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Wahrscheinlichkeitstheoretische

Begründung mechanischer Ausgleichung und
deren praktische Anwendung

Von H. Jecklin und P. Strickler, Zürich

I.

Über die Ausgleichung von Sterbetafeln im allgemeinen und über
die mechanische Ausgleichung derselben im besonderen ist schon sehr
viel geschrieben worden. Auch über die Beurteilung der Güte von
Ausgleichungen besteht eine umfangreiche Literatur. In dem klassischen
Lehrbuch von Blaschke [1] wird Seite 251 ff. der Meinung Ausdruck
gegeben, dass die Güte einer Ausgleichung nur relativ und nicht
absolut gemessen werden könne. Diese Auffassung ist vorerst nicht
befremdend, denn nachdem der Glaube an die Existenz bestimmter
Sterbegesetze einmal überwunden war, handelte es sich bei der
Ausgleichung nach allgemeiner Ansicht im wesentlichen darum, den

empirischen Streckenzug der Sterbehäufigkeiten in eine Kurve zu
verwandeln, die unseren Vorstellungen besser entspricht. So formuliert
es auch Altmeister Czuber [2]. Es würde ein Buch füllen, die bis heute
erfundenen und empfohlenen Verfahren zur Sterbetafel-Ausgleichung
aufzuzählen und zu erläutern. Wir wollen lediglich einen
charakteristischen Ausspruch von Tschuprow [3] nicht vorenthalten: «Bei
allen Ausgleichsmethoden (graphisch, mechanisch oder analytisch)
verfährt man ziemlich willkürlich, und man hat zwischen der Skylla eines

allzu weitgehenden Schematismus, der die eigenartige Wellenbewegung
der empirischen Zahlen durch eine allzu einfache Kurve nivelliert, und
der Charybdis einer allzu getreuen Wiedergabe der ursprünglichen
Zahlen, welche rein zufällige Schwankungen fortbestehen lässt, zu
manövrieren.»

Wenn man die Sache so betrachtet, kann man allerdings der von
Sachs [4] vertretenen Meinung beipflichten, die kurz gesagt dahin
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geht, dass man sich im mittleren Bereich einer Sterbetafel die Mühe
der Ausgleichung unbedenklich ersparen könne, und dass in den
höchsten Altersklassen zumindest die analytische Ausgleichung zu
verwerfen sei. Zufolge der willkürlichen Änderungen, welchen man die

Sterbetafeln zu unterwerfen pflege, werde das wahre Bild der
Sterblichkeit, die in ihnen zusammengestellt sein sollte, über die ohnehin
vorhandenen Fehlerquellen hinaus noch verfälscht. Immerhin gibt
auch Sachs zu, dass es zweckmässig sein kann, die Sterbetafel für den
Gebrauch in dieser oder jener Weise zu modifizieren. In der Tat soll

ja die Sterbetafel unter anderem dem praktischen Zweck der
Prämienberechnung dienen, und man hat sich nur die Folgen auszudenken,

wenn die Prämien der einjährigen Risikoversicherung nach
unausgeglichenen Tafeln berechnet würden. Was dagegen den Erkenntnis-
wert der Sterbetafeln anbetrifft, so möchten wir Sachs darin zustimmen,

dass dieser wohl nicht so gross ist wie gemeinhin angenommen
wird.

Nun glauben wir, dass in der Frage der Ausgleichung von Sterbetafeln

der Natur der Angelegenheit nur dann richtig Bechnung
getragen wird, wenn man die Wahrscheinlichkeitstheorie zum Ausgangspunkt

nimmt. Man muss sich dann die Frage stellen, was für
Konsequenzen sich bezüglich der Tafel-Ausgleichung ergeben, wenn man
die sogenannten Sterbenswahrscheinlichkeiten als echte statistische
Wahrscheinlichkeiten auffasst, so dass also die empirisch festgestellten
qx nur als Stichprobenerhebungen aus einem Material mit einer
vorhandenen, aber nicht bekannten wahren Sterbenswahrscheinlichkeit
anzusehen sind. In wertvollen Untersuchungen hat Ammeter [5]
gezeigt, dass es bei Basierung auf den wahrscheinlichkeitstheoretischen

Standpunkt im Gegensatz zu den zitierten Auffassungen möglich ist,

eindeutige Kriterien für die Güte einer Ausgleichung anzugeben. Es

wäre aber nicht sinnvoll, sich bei der Beurteilung einer Ausgleichung
auf den wahrscheinlichkeitstheoretischen Standpunkt zu stellen, wenn
man dies bei der vorangehenden Ausgleichung selbst nicht tun dürfte.
Wir sind aber überzeugt, dass eine solche Stellungnahme gerechtfertigt
ist, worauf wir noch näher eintreten werden. Wenn man sich jedoch
bei der Ausgleichung auf einen wahrscheinlichkeitstheoretischen Standpunkt

stellen darf, dann sollte man diesen Standpunkt einnehmen und

die bezüglichen Konsequenzen ziehen, indem dann die Ausgleichung
nicht mehr bloss eine willkürliche Schönheitsoperation darstellen wird.
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Zwar sagt Sachs [4], dass die Ausgleichung einer Sterbetafel mit
der Ausgleichung der Beobachtungsfehler z. B. nach der Gaußschen
Methode der kleinsten Quadrate im Grunde nichts gemein habe, wenn
auch das gleiche mathematische Rüstzeug Verwendung finde. Denn
bei der Ausgleichung einer Sterbetafel handle es sich nicht darum,
aus einer grösseren Zahl einander in gewissen «Fehlergrenzen»
widersprechender Beobachtungsergebnisse ein einheitliches Bild herzustellen,

sondern nur um ein Glätten der Kurve, als die sich die Sterbetafel
darstellen lässt. Aber die Abweichungen von der geglätteten Kurve
seien nicht das Ergebnis mehrerer Beobachtungen desselben

Vorganges, die Widersprüche enthalten, welche beseitigt werden müssen;
sie rühren vielmehr nur daher, dass man willkürlich, um nicht zu sagen
gewaltsam, eine vorgefasste Meinung darüber, wie eine Sterbetafel
aussehen müsse, in die Tat umsetze. In diesem Punkte sind wir etwas
anderer Ansicht, und wollen versuchen, diese in den nächstfolgenden
Ausführungen zu begründen.

