1

1 + 2
~ ^

(1 + A)"
"" ^ 1 + 2/

i follows that the values for ä^-]by (2a), (3a) and (4a) are decreasing.

We represent those values on a line

exact exact
~

I
I

I
I

(4 a) (3 a) (2 a)

*®d shall prove that the exact value lies either between (3 a) and (2 a)
when » is chosen sufficiently large, to the right of (2a).

It is immediately seen that the following temporary life annuity

j + bni I
~~~ ®ascn | < I

®nce the exact value
"I ^w| '

From Schwarz' inequality
n n r n

/(/(<))*/(?(*))'• //(*)?(«)<&
0

^ follows when i
/(<) 7' e

*

and
2

fhat the exact value

<p(f) e

^»1= ü
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Turning now to the study of the formula ('2).

From the formula (I) it is seen that if

r/W ry -,
/}(<•) " ,5
"xn[ "n|

during the whole interval ((),'«) then

1 1 + fe fe re\
> (f)

à»' 4„| «„I

Hence 12 1

> -
®ranj ®)-H] ®«"|

and the exact value lies between (8a) and (2a).

Hirst we shall prove that the inequality (5) holds if /q.^ «„'-<1

never increases during the whole interval ((),»).

Thereafter we shall-under the assumption that /i^+i « + ß

-investigate if possible some simple criterions can bo found to decide

when d--^ never increases.

The premium to be paid by a constant yearly amount during the

whole period of insurance for the annuity d-j— d^ we denote by

<V|~~"xnl
*W| -

^xn I

From the differential equation

+ ,"x+i) (K»"i + ^»ti~ ,"x+( %n

it follows that < ^<i„| when never increases. For otherwise

(i t|) > 0 end > 0 when f > 0 contrary the fact that 0

when t m

/W« never increasing in the interval ((),•«) we thus have

^s+f fPTl < Äe+< %T|

or 11- - < c ; •



Now d / ä-
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» 'i \ __ -n

^ V 'Vh ïfï
l l

- ,"j: •

<W<tFF] n—T)

SO flint ®W-(
I

""«H ~— never increases.
®«+< n=T|

Hence ,j"«I ^
x/i I n-< I

or
a®+<»=/] ^ "«EQ

'W| â„-|

The inequality (5) thus holds for fe 0 and since (1 + &)/<*+< ^PT]
Dover increases it holds generally when 7c =£ 0.

We shall now enter upon the discussion about some sufficient
conditions to decide when /q..^ ä,^ never increases in the whole inter-
^1 (0,k) on the assumption that — a -j-

It is convenient to introduce the notation

&r-H n-Tl i"®+i a,pr|
from d

^ !?*+< «vil TVH [ya^-e -ocy

it is immediately seen that

^ t>*-M iPTl ^ 0

Di the interval 0 rd / < » and irrespective of a: certainly if

When 1 y + <5

n < — log~ <5 y

*o thus find that 0®+« n—ci never increases.

When 1 y + <5

rt > log
ö y

it is seen that d

29
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wherever
< <*"/«„ r

which can also bo written (using the Makeham expression for /^+i)

® + w Sa log
r

a 4 e,(y-i5)(n-()

ß y—(y + 4)e
(6)

Now, in practice, we always have y —4 >0. Thus the right-hand
side of (6) considered as a function of (»—i), tends to + oo when («— 0

1 y ~h 4
tends to -log and when (n — i) tends to -[-oo.

4 y

Its derivative is found to be

y— 4

«,>>(1-0. y± 4

y — 4

e<>(«-<) y-(-4

and it is thus seen that the function never increases when (n — 0

increases from — log y+ 4

y

1 y+ 4
to a value — log and never decre-

y — 4

1 y + 4
asing when (w — /) > — log

4 y — 4

Consequently, the function

1

y

has a minimum when

log
« 4

|8 y-(y + 4)^<"-<>

w — £

1 y + 4
- log

4 " y — 4

and inserting tin's value, we find the minimum to be

1

log
y

a/y + 4\Y
y— 4 /



The results reached can be summarized as follows, never
'^creases in the interval (0,w) when

1 y -f <5

log

Respective of a; or when

\7 —^

Ren if the condition for w is not satisfied.

x-|-n^ log
y

For instance, it can be mentioned that with the system of assump-
^oos at present adopted by the Swedish life insurance companies, i. e.
& late of interest of 2,25% and the Swedish mortality table D 537 with
® loading of 2,8 %o on the interest and mortality, we have

w < 9,4,

a: + « < 64,0.

Finally we shall prove that if w is chosen sufficiently large, the
®Xact value g%,,> the value by Lidstone's formula (2 a).

From (1) it follows that

1 1 1

:— <~ + -

or

and for « -|-

1

<
1

1_

1

oo 1 £

<

Ac+ ;

D, iUJ+(

1 — d m

d.

D.

.D,

From Lidstone's formula wo obtain when m — +
1 2

hence the desired result.
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