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Das Erneuerungsproblem und seine Erweiterung

auf stochastische Prozesse

Von Hans Ammeter, Ziirich

Unter den Problemen, um die sich die schweizerischen Versiche-
fungsmathematiker besonders bemiiht haben, nimmt das FErneuerungs-
Problem eine hervorragende Stellung ein. Dafiir zeugt schon der Name
Chrigtian Mosers, der das grundlegende mathematische Modell ge-
schaffen hat, und auch die stattliche Zahl der in den «Mitteilungeny»
Verotfentlichten Beitriige iiber das Frneuerungsproblem, die iiber-
Wiegend von schweizerischen Autoren stammen (siehe Literaturver-
Zeichnis). Im folgenden wird zuniichst ein Uberblick iiber die bisherigen
Bemilhungen um diesen Problemkreis gegeben und anschliessend ver-
sucht, einige Frweiterungen zu entwickeln. Dabei wird von der bei
Problemm der angewandten Mathematik auftretenden Dreiteilung der
Allfga,be

Kongtruktion eines zweckmissigen Modells und mathematische Formu-
lierung des Problems,

= . _ : }

-El‘forsohung des Modells und mathematische Darstellung der Liosung,

Numerische Berechnung,

Asgegangen.

I. Das Mosersche Erneuerungsproblem
1. Die Entwicklung des Modells

Fiir dag Erneuerungsproblem ist das grundlegende mathematische
Modell von Christian Moser in seinem, bei Anlass des zwanzigjihrigen
Jubiliums unserer Vereinigung gehaltenen Vortrag entwickelt worden.
Dieser Vortrag wurde im Band 21 der «Mitteilungen» veroffent-
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licht [33] 1) und zihlt nicht nur wegen seines Gedankengehaltes, son-
dern auch wegen seiner klaren und iiberaus anschaulichen Form zu den
klassischen Arbeiten der aktuarwissenschaftlichen Literatur. Weiteren
Kreisen hat Moser seine [deen in der dem IX. Internationalen Kon-
gress der Versicherungsmathematiker in Stockholm unterbreiteten
Arbett « Integralgleichungen und sich erneuernde Gesamtheiten» zu-
giinglich gemacht [34].

Mit diesen beiden Arbeiten beginnt die eigentliche (teschichte des
Erneuerungsproblems. Selbstverstindlich sind schon vorher einige
Aktuare im Rahmen von besonderen Untersuchungen auf Fragen ge-
stossen, welche in engem Zusammenhang mit der von Moser formu-
lierten Problemstellung stehen, und haben unter bestimmten Voraus-
setzungen Liosungen gefunden. Derartige Arbeiten sind unter anderem
von Kinkelin [25], Schaertlin [48], Schenker [49], Herbelot [ 23], Risser
[45] und Alder [1] bekannt. Auch Moser selbst hat besondere I'ragen
aus der Hrneuerungstheorie schon viele Jahre vor seinem Jubiliums-
vortrag in seinen Vorlesungen behandelt. Die grundlegende Bedeutung
der erwithnten Moserschen Arbeiten wird dadurch aber kaum beriihrt,
sind doch alle spiteren Arbeiten vom Moserschen Modell und von den
von thm geschatfenen Begriffen ausgegangen.

Am Beispiel einer Sterbekasse Lisst sich das Moserscho Modell wie
folgt schildern:

(tegeben ist eine Sterbekasse, welcher anfinglich H(0) Mitglieder
angehoren, die durchwegs das niedrigste Hintrittsalter x, aufweisen
und genau nach Massgabe eines bestimmten Sterbegesetzos ausscheiden.
Jedes ausscheidende Mitglied wird sofort ersetzt durch ein neues Mit-
glied mit dem Iiintrittsalter x,, das seinerseits ebenfalls nach dem fiir
den Eintrittsbestand geltenden Sterbegesetz ausscheidet. Anhand
dieses Modelles formulierte Moser die nach ithm benannte Integral-
gleichung fiir die Erneuerungsdichte, auf die wir im néichsten Absgchnitt
zuritckkommen werden.

Dieses Modell wurde schon sehr bald durch Wyss [58] und Zwinggl
[60] und etwas spiter durch Féraud [13] und Richter [44] auf Gesamt-
heiten mit zeitlich veriinderlichem Umfang erweitert. I'erner hat bereits
Moser eine Integralbeziechung abgeleitet, nach der an die Bestandes-

1) Zahlen in [ ] beziehen sich auft dag Literaturverzeichnis.
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enfwicklung gekniipfte Vorgiinge — zum Beispiel die Bildung eines
Declillngslca[)itals — mit Hilfe der vorher berechneten Iirneuerungs-
dichte von der geschlossenen auf die offene Gesamtheit iibertragen
Werden konnen., Spiiter haben indessen Maret [31], [32] und Tarjan [55]
gezeigh, dass diese Ubertragung ohne vorherige Berechnung der Iir-
Beuerungsdichte direkt aus einer verallgemeinerten Integralgleichung
erfolgen kann,

Das Mosersche Modell wurde in der Folge von Richter [44],
Fellor [12], Doob [9] und weiteren Autoren fiir stochastische Vorginge
verallgomeinert, bei denen das Ausscheiden der Elemente nicht mehy
Streng gesetzmiissig, sondern unregelmissig und zufallsartig erfolgt.

Von Bartlett, Harris [22] und Kendall wurde das Mosersche Modell
Schliesslich noch in dem Sinne erweitert, dass bei jedem Austritt nicht
nur ein neues lement, sondern mehrere nachriicken. Dag Iirneu-
‘rungsproblem geht dann in das Verzweigungsproblem iiber, das bei

lologischen und atomphysikalischen Untersuchungen, insbesondere
bei der sogenannten Kettenreaktion, eine Rolle spielt.

2. Die Mosersche Integralgleichung

Fiir die Behandlung des Erneuerungsproblems, insbesondere im
Hinblick quf die spiitore Krweiterung auf stochastische Prozesse, er-
Weist es sich alg zweckmiissig — wenigstens teilweise — eine vom Ub-
lichen abweichendo Bezeichnung einzufithren. Fiir die Zeitvariable wird
stety ¢ geschrieben. Dies fithrt dazu, auch das Alter in der Absterbe-
Ordnung mit £ und nicht wie iiblich mit & zu bezeichnen. iir die Uber-
%ebensordnung schreiben wir [(#) und setzen stets voraus, dass [(0) = 1
18t. Die Gesamtheit der im Zeitraum (0,t) Verstorbenen wird mit

Q) = 1=,

die Ableitung dieser Gesamtheit nach ¢, die sogenannte Sterbedichte,

" 00 = QO — 10

bezoichnet. Bei kontinuierlicher Betrachtung bedeutet ¢(t) dt die Wahr-
Scheinlichkeit fiir ein Klement, im Alters-Intervall (¢, ¢ - df) auszu-
Scheiden. Bei diskontinuierlicher Betrachtung entspricht g(f) der An-
zahl der Gestorbenen d,.,- Hier konnte die {ibliche Bezeichnung mit
Riicksicht auf dio Verwendung von d als Differentialsymbol nicht
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beniitzt werden. I'iir die Sterbeintensitit gilt schliesslich die bekannte
Beziehung /
3 —W g0

A

Da die Tilemente der Gesamtheit £ nicht nur durch Tod, sondern auch
durch andere Ursachen abgehen kénnen, werden im folgenden die
Tunktionen w(t), q(t) und Q(t) allgemeiner mit Ausscheideintensitit,
Ausscheidedichte und Ausscheideordnung benannt. Ferner wird i(t) als
Verbleibsordnung bezeichnet.

Unter Beniitzung dieser Begriffe und Bezeichnungen lisst sich der
von Moser behandelte Fall folgendermassen entwickeln:

Gregeben ist ein Anfangsbestand von H(0) Tilementen, welche alle
das niedrigste Lintrittsalter { = 0 aufweisen. I'iiv den geschlossenen
Bestand ergibt sich nach ¢ Jahren ein Restbestand von
Elementen. H(t) = HO) 49

(teht man zum offenen Bestand {iber, so muss als neuer Begriff
die Krneuerungsdichte m'(t) eingetithrt werden: m/(t) dt bedeutet die
Wahrscheinlichkeit fiir ein Iilement, im offenen Bestand withrend des
Zieitintervalles (¢, ¢ - dt) auszuscheiden und erneuert zu werden. Aus
der Eirneuerungsdichte, welche oft auch als Iirneuerungsintensitit be-
zeichnet wird, ergibt sich durch Integration die Frneuerungsfunktion

t
m(t) = jm’(t) dr ,
0
welche die Gesamtheit aller im Zeitraum (0,t) aufgetretenen Krneue-
rungsfille — im folgenden kurz akkumulierte Krneuerungszahl genannt —
als T'unktion der Zeit ¢ angibt.