Es ist die Frage voranzustellen, ob die Sterbenswahrscheinlichkeit
als echte statistische Wahrscheinlichkeit angesprochen werden kann.
Wenn dies der Fall ist, kann - wie wir zeigen werden - gefolgert werden,
dass die empirischen Werte der qx zufällig um die wahre Sterblichkeitskurve

schwanken, und wir können mit Recht für die Ausgleichung
in gewissen Grenzen analoge Überlegungen anstellen, wie sie aus der
Theorie der Beobachtungsfehler bekannt sind. Nur hat man sich dem
Umstände anzupassen, dass es sich nicht um Schwankungen bezüglich
einer konstanten Grundwahrscheinlichkeit handelt, sondern um
Schwankungen bezüglich einer von Beobachtung zu Beobachtung sich
ändernden Grundwahrscheinlichkeit.

Die Frage nach der Natur der Sterbenswahrscheinlichkeit ist aber
heute hinreichend geklärt. Wir wissen, dass die Sterbenswahrscheinlichkeit

einer säkularen Änderung unterworfen ist, und dass man daher
bei der Prüfung der Sterblichkeitsschwankungen einer bestimmten
Altersklasse innerhalb bestimmtem Zeitraum nicht einfach auf das

arithmetische Mittel abstellen darf, sondern die Abweichungen vom
Trend, der uns die zeitliche Änderung der Sterbenswahrscheinlichkeit
repräsentiert, auf ihren Zufallscharakter prüfen muss. Da wir nicht
einen festen Mittelwert haben, kann nicht die Verteilung der absoluten
Abweichungen betrachtet werden, die Prüfung wird sich vielmehr auf
die Verteilung der relativen Abweichungen in bezug auf den jeweiligen
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Trendwert erstrecken. Was die Darstellung des Sterblichkeits-Trend
selbst anbetrifft, so kann er in den letzten Jahrzehnten genähert als

linear aufgefasst werden, mit schwächerem Gefälle je höher die Altersklasse.

Dass dieser Trend auf die Dauer keine Gerade sein kann ist
klar. Im übrigen verweisen wir hier auf die einschlägige Literatur, vor
allem auch auf die Dissertationen von Baltensberger [6] und Schuler [7].
Abgesehen von Kriegs- und Epidemiezeiten schwanken die empirischen
qx-Werte im grossen und ganzen normal, also rein zufallsmässig um
den säkularen Trend, welche Aussage insbesondere auf Grund der

Untersuchungen von Lange [8], Wiesler [9] und Ammeter [10] als

plausibel anzusehen ist.
Man kann also von der Voraussetzung ausgehen, dass die

Sterbenswahrscheinlichkeit einer bestimmten Altersklasse eine echte statistische
Wahrscheinlichkeit ist, wobei immerhin im Hinblick auf praktische
Untersuchungen verschiedene Schwierigkeiten im Auge zu behalten
sind. So pflegt man bekanntlich zur Erreichung grösserer Kollektive
die Beobachtungen mehrerer Jahre zusammenzufassen. Wegen der

säkularen Sterblichkeitsabnahme erscheinen dadurch die Schwankungen

grösser, als es nach reiner Zufallsverteilung der Fall wäre, worauf
z. B. in einer Arbeit von Ruchti [11] hingewiesen wird. Das Streben
nach Kollektiven möglichst grossen Umfanges birgt überhaupt
gewisse Gefahren in sich. Ein Material kleinen Umfanges, aber homogenen

Inhaltes, kann oft nützlichere Resultate liefern als ein ungleich
grösseres, aber aus charakterlich verschiedenen Teilkollektiven
zusammengesetztes Material. Ein lehrreiches Beispiel in dieser Hinsicht
sind die Sterblichkeitsuntersuchungen der englischen Versicherungsgesellschaften

für die Periode 1924-29 [12].
Die Gesamtheit der Trendlinien für die Sterblichkeit der

verschiedenen Altersklassen liegen auf der sog. Sterblichkeitsfläche. Wenn
der Sterblichkeitsabfall tatsächlich in jeder Altersklasse dauernd linear

wäre, könnte man die Sterblichkeitsfläche mit den Trendlinien als

Regelfläche bestimmen. Man pflegt bekanntlich auf der Sterblichkeitsfläche

drei Kurvenscharen auszuzeichnen:

x konst., d. h. die zeitliche Änderung der Sterblichkeit für die

Altersklasse x.

t konst., d. h. Sterbetafel gleichzeitig Lebender.

t— x x konst., d. h. Verlauf der Sterblichkeit einer Generation.
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Wir wollen nun die ganze Sterblichkeitsfläche als ein Kollektiv
auffassen, von welchem die Trendlinien mit x konst. Teilkollektive
bilden, und wollen das Flächengitter der ^-Punkte in Vergleich setzen

zu einem Urnenschema von n Serien zu je s Versuchen mit konstanter
Grundwahrscheinlichkeit. Anstelle des durch dieses einfache
Urnenschema veranschaulichten Kollektivs mit Schwankung der Ereigniszahlen

um eine feste Grundwahrscheinlichkeit, d. h. also anstelle eines

ebenen Gitters, haben wir ein Flächengitter mit Schwankungen um
die Gitterpunkte, welche ihrerseits eine von Gitterpunkt zu Gitterpunkt

sich ändernde Grundwahrscheinlichkeit repräsentieren. Es
gehört zu den grundlegenden Fakten der Wahrscheinlichkeitstheorie,
dass man aus einem Gesamtkollektiv mit Wahrscheinlichkeitscharakter
nicht einen Teil herausheben kann, der diesen Charakter nicht besässe.

