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Das Erneuerungsproblem und seine Erweiterung
auf s tochastische Prozesse

Yon Hans Ammeter, Zürich

Unter den Problemen, um die sich die schweizerischen Versiehe-
ungsmathematiker besonders bemüht haben, nimmt das Erneuerungs-

Problem eine hervorragende Stellung ein. Dafür zeugt schon der Name
Christian Mosers, der das grundlegende mathematische Modell ge-
schaffen hat, und auch die stattliche Zahl der in den «Mitteilungen»
Veröffentlichten Beiträge über das Erneuerungsproblem, die über-
biegend von schweizerischen Autoren stammen (siehe Literaturver-
Beichnis). Im folgenden wird zunächst ein Überblick über die bisherigen
Bemühungen um diesen Problemkreis gegeben und anschliessend ver-
®ncht, einige Erweiterungen zu entwickeln. Dabei wird von der bei
Problemen der angewandten Mathematik auftretenden Dreiteilung der
Aufgabe,

Konstruktion eines zweckmässigen Modells und mathematische Formu-
herung des Problems,

Erforschung des Modells und mathematische Darstellung der Lösung,
Numerische Berechnung,

ausgegangen.

I. Das Moscrscke Erneuerungsproblcm

1. Die Entwicklung des Modells

Eiir das Erneuerungsproblem ist das grundlegende mathematische
Modell von Christian Moser in seinem, bei Anlass des zwanzigjährigen
Jubiläums unserer Vereinigung gehaltenen Vortrag entwickelt worden,
Uieser Vortrag wurde im Band 21 der «Mitteilungen» veröffent-
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licht [33] i) und zählt nicht nur wegen seines Gedankengehaltes, son-

dorn auch wegen seiner klaren und überaus anschaulichen Form zu den

klassischen Arbeiten der aktuarwissenschaftlichen Literatur. Weiteren
Kreisen hat Moser seine Ideen in der dem IX. Internationalen Kon-

gross der Versicherungsmathematiker in Stockholm unterbreiteten
Arbeit «Integralgleichungen und sich erneuernde Gesamtheiten» zu-

gänglich gemacht [341.

Mit diesen beiden Arbeiten beginnt die eigentliche Geschichte des

Erneuerungsproblems. Selbstverständlich sind schon vorher einige

Aktuare im Kähmen von besonderen Untersuchungen auf Fragen ge-

stossen, welche in engem Zusammenhang mit der von Moser fonnu-
Herten Problemstellung stehen, und haben unter bestimmten Voraus-

Setzungen Lösungen gefunden. Derartige Arbeiten sind unter anderem

von Kinkelin [25], Schaertlin [48], Schenker [49], Herbelot [23], Kisser

[45] und Alder [1] bekannt. Auch Moser selbst hat besondere Fragen
aus der Erneuerungstheorie schon viele Jahre vor seinem Jubiläums-

Vortrag in seinen Vorlesungen behandelt. Die grundlegende Bedeutung
der erwähnten Moserschon Arbeiten wird dadurch aber kaum berührt,
sind doch alle späteren Arbeiten vom Moserschen Modell und von den

von ihm geschaffenen Begriffen ausgegangen.

Am Beispiel einer Sterbekasse lässt sich das Moserscho Modell wie

folgt schildern:

Gegeben ist eine Sterbekasse, welcher anfänglich 1/(0) Mitglieder
angehören, die durchwegs das niedrigste Eintrittsalter s;,, aufweisen
und genau nach Massgabe eines bestimmten Sterbegesetzes ausscheiden.
Jedes ausscheidende Mitglied wird sofort ersetzt durch ein neues Mit-
glied mit dem Eintrittsalter j;„, das seinerseits ebenfalls nach dem für
den Eintrittsbestand geltenden Sterbegesetz ausscheidet. Anhand
dieses Modelles formulierte Moser «lie nach ihm benannte Integral-
gleichung für die Erneuerungsdichte, auf die wir im nächsten Abschnitt
zurückkommen werden.

Dieses Modell wurde schon sehr bald durch Wyss [58] und Zwinggi
[60] und etwas später durch Féraud [1.3] und Eichtor [44] auf Gesamt-
hei ton mit zeitlich veränderlichem Umfang erweitert. Ferner hat bereits
Moser eine Integralbeziehung abgeleitet, nach der an die Bestandes-

*) Zahlen in [] beziehen sich auf das Literaturverzeichnis.
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^Wicklung geknüpfte Vorgänge - zum Beispiel die Bildung eines
eckungskapitals - mit Hilfe der vorher berechneten Erneuerungs-

dichte von der geschlossenen auf die offene Gesamtheit übertragen
werden können. Später haben indessen Maret [31], [321 und Tarjan [55 ]

gezeigt, dass diese Übertragung ohne vorherige Berechnung der Er-
neuerungsdichte direkt aus einer verallgemeinerten Integralgleichung
^folgen kann.

Das Mosersche Modell wurde in der Folge von Richter [44],
eller [12 ], Doob [9] und weiteren Autoren für stochastische Vorgänge

Verallgemeinert, bei denen das Ausscheiden der Elemente nicht mehr
streng gesetzmässig, sondern unregelmässig und zufallsartig erfolgt.

Von Bartlett, Harris [22] und Kendall wurde das Mosersche Modell
schliesslich noch in dem Sinne erweitert, dass bei jedem Austritt nicht
ftur ein neues Element, sondern mehrere nachrücken. Das Erneu-
erungsproblem geht dann in das Verzweigungsproblem über, das bei
biologischen und atomphysikalischen Untersuchungen, insbesondere
bei der sogenannten Kettenreaktion, eine Rolle spielt.

2. Die Mosersche Integralgleichung

Für tlie Behandlung des Erneuerungsproblems, insbesondere im
Hinblick auf die spätere Erweiterung auf stochastische Prozesse, er-
Weist es sich als zweckmässig - wenigstens teilweise - eine vom Üb-
beben abweichende Bezeichnung einzuführen. Für die Zeitvariable wird
stets { geschrieben. Dies führt dazu, auch das Alter in der Absterbe-
Ordnung mit / und nicht wie üblich mit a: zu bezeichnen. Für die Über-
Hbensordnung schreiben wir /(() und setzen stets voraus, dass /(()) 1

ist. Die Gesamtheit der im Zeitraum (0,1) Verstorbenen wird mit

Q(<) 1-1(0.
die Ableitung dieser Gesamtheit nach <, die sogenannte Sterbedichte,
mit

5(0 Q (0 — ^ (0

bezeichnet. Bei kontinuierlicher Betrachtung bedeutet r/(Q rôt die Wahr-
scheinlichkeit für ein Element, im Alters-Intervall (1, -f dt) auszu-
scheiden. Bei diskontinuierlicher Betrachtung entspricht g(Z) der An-
fc&hl der Gestorbenen iL,,. Hier konnte die übliche Bezeichnung mit
Rücksicht auf die Verwendung von d als Differentialsymbol nicht
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benützt werden. Für die Sterbeintensität gilt schliesslich die bekannte

Beziehung _ ^ ^^ ~ '(') ~
/(O

'

Da die Elemente der Gesamtheit hl nicht nur durch Tod, sondern auch

durch andere Ursachen abgehen können, werden im folgenden die

Funktionen /,«(<), c/(i) und Q(Z) allgemeiner mit Ausscheideintensität,
Ausscheidedichte und Ausscheideordnung benannt. Ferner wird /(i) als

Verbleibsordnung bezeichnet.

Unter Benützung dieser Begriffe und Bezeichnungen lässt sich der

von Moser behandelte Fall folgendermassen entwickeln:

Gegeben ist ein Anfangsbestand von ff(0) Elementen, welche alle

das niedrigste Eintrittsalter Z 0 aufweisen. Für den geschlossenen
Bestand ergibt sich nach Z Jahren ein Restbestand von

Elementen. *(0 *«>) KO

Geht man zum offenen Bestand über, so muss als neuer Begriff
die Erneuerungsdichte m'(Z) eingeführt werden: m'(Z)dZ bedeutet die

Wahrscheinlichkeit für ein Element, im offenen Bestand während des

Zeitintorvalles (Z, Z-f-dZ) auszuscheiden und erneuert zu werden. Aus
der Erneuerungsdichte, welche oft auch als Erneuerungsintensität be-

zeichnet wird, ergibt sich durch Integration die Erneuerungsfunktion
*

m(Z) J to'(t) dr
0

welche die Gesamtheit aller im Zeitraum (0,Z) aufgetretenen Erneue-

rungsfälle - im folgenden kurz akkumulierte Erneuerungszahl genannt -
als Funktion der Zeit Z angibt.