T'iir die Krneuerungsdichte m’(f) hat Moser unter der Annahme

einer stets gleichbleibenden Bestandeszahl die ohne weiteres einleuch-

tende Integralgleichung z

H = HIt)+ [Hw'(t—7)U7)dv (Ia)

aufgestellt, welche nach Division mit der festen Bestandeszahl I in die

einfachere I'orm ;

L= Ity + [m'(t—7) iz} d(2) (Ib)
b

iibergeht.
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Im folgenden wird immer von der auf ein Tlement reduzierten Bestan-
deszah] ausgegangen, welche der Integralgleichung (Ib) entspricht.

Schon Moser hat die Integralgleichung durch Differenzieren in die

Form
‘

m'(t) = q(t) + f‘m'(t~1:) q(v) dv (Ie)
0
ﬁb@’gefﬁhrt, aus der durch Integration die nachstehende Integral-
glelchung fiir die Hrneuerungstunktion |

m(t) = Q) + [ m(t —) q(v) dv (1d)

hel‘VOrgeht.

Die Integralgleichungen (I) beziehen sich auf den Spezialfall, bei
dem (jp Anfangsgeneration aus nur nulljihrigen Flementen besteht.
Der allgemeinere Fall, bei dem die Anfangsgeneration nicht nur aus
nuujﬁhrigen Elementen besteht, oder noch allgemeiner einer anderen
Allsscheideordnung folgt als die Neueintritte, ligst sich ebenfalls auf
den Moserschen Spezialfall zuriicktiihren.

Moser ging von der kontinuierlichen Methode aus. Wyss [58], [59]
hat schon 1999 die wichtigsten Formeln auf die diskontinuierliche
Methode iibertragen. Weitere Untersuchungen iiber diskontinuierlich
Sich erneucrnde Gesamtheiten sind von Maret [30] durchgefiihrt wor-
den, Tn jilngster Zeit hat Kanters [24] in seiner unter der Leitung von
Camp&gne entstandenen Dissertation das Iirneuerungsproblem gyste-
Mmatisch auf digkontinuierlicher Grundlage entwickelt.

3. Die theoretische Losung der Moserschen Integralgleichung

Die innere Iirforschung des Moserschen Modelles liuft analytisch
auf die Ligsung der Integralgleichungen (I) und die Diskussion ihrer
L('isungen hinaus. Iiine grosse Zahl von Arbeiten iiber das Iirneuerungs-
Problem befagst sich mit diesem zweiten Teil der Aufgabe. Auf einige
Lﬁﬂungsvorschlétge soll hier — ohne Vollstiindigkeit — kurz hingewiesen
Werden.

Zuniichst gingen die Bemithungen dahin, analytische Ausscheide-
gesetze zu finden, welche eine Darstellung der Frneuerungsdichte oder
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[irneuerungsfunktion in expliziter Form erlauben. Zwinggi [61] hat
schon 1931 gezeigt, dass eine solche Lisung moglich ist, wenn die Aus-
scheidedichte ¢(f) in der I"orm

1) = Db
k=1
darstellbar ist. Von dieser Form haben in der Folge verschiedene
Autoren Gebrauch gemacht; insbesondere sind hier Arbeiten von
Brown [3], Hadwiger [21], Liechti [28] und Pestalozzi [40] zu nennen.
Von einer etwas anderen Funktion ist Schulthess [50] in seinem
bemerkenswerten Beitrag ausgegangen; es gelang ihm, die Liosung
der Integralgleichungen (1) in expliziter I'orm darzustellen, wenn die
Verbleibsordnung dem (Gesetz von Achard

I(t) — (1 - ;)m

Hadwiger [21] hat auf die Lésung der Integralgleichung mit der
Neumannschen Reihe und in diesem Zusammenhang auf besondere
Klassen von Funktionen hingewiesen, welche ein gewigses transzen-
dentes, in ihren Parametern jedoch lineares Additionstheorem erfiillon.

geniigt.

Von besonderer Bedeutung fiir die Liosung der Moserschen Integral-
gleichung hat sich die Laplace-Transformation und die aus ihr hervor-
gehende Maltungssymbolik erwiesen, die Saxer [47] vor einigen Jahren
in einem meisterhaften Vortrag vor unserer Vereinigung behandelt hat
und auf die mit Riicksicht auf die spiteren Entwicklungen hier etwas
nither eingegangen werden soll.

Die Laplace-Transformierte ¢(v) einer Funktion f() ist durch die
Beziehung

<O

L{f(t)} = (o) = [e ft) e

0

definiert; umgekehrt ergibt sich die Funktion f(t) aus ihrer Trans-
formierten vermittelst der Inversionsformel

x+tioe
1 :
Ht) = L {p(v)} = Ty e p(v) dv.

100
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Das in den Integralgleichungen (1) rechts auftretende Integral von der
Form

!
J =) g dz
0
g_eh('jrt Zum sogenannten Faltungstypus, das durch Laplace-Transforma-
blon in das gewshnliche Produkt
Lift - Lig)
ibergeht und zur symbolischen Darstellung durch
f(t) = g(t)
Anlags gegeben hat. Fiir die I"altungsoperation gilt sowohl das kom-
Mutative aly auch das assoziative Gresetz; dies erlaubt es, fiir die fort-
gosetzte Faltung einer Funktion mit sich selbst
f(&) « f(8) = (1)
P00 ) — 7
W schreiben. Die Funktion f*(t) wird als die 7-te Faltungspotenz dor
Funktion [(t) bezeichnet.

Mit Hilfe der Laplace-"Transformation und der dargelegten I'altungs-
Symbolik ligst sich beispielsweise die Integralgleichung (Id) schreiben

L{m(t)} = L{Q(t)} + Lim(t)} - Liq®)},

und

s der unmittelbar die Lisung

4 7t [ LIQ(t)}.____]. d’

Durch die Laplace-Transformation wird die Lisung der Integral-
glﬂichung (Id) gewissermassen algebraisiert. Theoretische Unter-
Suchungen lagsen sich dadurch mit Hilfe von fast elementar anmuten-
den Operationen durchfithren. Fiir das praktische Aufsuchen von
L('isungen 18t die Laplace-Transformation vor allem dann wertvoll,
Wenn eg gelingt, ¢(t) und Q(f) durch Funktionen darzustellen, welche
sich leicht, transformieren lassen, und wenn man die Losung riicktrans-
formieren kann. Dies trifft zum Beispiel fiir das bereits erwithnte, von
Zwinggi und weiteren Autoren beniitzte Funktionensystem zu.

folgt,
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4. Der Beharrungszustand

Besonderes Interesse hat bei der Erforschung des Moserschen
Modelles von Anfang an die Frage des Beharrungszustandes gefunden.
Schon Moser stellte sich diese F'rage. Dabei nahm er a priori an, dass
die Erneuerungsdichte m'(t) einem festen Grenzwert zustrebe, den er
mit dem reziproken Wert der mittleren Verbleibszeit eines Klementes
(das heisst der mittleren Lebenserwartung)

g co
gl0) = f l(z)dr = j Tq(7)dT
0 0

identifizierte. In der Folge zeigte es sich jedoch, dass die exakte Formu-
lierung des Grenzwertsatzes mit einer Reihe von mathematischen
Knackniissen verbunden ist. Wie Saxer [46] schon 1932 auseinander-
setzte, 1st nicht einmal die Definition des Beharrungszustandes selbst-
verstiindlich, sondern bedarf einer analytischen Umschreibung. Uber-
dies herrschte anfinglich die Meinung, dass die Frneuerungsdichte
sich stets wellenartig dem Grenzwert nihere. Hadwiger [15] zeigte
1937, dass die Krneuerungsdichte sich auch einseitig dem Grenzwert
nihern kann (siehe zum Beigpiel die I'dlle B und C im ITL. Kapitel)
und dasgs unter Umstinden iiberhaupt kein Grenzwert erreicht wird.
Nach Richter [44], der sich als erster systematisch mit der F'rage des
Beharrungszustandes befasst hat, unterscheidet man zwischen einer

Eigentlichen Stabilisierung
wenn :
lim m’ (%)

{—=co

einem endlichen Wert zustrebt, und der

Stabilisierung im Mittel

wenn

1

lim - m(t)

{~»>00
einem endlichen Wert zustrebt. Wihrend fiir die «eigentliche Stabili-
sierung» besondere analytische igenschaften fiir das zugrunde liegende
Ausscheidegesetz q(t) erforderlich sind, geniigt, wie Feller [10] und
Liegras [27] gezeigt haben, fiir die « Stabilisierung im Mittel» im wesent-
lichen die Kndlichkeit der mittleren Lebenserwartung.