Bei dem durch unser Urnenschema gegebenen ebenen Gitter können
wir irgendwelche Punktfolgen herausgreifen, sie bilden immer ein
Teilkollektiv mit Wahrscheinlichkeitscharakter. Man vergleiche hiezu die

Forderung nach Unempfindlichkeit gegenüber Stellenauswahl, welche

v. Mises [13] in seiner Grundlegung der Wahrscheinlichkeitsrechnung
aufgestellt hat. Nun haben auf der Sterblichkeitsfläche die
Gitterpunkte der durch die Trendlinien mit x konst. gegebenen Teilkollektive

sicher Wahrscheinlichkeitscharakter. Wenn wir nun statt dieser

Teilkollektive jene der Gitterpunkte auf den Kurven mit t konst.,
d. h. auf den Sterblichkeitskurven gleichzeitig Lebender, herausgreifen,
so ist man versucht zu argumentieren, dass man wieder Teilkollektive
mit Wahrscheinlichkeitscharakter erhalte, so dass also die empirischen
Werte rein zufällige Schwankungen um eine a priori unbekannte

qx-Kurve aufweisen müssten. Es könnte aber doch eine Abhängigkeit
der säkularen Trendlinien voneinander bestehen. Die Schwankung der

Gitterpunkte auf den Kurven mit t konst. erfordert daher eine

gesonderte Untersuchung. Eine solche wurde von Niedermann [14]
durchgeführt und hat eindeutig die Vermutung bestätigt, dass die Streuung
der Sterblichkeitsschwankungen auch durch die verschiedenen
Altersklassen hindurch als normal betrachtet werden darf.

Wenn im einfachen Fall einer in Wirklichkeit konstanten Be-

obachtungsgrösse zu vermuten ist, dass die empirischen Werte nur
zufällige Abweichungen vom wahren Wert darstellen, so ist bekanntlich

das arithmetische Mittel der empirischen Werte der wahrscheinlichste

Wert der unbekannten wahren Grösse. Oder mit andern Worten:
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Unter Voraussetzung einer normalen Schwankung der Beobachtungswerte

ist das arithmetische Mittel derselben die mit dem kleinsten
Fehlerrisiko behaftete Bestimmung des unbekannten wahren Wertes;
die Summe der scheinbaren Abweichungsquadrate ist dann ein
Minimum. Nun liegt die Sache bei der Sterbetafelausgleichung zugegebener-
massen nicht so einfach, denn wir haben hier nicht zufällige
Abweichungen von einem konstanten Wert, sondern von einer vorläufig
unbekannten Kurve. Man wird sich deshalb fragen, ob es nicht eine Art
Verallgemeinerung der Bildung des arithmetischen Mittels gibt für den

Fall der mit fortschreitender Abszissenordnung sich ändernden
Unbekannten. Nach Lorenz [15] ist die Darstellung einer empirischen
Wertereihe durch eine ganze rationale Funktion, erhalten nach der
Methode der kleinsten Quadrate, die natürliche Fortbildung des

arithmetischen Mittels. Mit Hilfe der von ihm veröffentlichten Tabellen

wird die Ausgleichung empirischer Reihen durch orthogonale ganze
rationale Funktionen sehr leicht gemacht. Wir haben also eine

Darstellung der Form

y ao + a1X1 a2X2 -(- -\- akXk,

wobei a{ Konstante und Xi ganze rationale Funktionen i. Grades der

Veränderlichen x sind; a0 ist dabei das arithmetische Mittel.
In seinem Lehrbuch der Wahrscheinlichkeitsrechnung hat Poin-

care [16] der Approximation einer empirischen Wertereihe durch eine

ganze rationale Funktion ein spezielles Kapitel gewidmet. Quiquet [17]
hat in der Folge die Frage aufgeworfen, ob die Methode wohl zur
Ausgleichung von Sterbetafeln verwendet werden könnte, glaubte sie aber

verneinen zu müssen, da man nach seiner Meinung im Grade der
rationalen Funktion zu hoch gehen müsste, wenn eine ausgedehnte Tafel

repräsentiert werden sollte, so dass die Formel praktisch zu unhandlich
würde. Interessant ist in diesem Zusammenhang ein Vorschlag von
Gram [18]. Er zerlegt die Beobachtungsreihe in kleinere Abschnitte,
gleicht diese aus mittels ganzer rationaler Funktionen dritten Grades

auf Basis von Orthogonalfunktionen, und verknüpft dann die
ausgeglichenen Kurventeile. Als Grösse der Kurventeile nennt Gram 10

bis 20 Reihenglieder. Es wird also offenbar auch hier die Befürchtung
gehegt, dass ein nur niederer Grad der rationalen Funktion für die

Ausgleichung einer ganzen Tafel nicht ausreichend sei. Durch die
Tabellen von Lorenz [15] hätte man nun allerdings die Möglichkeit in
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der Hand, mit leichter Mühe nach ganzen rationalen Funktionen bis

zum 6. Grade auszugleichen. Praktische Versuche zeigen, dass man bei

Weglassung der jüngeren Altersklassen schon bei Darstellung durch
eine Funktion 3. Grades befriedigende Resultate erhalten kann. - Im
Hinblick auf die Verwendung orthogonaler ganzer rationaler
Funktionen zur Tafel-Ausgleichung sei auch noch auf die bereits genannte
Arbeit von Ruchti [11] sowie auf eine weitere interessante Abhandlung

von Lorenz [19] verwiesen.
Die Ausgleichung mittels ganzer rationaler Funktionen in

genannter Art dürfte aber doch keine Lösung des Problems in dem von
uns anvisierten Sinne darstellen. Ohne Verwendung von Kriterien,
welche auf die bereits ausgeglichene Tafel abstellen müssen, kann gar
nicht festgestellt werden, welcher Grad der Funktion in einem

vorliegenden Falle optimal ist, d. h. wohl zufällige Schwankungen nach

Möglichkeit glättet, ohne aber charakteristische Höcker zu verwischen.
Sodann ist nicht zu übersehen, dass das ausgeglichene qx als eine
einfache analytische Funktion der Ordnungsnummer x erscheint, es wird
also der Beobachtungsreihe gewissermassen ein bestimmtes Gesetz

supponiert, so dass es sich unseres Erachtens nicht um mechanische,
sondern um analytische Ausgleichung handelt, und man kann die

gleichen Einwände erheben, welche gegen die analytischen Ausgleichsverfahren

ins Feld geführt werden. Immerhin wäre dabei nicht zu
übersehen, dass Begründung sowohl als Funktionsform wesentlich
verschieden sind.