Für die Erneuerungsdichte m'(Z) hat Moser unter der Annahme
einer stets gleichbleibenden Bestandeszahl die ohne weiteres einleuch-
tende Integralgleichung

^

H H KO + —T)Kt)dT (la)
0

aufgestellt, welche nach Division mit der festen Bestandeszahl 1/ in die

einfachere Form ;

1 Z(Z) + fm'(Z— t)/(t)cZ(t) (Ib)
übergeht. "
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folgenden wird immer von der auf ein Element reduzierten Bestan-
deszahl ausgegangen, welche der Integralgleichung (Ib) entspricht.

Schon Moser hat die Integralgleichung durch Differenzieren in die
Form

/

m'(f) g(/) -f | m'(f—- t) ^(t) dr (Ic)
Ô

übergeführt, aus der durch Integration die nachstehende Integral-
gleichung für die Erneuerungsfunktion

*

»i(t) Q(£) + fm(<— r)g(T)dr (Id)
hervorgeht. "

Die Integralgleichungen (I) beziehen sich auf den Spezialfall, bei
dem die Anfangsgeneration aus nur nulljährigen Elementen besteht.
Der allgemeinere Fall, bei dem die Anfangsgeneration nicht nur aus
Volljährigen Elementen besteht, oder noch allgemeiner einer anderen
Ausscheideordnung folgt als die Neueintritte, lässt sich ebenfalls auf
den Moserschen Spezialfall zurückführen.

Moser ging von der kontinuierlichen Methode aus. Wyss [58], [59]
bat schon 1929 die wichtigsten Formeln auf die diskontinuierliche
Methode übertragen. Weitere Untersuchungen über diskontinuierlich
sich erneuernde Gesamtheiten sind von Maret [30] durchgeführt wor-
den. In jüngster Zeit hat Kanters [24] in seiner unter der Leitung von
Campagne entstandenen Dissertation das Erneuerungsproblem syste-
uiatisch auf diskontinuierlicher Grundlage entwickelt.

3- Die theoretische Lösung der Moserschen Integralgleichung

Die innere Erforschung des Moserschen Modelles läuft analytisch
auf die Lösung der Integralgleichungen (I) und die Diskussion ihrer
Dösungen hinaus. Eine grosse Zahl von Arbeiten über das Erneuerungs-
Problem befasst sich mit diesem zweiten Teil der Aufgabe. Auf einige
Lösungsvorschläge soll hier - ohne Vollständigkeit - kurz hingewiesen
werden.

Zunächst gingen die Bemühungen dahin, analytische Ausscheide-
gesetze zu finden, welche eine Darstellung der Erneuerungsdichte oder
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Erneuerungsfunktion in expliziter Form erlauben. Zwinggi [611 bat

schon 1931 gezeigt, class eine solche Lösung möglich ist, wenn che Aus-

scheidedichte c/(f) in der Form

g(t)

darstellbar ist. Von dieser Form haben in der Folge verschiedene

Autoren Gebrauch gemacht; insbesondere sind hier Arbeiten von

Brown [3], Hadwiger [21], Liechti [28] und Pestalozzi [40] zu nennen.
Von einer etwas anderen Funktion ist Schulthess [50] in seinem

bemerkenswerten Beitrag ausgegangen; es gelang ihm, die Lösung
der Integralgleichungen (I) in expliziter Form darzustellen, wenn die

Verbleibsordnung dem Gesetz von Achard

Hadwiger [21] hat auf die Lösung der Integralgleichung mit der

Neumannschen Reihe und in diesem Zusammenhang auf besondere

Klassen vote Funktionen hingewiesen, welche ein gewisses transzen-

denies, in ihren Parametern jedoch lineares Additionstheorem erfüllen.

Von besonderer Bedeutung für die Lösung der Moserschen Integral-
gleicluing hat sich die Laplace-Transformation und che aus ihr hervor-
gehende Faltungssymbolik erwiesen, die Saxer [471 vor einigen Jahren
in einem meisterhaften Vortrag vor unserer Vereinigung behandelt hat
und auf die mit Rücksicht auf die späteren Entwicklungen hier etwas
näher eingegangen werden soll.

Die Laplaee-Transformierte ç>(») einer Funktion /(i) ist durch die

Beziehung
(X)

L {/(<)} <X) | e"'7(0^
Ö

definiert; umgekehrt ergibt sich die Funktion /(<) aus ihrer Trans-
formierten vermittelst der Inversionsformel

ioo

/(f) • G'X»)dr.
x—ioo
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ßas in dgjj Integralgleichungen (I) rechts auftretende Integral von der
Form

;

| /(< — *)</(*) dr
0

gehört zum sogenannten Faltungstypus, das durch Laplace-Transforina-
ion in das gewöhnliche Produkt

£{/}•%!
übergeht und zur symbolischen Darstellung durch

/(O * ff(<)

nlass gegeben hat. Für die Faltungsoperation gilt sowohl das koin-
mutative als auch das assoziative Gesetz; dies erlaubt es, für die fort-
gesetzte Faltung einer Funktion mit sich selbst

/(0*/(0==/H)
und

HHO */(0 /*'(<)

"u schreiben. Die Funktion /*'(/) wird als die r-te Faltungspotenz der
Funktion /(f) bezeichnet.

MitHilfederLaplace-TransformationundderdargelegtenFaltungs-
Symbolik lässt sich beispielsweise die Integralgleichung (Id) schreiben

L{m(*)} L{Q(i)} + L{«»(<)}-L{î(f)},
mis der unmittelbar die Lösung

"KO
' (Id')

folgt. I'
Durch die Laplace-ïransformation wird die Lösung der Integral-

g'eichung (Id) gewissermassen algebraisiert. Theoretische Unter-
Buchungen lassen sich dadurch mit Hilfe von fast elementar anmuten-
den Operationen durchführen. Für das praktische Aufsuchen von
Lösungen ist die Laplace-Transformation vor allem dann wertvoll,
Wenn es gelingt, g(f) und Q(f) durch Funktionen darzustellen, welche
sich leicht transformieren lassen, und wenn man die Lösung rücktrans-
formieren kann. Dies trifft zum Beispiel für das bereits erwähnte, von
-jwinggi und weiteren Autoren benützte Funktionensystem zu.
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4. Der Beharrungszustand

Besonderes Interesse hat bei der Erforschung des Mosersehen

Modelles von Anfang an die Frage des Beharrungsznstandes gefunden.
Schon Moser stellte sich diese Frage. Dabei nahm er a priori an, dass

die Erneuerungsdichte m'(<) einem testen Grenzwert zustrebe, den er

mit dem reziproken Wert der mittleren Verbleibszeit eines Elementes

(das heisst der mittleren Lebenserwartung)

e(0) JZ(t) <7t j rg(r) dr

identifizierte. In der Folge zeigte es sich jedoch, dass die exakte Formu-
lierung des Grenzwertsatzes mit einer Beiho von mathematischen
Knacknüssen verbunden ist. Wie Saxer [46] schon 19132 auseinander-

setzte, ist nicht einmal die Definition des Beharrungszustandes selbst-

verständlich, sondern bedarf einer analytischen Umschreibung. Über-
dies herrschte anfänglich die Meinung, dass die Erneuerungsdichte
sich stets wellenartig dem Grenzwert nähere. Hadwiger [15] zeigte
1937, dass die Erneuerungsdichte sich auch einseitig dem Grenzwert
nähern kann (siehe zum Beispiel die Fälle B und C im III. Kapitel)
und dass unter Umständen überhaupt kein Grenzwert erreicht wird.
Nach Richter [44], der sich als erster systematisch mit der Frage des

Beharrungszustandes befasst hat, unterscheidet man zwischen einer

Eigentlichen Stabilisierung
wenn lim m (£)

i->- oo

einem endlichen Wert zustrebt, und der

Stabilisierung im Mittel
wenn ilim m(<)

<->-oo ^

einem endlichen Wert zustrebt. Während für die «eigentliche Stabiii-
sierung» besondere analytische Eigenschaften für das zugrunde liegende
Ausscheidegesetz g(<) erforderlich sind, genügt, wie Feiler [10] und

Legras [27] gezeigt haben, für die «Stabilisierung im Mittel» im wesent-
liehen die Endlichkeit der mittleren Lebenserwartung.
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5. Die numerische Auswertung

In der umfangreichen Literatur über das Erneuerungsproblem
findet, man verhältnismässig selten numerisch durchgerechnete Bei-
spiele. Immerhin haben sich doch einige Autoren an diesen dritten
Teil des Problems herangewagt; unter ihnen sind schon früh Wyss [57],

[59] und Zwinggi [60], [61] und etwas später Schulthess [50] und
estalozzi [40] hervorgetreten, in neuester Zeit haben die Holländer