5. Die numerische Auswertung

‘ In der umfangreichen Literatur tiber das Krneuerungsproblem
fm_det man verhiltnismissig selten numeriseh durchgerechnete Bei-
Spl_ele. Immerhin haben sich doch einige Autoren an diesen dritten
Teil deg Problems herangewagt ; unter ihnen sind schon frith Wyss [57],
58], [59] und Zwinggi [60], [61] und etwas spiter Schulthess [50] und
®Stalozzi [40] hervorgetreten, in neuester Zeit haben die Hollinder
rans, Campagne [2] und Kanters [24] beachtliche Beitriige zu diesem
Tﬁfﬂ des Problems geliefert. Trotzdem besteht zurzeit eher noch ein
Hssverhiiltnis zwischen der hochentwickelten Theorie und der prak-
bischen Anwendung ihrer Ergebnisse. Diese Sachlage ist zu bedauern,
besteht doch auf den verschiedensten Gebieten in- und ausserhalb des
Versicherungswesens ein Bediirfnis fiir praktische Anwendungen. Es
86 zu hotfen, dass dieser dritte Teil der Lésung des Erneuerungs-
broblems bald in vermehrtem Masse das Interesse der praktisch tatigen
Mﬂthematiker finden wird. Zum vornherein lasst sich dabei feststellen,
dass die Entwicklung praktisch befriedigender numerischer Methoden
kaum leichter fallen wird als etwa die Aufstellung der symbolischen
LﬁSungsformel (Ld"), von welcher der Weg bis zum numerischen Kr-
gebnis noch weit ist. Schwierigkeiten bietet die Intwicklung geeigneter
n}llnerischor Verfahren ingbesondere deshalb, weil der Arbeitsaufwand
anht beliebig hoch sein darf, sondern innert gewissen, ziemlich engen,
Wirtschaftlich tragbaren Grenzen gehalten werden muss. Hier harren
Noch interegsante Probleme ihrer Losung.

II. Der stochastische Erneuerungsprozess

1. Allgemeines

Wie im vorigen Kapitel betont wurde, geht man beim Moserschen
Erneuerungsmodell von der in der elementaren Versicherungsmathe-
Matik iiblichen Annahme aus, dass die Elemente der betrachteten
Gesamtheit, genau nach der zugrunde gelegten Ausscheideordnung ab-
8ehen. Diese allzu idealisierte Voraussetzung trifft in der Wirklichkeit
kaum jo zu. Vielmehr erfolgt das Ausscheiden der Elemente #hnlich
Wie bei einem stochastischen Prozess unregelmissig. Im folgenden wird
Versucht, das Mosersche Modell auf stochastische Prozesse zu verall-
gemeinern.
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Schon Richter [44] hat diese erweiterte Problemstellung auf-
gegriffen und hat unter anderem den Begriff der «wahrscheinlichkeits-
theoretischen Stabilisierung» aufgestellt. Nach ihm haben eine Reihe
von weiteren Autoren die Grenzwerteigenschaften des stochastischen
Irneuerungsprozesses untersucht. Hier sind vor allem, neben Richter,
Chung [5], [6], [7], Doob [9], Teller [12], Schwarz [51] und Técklind
[52], [53] zu nennen.

Tiir die Behandlung des lirneuerungsproblems auf der Grundlage
der Regeln des stochastischen Prozesses sprechen vor allem drei Ge-
sichtspunkte. [tinmal erscheint es als wiinschenswert, zu priifen, in-
wieweit sich die abgeinderten Voraussetzungen auf die bisher be-
kannten Resultate auswirken. Ferner bictet der Ilinbezug der stocha-
stischen Komponente die Moglichkeit, den Schwankungsbereich der
vorausbherechneten Krneuerungsfunktion abzukliren. Schliesslich er-
laubt die stochastische Betrachtungsweise, an den Autbau einer Risiko-
theorie fiir sich erneuernde Versicherungsbestinde heranzutreten.

Beim stochastischen Frneuerungsmodell ist es zweclkmiissig, vom
Spezialfall eines Bestandes auszugehen, der nur aus einem Element be-
steht. Dieses Iilement scheidet in irgendeinem Zeitpunkt aus und wird
sofort durch ein neues ersetzt. Dieses neue Blement gehdrt der zweiten
(teneration an; bei seinem Ausscheiden wird es ersetzt durch ein Iile-
ment, dag der dritten Generation angehort usw. Die «Liebenslinie» der
aufeinanderfolgenden, den verschiedenen Generationen angehorenden
[ilemente lisst sich im nachstehenden Diagramm (Figur 1) anhand
zweter Beispiele verfolgen.

Im ersten Beispiel (ausgezogene Linie) scheidet das Element erst-
mals nach 2 Zeiteinheiten aus, wird spéter nach 4, 414, 434 und 5 Zeit-
einheiten jeweilen nochmals erneuert und gehort dann der sechsten
(reneration an. Die gestrichelte Linie zeigh eine andere praktisch mog-
liche Krneuerungsfolge. Durch die punktierte Linie wird anderseits der
Verlauf der Frneuerungsfunktion angedeutet, wie er sich auf Grund des
Moserschen Modells in Verbindung mit bestimmten Annahmen iiber
das Ausscheiden (I'all D im Kapitel I11) ergeben wiirde. Die auf Grund
der Regeln des stochastischen Prozesses ausscheidenden Klemente
weisen eine Liebenslinie auf, welche in geradlinigen Stufen um die Iir-
neuerungsfunktion herum fortschreitet,

Iis liegt auf der Hand, dass beim stochastischen Hrneuerungs-
prozess keine bestimmten Aussagen moglich sind iiber den Verlauf der
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Igur 1 Generationenbahnen
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akkumulierten Frneuerungszahl im konkreten Liinzelfall. Iiine mathe-
Matische Theorie iiber den Binzelfall ist daher nicht moglich. Hingegen
8elangt man zu einer mathematisch formulierbaren Theorie, wenn man
das Modell vom konkreten Dinzelfall auf die Gesamtheit aller mog-
lichen Verliufe des Frneuerungsprozesses erweitert und jeder Verlaufs-
Moglichkeit eine relative Hiuftigkeit oder mathematische Wahrschein-
lichleit zuordnet. Diese Wahrscheinlichkeiten lassen sich angeben,
Wenn man fiir jeden Zeitpunkt ¢ und jede Generation im Diagramm der
Figur 1 eine Ubergangswahrscheinlichkeit in die niichste Greneration
festlegt Im folgenden wird angenommen, dass diese Ubergangswahr-
Scheinlichkeit stets dureh die dem Alter ¢ des Tlementes zugeordnete
Ausscheidedichte q(t) dt gegeben sel.
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Zu einem anschaulichen Bild iiber das Wesen des stochastischen
Frneuerungsprozesses gelangt man, wenn man sich dessen Ablauf In
agrosser Zahl wiederholt denkt. Die Masse dieser Iinzelelemente, welche
nacheinander den Frneuerungsprozess durchlaufen, sei durch den in der
Figur 2 im Ursprung aufgestellten senkrechten Quader gegeben. Jedes
einzelne im grossen Quader enthaltene Element liuft zuerst innerhalb
der Bahn der ersten Gieneration, um nach seiner Iirneuerung in die
Bahn der zweiten Generation hiniiberzuwechseln usw. Lings ver-
schiedener Fanggeraden in der Grundrissebene mit ¢ = konstant wird
die Hiufigkeit der Flemente ausgesiihlt, welche sich im Zeitpunkt
in den verschiedenen Generationenbahnen befinden. Die Masse der im
Ursprungsquader enthalten gewesenen llemente verteilt sich dann auf
die lings der Fanggeraden ¢ = konstant angeordneten Quaderreihen.
Die Hohe der einzelnen Quader gibt die Hiufigkeit der Hlemente an,
welehe nach der Zeit ¢ beigpielsweise der (r -} 1)-ten Generation an-
gehoren oder, mit anderen Worten, die Wahrscheinlichkeit dafiir, dass
das Iilement bis zum Zeitpunkt ¢ r-mal erneuert worden ist. Die lings
einer Manggeraden ¢ = konstant aufgestellten Quaderreihen geben die
Hiufigkeitsverteilung oder Frequenzfunktion der akkumulierten -
neuerungszahl r wieder. Diese Frequenafunktion ist in der Figur 2
fiir drei Werte von ¢ angegeben. Die Zahlenwerte stiitzen sich auf die
Annahmen deg Falles A im Kapitel IIL.

In der ersten Quaderreihe nimmt die Hohe der Generationsquader
von der zweiten Generation an mit steigender Generationsnummer
fortgesetzt ab; die Wahrscheinlichkeit, dags ein Illement nach kurzer
Zeit schon mehrmals erneuert wurde, nimmt somit rasch ab. In der
zweiten und erst recht in der dritten Quaderreihe dndert sich das Bild,
indem die urspriinglich monoton fallende Reihe in eine Verteillung von
glockentérmigem Typus iibergeht, bei der sich die Hiufigkeiten ver-
hiltnismissig immer enger um einen Zentralwert gruppieren.

Im Rahmen der Theorie iiber den stochastischen IMrneuerungs-
prozess stellt die Ermittlung der in Figur 2 dargestellten Verteilungen
der akkumulierten Erneuerungszahl » eine der wichtigsten Grund-
aufegaben dar, welche fiir die Lésung von verschiedenen weiteren Pro-
blemen die Basis bildet. In der vorliegenden Arbeit wird nur aut diese
Grundaufgabe eingegangen. Weitere Grundaufgaben sind zum Bei-
spiel die Bestimmung der Altersverteilung im Zeitpunkt ¢ und die Hr-
mittlung der Wahrscheinlichkeit, dass die akkumulierte Hrneuerungs-
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Z . . . . . . .

ahl » figy Jeden Zeitpunkt ¢ nie eine bestimmte Schranke k() tiber-
Schreitet, eine I'ragestellung, welche mit dem klassischen Ruinproblem
verwandt igt,.