Wir glauben, dass die Lösung vielmehr zu suchen ist in einer sinn-

gerechten Modifikation der mechanischen Ausgleichung, deren Formeln
ja bekanntlich im wesentlichen gewichtete arithmetische Mittel sind.
Anderson [20] hat sich mit einer analogen Fragestellung befasst in be-

zug auf Wirtschafts-Zeitreihen, und es erscheint uns nicht abwegig,
unsere Untersuchung dazu in Parallele zu setzen. Die Absterbeordnung
nimmt nämlich insofern eine interessante Stellung ein, als sie im
wesentlichen biologisch verursacht ist, aber doch nur bei Ordnung nach

steigender Ordnungszahl sinnvoll dargestellt erscheint. Nach letzterer
Eigenschaft wäre sie eine typische Zeitreihe. Anderson geht bei seinen

Untersuchungen von der Annahme aus, dass ein jedes Glied der Zeitreihe

eine zufällige Variable im strengen Sinne des Wortes ist, so dass

es also verschiedene Werte mit verschiedener mathematischer
Wahrscheinlichkeit annehmen kann. Als richtiger Wert des einzelnen Reihen-
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gliedes wird seine mathematische Erwartung angesehen, d. h. das

Ideal des arithmetischen Durchschnittes, der die zufälligen Einflüsse
zu eliminieren hat. Anderson kommt zum Schluss, dass eine auf Shep-
pard zurückgehende mechanische Ausgleichung der Sachlage am besten

gerecht werde. (Es handelt sich dabei einfach darum, dass nach einer
Parabel n-ter Ordnung, n > 1, gemittelt wird, wobei die Ordnung je
nach dem gewünschten Grad der Annäherung der empirischen an die

ausgeglichene Eeihe zu wählen ist. Auf die bezüglichen Ausgleichungsformeln,

welche sich auch bei Blaschke [1], Seite 226 ff., vorfinden,
werden wir noch ausführlicher zurückkommen.) Offensichtlich ist die

Ausgangslage bei unserem Problem die gleiche wie bei den
Überlegungen Andersons. Wenn wir trotzdem auf eine spezielle mechanische

Ausgleichsformel hinzielen, so deshalb, weil man bei der Sterblichkeitskurve

in bezug auf den Kurventrend im Gegensatz zu einer beliebigen
Zeitreihe a priori einigermassen orientiert ist. In den bereits genannten
Untersuchungen über die Beurteilung der Güte von Sterbetafel-Ausgleichungen

auf wahrscheinlichkeitstheoretischer Grundlage hat
Ammeter [5] anhand praktischer Beispiele festgestellt, dass die analytische
Ausgleichung nach Makeham unter Umständen bessere Besultate
liefert als mechanische Ausgleichungen nach bekannten Formeln.
Nachdem man aber auf wahrscheinlichkeitstheoretischer Basis

sozusagen zwangsläufig zur mechanischen Ausgleichung gelangt, ist zu
vermuten, dass in den üblichen Formeln der mechanischen Ausgleichung,

als arithmetische Mittel gedeutet, die Gewichte nicht glücklich
gewählt sind. Zur Festlegung dieser Gewichte gelangt man bekanntlich,

indem im wesentlichen die Ausgleichung nach einer Parabel nicht
zu hohen Grades als Grundkurve vorgenommen wird. Hier nun möchten

wir einsetzen, und anstelle der üblichen Parabel eine Makeham-
kurve treten lassen.

In diesem Zusammenhange ist an sehr interessante
Meinungsäusserungen zu erinnern, welche Blaschke [1] Seite 240 ff. zum
Problem der mechanischen Ausgleichung publiziert hat. Er weist darauf
hin, dass durch die Abgrenzung eines bestimmten Bereiches und durch
die Beschränkung auf jene Parabeln, welche sich in diesem Bereich
nach einem bestimmten Prinzip mit Hilfe äquidistanter Punkte bilden
lassen, eine gewisse Aufteilung der Gewichte, je nach ihrer Stellung
zum Mittelwert, bewirkt wird. Zwangsläufig werden jenen
Beobachtungswerten, welche bei der Parabelbildung öfter mitwirken, höhere
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Gewichte zuerkannt, woraus folge, dass im mechanischen Ausgleichs-
prozess willkürliche Gewichte an die Stelle der beobachteten treten.
Man habe versucht, die durch einfache Mittelbildung nach Parabeln
resultierenden mechanischen Ausgleichsformeln durch Änderung des

Gefälles der Koeffizienten, insbesondere im Sinne stärkerer Gewichtung

der mittleren Werte, zu verbessern. Es sei aber klar, dass die
besten Resultate der mechanischen Ausgleichung erhalten werden,
wenn die für die Ausgleichung jedes einzelnen Bereiches herangezogene
Kurve das gesuchte Kurvengesetz selbst sei. Dieser Forderung
entspreche für die Absterbeordnung nahezu die Makehamsche Funktion,
und man könnte daher die Frage aufwerfen, wie sich die mechanische

Ausgleichung unter ihrer Verwendung gestalte. Die resultierende Formel

erweise sich aber als überaus kompliziert. In diesem letzteren
Punkte hat sich Blaschke jedoch getäuscht.