ßrans, Campagne [2] und Kanters [24] beachtliche Beiträge zu diesem
- su dos Problems geliefert. Trotzdem besteht zurzeit eher noch ein
Missverhältnis zwischen der hochentwickelten Theorie und der prak-
hschen Anwendung ihrer Ergebnisse. Diese Sachlage ist zu bedauern,

Gsteht doch auf den verschiedensten Gebieten in- und ausserhalb des
Versicherungswesens ein Bedürfnis für praktische Anwendungen. Es
ist zu hoffen, dass dieser dritte Teil der Lösung des Erneuerungs-
Problems bald in vermehrtem Masse das Interesse der praktisch tätigen
Mathematiker finden wird. Zum vornherein lässt sich dabei feststellen,
dass die Entwicklung praktisch befriedigender numerischer Methoden
kaum leichter fallen wird als etwa die Aufstellung der symbolischen
kösungsformel (Id'), von welcher der Weg bis zum numerischen Er-
gebnis noch weit ist. Schwierigkeiten bietet die Entwicklung geeigneter
numerischer Verfahren insbesondere deshalb, weil der Arbeitsaufwand
nicht beliebig hoch sein darf, sondern innert gewissen, ziemlich engen,
Wirtschaftlich tragbaren Grenzen gehalten werden muss. Plier harren
noch interessante Probleme ihrer Lösung.

II. Der stockastische Erneuerungsprozess

1. Allgemeines

Wie im vorigen Kapitel betont wurde, geht man beim Moserschen
Ifi'neuerungsmodell von der in der elementaren Versicherungsmathe-
matik üblichen Annahme aus, dass die Elemente der betrachteten
Gesamtheit genau nach der zugrunde gelegten Ausscheideordnung ab-
8®hen. Diese allzu idealisierte Voraussetzung trifft in der Wirklichkeit
kaum je zu. Vielmehr erfolgt das Ausscheiden der Elemente ähnlich
wie bei einem stochastischen Prozess unregelmässig. Im folgenden wird
Versucht, das Mosersche Modell auf stochastische Prozesse zu verall-
gemeinern.
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Schon .Richter [44] hat diese erweiterte Problemstellung auf-

gegriffen und hat unter anderem den Begriff der «wahrscheinlichkeits-

theoretischen Stabilisierung» aufgestellt. Nach ihm haben eine Beihe

von weiteren Autoren die Grenzwerteigenschaften des stochastischen

Erneuerungsprozesses untersucht. Hier sind vor allem, neben .Richter,

Chung [5], [6], [7], Doob [9], Feller [12], Schwarz [51] und Täcldind

[52], [53] zu nennen.
Für die Behandlung des Erneuerungsproblems auf der Grundlage

der Regeln des stochastischen Prozesses sprechen vor allern drei Ge-

sichtspunkte. Einmal erscheint es als wünschenswert, zu prüfen, in-
wieweit sich die abgeänderten Voraussetzungen auf die bisher be-

kannten Resultate auswirken. Ferner bietet der Einbezug der stocha-

stischen Komponente die Möglichkeit, den Schwankungsbereich der

vorausberechneten Erneuerungsfunktion abzuklären. Schliesslich er-

laubt die stochastische Betrachtungsweise, an den Aufbau einer Risiko-
theorie für sich erneuernde Versicherungsbestände heranzutreten.

Beim stochastischen Erneuerungsmodell ist es zweckmässig, vom

Spezialfall eines Bestandes auszugehen, der nur aus einem Element be-

steht. Dieses Element scheidet in irgendeinem Zeitpunkt aus und wird
sofort durch ein neues ersetzt. Dieses neue Element gehört der zweiten
Generation an; bei seinem Ausscheiden wird es ersetzt durch ein Ele-

ment, das der dritten Generation angehört usw. Die «Lebenslinie» der

aufeinanderfolgenden, den verschiedenen Generationen angehörenden
Elemente lässt sich im nachstehenden Diagramm (Figur 1) anhand
zweier Beispiele verfolgen.

Im ersten Beispiel (ausgezogene Linie) scheidet das Element erst-
mais nach 2 Zeiteinheiten aus, wird später nach 4, 4%, 4% und 5 Zeit-
einholten jeweilen nochmals erneuert und gehört dann der sechsten

Generation an. Die gestrichelte Linie zeigt eine andere praktisch mög-
liehe Erneuerungsfolge. Durch die punktierte Linie wird anderseits der

Verlauf der Erneuerungsfunktion angedeutet, wie er sich auf Grund des

Moserschen Modells in Verbindung mit bestimmten Annahmen über
das Ausscheiden (Fall D im Kapitel III) ergeben würde. Die auf Grund
der Regeln des stochastischen Prozesses ausscheidenden Elemente
weisen eine Lebenslinie auf, welche in geradlinigen Stufen um die Er-
neuerungsfunktion herum fortschreitet.

Es liegt auf der Hand, dass beim stochastischen Erneuerungs-
prozess keine bestimmten Aussagen möglich sind über den Verlauf der
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akkumulierten Erneuerungszahl im konkreten Einzelfall. Eine mathe-
Matische Theorie über den Einzelfall ist daher nicht möglich. Hingegen
gelangt man zu einer mathematisch formulierbaren Theorie, wenn man
das Modell vom konkreten Einzelfall auf die Gesamtheit aller mög-
liehen Verläufe des Erneuerungsprozesses erweitert und jeder Verlaufs-
Möglichkeit eine relative Häufigkeit oder mathematische Wahrschein-
liohkeit zuordnet. Diese Wahrscheinlichkeiten lassen sich angeben,
wenn man für jeden Zeitpunkt f und jede Generation im Diagramm der

igur 1 eine Übergangswahrscheinlichkeit in die nächste Generation
festlegt. Im folgenden wird angenommen, dass diese Übergangswahr-
"cheinlichkoit stets durch die dem Alter 1 dos Elementes zugeordnete
A-Ussoheidedichtc </(f) <2f gegeben sei.
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Zu einem anschaulichen Bild über das Wesen des stochastischen

Erneuerungsprozesses gelangt man, wenn man sich dessen Ablauf m

grosser Zahl wiederholt denkt. Die Masse dieser Einzelelemente, welche

nacheinander den Erneuerungsprozess durchlaufen, sei durch den in der

Figur '2 im Ursprung aufgestellten senkrechten Quader gegeben. Jedes

einzelne im grossen Quader enthaltene Element läuft zuerst innerhalb

der Bahn der ersten Generation, um nach seiner Erneuerung in die

Bahn der zweiten Generation hinüberzuwechseln usw. Längs ver-
schiedener Fanggeraden in der Grundrissebene mit £ konstant wird
die Häufigkeit der Elemente ausgezählt, welche sich im Zeitpunkt <

in den verschiedenen Generationenbahnen befinden. Die Masse der im

Ursprungsquader enthalten gewesenen Elemente verteilt sich dann auf

die längs der Fanggeraden £ konstant angeordneten Quaderreihen.
Die Höhe der einzelnen Quader gibt die Häufigkeit der Elemente an,
welche nach der Zeit £ beispielsweise der (r + l)-ten Generation an-

gehören oder, mit anderen Worten, die Wahrscheinlichkeit dafür, dass

das Element bis zum Zeitpunkt £ r-mal erneuert worden ist. Die längs
einer Fanggeraden £ konstant aufgestellten Quaderreihen geben die

Häufigkeitsverteilung oder Frequenzfunktion der akkumulierten Er-
neuerungszahl r wieder. Diese Frequenzfunktion ist in der Figur 2

für drei Werte von £ angegeben. Die Zahlenwerte stützen sich auf die

Annahmen des Falles À im Kapitel III.
In der ersten Quaderreihe nimmt die Höhe der Generationsquader

von der zweiten Generation an mit steigender Generationsnummer

fortgesetzt ab; die Wahrscheinlichkeit, dass ein Element nach kurzer
Zeit schon mehrmals erneuert wurde, nimmt somit rasch ab. In der

zweiten und erst recht in der dritten Quaderreihe ändert sich das Bild,
indem die ursprünglich monoton fallende Reihe in eine Verteilung von
glockenförmigem Typus übergeht, bei der sich die Häufigkeiten ver-
hältnismässig immer enger um einen Zentralwort gruppieren.

Im Rahmen der Theorie über den stochastischen Erneuerungs-

prozess stellt die Ermittlung der in Figur 2 dargestellten Verteilungen
der akkumulierten Erneuerungszahl r eine der wichtigsten Grund-

aufgaben dar, welche für die Lösung von verschiedenen weiteren Pro-
bleraen die Basis bildet. In der vorliegenden Arbeit wird nur auf diese

Grundaufgabe eingegangen. Weitere Grundaufgaben sind zum Bei-

spiel die Bestimmung der Altersverteilung im Zeitpunkt £ und die Er-
mittlung der Wahrscheinlichkeit, dass die akkumulierte Erneuerungs-
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zahl r für jeden Zeitpunkt 1 nie eine bestimmte Schranke Zs(i) über-
schreitet, eine Fragestellung, welche mit dem klassischen Kuinproblem
verwandt ist.