Frgur 2 Modell der Generationshiufiglkeiten
f(r,t)

3. 4. S 6. 7. 8 9 10. 1. 12 13 14 15,
Generation

/ / / 71

‘ /

m(t)y=r

2. Die Verteilung der akkumulierten Frneuerungszahl

Die Frequenzfunktion der akkumulierten Frneuerungszahl r im
r ' . . . oot . . . .
Zeitpunkt ¢ sei mit f(r,t) und die zugehorige Verteilungsfunktion mit

Firt) = 3 flon)

0=0
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bezeichnet; f(r,t) ist gleich der Wahrscheinlichkeit, dass bis zum
Zoeitpunkt ¢ genau » Frnenerungsfille aufgetreten sind; F(r,f) stellt
demgegeniiber die Wahrscheinlichkeit dar, dags bis zum Zeitpunkt ¢
hochstens » Frneuerungsfille vorgekommen sind.

A. Das Elementarmodell

Nachstehend wird die Verteilung der zufilligen Variablen r #u-
nichst fiir folgendes Hlementarmodell bestimmt:

¢) der Anfangsbestand besteht nur aus einem Iilement mit dem
Alter £ = 0;

b) tir das Ausscheiden dieses Ilementes gilt die Verbleibsordnung
I(t) und die Ausscheidedichte ¢(f); beide Funktionen werden als
stetige und differenzierbare Funktionen der Zeit ¢ vorausgesetst;

¢) beim Ausscheiden des jeweilen dem Bestand angehérenden Hile-
mentes riickt sofort ein neues nulljihriges lilement nach, so dass
der Bestand stets aus einem Ilement besteht.

Tm Elementarmodell vereinfacht sich die Anzahl der im infinitesi-
malen Zeitintervall (¢,¢ - dt) moglichen Ereignigsse in die leicht iiber-
blickbare Alternative Ausscheiden oder Nichtausscheiden. Aug der fiir
dag Flementarmodell gefundenen Liosung lassen sich die Losungen
fiir allgemeinere Iille leicht autbauen.

Unter den genannten Voraussetzungen ergibt sich der Reihe nach
f0,t) = Ut)

fLY) = [HO,t—7)q(z) dv
f20) = [H1,1—7)q(z)de (1)

!

fr) = [fr—1,t—7)q(r) dr )

0
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Mlt H_ilfe der in Abschnitt I, 3 entwickelten Faltungssymbolik lassen
Sich die Formeln (1) folgendermassen schreiben:

FO.) — L)
fL) = FO.0) = q(t) — U #q(t)
[0 — fL) *qt) — K *q*2() (1)

f(},t) f('r——ﬂl,t).*q(t) == 1(l) »g™"(9)

() = 1 [qr)dv — 1—q(t) =1

0

i o . .
b, so ergibt sich fiir die Frequenzfunktion der akkumulierten Iir-
Beuerungszahl die Mormel

1§
fr) = [{a* @ —q* @)} ). (13)
0
Dig _Ausscheidedichte q(t) lasst sich als I'requenzfunktion der zufilligen
Variablen ¢ auffagsen; q(t) dt stellt die Wahrscheinlichkeit dar, dass
dag Ausscheidealter fiir ein liloment zwischen ¢ und ¢ 4~ dt liegt. Die
fugehorige Ausscheidefunktion
3
Q) = [q(x)dr
0
Stellt dann die Verteilungsfunktion des Ausscheidealters ¢ und die
Verbleibsordnung :

d"(W Komplement zur Verteilungsfunktion dar. In gleicher Weise lisst
Sich anch q*"(t), die r-te Faltungspotenz von ¢(t), als I'requenzfunktion
auffassen ; q*"(¢) dt stellt die Wahrscheinlichkeit dar, dass die Summe
der Ausscheidealter fiir die ersten r ausgeschiedenen und jeweils er-
Deuerten [tlemento zwischen ¢t und ¢-- dt liegt. Fiir die zugehérige

Verteilungstunktion gilt
t

QUnt) = [q*(x)dv

0

und ,
I(*r,t) = 1—Q(*n,1).
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Der Binfachheit halber nennen wir im folgenden die Funktionen Q(*r,t)
und I(*r,) Ausscheidefunktion und Verbleibsordnung r-ten Grades.
Mit Hilfe dieser I'unktionen lisst sich Formel (1;) in die einfacheren

Ausdriicke Frt) — Q(*r,0)—0 (*(r n 1),t)
flr,t) = L(*(r 4 1),8) = 1(*n,2)

iiberfithren. Daraus folgt der

(L3)

Satz 1: Die Wahrscheinlichkeit, dass bis zum Zeitpunkt ¢ genau r Hr-
neuerungstille auftreten, ist gleich der Ditferenz zwischen den
Werten der Verbleibsordnungen vom Grade » -1 und # im
Zeitpunkt t.

Aus Tormel (13) folgt unmittelbar fiir die Verteilungsfunktion
r
ity = 3 o)
p=0
= M)
+ 1(*2,1) — I(*1,1)
+ {(*3,8) — I(*2,¢)

A1, 1,0,
Fr,t) = U0+ 1),1). @)

Satz 2: Die Wahrscheinlichkett, dass bis zum Zeitpunkt ¢ hochstens r
Eirneuerungsfille auftreten, ist gleich dem Wert der Verbleibs-
ordnung (r - 1)-ten Grades im Zeitpunkt ¢.

das heisst es 1st

B. Zwei Erweiterungen

Die verhiltnismissig engen Voraussetzungen des Elementar-
modelles, welche zu den Sitzen 1 und 2 gefiihrt haben, lassen sich leicht
erweitern.

a) Zunichst sei der Iall betrachtet, bei dem das urspriingliche
Element nicht nulljihrig ist, sondern ein hoheres Anfangsalter x
aufweist. Dieser allgemeinere Fall lauft darauf hinaus, dass fiir die
Anfangsgeneration eine andere Verbleibsordnung I(f) gilt als fiir die
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Spéi _— ;
é)dteren Neueintritte, welche nach der Ordnung () ausscheiden.
d_ntel‘ dieson etwas allgemeineren Voraussotzungen ergibt sich fiir
ie Iy . - , )

® Frequonztunktion an Stelle der Formel (13) der Ausdruck

!
-— - N < SI. * _[ — * " —;
FOut) = [1a(@) # ") — q(x) % q*"(x)} do. (2)
0
b) Die Tormeln fiir die I'requenz- und Verteilungsfunktionen
rll l. p . o . -
Ic‘s&sen sich ferner auf Bestinde mit » Hlementen erweitern, wenn die
i . - . . .
equenzfunktionen fiir alle Einzelelemente untereinander stochastisch
ng a L 7 . P ;
tmbhanglg sind. Fiir die ['requenzfunktion Wf(r,t) des aus n Elemen-
I?ln 4usammengesetzten Bestandes gilt dann, wenn fiir die einzelnen
1 . . .
“mente die Frequenzfunktionen f,(r,t), fo(r,t) ... f,(r,t) bestimmt

Werden
’ O t) — Fo(r,8) % ol ) .. 5. (1 1) (10

}13 16 _F altungsoperation ist hier nach der diskontinuierlichen Methode
msichtlich der Variablen » durchzufithren.

% ®
Es

Bemerkenswert ist, dass die Verteilung der akkumulierten Lr-
H.QUSrungszahl r nicht — wie beim Moserschen Modell — iiber den Umweg
elney Integm]gleichung gefunden werden kann, sondern direkt durch
F altung aug der gegebenen Ausscheidedichte ¢(t) hervorgeht.