Das Ziel unserer Untersuchungen liegt somit fest. Wir legen aber
Wert darauf, vorerst eine allgemeine Herleitung von mechanischen

Ausgleichsformeln darzustellen, woraus sich die gesuchte Ausgleichsformel

als Spezialfall ergeben wird.

II.
Zur Herleitung der mechanischen Ausgleichsformeln machen wir

zunächst die vorstehend begründete Voraussetzung, dass den
beobachteten relativen Häufigkeiten

• • ' Ux-l> Ux> Vx+l > •••
des Eintretens oder Nichteintretens einer Reihe von Ereignissen
wohlbestimmte Wahrscheinlichkeitswerte

y(x — 1), y(x), y{x +1),
zugrunde liegen. Von diesen letzteren nehmen wir weiter an, dass sie

sich zumindest in gewissen Bereichen um jeden beliebig herausgegriffenen

Wert x herum darstellen lassen durch eine analytische Funktion
der Form m

y(x) 2 h <Pk(x) >

Ä=1

wobei die Parameter 2.k wertmässig noch nicht näher bekannt sein

müssen. Die Funktionen <pk(x) sollen untereinander linear unabhängig
sein. Wir bezeichnen die Funktion y(x) kurz als «Grundfunktion».

9
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Die beobachteten Werte yx weichen von den Erwartnngswerten
y(x) um gewisse Beträge sx ab, die wir «Beobachtungsfehler» be-

nenn6n: ex=yx-y(x). (2)

Wir suchen nun eine Ausgleichsoperation A(y^ für die beobachteten
Werte yx mit den folgenden Eigenschaften:

a) Linearität: Die Operation A soll linear sein, also die Form be-

sitzen
A(Vx) 2j "?»«+*• (3)

(7)

b) Erhaltung der Grundfunktion: Die Operation A soll alle
Funktionen, welche sich in der Form (1) mit beliebiger Wahl der
Parameter Xk darstellen lassen, invariant lassen, d. h. es soll gelten

m

Av(x)) y(x) für y(x) (4)
k= 1

c) Fehlerreduktion: Die unausgeglichenen und die ausgeglichenen
Werte sollen im Mittel möglichst wenig voneinander verschieden sein,
d. h. es soll ^ r2j[yx-Ä(yx)]2 (5)

möglichst klein werden. ^
Um eine Ausgleichsoperation zu erhalten, welche diese drei

Forderungen befriedigt, machen wir den folgenden Ansatz: Nach Voraussetzung

sollen sich die erwartungsmässigen Werte darstellen lassen in
der Form (1). Mittels q Werten x-\-j, wobei g>m Anzahl der

Parameter Xk in (1)), aber q < n Anzahl der Beobachtungswerte yj
sein möge, bilden wir die Summe der Differenzenquadrate

2 [yz+j—y(x + i)]2- ^
Wir bestimmen nun die Parameter Xk in (1) so, dass dieser Ausdruck
zu einem Minimum wird. Dadurch ist uns eine wohlbestimmte Funktion

festgelegt, und als ausgeglichenen Wert A(yx) erklären
wir den Wert (Min,Ay*) y{ '(®)- (7)

Wir bestimmen also den ausgeglichenen Wert A(yx) nach der bekannten
Methode der kleinsten Quadrate, um die dritte Forderung zu erfüllen.
Man vergleiche in diesem Zusammenhange die Ausführungen Czubers

in seinem bekannten Lehrbuch der Wahrscheinlichkeitsrechnung [21].
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Es ist nunmehr noch zu zeigen, dass auch die beiden anderen

Forderungen erfüllt sind. Vorerst zeigen wir, dass die Forderung der
Erhaltung der Grundfunktion erfüllt ist, und nehmen zu diesem Zwecke

an, dass sich die auszugleichenden Werte yx selber in der Form (1)
darstellen lassen, also

m

yx £**?>*(*)• • (8)
*[=i

Die Quadratsumme (6) nimmt in diesem Falle dann - und wegen der

vorausgesetzten linearen Unabhängigkeit der <pk(x) nur dann - für
alle beliebigen x den minimalen Betrag null an, wenn wir auch

m

y(x) ^Xk<pk(x) setzen. Nach unserer Definition von A(yx) wird
4=l

nun aber A(y^ y(x) — yx, was zu beweisen war.

Als zweites zeigen wir, dass unsere durch (7) definierte Ausgleichs,
operation A (y^ linear ist, also auf die Form (3) gebracht werden kann-
Dazu schreiben wir die Minimumbedingung (6) ausführlich als:

V Vx+i — 2 K <Pk(% + i)
4=1

2'

Min. (9)

Durch Ableiten nach den Parametern Xr erhalten wir die notwendigen
Minimumbedingungen

2 Vx+f — ^ZhVkix + i)
4=1

<pr(x + j) 0, (r 1, m), (10)

was wir einfachheitshalber wie folgt schreiben

2 K AAx) 2 Vx+j <pr(x + i) • (n)
4=1

Die Grösse Akr(x) — ^ cpk{x -f- j) ipr(x + j) hängt dabei nicht von den

Werten yx ab. Bezeichnet D(x) die Determinante, welche aus den

Akr(x) gebildet wird, so erhalten wir aus (11) die Parameter Xp dadurch,
dass wir in D(x) die p-te Spalte durch die in (11) rechts stehenden
Werte V yx+j 9or{x + j) ersetzen und durch D(x) dividieren. Es besitzt

also X die Form ^ „K 2 Vx+i <Pr(.x + l) BrP(x) > (12)
(r,

ist also wieder linear in den Grössen yx.
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Setzen wir (12) in (7) ein, so erhalten wir nunmehr für A(y^) nach
einer Umstellung der Summationsreihenfolge:

im
r m -i \

2 ^Vv{x)Brv{x)\(pr{x + j)\yx+j. (13)
r=1 p=l -i j

Dieser Ausdruck ist tatsächlich linear in den Grössen yx+j, und die
Werte der Koeffizienten a^ in (3) sind

ai
m r m

22 <Pp(X) Brp(X)
r=1 *-ü=1

<pr{x + j). (14)

Daraus ergibt sich als Hauptsatz:

Für jedes feste x bilden die Ausgleichskoeffizienten in (3) auf
Grund unserer Forderungen eine Folge, die nach dem Gesetze (1)

der Grundfunktion gebildet ist.