ZAVyitr 2 Mode/Z der OeneraZronsMw/'if/fce'iZen

2. Die Verteilung der akkumulierten Erneuerungszahl

Die Frequenzfunktion der akkumulierten Erneuerungszahl r im
Zeitpunkt Z sei mit /(r,Z) und die zugehörige Verteilungsfunktion mit

E(r,Z) 2 /(e,t)
g=0
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bezeichnet; /(r,4) ist gleich der Wahrscheinlichkeit, class bis zum

Zeitpunkt 4 genau r Erneuerungsfälle aufgetreten sind; P'(r,f) stellt

demgegenüber die Wahrscheinlichkeit dar, class bis zum Zeitpunkt 4

höchstens r Erneuerungsfälle vorgekommen sind.

Nachstehend wird die Verteilung der zufälligen Variablen r zu-

nächst für folgendes Elementarmodell bestimmt:

der Anfangsbestand besteht nur aus einem Element mit dem

Alter 4 0;

6,1 für das Ausscheiden dieses Elementes gilt die Verbleibsordnung
4(4) und die Ausscheidedichte g(4); beide Punktionen werden als

stetige und differenzierbare Punktionen der Zeit 4 vorausgesetzt;

e) beim Ausscheiden dos jeweilen dem Bestand angehörenden Ele-

mentes rückt sofort ein neues nulljähriges Element nach, so class

der Bestand stets aus einem Element besteht.

Im Elementarmodell vereinfacht sich die Anzahl der im infinitesi-
malen Zeitintervall (4,4 |- d<) möglichen Ereignisse in die leicht über-
blickbare Alternative Ausscheiden oder Nichtausscheiden. Aus der für
das Elementarmodell gefundenen Lösung lassen sich die Lösungen
für allgemeinere Pälle leicht aufbauen.

Unter den genannten Voraussetzungen ergibt sich der Reihe nach

/(. Das jEfememiarmocZeZZ

/(Od) 4(4)

/(!,<) | /((), 4 — t) r/(r) clr
6

o
o

/(r,4) j /(>' —1,< — T) </(T) </T

0
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Mit Hilfe der in Abschnitt I, S) entwickelten Faltungssymbolik lassen
die Formeln (I.) folgendermassen schreiben:

Da

/(0,0 î(i)

/(KO /(O,i)*f/(0 Z(0*<Z(0

/(2,<) /(t,0*'/(0 " ^ Z(0*9**(0

/(r,i) /(r — i,o*g(0 ----= ï(i)*g*'(0

/(<) 1— j r/(r) dr 1—g(<)*l

(iT)

18t, so ergibt sich für die Frequenzfunktion der akkumulierten Er-
Oeuerungszahl die Formel

/(r,i) =/{g*'(r)-g*"+«(T)}d(r). (1?)

-Die Ausscheidedichte g(f) lässt sich als Frequenzfunktion der zufälligen
Variablen f auffassen; g(f) stellt die Wahrscheinlichkeit dar, class
das Ausscheidealter für ein Element zwischen f und f -)- liegt. Die
zugehörige Ausscheidefunktion

Q(0 - / <zM c'r
Ô

stellt dann die Verteilungsfunktion dos Ausscheidealters i und die
Merbleibsordnung

Z(0 l—Q(<)

das Komplement zur Verteilungsfunktion dar. In gleicher Weise lässt
^ch auch die r-te Faltungspotenz von q(i), als Frequenzfunktion
Auffassen; stellt die Wahrscheinlichkeit dar, class die Summe
dor Ausscheidealter für die ersten r ausgeschiedenen und jeweils er-
feuerten Elemente zwischen £ und i -|- liegt. Für die zugehörige
Verteilungsfunktion gilt

und

Ç(*r,f) | g*'(r) dr
0

i(*r,i) 1-Q(*r,f).



— 280 —

Der Einfachheit halber nennen wir im folgenden die Funktionen
und £(*r,£) Ausscheidefunktion und Verbleibsordnung r-ten Grades.

Mit Hilfe dieser Funktionen lässt sich Formel (1*) in die einfacheren

/(r,i)=e(*r.i)-<3(*(r + lM) | ^/(r,£) Z(*(r+l),£)-£(*r,£) |

uberführen. Daraus folgt der

Safe 7: Die Wahrscheinlichkeit, dass bis zum Zeitpunkt £ genau r Er-

neuerungsfälle auftreten, ist gleich der Differenz zwischen den

Werten der Verbleibsordnungen vom Grade r -f- 1 und r im

Zeitpunkt £.

Aus Formel (1*) folgt unmittelbar für die Verteilungsfunktion

2/(<?,*)
8 0

£(*1,£)

+ Z(*2,£)-Z(*l,£)

-M(*3,£)-Z(*2,<)

+ £(*(r + 1),£) — Z(*r,£),
das heisst es ist

F(r,£) i(*(r+l),£). (2)

iS'afe 2; Die Wahrscheinlichkeit, dass bis zum Zeitpunkt £ höchstens r
Erneuerungsfälle auftreten, ist gleich dem Wert der Verbleibs-

Ordnung (r + l)-ten Grades im Zeitpunkt £.

7i. Zwei Eriuei£m«w/ew

Die verhältnismässig engen Voraussetzungen des Elementar-
modelies, welche zu den Sätzen 1 und 2 geführt haben, lassen sich leicht
erweitern.

cg) Zunächst sei der Fall betrachtet, bei dem das ursprüngliche
Element nicht nulljährig ist, sondern ein höheres Anfangsalter &'

aufweist. Dieser allgemeinere Fall läuft darauf hinaus, dass für die

Anfangsgeneration eine andere Verbleibsordnung £(£) gilt als für die
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^P^teren Neueintrifcte, welche nach der Ordnung 1(1) ausscheiden,
er diesen etwas allgemeineren Voraussetzungen ergibt sich für

ie Frequenzfunktion an Stelle der Formel (1*) der Ausdruck

/

/ (r, 0 | {g(r) *^"(t) q(r) * g*'(r)} dt. (2)
Ô

Die Formeln für die Frequenz- und Verteilungsfunktionen
'sen sich ferner auf Bestände mit m Elementen erweitern, wenn die

requenzfunktionen für alle Einzelelemente untereinander stochastisch
unabhängig sind. Für die Frequenzfunktion '"'/(r,<) dos aus w Elemen-

zusammengesetzten Bestandes gilt dann, wenn für die einzelnen
Demente die Frequenzfunktionen /j(r,<), /»(r.l) .../„(r, 1) bestimmt

Werden,
/i(r,<) */a(r,i) (!<"')

ie Faltungsoperation ist hier nach der diskontinuierlichen Methode
insichtlich der Variablen r durchzuführen.

Bemerkenswert ist, dass die Verteilung der akkumulierten Er-
Ueuerungszahl r nicht - wie beim Moserschen Modell - über den Umweg
einer Integralgleichung gefunden werden kann, sondern direkt durch
Faltung aus der gegebenen Ausscheidedichte g(l) hervorgeht.

3. Charakteristische Funktion und Potenzmomcnte

M. Die cliara/clemlisclie Fim/cliow

Die der Frequenzfunktion /(r,f) zugeordnete charakteristische
Funktion ist definiert durch

CO

?,(«,<) vr/(r,(). (3j)
r=0

Unter Berücksichtigung der Integralrekursion (1) lässt sich diese Be-
Ziehung umformen in

oo
^

<p,(w,l) 1(1) + V«" | /(r—1,1— r)g(r)dr
r u o

^ oo

1(1) F fe'-g(T)dT2^7(r,i-t).
0 r=0

1»
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Es ergibt sich somit die Integralgleichung

99,(1«,/) Z(<) + e'" | 99,(1«, /— r)g(r)dr. (3a)

0

Diese Integralgleichung lässt sich mit Hilfe der Laplace-Trans-
formation überführen in

L{?j =L{/} + e'"L{ç>} L{f/j.
Daraus folgt für die charakteristische Funktion die Lösung

y,(«,() lr' («J

Ii. /w<ej/ra/(/fcIc/w»(/cw /ür die Momente

Die unter A abgeleitete charakteristische Funktion ist vor allem
als momentenerzeugende Funktion nützlich. Die Potenzmomente der

Verteilung /(r,<) ergeben sich nämlich durch fortgesetztes Differen-
zieren der charakteristischen Funktion nach m und anschliessendes

Nullsetzen von «. Für das ft-te Moment um Null
CO

ä(0 2^/M) (*)
r=0

gilt die Beziehung ,„,(0 i"Vf M für « 0 (5)

worin 99^ die ft-te Ableitung von 99, bedeutet.