3. Charakteristische Funktion und Potenzmomente
A. Die charalkteristische Funktion

P Die der ¥requenzfunktion f(r,t) zugeordnete charakteristische
1 : . - o« .
unktion ist definiert durch

@ (u,t) = >\ e f(r,). (3)
r=0

Ihlter Beriicksichtigung der Integralvekursion (1) ligst sich diese Be-
Zichung umformen in

oo :
Prlad) = ) + 2 o™ [ fr—1,t—v)q(z) dr
r= 0

¢ o
= Ut)+ [ Mq(r)do %(‘)e fr,t—1).
’ 19
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Iis ergibt sich somit die Integralgleichung

!
p,(w) = Ut) + o™ [ @, (u,t—7)q(r) dr. (34)

Diese Integralgleichung lisst sich mit Hilfe der Laplace-Trans-
formation iberfithren in

Ligt = L{l} + ™ Lig} Liq} .
Daraus folgt fiir die charakteristische Funktion die Lisung

piwt) = 1|

S, I, B (35)
|1—* L{q} ’

B. Integralyleichungen fiir die Momente

Die unter A abgeleitete charakteristische Funktion ist vor allem
als momentenerzeugende Munktion niitzlich. Die Potenzmomente der
Verteitlung f(r,t) ergeben sich némlich durch fortgesetztes Differen-
zieren der charakteristischen Funktion nach w und anschliessendes
Nullsetzen von w. IMir das k-te Moment um Null

my(t) = D% fr, 1) (4)
r=0
oilt die Beziehung my(l) = 5F g% (u,f)  fir w = 0 (5)

worin ¥ die k-te Ableitung von ¢, bedeutet.

a) Iir das erste Moment um Null oder den Mittelwert erhélt man
auf Grund der Beziehung (5)
my(f) = o (u,t)  fir w = 0. (51)

Die Ableitung der Integralgleichung (3,) nach w fithrt auf

c a
po(u,t) = 4 e"“fqar(u,t—r)q(r) dr -+ e“‘j @, t—1) q(r) dr.
0 0

Setzt man % = 0 und substitulert man
t

9 0,) =1 und  [q@)de = Q),

0
so erhilt man fiir den Mittelwert m,(t) die Integralgleichung
¢

my(t) = Q) + [ my(t—)q(z)dr (6)
0
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DIE.! Integmlg]eichlmg (6) 1st 1dentisch mit der Moserschen Integral-
glelchung (Id) tiir die irneuerungsfunktion. Daraus liisst sich schliogsen,
flass die Erneuerungsfunktion m(t) beim Moserschen Modell identisch
86 mit dem Mittelwert der akkumulierten ISrneuerungszahl » im
Rahmen deg erweiterten Modells.

_ Durch die Integralgleichung (6) ist gewissermassen die Briicke
“Wischen den beiden Modellen gefunden; es besteht hier ein analoger
Zf‘ls&mmenhang wie in der Risikotheorie, wo das erste Moment der
Vel‘teilung des Gesamtschadens auf die Primie fithrt, welche sich auf
Grund deg Modells der elementaren Versicherungsmathematik ergibt.

. b) Um das zweite Moment der Frequenzfunktion f(r,t) zu be-
;tlmm@n, wird zuniichst die zweite Ableitung der charakteristischen
{ 1 3 . .

unktion (8) gebildet und anschliessend wiederum u = 0 gesetzt. Man

erhilt so die Integralgleichung
!
my(t) = 2my(t) — Q) + | mylt—7) q(s) dr. (7)
0

Mit Hilfe der Laplace-Transformation lisst sich die Lésung folgender-

massen darstellen y
[ 20 {m] —LiQ} |

mo(l) = L. . 7
& | 1-Lig | )

Untey Beriicksichtigung von Tormel (6) und der aus (Lc) sich er-

gebenden Beziehung 1
1 _}’_ L [.7”)’} — s (8)
L 1—L]q}

kann (7") umgeformt werden in
L{my} = 2L{m,} [1+ L{m}]—L{m,}
= QL {my) L{m.} + L{m,} .

Daraug folgt nach Riicktransformation

3
malt) = 2 [ my(t—7)mi(z) dr 4 m (1)
0

oder unter Beniitzung der Faltungssymbolik

My(t) = 2m, (L) » my(t) + my(t). (9%)



— 284 —

¢) IMir das dritte und vierte Moment fithren analoge Rechnungen
auf die Schlussformeln

Mg(t) — Gmy(t) % {my())*2 - 6y () xmi(t) +m, (£),  (10%)
my(t) = 24my(t) = {m;(t)} 3 - B6m(t) « {m;(t)} *2
- Ldmy () = my(8) + my(t) . (11%)

d) Die Iormeln (9%), (10%) und (11%) lassen vermuten, dags die
hoheren Momento durch den Mittelwert m () allein darstellbar sind.
Dieser Sachverhalt lasst sich nachweisen, indem man aus der trans-
formierten Integralgleichung (3,) L{l} und L{q} vermittelst der Be-
ziehungen (6) und (8) eliminiert. Man erhiilt so die neue transformierte
Integralgleichung

Lip}[1+ L{m} (1—e™)] = L{1},

aus der durch Riicktransformation
t

po(,t) = L —(L—6") [ p,u,t—7)mi(z) dr (12)
0
folgt. Da in Gleichung (12) nur die lirneuerungsdichte m(t) als gegebene
Funktion auftritt, und weil charakteristische 'unktion und Verteilung
einander umkehrbar eindeutig entsprechen, so gilt unter den ge-
troffenen Voraussetzungen der

Satz 3: Die Verteilung der akkumulierten Frnouerungszahl r ist durch
den Verlauf der Ernecuerungsdichte m;(f) vollstiindig bestimmb.

4. Der Beharrungszustand

Beim stochastischen Frneuerungsmodell kann im Gegensatz zum
Moserschen Modell selbstredend keine «eigentliche Stabilisierung» auf-
treten, weil dag Ausscheiden der Flemente stets unregelmiissig erfolgt.
Hingegen kann sich eine «Stabilisierung im Mittel» ergeben, nimlich
dann, wenn L omy(l)

lim —

TR
gegen einen endlichen Grenzwert strebt. Dieser Tall tritt ein, wenn —
wie verschiedene Autoren gezeigh haben — die mittlere Verbleibszeib
eines Mlementes, das heisst das erste Moment in der Altersverteilung
der Sterbefille q(?), endlich ist.
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S -.R,ichter [44] hat den Begriff der «wahrscheinlichkeitstheoretischen
Mﬁablllslerung» eingefiithrt. Diese tritt ein, wonn die «Stabilisierung im
Hittely zustande kommt und dariiber hinaus der Grenzwert
o(t

lim ( )

b0 Ty(t)
gegen_ Null strebt. Darin bedeutet o(f) die mittlere Abweichung der
Vertellung fir, 1)

o(t) = |/ my(t) — {m,(1))2 .

Rfchter zeigh, dass wahrscheinlichkeitstheoretische Stabilisierung ein-
t'l_‘ltt, wenn die beiden ersten Momente der Altersverteilung der Sterbe-
fille q(t) endlich sind. Schwarz [61] und weitere Autoren haben dem-
gegeniiber gezeigh, dass die [ixistenz des ersten Moments, das heisst
de? mittleren Lebenserwartung, fiir das Fintreten der wahrscheinlich-
keltstheoretischen_ Stabilisierung geniigt. Das bedeutet nichts anderes,
als dagg dig Stabilisierung im Mittel die wahrscheinlichkeitstheoretische
St&bilisierung automatisch nach sich zieht.

Neben der lirweiterung dieser Stabilisierungskriterien erscheint es
Vor allem wichtig, die Existenz und die F'orm der Grenzverteilung fiir
BrOsse ¢ niher abzukliven. Hine eingehende Irorterung dieser I'rage
391] Spiteren Untersuchungen vorbehalten bleiben. Immerhin lassen
Sl?h auf Grund der abgeleiﬁeten TFormeln bereits einige Hinweise iiber
die vermutliche Lidsung abgeben.

Nach dem Satz 2 ergibt sich die Wahrscheinlichkeit £7(r,) fiir das
Allftreten von hochstens r Erneuerungsfillen durch r-fache Faltung der
88gebenen Ausscheidedichte q(t). Nun fithrt aber nach dem zentralen
GreﬂZWertsatz der Wahrscheinlichkeitsrechnung die fortgesetzte Fal-
t}mg emer I'unktion - sofern gewisse Momentenbedingungen erfiillt
SInd — gchliegslich auf eine Grauss- Verteilung als Grenztunktion. Daraus

olgt, dags B
1 ..
{im Fledy = 7[/275 ¢ tdE— 1—D(a)
’ (13)
mit z = =+ l)el
Vr+1)é,

;Vorin ¢, und ¢, Mittelwert und Streuung der gegebenen Ausscheide-
Wnktion g(f) bedeuten. Nach Formel (13) ergibt sich somit die



— 286 —

Grenzwahrscheinlichkeit fiir jeden Argumentwert » je aus einer (rauss-
Verteilung. Daraus ligst sich noch nicht schliessen, dass die Verteilung
I"(r,t) selbst in eine Gauss-Verteilung iibergeht; immerhin liegt die Ver-
mutung nahe, dass unter noch niher abzukliarenden Voraussetzungen
eine Grauss-Verteilung als Grenzfunktion auftritt. Beispielsweise ergibt
sich in den im nichsten Kapitel behandelten Sonderfillen A und B
eine Gauss-Verteilung als Grenzfunktion. Die nihere Abklirung der
Natur der Grenzverteilung fiir grosse ¢ stellt eine noch der Losung
harrende Aufgabe dar.