Dieser Satz erlaubt bereits, eine charakteristische Eigenschaft unserer
Ausgleichsoperation A(yx) anzugeben. Wenden wir nämlich A auf die

Ausgleichskoeffizienten a?- selber an, bilden also A(a0), so muss diese

Grösse den Wert ag besitzen, weil ja alle Wertefolgen, welche der

Grundfunktion (1) genügen, unverändert bleiben. Es gilt demnach die

Beziehung
ao 2 ar (15)

Diese sich hier als einfache Folgerung ergebende Beziehung ist von
Landre für den speziellen Fall der mechanischen Ausgleichung nach
Parabeln hergeleitet worden [22], und er erwähnt sie in seinem
bekannten Lehrbuch [23] als einen merkwürdigen Satz. An speziellen

Beispielen hat Landre auch nachgewiesen, dass diese Beziehung
charakteristisch ist dafür, dass 2 a? möglichst klein wird, dass es sich also

um Ausgleichungen mit maximaler «Ausgleichungskraft» handelt.
Schreibt man nämlich gem. (2) die beobachteten Werte yx in der Form

V* V(x) + £*> (16)

so wird nach (4) auf Grund der Linearität von A:

Ä(yx) A(y(x) + ex) A{y(x)) + Ä(£x) y(x) + A(sz) (17)
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Die Grösse A(ex) gibt somit ein Mass für die Abweichung des

ausgeglichenen Wertes vom erwarteten Wert y(x). Auf Grund der
Schwarzsehen Ungleichung findet man die Abschätzung

[A[ejp [2 «,• ea+i]* < (2 «J) (2 4+,) > (18)
L {j) J V (,•) / \ (j) /

so dass also tatsächlich die ausgeglichenen Werte um so weniger von
y(x) abweichen, je kleiner 2 a? igk Wir werden auf diesen Punkt
noch zurückkommen. ®

Obwohl es theoretisch durchaus denkbar ist, Ausgleichsoperationen
A zu definieren, bei denen die Koeffizienten a. noch vom Index a:

des auszugleichenden Wertes abhängen, wird man sich aus praktischen
Gründen auf die Verwendung solcher Operationen beschränken, bei
denen dies nicht der Fall ist, bei denen also mit einem einzigen System
von Ausgleichskoeffizienten a;- über den ganzen Bereich der x
ausgeglichen wird. Diese Forderung der Konstanz der a;- ist nur für sehr

spezielle Grundfunktionen (1) erfüllbar, und wir stellen uns nun die

Aufgabe, alle jene Funktionen zu bestimmen, welche auf solche im
eigentlichen Sinne mechanischen Ausgleichungen führen. Da wir die
Funktionen cpk(x) in (1) als linear unabhängig vorausgesetzt haben,
folgt aus der Bedingung (4), dass in diesem Falle durch unsere
Ausgleichsoperation A jedes einzelne <ph(x) in sich selber übergeführt werden

muss, und die Frage reduziert sich deshalb auf die Bestimmung
aller möglichen linear unabhängigen Funktionen >(x), für welche eine

Beziehung ^ ^ + ^ (19)

mit konstanten a;- richtig sein kann.

Als erste Möglichkeit haben wir die m Funktionen 5>(zc) xv, mit
0 < p < to — 1, wobei to Anzahl der Koeffizienten «Bilden wir nämlich

2 + j)p> so finden wir, dass (19) auf die Bedingungsgleichung

führt:
2 «,•(* + i)p 2 «# ^ (2°)

Koeffizientenvergleich ergibt folgendes System von p + 1 Bestimmungsgleichungen

für die a,-:
/1 ai 1

(21)
(2 «-jf für fc 1, • • •, p,

welches für p < m — 1 immer lösbar ist.
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Wir haben somit m linear unabhängige Punktionen xv, (p 0,... ,m —1)

gefunden, die unseren Forderungen genügen.

Als weitere Möglichkeit ziehen wir die Punktion 0{x) eßX mit
reellem oder komplexem p, in Betracht. Die Bedingungsgleichung (19)
führt auf

e"x 2 e"x 2 (22)
Ii)

so dass also nur 2 aie 1 (23)

erfüllt zu sein braucht, damit (19) befriedigt ist. So ergibt sich hier
eine ganze einparametrige Schar von Punktionen zu den m Punktionen

xv hinzu, welche für unsere Zwecke in Betracht kommen können.
Die Reihenentwicklung von 0{x -f- j) in der Form

*2

0{X + j) 0{x) + -2 0'(x) + -|y 0"(x) + (24)

zeigt, dass damit im Bereich der analytischen Funktionen keine
weiteren linear unabhängigen Punktionen mehr gebildet werden können,
welche (19) befriedigen. Als allgemeinste Punktion, die zu einer
mechanischen Ausgleichsoperation A mit von x unabhängigen Koeffizienten
führt, haben wir daher die Linearkombination

m—1 R

y(x) 22^ + 2^e"rX (25)
p—0 r—1

in Betracht zu ziehen, wobei R eine beliebig grosse Zahl sein kann.
Ob es tatsächlich möglich ist, zu jeder dieser Punktionen auch eine

Ausgleichsoperation A (yx) zu bestimmen, kann mit Hilfe des vorgängig
ausgesprochenen Hauptsatzes entschieden werden, nach welchem die