Für das erste Moment um Null oder den Mittelwert erhält man
auf Grund der Beziehung (5)

?Ml(/) i~*99((it,/) für m 0. (5j)

Die Ableitung der Integralgleichung (3j) nach m führt auf

9^(w,<) ie'" J 99,(1«,/—r)g(r) dr -[- e'"J 99^(1«,f— T)g(r)dr.
0 0

Setzt man m 0 und substituiert man
;

99,(0,/) 1 und I g(r) dr Q(f),
ö

so erhält man für den Mittelwert m^<) die Integralgleichung

mj(/) Q(<) + I %(/—r)g(r)dr. (6)
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Die Integralgleichung (6) ist identisch mit der Moserschen Integral-
Sleichung (Id) für die Erneuerungsfunktion. Daraus lässt sich schliessen,

ass die Erneuerungsfunktion m(f) beim Moserschen Modell identisch

^ mit dorn Mittelwert der akkumulierten Erneuerungszahl r im
ahmen des erweiterten Modells.

Durch die Integralgleichung (6) ist gewissermassen die Brücke
fischen den beiden Modellen gefunden; es besteht hier ein analoger

usammenhang wir! in der Eisikotheorie, wo das erste Moment der
oiteilung des Gesamtscbadens auf die Prämie führt, welche sich auf

* hes Modells der elementaren Versicherungsmathematik ergibt.

^ Urn das zweite Moment der Frequenzfunktion /(r,<) zu be-

gunmen, wird zunächst die zweite Ableitung der charakteristischen
• «nktion (3) gebildet und anschliessend wiederum « 0 gesetzt. Man

erhält so die Integralgleichung

wia(f) Q(f) + j ma(f—r)g(r)dr. (7)
0

Hilfe der Laplace-Transformation lässt sich die Lösung folgender-
fassen darstellen

j. (7)

oter Berücksichtigung von Formel (6) und der aus (I c) sich er-
gebenden Beziehung

i+ (»)

kann (7') umgeformt werden in

Ljwia} 21/ Jm/j [1 L {wq}]—

2L {%} L {m{| -|- L {m,].

Daraus folgt nach Bücktransformation

;

m2(f) 2 J %(< —r)m{(r)dr + W](f)
0

oder unter Benützung der Faltungssymbolik

mj(f) 2wj(f) + Wj(f). (9*)
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c) Für das dritte und vierte Moment führen analoge Rechnungen
auf die Schlussformeln

»»3(1) 6wii(f) * {?«((<)j *^ + 6wi(i) * m((/) -|- (<), (10*)

»(4(1) 24wi(f) * |- 36mj(t) * (m((<)}

-h 14mj(f) *m((t) h %(<) • (11*)

dj Die Formeln (9*), (10*) und (11*) lassen vermuten, dass die

höheren Momente durch den Mittelwert m^i) allein darstellbar sind.

Dieser Sachverhalt lässt sich nachweisen, indem man aus der trans-
formierten Integralgleichung (3g) und £{3} vermittelst der Be-

Ziehungen (6) und (8) eliminiert. Man erhält so die neue transformierte
Integralgleichung

L{ç,}[l + LX}(l-e-)] L{1},
aus der durch Rücktransformation

{

ÇVC^M) 1 —(1—e*")J 95,(M,< —r)m((t)dr (12)
0

folgt. Da in Gleichung (12) nur die Erneuerungsdichte m((<) als gegebene

Funktion auftritt, und weil charakteristische Funktion und Verteilung
einander umkehrbar eindeutig entsprechen, so gilt unter den ge-

troffenen Voraussetzungen der

Sate <3: Die Verteilung der akkumulierten Erneuerungszahl r ist durch
den Verlauf der Erneuerungsdichte m|(<) vollständig bestimmt.

4. Der Beharrungszustand

Beim stochastischen Erneuerungsmodell kann im Gegensatz zum
Moserschon Modell selbstredend keine «eigentliche Stabilisierung» auf-

treten, weil das Ausscheiden der Elemente stets unregelmässig erfolgt.
Hingegen kann sich eine «Stabilisierung im Mittel» ergeben, nämlich
dann, wenn

lim
/—>-co ^

gegen einen endlichen Grenzwert strebt. Dieser Fall tritt ein, wenn -
wie verschiedene Autoren gezeigt haben - die mittlere Verbleibszeit
eines Elementes, das heisst das erste Moment in der Altersverteilung
der Sterbefälle 3(f), endlich ist.
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Richter [44J hat den Begriff der «wahrscheinlichkeitstheoretischen
Ionisierung» eingeführt. Diese tritt ein, wenn die «Stabilisierung im
i tel» zustande kommt und darüber hinaus der Grenzwert

lim
"<'>

£->-co •%(£)

8®gen Null strebt. Darin bedeutet cx(i) die mittlere Abweichung der
Verteilung /(>•, <) _

u(i) [/ ma(«) —{wi(t)}2
Richter zeigt, dass wahrscheinlichkeitstheoretische Stabilisierung ein-
n t, wenn die beiden ersten Momente der Altersverteilung der Sterbe-
^ o g(f) endlich sind. Schwarz [51] und weitere Autoren haben dem-

gegenüber gezeigt, dass die Existenz des ersten Moments, das heisst
r mittleren Lebenserwartung, für das Eintreten der wahrscheinlich-

theoretischen Stabilisierung genügt. Das bedeutet nichts anderes,
® s dass die Stabilisierung im Mittel die wahrscheinlichkeitstheoretische

Libilisierung automatisch nach sich zieht.
Neben der Erweiterung dieser Stabilisierungskriterien erscheint es

^or allem wichtig, die Existenz und die Eorm der Grenzverteilung für
grosse t näher abzuklären. Eine eingehende Erörterung dieser Frage
^oll späteren Untersuchungen vorbehalten bleiben. Immerhin lassen
®ich auf Grund der abgeleiteten Formeln bereits einige Hinweise über
die vermutliche Lösung abgeben.

Nach dem Satz 2 ergibt sich die Wahrscheinlichkeit F(r,t) für das
uttreten von höchstens r Erneuerungsfällen durch r-fache Faltung der

gegebenen Ausscheidedichte g(t). Nun führt aber nach dein zentralen
'enzwertsatz der Wahrscheinlichkeitsrechnung die fortgesetzte Fal-

tung einer Funktion - sofern gowisse Momentenbedingungen erfüllt
sind - schliesslich auf eine Gauss-Verteilung als Grenzfunktion. Daraus

dass

1 flim F(r,t) - I c - (Z£ 1

r->-oo /

mit .r

(13)
< —(r+ IG-,

i'o- -i)^
*orin ej und ëg Mittelwert und Streuung der gegebenen Ausscheide-
onktion r/(<) bedeuten. Nach Formel (13) ergibt sich somit die
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Grenzwahrscheinlichkeit für jeden Argumentwert r je aus einer Gauss-

Verteilung. Daraus lässt sich noch nicht Schlüssen, dass die Verteilung

F(r,<) selbst in eine Gauss-Verteilung übergeht; immerhin liegt die Ver-

mutung nahe, dass unter noch näher abzuklärenden Voraussetzungen
eine Gauss-Verteilung als Grenzfunktion auftritt. Beispielsweise ergibt
sich in den im nächsten Kapitel behandelten Sonderfällen A und B

eine Gauss-Verteilung als Grenzfunktion. Die nähere Abklärung der

Natur der Grenzverteilung für grosse < stellt eine noch der Lösung
harrende Aufgabe dar.

III. Theoretische Untersuchungen
über einige Sonderfälle

1. Allgemeine Voraussetzungen

Im folgenden werden die theoretischen Ergebnisse dos vorigen
Kapitels auf einige im Kähmen des Erneuerungsproblems typische
Sonderfälle angewendet. In allen Fällen wird die Zeitvariable 1 so

transformiert, dass die mittlere Verbleibszeit für ein nulljähriges Ele-

ment (die sogenannte mittlere Lebenserwartung)

e(0) J u/(r) dt 1

0

wird. Dadurch wird die ungleiche Ausscheidegeschwindigkeit bei den

verschiedenen Ausscheidegesetzen standardisiert, und es wirkt sich nur
noch die Form des Ausscheidegesetzes aus.