I1I. Theoretische Untersuchungen
itber einige Sonderfille

1. Allgemeine Voraussetzungen

Im folgenden werden die theoretischen Irgebnisse des vorigen
Kapitels auf einige im Rahmen des Frneuerungsproblems typische
Sonderfille angewendet. In allen Fillen wird die Zeitvariable ¢ so
transformiert, dass die mittlere Verbleibszeit fiir ein nulljihriges Hle-
ment (die sogenannte mittlere Lebenserwartung)

oy
e(0) = j q(r)dv =1
0
wird. Dadurch wird die ungleiche Ausscheidegeschwindigkeit bei den
verschiedenen Ausscheidegesetzen standardisiert, und es wirkt sich nur
noch die Form des Ausscheidegesetzes aus.

Zuniichst wird die Klasse der Ausscheidegesetze betrachtet, bei
denen die Ausscheidedichte ¢() sich in der FForm
kk (B_HC ih_l

Ik
darstellen lisst. Dieses von verschiedenen Autoren bereits beniitzte
Funktionensystem (siehe Seite 270) erfiillt einige einfache I"altungs-
beziehungen und erlaubt daher eine Liosung des Firneuerungsproblems
in expliziter Form. Uberdies lagsen sich die praktisch vorkommenden
Ausscheidegesetze fast immer mit hinreichender Néherung aus Ge-
setzen von der 'orm (14) zusammensetzen. I'ir die weiteren Unter-
suchungen werden die drei Sonderfille von (14) niher untersucht,
welche den Parameterwerten &k = 1, 2 und - entsprechen.

() = (14)



Fall A mit bk = 1: ¢(t) = ¢
U= 1— (14A)
W) = & -
) = 1.

Der a1l A entspricht einem Ausscheidegesetz mit stots gleichbleibender

Ausscheideintensitit ; bei ihm liegt von Anfang an der Beharrungs-

astand vor. Dieser I'all nimmt innerhalb der Cresamtheit aller Aus-

Scheldegesetze eine zentrale Stellung ein.
Fall B mit k = 2: q(t) = 4t

Q) = 1—e> (1 +21)

i(t) = ™ (1 +21) (14B)
M
ult) = N + o

Der Fal B entspricht einem Ausscheidegesetz mit monoton ansteigender
Ausscheideintensitiit;. Abgesehen vom durch die Standardisierung be-
dingten Zahlontaktor entsteht die Ausscheidedichte qt) im Fall B
durch einmalige Faltung aus der Ausscheidedichte beim Fall A. In
gleicher Woise ergiiben sich durch weitere Faltungen die Sterbegesetze
(14) mig 1 — 3, 4, 5 usw.

b
e 2t
Fall C mit k = 3 q(t) = I/‘j?;
Q) = . VEV; dv (14C)
i) = 1—Q)
¢
() = [;((t)) J

Das Gesetz € stollt don inversen Fall zum Gesetz B dar. Wihrend die
Wnter B erwiihnten Fille mit k = 2, 8, 4 usw. durch fortgesetzte Faltung
A8 dem Fall A entstehen, ergibt sich der Fall C gewissermassen als
Faltungswurzel aus dem Gesetz A. Im Gegensatz zum Fall B mit
Steigender Sterbeintensitiit fithrt der Fall C zu einer von w(0) = + oo
uf yi(00) — L monoton fallenden Ausscheideintensitit.
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Die Ausscheidefunktion (t) lisst sich im Tall ¢ nicht in expliziter
Form darstellen, aber vermittelst der Substitution
t = 7%
auf das Gauss-Laplacesche Wahrscheinlichkeitsintegral
Vi
e 2

Q) = 2 —V B dv

T2

0

zuritckfithren und numerisech auswerten.

Fall D: Der Fall D stiitzt sich auf die Gruppenversicherungssterbe-
tafel RMG 1953 [65], wobel ¢ = 0 fiir z — 25 angenommen und zur

() Fagur 8 Ausscheideintensitiiten w(t)
[ .
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V?reinfachung der Rechnung je 5 Altersjahre zusammengefasst werden.
D}e mittlere Lebenserwartung fiir z — 25 betrigt 49,405 Jahre und
wird analog wie bei den Ifillen A, B und C als Zeiteinheit aufgefasst.
Alle Berechnungen fiir den Ifall D werden nach der diskontinuierlichen
Methode durchgefiihrt.

Die Verlaufe der Sterbeintensititen in den I'illen A-D sind in der
nebenstehenden Ifigur 8 graphisch dargestellt.

2. Erneuerungsdichte und Erneuerungsfunktion

In den Iiguren 4a und 4b sind die Verliufe der Erneuerungsdichte
und dey Erneuerungstunktion fiir die Fille A-D graphisch dargestellt,
und zwar fiir einen Versicherungsbestand, der sich anfinglich nur aus
nullji%hrigen Iilementen zusammensetzt, die beim Ausscheiden jeweils
durch ein neyes nulljihriges Iflement ersetzt werden.

Die Figur 4a zeigt, dass im Iall A die Firneuerungsdichte mi(t)
horizon tal verliuft; das bedeutet, dass hier von Anfang an der Be-
harrungszustand vorliegt. Im Fall B nidhert sich die Iirneuerungsdichte
Vf)n unten und im Fall ¢ von oben her dem Grenzwert, welcher fiir alle
Vl_el‘ Fille im Niveau der fiir den Fall A geltenden Horizontalen liegt.
Die inverge Stellung der Fillo B und C kommt somit auch in der zu-
gehorigen Erneuerungsdichte zum Ausdruck. Bemerkenswert ist forner,
dasg dje Erneuerungsdichten bei den Iillen B und C sich nicht wellen-
artig, sondern eingeitig dem Grenzwert nihern. Der I'all D, der — ob-
Schon es gich um eine diskontinuiorliche Erneuerung handelt — eben-
fally 414 glatte Kurve eingezeichnet wurde, fithrt zu dem bei den
Praktisch vorkommenden Ausscheidetunktionen charakteristischen
W.ellenartigen Kurvenverlauf. Die gewihlten Beispiele umfassen somit
Vier typische Fille fiir den Ubergang in den Beharrungszustand.

In Figur 4b sind die Verlinfe der Krneuerungstunktion m, ()
dargostell, Tm Fall A ergibt sich eine schriig ansteigende Gerade als
Erneuerungsfunktion; diese Gerade stellt gleichzeitig die Asymptoten-
tichtung der Frneuerungsfunktion in den drei anderen Fillon dar. Wie
40 erwarton war, verlaufen die Krneuerungsfunktionen B und C ein-
Sffitig der Geraden A. Trotz des wellenartigen Verlaufs der Frneuerungs-
dichte ergibt sich auch im Fall D eine einseitig von der Geraden A an-
Wachsende Krneuerungsfunkstion.
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3. Die Frequenzfunktionen der akkumulierten Erneuerungszahlen

In den Figuren 5 sind die Frequenzfunktionen der akkumulierten
Irneuerungszahlen f(r,t) fiir die Zeitpunkte £, = 1,012, t, = 5,060 und
t, = 10,120 dargestellt. Diesen Argumentwerten entsprechen beim Fall
D die ganzzahligen Jahre 50, 250 und 500. Alle Frequenzfunktionen
beziehen sich auf den Elementarfall, bei dem die sich erneuernde Ge-
samtheit anfinglich nur aus einem nulljihrigen Flement besteht, das
bei jedem Ausscheiden durch ein neues nulljihriges Klement ersetzt
wird.

Die Berechnung der Frequenzfunktionen stiitzt sich in allen Fillen
auf die Formeln (13) und (13). Es ergeben sich folgende Formeln:



291

My (1) Figur 4b  Erneuerungsfunktionen m (1)
A
/. /”
9 e ) _/ V4 ‘-'
F A
L
7 o
g pa I, o’
./. -I .‘..
v /-
7 ‘—s\______u‘-__ I., ,’ ‘ar
7 r’..-'
l" ,” l..
o "/ s
2 Sl o
A S
Sf—0 | / g
Ry
V4 ¥, »°
n FaR
2 S
L) S /7 ‘/‘.o
7 Ji7 .
-,. /’ c‘.
7
3'——\__ "0, ’, -.‘.
Lot /f.-'. Fall A: '
7 7 I{._.' Fall B o e s o e oo oo o .
e Fall C: ;
o P
" ' -'. Fall D: sssessssssscsase
1 LU0
,. qﬂu‘
,t 'd ..
0 ) 5 t
1 2 3 4 5 6 7 8 9 10

Fall 4: Tm Fall A gilt fiir die Ausscheidedichte die Formel
qat) = €.
| Die zugehorige Transformierte oder charakberistische Funktion
autet
Liga} = (A1—w)™

Nach dem Faltungssatz erhiilt man die charakteristische Funktion der

r- Nl . .