Koeffizienten a- selber die Gestalt (25) haben müssen. Machen wir
den Ansatz

m—1 R

ai 2 Apf+VA;e»r! y(j), (26)
p—0 T—1

so führt die Invarianzbedingung (4) auf ^7)
m-1 R rm-1 R \ im-1 R

2vp+S^"'i 2 Sa*f + 2K.^ 2V*+:i)v+2^eßr{
p= 0 r=l (/) [p'=0 r'= 1 J lp=0 r 1 '
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Durch Ausmultiplizieren der rechten Seite dieser Gleichung erhalten
wir neben einem konstanten Glied solche, welche die Potenzen x,
x2, xm~l, und solche, welche die Exponentialfunktionen eßlX, eßRX

enthalten. Die Koeffizienten dieser Grössen müssen links und rechts
dieselben sein, also folgt speziell aus dem Vergleich der Koeffizienten

r m—1 R

5>,- i 2\^Ap,f + 2/i;,e"
-p'=0 n=1

sein muss. Gehen wir der Reihe nach zu den Potenzen xm~3, a;m"3,

über, so folgen sukzessive die Relationen

rffl-1 R

2 «? 0 2 2Avf+1 + 2<>i^
Lp' 0 r'= 1

2v »-1 o V̂_l

m-1 #

v Av, f'+m-1 + v yfr,^ e"r'?
r' l

(28)

X"

(29)

Ein Vergleich der Koeffizienten von eßrX ergibt schliesslich noch die
B weiteren Gleichungen

i-m-1 R

y.a.e^ 1 y
p'= o

(30)
r' l

(r 1, B).

In den Gleichungen (28), (29), (30) haben wir ein System von m B
linearen Gleichungen gefunden, das gerade die m + B Parameter A
und A* zu bestimmen gestattet. Dabei ist zu beachten, dass die
Anzahl der a. grösser als die Zahl m + B sein muss, damit nicht a0 1,

a,- 0 für j 0, die einzige mögliche Lösung unseres Gleichungssystems

wird. Diese letztere bedeutet natürlich diejenige Ausgleichung,
bei der die ausgeglichenen mit den unausgeglichenen Werten
übereinstimmen, und die stets dann auftritt, wenn die Anzahl der Parameter
grösser oder gleich ist wie die Anzahl der in der Minimumsbedingung
(9) verwendeten Punkte yx+j. Wenn schon einerseits die Zahl der
auszugleichenden Werte grösser als m + B sein muss, so wird man anderseits

die Ausgleichsbereiche nicht unnötig weit fassen. Blaschke [1]
(Seite 243) bezeichnet jene Ausgleichsformel, welche erhalten wird,
wenn die Zahl der zur Ausgleichung herangezogenen Werte die Zahl
der Parameter der Grundfunktion nur um eine Einheit überschreitet,
als eine Ausgleichung kleinsten Zwanges.
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Wir können mithin das Ergebnis der bisherigen Untersuchungen
folgendermassen zusammenfassen: Zu jeder m -f- B-parametrigen
Funktionenschar (25) und zu jeder vorgegebenen Anzahl q >to -j- R lässt sich
auf Grund der Minimumsbedingung (9) genau eine lineare Ausgleichsoperation

A(y^) mit q konstanten (d.h. von x unabhängigen) Koeffizienten

a- bestimmen, welche alle Funktionen der Schar invariant lässt.
Bis jetzt haben wir nichts genaueres bezüglich der Werte j

ausgesagt, über welche in der allgemeinen Ausgleichsformel (3) zu
summieren ist. Im Prinzip können diese ganz beliebig gewählt werden,
sofern nur die Werte x -\- j gewisse Indizes ergeben, die im
auszugleichenden Material enthalten sind. So wird man zwar in der Begel
Ausgleichsformeln zu verwenden suchen, deren Indizes symmetrisch
bezüglich des auszugleichenden Wertes gelagert sind, man wird also

j die Werte — r, — r-J-1, ...,0, ...,r — 1, r durchlaufen lassen. Aber
nichts hindert daran, insbesondere zur Ausgleichung von Bandwerten
auch vollständig asymmetrisch gebaute Formeln zu verwenden. Es

braucht nicht, wie bei den symmetrisch gebauten Formeln, die Zahl
der zu mittelnden Werte ungerade zu sein. So ist es z. B. möglich, auf
mechanischem Wege eine nach dem gewohnten Minimumprinzip
ausgeglichene n-gliedrige Tafel zu erhalten, indem man die Anzahl der
Glieder in (3) gleich der Anzahl der auszugleichenden Werte ywählt
und die Ausgleichskoeffizienten a?- der Beihe nach so bestimmt, dass

sich sukzessive die ausgeglichenen Werte A(yj), A(yJ ergeben-
Dies würde allerdings zuerst die Bestimmung von n Koeffizientensystemen

erfordern, so dass die direkte Minimumbestimmung und die

nachherige analytische Berechnung der ausgeglichenen Werte rascher

zum Ziele führt. Auch lässt sich - wenn auch nur in beschränktem
Masse - auf mechanischem Wege eine Extrapolation der auszugleichenden

Wertereihe vornehmen, indem man beispielsweise einfach j —rx,
— r1+ 1, —r2 mit r1>r2>0 setzt.

Mit der Ausgleichung kann zugleich eine Interpolation verbunden
werden. Im häufig vorkommenden Falle, dass die unausgeglichenen
einjährigen Sterbenswahrscheinlichkeiten für die Alter x y statt
für die ganzzahligen Alter x gegeben sind, interpoliert man bzw. gleicht
man aus vermittels einer Formel, die man erhält, indem man j +

+ (r + g) setzt. Allerdings wird es kaum möglich sein, die

Güte einer auf diesem Wege gewonnenen Ausgleichung direkt
nachzuprüfen.
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III.
Wir wollen nach den vorstehenden theoretischen Untersuchungen

nun in einem mehr auf die Praxis ausgerichteten Teil einige Beispiele
von Ausgleichsformeln geben, die aus dem allgemeinen Ansatz (25)

hervorgehen. Setzen wir speziell die Grössen A* =0, so ergeben sich

diejenigen Ausgleichsoperationen, welche Parabeln einer gewünschten
Ordnung invariant lassen. In diesem Zusammenhange beweist man
sehr leicht folgenden bekannten Satz: Lässt eine symmetrische
Ausgleichsoperation A(yx) die Werte aller Parabeln der Ordnung 2s
unverändert, so lässt sie auch die Werte der Parabeln von der Ordnung
2s -j- 1 unverändert.