Zunächst wird die Klasse der Ausscheidegesetze betrachtet, bei

denen die Ausscheidodichte </(!) sich in der Form

^ ~ r(/c)

darstellen lässt. Dieses von verschiedenen Autoren bereits benützte

Funktionensystem (siehe Seite 270) erfüllt einige einfache Faltungs-
bezieliungen und erlaubt daher eine Lösung des Erneuerungsproblems
in expliziter Form. Überdies lassen sich die praktisch vorkommenden
Ausscheidegesetze fast immer mit hinreichender Näherung aus Ge-

setzen von der Form (14) zusammensetzen. Für die weiteren Unter-
suehungen werden die drei Sonderfälle von (14) näher untersucht,
welche den Parameterwerten & 1, 2 und | entsprechen.
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Pall A mit /c 1 : c/(i) e"'

1 — f "
(14 A)

Z(f) e

MO - 1
•

®0rI'allA entspricht einem Ausscheidegesetz mit stets gleichbleibender
usscheideintensität; bei ihm liegt von Anfang an der Beharrungs-

zustand vor. Dieser Dali nimmt innerhalb der Gesamtheit aller Aus-
scheidegesetze eine zentrale Stellung ein.

Pall B mit /c '2: g(f) 4fe
'

<3(0

/(0

1 —e*' (1 +2 0

/,(0

(14 B)e*'(l +20
4t

1 2t

er Pali ß entspricht einem Ausscheidegesetz mit monoton ansteigender
^usscheideintensität. Abgesehen vom durch die Standardisierung be-
dingten Zahlenfaktor entsteht die Ausscheidedichte </(<) im Pall B
durch einmalige Faltung aus der Ausscheidedichte beim Fall À. In
gleicher Weise ergäben sich durch weitere Faltungen die Sterbegesetze
(14) mit /c 8, 4, 5 usw.

e « f
[/2m

H
Fall C mit fc | : g(<)

6(0
0

t(0

MO

- i-1
e ^ t

[/2m

1-6(0
9(0

dr (14 C)

Hus Gesetz C stellt den inversen Fall zum Gesetz B dar. Während die
unter B erwähnten Fälle mit fe 2, 8, 4 usw. durch fortgesetzte Faltung
aus dem Fall A entstehen, ergibt sich der Fall C gewissermassen als
H'altungswurzel aus dem Gesetz A. Im Gegensatz zum Fall B mit.
steigender Sterbeintensität führt der Fall C zu einer von MO) + °°
auf M°o) i monoton fallenden Ausscheideintensität.
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Die Alisscheidefunktion Q(f) lässt sieh im Fall 0 nicht in expliziter
Dorm darstellen, aber vermittelst der Substitution

f T*

auf das Gauss-Laplacesche Wahrscheinlichkeitsintegral

e a

Q(Q 2 ut
1/2

0

zurückführen und numerisch auswerten

TT

Fall.[): Der Fall 1) stützt sich auf die Gruppenversicherungssterbe-
tafel EMG 1953 [65], wobei < 0 für a: 25 angenommen und zur

!«(')

i

2.0

y
all A

all B

\ //
/I
/

/
/ ///

/

/
f

0,5

t

/
/

/
/

/
/

/
/

1

/
0,5 1.0 1.5 2,0 2,5 3,0

ifygw 5 .dwsscAeîûfeiwtewsiiâtew M(<)
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ereinfachivng clor Rechnung je 5 Altersjahre zusammengefasst werden,
i® mittlere Lebenserwartung für œ 25 beträgt 49,405 Jahre und

wird analog wie bei den Fällen A, ß und C als Zeiteinheit aufgefasst.
to Berechnungen für den Fall D werden nach der diskontinuierlichen

Methode durchgeführt.
Die Verläufe der Sterbeintensitäten in den Fällen A D sind in der

nebenstehenden Figur 3 graphisch dargestellt.

2. Erneuerungsdichte und Erneuerungsfunktion

In den Figuren 4a und 4b sind die Verläufe der Erneuerungsdichte
und der Erneuerungsfunktion für die Fälle A- I) graphisch dargestellt,
und zwar für einen Versicherungsbestand, der sich anfänglich nur aus
uulljährigen Elementen zusammensetzt, die beim Ausscheiden jeweils
urch ein neues nulljähriges Element ersetzt werden.

Die Figur 4 a zeigt, class im Fall A die Erneuerungsdichte m[(i)
horizontal verläuft; das bedeutet, class hier von Anfang an dor Be-
harrungszustand vorliegt. Im Fall B nähert sich die Erneuerungsdichte
^on unten und im Fall 0 von oben her dem Grenzwert, welcher für alle
vier Fälle im Niveau der für den Fall A geltenden Horizontalen liegt.

*e inverse Stellung der Fälle B und 0 kommt somit auch in der zu-
gehörigen Erneuerungsdichte zum Ausdruck. Bemerkenswert ist ferner,
dass die Erneuerungsdichten bei den Fällen B und G sich nicht wellen-
®*tog, sondern einseitig dem Grenzwert nähern. Der Fall D, der oh-
schon es sich um eine diskontinuierliche Erneuerung handelt - eben-
feto aE glatte Kurve eingezeichnet wurde, führt zu dem bei den
Praktisch vorkommenden Ausscheidefunktionen charakteristischen
Wellenartigen Kurvenverlauf. Die gewählten Beispiele umfassen somit
vier typische Fälle für den Übergang in den Beharrungszustand.

In Figur 4 b sind die Verläufe der Erneuerungsfunktion wß(£)
dargestellt. Im Fall A ergibt sich oine schräg ansteigende Gerade als
Drneuerungsfunktion ; diese Gorade stellt gleichzeitig die Asymptoten-
richtung der Erneuerungsfunktion in den drei anderen Fällen dar. Wie
su erwarten war, verlaufen die Erneuerungsfunktionen B und G ein-
zeitig der Geraden A. Trotz des wellenartigen Verlaufs der Erneuerungs-
dichte ergibt sich auch im Fall D eine einseitig von der Geraden A an-
Wachsende Erneuerungsfunktion.



— 290 —

m J (/) Fit/wr wj({)

1
'

• ^ I

: ; 1 - "all A

-all B

-all C

"all D

• •

*

*

,9

9 *

•
• •

• •
• •
a • •

• „
• •

* *
• •
« •

« •
9 •
0 »

• •

9 9
9 9

01 2345678 9 10

3. Die Frequenzfunktionen der akkumulierten Erneuerungszahlen

In den Figuren 5 sind die Frequenzfunktionen der akkumulierten
Erneuerungszahlen /(r,i) für die Zeitpunkte G 1,012, ig 5,060 und

i.j 10,120 dargestellt. Diesen Argumentwerten entsprechen beim Fall
D die ganzzahligen Jahre 50, 250 und 500. Alle Frequenzfunktionen
beziehen sich auf den Elementarfall, bei dem die sich erneuernde Ge-

samtheit anfänglich nur aus einem nulljährigen Element besteht, das

bei jedem Ausscheiden durch ein neues nulljähriges Element ersetzt
wird.

Die Berechnung der Frequenzfunktionen stützt sich in allen Fällen
auf die Formeln (1*) und (1*). Es ergeben sich folgende Formeln:
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FaK /I ; Im Pall A gilt für die Ausscheidedichte die Formel

3A(0

Die zugehörige Transformierte oder charakteristische Punktion
lautet

Dfei} (1—*»)"'•

Nach dem Paltungssatz erhält man die charakteristische Punktion der
''"ten Paltungspotenz von g^(<) durch r-inaliges Potenzieren der charak-
leristischen Punktion von ^(t); das heisst man hat

M?*'}
Boraus durch Rücktransformation für die r-te Paltungspotenz von g^(f)
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der Ausdruck e"'

folgt. Die zugehörige Verbleibsordnung lautet
CO

L( *r,<) : I '/r e 1 -f — b^ ' J (r—1)! V 1! 2! (r—1)!
*

Nun ist nach Formel (1*)

/(r,<) Z(=>=(r + 1),«) — Z(*r,0
daraus folgt _j

/aM
*

(ISA-)
r

Der Ausdruck rechts in Formel (ISA) stellt die bekannte Poisson-Ver-

teilung dar, welche für den homogenen stochastischen Prozoss charakte-
ristisch ist und welche zu den wichtigsten Verteilungsgesetzen der

Wahrscheinlichkeitsrechnung und Risikotheorie gehört. Dieses Er-
gebnis ist plausibel, weil der Erneuerungsprozess sich im Fall A von
Anfang an im Beharrungszustand befindet.

Der Fall A stellt die Brücke dar zwischen dem Modell des stocha-
«tischen Erneuerungsprozesses und dem klassischen Urnenschema mit
Zurücklegen der gezogenen Kugeln, bei dem die Zusammensetzung des

Urneninhaltes stets gleich bleibt und das beim Übergang auf konti-
nuierlich er folgende Ziehungen oben falls auf die Poisson-Verteilung führt.