, tfm I altungspotenz von q4(t) durch r-maliges Potenzieren der charak-
®ristischen Funktion von ¢4(f); das heisst man hat

Ligh = @ —iv),

Woraus durch Riicktranstormation fiir die »-te Faltungspotenz von ¢ (%)
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der Ausdruck o gt -l
) =
(r—1)!
folgt. Die zugehorige Verbleibsordnung lautet
P r-1 A 12 if—i
Li(*rt) = e dr =€t (1 )
A1) (r—1)! ( IETIREEY (r—1)1,
t

Nun ist nach Formel (13)
Hrst) — U*r -+ 1),8) — 1(*n,0),
at g

7!

daraus folgt

falrot) = (154)
Der Ausdruck rechts in Formel (15A) stellt die bekannte Poisson-Ver-
teilung dar, welche fiir den homogenen stochastischen Prozess charakte-
ristisch ist und welche zu den wichtigsten Verteilungsgesetzen der
Wahrscheinlichkeitsrechnung und Risikotheorie gehort. Dieses Iir-
gebnis ist plausibel, weil der Frneuerungsprozess sich im Iall A von
Anfang an im Beharrungszustand befindet.

Der Fall A stellt die Briicke dar zwischen dem Modell des stocha-
stischen Krneuerungsprozesses und dem klagsischen Urnenschema mib
Zuriicklegen der gezogenen Kugeln, bei dem die Zusammensetzung des
Urneninhaltes stets gleich bleibt und das beim Ubergang auf konti-
nuierlich erfolgende Ziehungen ebenfalls auf die Poisson- Verteilung fiihrt.

Fall B: Tm Tall B fithrt eine analoge Rechnung wie beim Fall A

auf das Schlussergebniy 0t o s 2 ot
e (24)* e (28) ,

0 T v SR WM i S 158

follit) = St (15B)

das eine verallgemeinerte zweigliedrige Poigson-Verteilung darstellt.

Fall C: ITm Fall C ergibt sich in &hnlicher Weise die Schlussformel
t

T
i) = trE L ‘; - 1] de, (150)
251“("’) zTP(T +) ‘
2 D

/ A

okl
2 g 2

T

0
welche die Frequenzfunktion f(r,f) auf die Differenz der x2 Vertei-
lungen fitr » und r 4 1 Freiheitsgrade zuriickfiihrt.
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i schnitt IV, 1 niher
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Verfolgt man die Frequenzkurven fiir den gleichen Fall jeweild
fiir die dret Werte ¢, = 1,012, ¢, = 5,060 und ¢, = 10,120, so stellt man
eine mit ¢ fortgesetzt sich verbessernde Symmetrisierung der I'requenz-
funktion fest. In allen Iillen scheint die Frequenzfunktion gegen die
symmetrische Normalverteilung zu streben; in den Fillen A und B
lasst es gich nachweigen, dass die Frequenzfunktion im Beharrungs-
zustand tatsichlich in eine Normalverteilung iibergeht.

Fiir festes ¢ weist die Verteilung D die kleinste und die Verteilung C
die grosste Strenung auf. Die Poisson-Verteilung A nimmt eine Mittel-
stellung ein. Der Fall A ist durch die sogenannte «normale Digpersion?
gekennzeichnet, bei der sl — Tl = b
ist, das heisst der Mittelwert m,(f) und die Streuung m,(t) sind gleich
gross. Bel den Verteilungen B und D ist die Streuung ne,(#) kleiner und
im Fall C grosser als der Mittelwert m,(f). Als Mass dieser Streaungs-
eigenschaften des stochastischen lirneuerungsprozesses wird der Ir-

neuerungs-Divergenzquotient, _
0
EAt) = ———
(1)
eingefithrt. Diese Masszahl nimmt in den Fillen A-D fiir ¢ = 10,120
zum Beispiel folgende Werte an:

Fall ()
A 1,000
B 0,519
C 1,882
D 0,078

In den Féllen B und D liegh der Divergenzquotient unter und im
Fall C iiber dem Normalwert 1. Die entsprechenden Verteilungskurven
weisen demnach unternormale und iibernormale Dispersion auf.

Mit Hilfe des Divergenzquotienten lasst sich niherungsweise die
Giite des Ausgleichs bei verschiedenen Ausscheidegesetzen messen.
Beispielsweise kann man dag Verhéltnis der erforderlichen Klementen-
zahlen fiir zwei sich ernecuernde Gegamtheiten angeben, welche zu
gleich grossen relativen mittleren Abweichungen

()
m(t)
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Die Iintstehung der unter- und iibernormalen Dispersion in den
Tillen B und D einerseits und C anderseits ligst sich leicht erkliren.
Die Fiille mit unternormaler Dispersion entstehen bei den Ausscheide-
gesetzen mit steigender Ausscheideintensitit. In diesen illen bewirkt
das Ilintreten eines Frneuerungsfallos oine Senkung und umgekehrt das
Ausbleiben eine Steigerung in der Wahrscheinlichkeit tiir einen weiteren
Erneuerungsfall. Bei fallender Ausscheideintensitit (Iall C) liegen die
Verhiltnisse umgekehrt. Steigende und fallende Ausscheideintengititen
bewirken somit eine Arbt negativer oder positiver Wahrscheinlichkeits-
ansteckung, dhnlich wie sie im Urnenschema von Figgenberger-Poly?
fiir Wahrscheinlichkeitsansteckung in Iirscheinung tritt.

Aufschlussreich igt der Verlauf des Frneuerungs-Divergenzquo-
tienten E2(f), wie er in der Figur 6 dargoestellt ist. In allen TMillen be-

der Divergenzquotient horizontal; in den iitbrigen Fillen entfernt sich
I2(t) zuerst schnell und nachher immer langsamer vom Ausgangswerb
und niihert sich je einem Grenzwert; bemerkenswert sind wiederum der
monotone Verlauf in den Fillen B und € und die wellenartigen Schwin-
gungen im Fall D. Die I'rage bleibt offen, welchen Grenzwerten die
dret Verliufe von [43(f) zustreben.

IV. Anwendungen

Im folgenden wird versucht, einige Anwendungen der theoretischen
Firgebnisse in den Kapiteln [I und III zu skizzieren.

1. Die praktische Berechnung der Erneuerungsfunktion

Tiir viele praktische Aufgaben ist die Iirneuerungsfunktion m (?)
(oder die lirneuerungsdichte my(f)) zu berechnen. Die irmittlung dieser
Trunktion ist an sich nicht schwierig, artet aber — wenn Lingere Zeib-
riume in Betracht fallen — in eine kaum zu bewiltigende Héufung von
elementaren Rechenoperationen aus. I'tir die praktische Durchfithrung
derartiger Berechnungen ist eine neue Lage entstanden, seit die
modernen Rechenautomaten aul elektronischer Grundlage dazu her-
angezogen werden konnen. Dank der in freundlicher Weise von der
Schweizerischen Lebensversicherungs- und Rentenanstalt erhaltenen
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g:ll?%)ms konnte versuchsweise der im vorigen Kapitel geschilderte
tronen, (Gluppf‘nvemlchmunﬁsmfel RMG 1953) mit Hilte eines Iilek-
rechners ausgewertet werden.
Bchmfl)le aufbmandmf()lﬂenclon Iirneuerungszahlen konnen nach ver-
oy enen Methoden berechnet werden. Gewohnlich erfolgt die Be-
konmun” nach einer der Integralgleichung (Ib) nachgebildeten dis-
Schenlg:[lerh(h(/n Relkursionsformel. An Stelle dieser aus dem Moser-
ahot. odell folgenden Methode kann man die Erneuerungsfunktion
von (im(‘/h als Mittelwert der Krneuerungszahl » bestimmen. Dabei ist
0 den aufeinanderfolgenden Faltungen der Funktion ¢(f) oder auch
fOrmelon auf die diskontinuierliche Methode iibertragenen Faltungs-
iy n (1) auszugehen. Die fiir den I"all D durchgefithrten Berech-
gen stiitzen sich auf diese letztgenannte Methode.
fiip Als Auﬁmann’swute fiir die numerischen Rechnungen dienten die
s 38 fuanahrlﬁe Intervalle gebildeten Tunktionen ¢(f) und I(f), wie
ich aus dor Tafel RMG 1953 ergeben, wenn ¢ = 0 fiir x = 25 ge-

Szt wipd. Diese Ausgangswerte sind in der nachstehenden Tabelle
Zusammen%btellt

t q(t) i(t) = 1(0,0)
0 0,000 000 1,000 000
1 0,006 245 0,998 755
2 0,007 548 0,986 207
3 0,009 771 0,976 436
4 0,013 449 0,962 987
5 0,019 471 0,948 516
6 0,029 282 0,914 234
7 0,044 772 0,869 462
8 0,068 205 0,801 257
9 0,101 013 0,700 244
10 0,140 633 0,559 611
11 0,174 937 0,384 674
12 0,179 546 0,205 128
13 0,133 816 0,071 312
14 0,059 255 0,012 057
15 0,011 452 0,000 605
16 0,000 605 0,000 000

20
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Die Rechnung erfolgt nach der in folgender Weise auf die dis-
kontinuierliche Methode umgestellten ormel (1):

16

fr) = X\ fr—1,t—1)q() ]

=4

mit  f0,¢) = 1(t). [

Fiir die Randwerte sind die Summationsgrenzen sinngeméiss anzupassen.