-FaZZ /J: Im Fall B führt eine analoge Rechnung wie beim Fall A

auf das Schlussergebnis
6"®' (21)*' Ü"(2<)2' + i

" (2 r)
'

(2 r ,1)1 '

das eine verallgemeinerte zweigliedrige Poisson-Verteilung darstellt.

FaW C; Im Fall C ergibt sich in ähnlicher Weise die Schlussformel

/cM)

t t r+t j
e s e - r -

i /r\ t±i / r +1
2.W-) 2*r(

dr, (15 C)

welche die Frequenzfunktion /(r,<) auf die Differenz der ^-Vertei-
hingen für r und r + 1 Freiheitsgrade zurückführt.
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FaW 7); üio Eechnung erfolgt nach der im Abschnitt IV, 1 näher
ärgelegten numerischen Methode.

Fv/pur 5 FregrtCTK/Mw/ch'orte« /(r, t) der afc&ttrmtKerien EmewcmM/aza&J r
f(eti)
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Verfolgt man die Frequenzkurven für den gleichen Fall jeweils
für die drei Werte ^ 1,912, ^ 5,060 und <3 10,120, so stellt man

eine mit 1 fortgesetzt sich verbessernde Symmetrisierung der Frequenz-
funktion fest. In allen Fällen scheint die Frequenzfunktion gegen die

symmetrische Normalverteilung zu streben; in den Fällen A und B

lässt es sich nachweisen, dass die Frequenzfunktion im Beharrungs-
zustand tatsächlich in eine Normalverteilung übergeht.

Für festes f weist die Verteilung D die kleinste und die Verteilung G

die grösste Streuung auf. Die Poisson-Verteilung A nimmt eine Mittel-
Stellung ein. Der Fall A ist durch die sogenannte «normale Dispersion»
gekennzeichnet, beider ^ ^ ^ ^
ist, das heisst der Mittelwert Wj(() und die Streuung ra^l) sind gleich

gross. Bei den Verteilungen B und D ist die Streuung kleiner und

im Fall 0 grösser als der Mittelwert Als Mass dieser Streuungs-
eigenschaften des stochas tischen Erneuerungsprozesses wird der Er-
neuerungs-Divergenzquotient

„ TOo(f)
E*(Q • *>-1

mi(<)

eingeführt. Diese Masszahl nimmt in den Fällen A-D für < 10,120

zum Beispiel folgende Werte an:

Fall FF(f)

A 1,000
B 0,519
0 1,882
1) 0,078

In den Fällen B und D liegt der Divergenzquotient unter und im
Fall C über dem Normalwert 1. Die entsprechenden Verteilungskurven
weisen demnach unternormale und übernormale Dispersion auf.

Mit Hilfe des Divergenzquotienten lässt sich näherungsweise die
Güte des Ausgleichs bei verschiedenen Ausscheidegesetzen messen.

Beispielsweise kann man das Verhältnis der erforderlichen Elementen-
zahlen für zwei sich erneuernde Gesamtheiten angeben, welche zu

gleich grossen relativen mittleren Abweichungen

>v;o
TOl(f)
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führen. Es ist

^ i£(f) mf(<) S»(f)
~ '

'"f(0 ~ '^(0 '

unter den getroffenen Annahmen das Verhältnis der Mittelwerte
gegen Eins strebt. Für i 10,120 ergibt sieh für die geschilderten

iisscheidegesetze A und D näherungsweise das Verhältnis der äqui-
Talenten Elementzahlen

: riß ~ 12 : 1.

sich^ ^®^ältnis veranschaulicht, dass die üblichen Sterbegesetze bei
'

_

erneuernden Gesamtheiten zu einem bedeutend besseren Aus-
b ®ic. i führen als der homogene stochastische Prozess.

*0 llf/ur 6

2,0

1,5

1.0
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Die Entstehung cler unter- und übernormalen Dispersion in den

Füllen B und D einerseits und C anderseits lässt sieh leicht erklären.
Die Fälle mit unternormaler Dispersion entstehen bei den Aussoheide-

gesetzen mit steigender Ausscheideintensität. In diesen Fällen bewirkt
das Eintreten eines Erneuerungsfalles eine Senkung und umgekehrt das

Ausbleiben eine Steigerung in der Wahrscheinlichkeit für einen weiteren

Erneuerungsfall. Bei fallender Ausscheideintensität (Fall 0) liegen die

Verhältnisse umgekehrt. Steigende und fallende Ausscheideintensitäten
bewirken somit eine Art negativer oder positiver Wahrscheinlichkeits-

ansteckung, ähnlich wie sie im Urnenschema von Eggenberger-Polya
für Wahrscheinlichkeitsansteckung in Erscheinung tritt.

Aufschlussreich ist der Verlauf des Emeuerungs-Divergenzquo-
tienten Z'P(t), wie er in der Figur 6 dargestellt ist. In allen Fällen be-

ginnt die Kurve bei i 0 mit dem Wert jh"^(0) 1. Im Fall A verläuft
der Divergenzquotient horizontal; in den übrigen Fällen entfernt sich

FF(0 zuerst schnell und nachher immer langsamer vom Ausgangswert
und nähert sich je einem Grenzwert; bemerkenswert sind wiederum der

monotone Verlauf in den Fällen B und C und die wellenartigen Schwin-

gungen im Fall D. Die Frage bleibt offen, welchen Grenzwerten die

drei Verläufe von i'P(i) zustreben.

IV. Anwendungen

Im folgenden wird versucht, einige Anwendungen der theoretischen

Ergehnisse in den Kapiteln II und III zu skizzieren.

I. Die praktische Berechnung der Erneuerungsfunktion

Für viele praktische Aufgaben ist die Erneuerungsfunktion ?%(£)

(oder die Erneuerungsdichte »q(<)) zu berechnen. Die Ermittlung dieser

Funktion ist an sich nicht schwierig, artet aber wenn längere Zeit-
räume in Betracht fallen - in eine kaum zu bewältigende Häufung von
elementaren Bechenoperationen aus. Für die praktische Durchführung
derartiger Berechnungen ist eine neue Lage entstanden, seit die

modernen Bechenautomaten auf elektronischer Grundlage dazu her-

angezogen werden können. Dank der in freundlicher Weise von der

Schweizerischen Lebensversicherungs- und Bentenanstalt erhaltenen
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Erlaubnis konnte versuchsweise der im vorigen Kapitel geschilderte
all D (Gruppenversicherungstafel BMG 1953) mit Hilfe eines Elek-

Tonenrochners ausgewertet werden.
Dio aufeinanderfolgenden Erneuerungszahlen können nach ver-

° 'odenen Methoden berechnet werden. Gewöhnlich erfolgt die Be-
Rechnung nach einer der Integralgleichung (Ib) nachgebildeten dis-

oiitinuierlichen Rekursionsformel. An Stelle dieser aus dem Moser-
sehen Modell folgenden Methode kann man die Erneuerungsfunktion

i auch als Mittelwert der Erneuerungszahl r bestimmen. Dabei ist
on den aufeinanderfolgenden Ealtungen der Funktion r/(f) oder auch

Jon den auf die diskontinuierliche Methode übertragenen Faltungs-
Wormeln (1) auszugehen. Die für den Fall D durchgeführten Berech-
Onngen stützen sich auf diese letztgenannte Methode.

Als Ausgangswerte für die numerischen Rechnungen dienten die
* je fünfjährige Intervalle gebildeten Funktionen und £(<), wie

®*e sich aus der Tafel EMG 1953 ergeben, wenn < 0 für a; 25 go-
setzt wird. Diese Ausgangswerte sind in der nachstehenden Tabelle
zusammengestellt.

< s(<) «(0 /(<M)

0 0,000 000 1,000 000

1 0,006 245 0,993 755

2 0,007 548 0,986 207

3 0,009 771 0,976 436

4 0,013 449 0,962 987

5 0,019 471 0,943 516

6 0,029 282 0,914 234

7 0,044 772 0,869 462

3 0,068 205 0,801 257

9 0,101 013 0,700 244

10 0,140 633 0,559 611

11 0,174 937 0,384 674

12 0,179 546 0,205 128

13 0,133 816 0,071 312

14 0,059 255 0,012 057

15 0,011 452 0,000 605

16 0,000 605 0,000 000

20
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Die Rechnung erfolgt nach clor in folgender Weise auf die dis-

kontinuierliche Methode umgestellten Formel (1):

/M 2/(r—M — r)g(r)
(16)

mit /(0,t) 1(1). j

Für die Randwerte sind die Summationsgrenzen sinngemäss anzupassen.