(16)

Die Erneuerungsfunktion und das zweite Moment ergeben sich
anschliessend zu
my(t) = X rf0rt) l
B (1
my(t) = D12 f(r,0). [
=

Die praktische Auswertung von Formel (16) liuft darauf hinaus,
die Faltungsoperation der numerischen Rechnung zu erschliessen. Fine
praktisch befriedigende Losung dieses Problems ist nicht nur fir
das Erneuerungsproblem, sondern fiir viele weitere Anwendungen der
Wahrscheinlichkeitsrechnung und mathematischen Statistik von Be-
deutung. Beim vorliegenden Versuch hat man sich mit der fortgesetzten
Faltung bis zur 15. Potenz begniigh. Die Erneuerungsfunktion konnte
auf diese Weise fiir nicht weniger als 500 Jahre vorausberechnet wer-
den. Das Frgebnis der Berechnung ist in den Figuren 4a und 4b fest-
gehalten.

Mit Hilfe eines Elektronenrechners 1) liess sich die Rechnung im
vorliegenden Fall nach rstellung von 32 Ausgangskarten vollstindig
automatisch abwickeln ). Zu beriicksichtigen ist immerhin, dass die
Rechnungsvoraussetzungen im vorliegenden Beispiel ziemlich einfach
cewithlt wurden. Die Erwetterung des Rechenapparates auf allge-
meinere Voraussetzungen — zum Beispiel nicht homogene Bestiinde —
sowie die Ubertragung der Rechnung auf mit der offenen Gesamtheit
verkniipfte Vorginge — zum Beispiel die Bildung eines Deckungs-
kapitals — sind Aufgaben, welche noch ihrer Losung harren.

1 Its handelt sich um den Elektronenrechner Gamma 3 der Compagnie des
machines Bull, Paris.

2} Das angewandte Verfahren wurde in verdankenswerter Weise von Dr. Ose.
W. Spring entwickelt, der die technischen Ilinzelheiten in einem besonderen Artikel
verotfentlichen wird.
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~ Bei der Frmittlung der Erneuerungsfunktion handelt es sich um
ne fixtrapolationsaufgabe, welche — abgesehen von allfilligen Un-
Slcherheiten in den Voraussetzungen — dank des stochastischen Charak-
bers der in Betracht fallenden Vorgiinge noch durch die Angabe des
glgehﬁrigen Schwankungsbereiches ergiinzt werden sollte. I'ir den
lem@nt&rfall, wo die in Frage stehende, sich erneuernde Gesamtheit
Mr aus einem Flement besteht, lassen sich diese Schwankungsbereiche
s den in der Iigur 5 graphisch dargestellten Frequenzfunktionen
f(m) herauslesen. Tiir Gesamtheiten, welche aus mehr als einem
lement zusammengesetzt sind, ergibt sich die zugehérige Frequenz-
fll‘nktion durch fortgesetzte Ialtung der fiir den Ilementarfall be-
Stimmten Funktion f(r,t), welche — wenn ein genaues Resultat ge-
Wunseht wird — wiederum zweckmissig mit Hilfe eines Klektronen-
I‘F?Ghnerg durchzufithren wiire. Wenn eine Niherung geniigt, so kann
die Frequenztunktion fiir » Flemente aus den zugehérigen Momenten
gefundenwerden, welche ihrerseits aus den Momenten der Einzelbestinde
h‘ervorgehen. Unter der Annahme des Gesetzes D und bei n = 100
Elementen ergeben sich beispielsweise folgende Vergleichswerte:

Relative mittlere

Mittelwert Mittlere ! .
¢ (Brneuerungsfunktion) Ahwcichru ng Adti:“;[(’ll‘};:\'lﬁ;‘mf’
0,506 511 2,348 41,1
1,012 45,184 5,190 11,5
5,060 440,017 6,216 1,4
10,120 921,230 8,482 0,

Diese Zahlenwerto veranschaulichen den Schwankungsbereich der Fr-
Neuerunggzahlen, welcher bei praktischen Anwendungen gebiihrend zu

Criicksichtigen ist. Dieser Schwankungsbereich wird mit zunehmender
BElementenzahl und mit wachsender %eit verhiiltnisméissig immer enger,

2. Risikotheorie fiir sich erneuernde Bestiinde

~ Die abgeleiteten Formeln iiber das Verteilungsgesetz der akkumu-
11(?1‘13@11 Frneuerungszahl erlauben es, an den Aufbau einer besonderen
R.lsikotheorie fiir sich erneuernde Versicherungsbestiinde heranzutreten.
Bine derartige Risikotheorie wiirde es gestatten, die fiir die risiko-
theoretische Stabilitit erforderlichen Sicherheitsmittel bei sich erneu-
ernden Versicherungsbestiinden auf objektiver Grundlage zu ermitteln.
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Auf eine eingehende Diskussion dieses besonderen I'ragenkreises wird
hier verzichtet ; es wird lediglich versucht, auf die zu losenden Probleme
hinzuweisen.

Die risikotheoretische Stabilitit eines Versicherungsbestandes wird
gowohnlich anhand der Uberschadenwahrscheinlichkeit 1 — () oder
der Ruinwahrscheinlichkeit y(u) beurteilt, welche unter Beriicksichti-
gung der verfilgbaren Mittel » hinreichend klein ausfallen sollten. Die
Uberschadenwahrscheinlichkeit 1 — F'(u) lisst sich mit Hilte der For-
meln (1) in Verbindung mit der Schadensummenverteilung s(z) be-
rechnen. Iis ist .

1 —F(u,t) = g flr, b s*7(2) dz, (18)
r=1

worin s*(z) wie iiblich die r-te Faltung der gegebenen Schadensummen-
verteilung s(z) bedeutet. Tiir I(f) = q(t) = ¢™* (Fall A im Kapitel T11)
geht Tormel (18) in den aus der kollektiven Risikotheorie bekannten
Ausdruck

oo

Tty

1— () =f D) $¥() de (18")
r=1 T.

U

iiber. In dhnlicher Weise lassen sich die iibrigen Formeln der kollek-

tiven Risikotheorie direkt auf den I"all A iibertragen. Dies gilt zum

Beispiel auch fiir die Ruinwahrscheinlichkeit ip(u).

Von besonderer Bedeutung fiir viele risikotheoretische Anwen-
dungen ist es, dass bei den praktisch vorkommenden Ausscheide-
gesetzen mib steigender Ausscheideintensitit die resultierende Ver-
teilung f(r,t) eine stark ing Gewicht fallende unternormale Dispersion
aufweist. Dadurch wird die risikotheoretische Stabilitit verbessert und
vermag bis zu einem gewissen Grad die durch die Summenstreuung
eintretende Verschlechterung wettzumachen. Dies erlaubt es, bei mit
dem Alter ansteigender Ausscheideintensitit dag Maximum des Selbst-
behaltes hoher anzusetzen als bei gleichbleibender Ausscheideintensitiit.
Die nihere Abklirung dieser Verbesserung der risikotheoretischen
Stabilitit und dariiber hinaus der systematische Aufbau einer Risiko-
theorie fiir sich erneuernde Gresamtheiten bieten noch ein weites Feld
fiir fruchtbare theoretische und praktische Untersuchungen.

* *
*
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Abschliesgend sel versucht, die wichtigsten Ergebnisse der dar-

ge]e‘*tfm Untorsuchunoon in vier Punkte zusammenzufassen:

1.

Die | Erweiterung des Moserschen Modelles auf stochastische Pro-
zesse lisst die aus dem Mosersehen Modell abgeleiteten irgebnisse,
msbegondere den Verlaut der Erneuerungsfunktion und Frneue-
rangsdichte unberiihrt. Das verallgemeinerte Modell erlaubt es,
den durch die stochastische Natur der beteiligten Vorginge be-
dingten Schwankungsbereich anzugeben.

- Beim Moserschen Modell er gibt sich die Erneuerungsfunktion als

Lésung einer Integralgleichung. Im erweiterten Modell erhilt man
demgegenuber die Verteilungsfunktion der akkumulierten r-
Neuerungszahl — ohne Integralgleichung — direkt aus Verbleibs-
ordnungen I(*r,t) hoheren Grades, welche im wesentlichen durch
fortgesetate Taltung aus der gegebenen Ausscheidedichte ¢(t) her-
vorgehen. Der Mittelwert der akkumulierten Frneuerungszahl
fithrt auf die Frneuerungstunktion im Moserschen Modell.

- Die Streuung der Iirneuerungszahlen ist kleiner, gleich gross oder

grosser als beim homogenen stochastischen Prozess, je nachdem
dio Ausscheideintensitiit () des zugrunde liegenden Ausscheide-
gesetzes mit ¢ steigt, gleich bleibt oder sinkt. Das Ausscheidegesetz
q(t) = ¢ mit u(t) =1 tihrt auf den homogenen stochastischen
Prozess, bei dem die klassische Verteilung von Poisson ensteht.

Im Rahmen des stochastischen Modells harren noch eine Reihe
von Fragen ihrer Lésung. Insbesondere sind die Eigenschaften der
Grenzverteilung fir grosse ¢ der akkumulierten Frneuerungszahl
niher abzukliren.
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