Die Erneuerungsfunktion und das zweite Moment ergeben sich

anschliessend zu

%(<) 2WM
<")

W) 2^/(r,t).
r= 1

Die praktische Auswertung von Formel (16) läuft darauf hinaus,

die Faltungsoperation der numerischen Rechnung zu erschliessen. Eine

praktisch befriedigende Lösung dieses Problems ist nicht nur für
das Erneuerungsproblem, sondern für viele weitere Anwendungen der

Wahrscheinlichkeitsrechnung und mathematischen Statistik von Be-

deutung. Beim vorliegenden Versuch hat man sich mit der fortgesetzten
Faltung his zur 15. Potenz begnügt. Die Erneuerungsfunktion konnte
auf diese Weise für nicht weniger als 500 Jahre vorausberechnet wer-
den. Das Ergebnis der Berechnung ist in den Figuren 4a und 4b fest-

gehalten.
Mit Hilfe eines Elektronenrechners •) liess sich die Rechnung im

vorliegenden Fall nach Erstellung von 112 Ausgangskarten vollständig
automatisch abwickeln -). Zu berücksichtigen ist immerhin, dass die

Rechnungsvoraussetzungen im vorliegenden Beispiel ziemlich einfach

gewählt wurden. Die Erweiterung des Rechenapparates auf allge-
meinere Voraussetzungen - zum Beispiel nicht homogene Bestände -
sowie die Übertragung der Rechnung auf mit der offenen Gesamtheit

verknüpfte Vorgänge - zum Beispiel die Bildung eines Deckungs-

kapitals sind Aufgaben, welche noch ihrer Lösung harren.

') Es handelt sich um den Elektronenrechner Gamma 3 der Compagnie des

machines Bull, Paris.
-) Das angewandte Verfahren wurde in verdankenswerter Weise von Dr. Ose.

W. Spring entwickelt, der die technischen Einzelheiten in einem besonderen Artikel
veröffentlichen wird.
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Bei der Ermittlung der Erneuerungsfunktion handelt es sich um
Extrapolationsaufgabe, welche - abgesehen von allfälligen Un-

Sicherheiten in den Voraussetzungen - dank des stochastischen Charak-
Grs der in Betracht fallenden Vorgänge noch durch die Angabe des

zugehörigen Schwankungsbereiches ergänzt werden sollte. Für den
' ®entarfall, wo die in Frage stehende, sich erneuernde Gesamtheit
ur aus einem Element besteht, lassen sich diese Schwankungsbereiche

'ins den in der Figur 5 graphisch dargestellten Frequenzfunktionen
GM) herauslesen. Für Gesamtheiten, welche aus mehr als einem

®ni6nt zusammengesetzt sind, ergibt sich die zugehörige Frequenz-
unktion durch fortgesetzte Faltung der für den Elementarfall be-

stimmten Funktion /(r,f), welche - wenn ein genaues Resultat ge-
Wünscht wird - wiederum zweckmässig mit Hilfe eines Elektronen-
Rechners durchzuführen wäre. Wenn eine Näherung genügt, so kann
die Frequenzfunktion für » Elemente aus den zugehörigen Momenten
Kundenworden, welche ihrerseits aus den Momenten der Einzelbestände
hervorgehen. Unter der Annahme des Gesetzes D und bei « 100
Elementen ergeben sich beispielsweise folgende Vergleichswerte:

Mittelwert Mittlere mittlere
' (Urner.oru,Infunktion) Abweichung Abweichung in %

* des Mittelwertes

0,506 5,711 2,348 41,1

1,012 45,134 5,190 11,5

5,060 440,017 6,216 1,4

10,120 921,230 8,482 0,9

Biese Zahlenwerte veranschaulichen den Schwankungsbereich der Er-
fiouerungszahlen, welcher bei praktischen Anwendungen gebührend zu
berücksichtigen ist. Dieser Schwankungsbereich wird mit zunehmender
Elementenzahl und mit wachsender Zeit verhältnismässig immer enger.

2. Risikotheorie für sich erneuernde Bestände

Die abgeleiteten Formeln über das Verteilungsgesetz der akkumu-
Herten Erneuerungszahl erlauben es, an den Aufbau einer besonderen
Eisikotheorie für sich erneuernde Versicherungsbestände heranzutreten.
Eine derartige Risikotheorie würde es gestatten, die für die risiko-
theoretische Stabilität erforderlichen Sicherheitsmittel bei sich erneu-
Gtnden Versicherungsbeständen auf objektiver Grundlage zu ermitteln.
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Auf eine eingehende Diskussion dieses besonderen Fragenkreises wird

hier verzichtet; es wird lediglich versucht, auf die zu lösenden Probleme

hinzuweisen.
Die risikotheoretische Stabilität eines Versicherungsbestandes wird

gewöhnlich anhand der Übersohadenwahrscheinlichkeit 1 — /*'(«) oder

der Euinwahrscheinlichkeit î/j(m) beurteilt, welche unter Berücksichti-

gung der verfügbaren Mittel « hinreichend klein ausfallen sollten. Die

Übersohadenwahrscheinlichkeit 1—/<'(«) lässt sich mit Hilfe der For-

mein (1) in Verbindung mit der Schadensummenverteilung s(z) be-

rechnen. Es ist „
/CO2 /(M) s *'(2) cfe, (18)

W

worin s*'(z) wie üblich die r-te Faltung der gegebenen Schadensummen-

Verteilung s(z) bedeutet. Für f(f) g(i) e~' (Fall À im Kapitel III)
geht Formel (18) in den aus der kollektiven Risikothoorie bekannten
Ausdruck 00

/co
/*"

2 - .«""(«)& (18')
r l »'I

M

über. In ähnlicher Weise lassen sich die übrigen Formeln der kollek-
tiven Risikotheorie direkt auf den Fall A übertragen. Dies gilt zum

Beispiel auch für die Ruinwahrscheinlichkeit ^(w).
Von besonderer Bedeutung für viele risikotheoretische Anwen-

düngen ist es, dass bei den praktisch vorkommenden Ausscheide-

gesetzen mit steigender Ausscheideintensität die resultierende Vor-

teilung /(r,f) eine stark ins Gewicht fallende unternormale Dispersion
aufweist. Dadurch wird die risikotheoretische Stabilität verbessert und

vermag bis zu einem gewissen Grad die durch die Summenstreuung
eintretende Verschlechterung wettzumachen. Dies erlaubt es, bei mit
dem Alter ansteigender Ausscheideintensität das Maximum des Selbst-
behaltes höher anzusetzen als bei gleichbleibender Ausscheideintensität.
Die nähere Abklärung dieser Verbesserung der risikotheoretischen
Stabilität und darüber hinaus der systematische Aufbau einer Risiko-
theorie für sich erneuernde Gesamtheiten bieten noch ein weites Feld

für fruchtbare theoretische und praktische Untersuchungen.

* **
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Abschliessend sei versucht, die wichtigsten Ergebnisse der dar-
gelegten Untersuchungen in vier Punkte zusammenzufassen:

1- Die Erweiterung des Moserschen Modelles auf stochastische Pro-
zesse lässt die aus dem Moserschon Modell abgeleiteten Ergebnisse,
insbesondere den Verlauf der Erneuerungsfunktion und Erneue-
rungsdichte unberührt. Das verallgemeinerte Modell erlaubt es,
den durch die stochastische Natur der beteiligten Vorgänge be-
dingten Schwankungsbereich anzugeben.

Beim Moserschen Modell ergibt sich die Erneuerungsfunktion als

Lösung einer Integralgleichung. Im erweiterten Modell erhält man
demgegenüber die Verteilungsfunktion der akkumulierten Er-
neuerungszahl - ohne Integralgleichung - direkt aus Verbleibs-
Ordnungen Z(*r,<) höheren Grades, welche im wesentlichen durch
fortgesetzte Ealtung aus der gegebenen Ausscheidedichte g(f) her-
vorgehen. Der Mittelwert der akkumulierten Erneuerungszahl
führt auf die Erneuerungsfunktion im Moserschen Modell.

'L Die Streuung der Erneuerungszahlen ist kleiner, gleich gross oder
grösser als beim homogenen stochastischen Prozess, je nachdem
die Ausscheideintensität /,«(!) des zugrunde liegenden Ausscheide-
gesetzes mit f steigt, gleich bleibt oder sinkt. Das Ausscheidegesetz
3(0 e~' mit /.<(!) 1 führt auf den homogenen stochastischen
Prozess, bei dem die klassische Verteilung von Poisson enstcht.

P Ira Rahmen des stochastischen Modells harren noch eine Reihe
von Fragen ihrer Lösung. Insbesondere sind die Eigenschaften der
Brenzverteilung für grosse < der akkumulierten Erneuerungszahl
näher abzuklären.
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