Beweis: Sind die Koeffizienten ay symmetrisch, d. h. ist a;- a so

wird identisch für alle ganzzahligen t

2a#ja<+1 0, (31)
j=-r

so dass das Gleichungssystem (29) ohne weiteres für m 2k + 2

richtig ist, wenn es nur für m 2 k -f-1 gilt, was zu beweisen war.
Der einfachste Spezialfall liegt vor, wenn wir die Invarianz einer

Geraden fordern. Dies führt, falls wir j die Werte —r< j <r
annehmen lassen, auf Grund der beiden Gleichungen (28) und (29), welche
hier die Form haben

l (2r + l)H0; 0 =(2?2)A (32)
\j=-r '

sofort auf A0 und A1 0, so dass nach (26) gilt
2r + 1

(33)
2r +1

Wir haben also den Fall der einfachen arithmetischen Mittelbildung.
Für die numerische Bestimmung der Koeffizienten a;- erweist sich

die Methode des Koeffizientenvergleichs, in Anwendung des Hauptsatzes,

als besonders praktisch. Nach dem Hauptsatz haben die
Koeffizienten cij die gleiche Bauart, wie die Grundfunktion, so dass wir
gem. Beziehung (19), wenn wir &(x) y{x) setzen, haben

y(x) 2 aj ii(x + j) (34)

wobei a - als Funktion von j von gleicher Form ist wie y(x) bezüglich x.
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Im speziellen Falle der Geraden als Grundfunktion ist beispielsweise

a.-\-ßx 2(^+ Bf) (a -|- ß (x + j))
U)

(a + ß x) 2 (A + Bj) + ß 2 (Ai + Bf) (35)

Bs muss demnach 2 (A + Bj) =1,2 (Af + Bj2) 0 sein. Bedenken
wir noch, dass wenn j symmetrisch die Werte —r < j < r annehmen

soll, die Anzahl der j gleich 2r +1, und 2 7=0 ist, so gilt

A (2r + 1) 1, B2f ° (36)

woraus, weil 2 f 0, folgt, B 0 und A das heisst:^ 8 2r +1
ol A -f- Bi' ' 2r+l

Fordern wir dagegen die Invarianz von Parabeln zweiter (und
damit auch dritter) Ordnung, so ergibt sich, wenn wir wieder —r < j < r
wählen, in analogen Berechnungen

9 (r2 -|- r) — 3 — 15 j2

(2r + l)(2r-l)(2r + 3) '

also z. B. für

17 — 5f
r 2: «j- - 8—,

17 12 3
somit a0= aL a_t - a2 a_2 —

35 35 35

7 — j2
r 3: o,=

7 6 3 2
somit a0 —, o-j a_y —, a2 a_2 a3 a_3 —

59 —5fr 4: as,- - —' 231

59 54 39 14

(37)

21

somit a0 2ai, flj a_t -- -, az o_2 —, a3 a_3 — a4 ^
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Wir wollon hier die Frage der Ausgleichung nach Parabeln nicht
im Detail weiter verfolgen, es wurde darüber von anderer Seite
genügend publiziert, und wir verweisen z. B. auf die genannte Schrift
von Anderson [20], Seite 120 ff., sowie auf ein vom gleichen Autor
kürzlich veröffentlichtes Lehrbuch [24], dann auf das Buch von
Blaschke [1], Seite 226 ff., und auf einen Aufsatz von Koeppler [25].

Dagegen erscheint uns ein anderer Hinweis erwähnenswert. Lassen
wir in (25) komplexe Werte für die Konstanten A A* und pr zu, so

ergeben sich im einfachsten Falle, wenn wir nur den Bealteil
hinschreiben, Ansätze von der Form

y(x) — A0 + X1 sin y x -j- A2 cos,« x, (38)

welche unter Umständen zur mechanischen Ausgleichung von
quasiperiodischen Funktionen (z. B. Schwingungen mit veränderlicher
Amplitude) nützlich sein können, sofern die Länge einer Periode und
damit ju wenigstens angenähert bekannt ist.

Die bisherigen Ausführungen zur mechanischen Ausgleichung
sind - abgesehen von speziellen Hinweisen - nicht nur für die

Ausgleichung von Keihen einjähriger Sterbenswahrscheinlichkeiten von
Bedeutung. Wenn wir uns nun insbesondere der Betrachtung letzterer
zuwenden, so kommen in (25) nur reelle Konstanten in Frage, und wenn
wir y(x) qx, cr setzen, so umfasst die Linearkombination

g,= VApaA> + 2A;< (39)
(p) r=l

eine Grosszahl der bekannten «Sterbegesetze», z. B.:

A*r 0

Ap 0 für p > 0 : qx A0 konst. (Dormoy I)

Ap 0 » p > 1 : qx A0 + x (Dormoy II)
Ap 0 » p > 2 : qx A„ + Ax x + A2 x2 (Quiquet II, 2) [26]

Ar 0 für r > 1

Ap^O : qx X\cx (Gomperz)

Ap 0 für p > 0 : qx A0 + A, cx (Makeham I)
Ap 0 » p > 1 : qx A0 + Ax x + A[ cx (Makeham II)
Ap 0 » p > 2 : qx A0 + x + A2 x2 + A[ <7 (Yermeeren) [27]
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A* 0 für r > 2

Xp 0 : c* + ^2 c2 (Rosmanith) [28]

^ 0 für p > 0 : qx A0 + A] cf + Ag c£ (Lazarus)

usw.

Aus guten Gründen beschränken wir uns bei diesen Möglichkeiten
für die Wahl einer Grundfunktion auf Makeham I. Es sei also

y{x) X0 + X\c*. (40)

Die Konstante c muss fest gewählt werden, und die gesuchte
Ausgleichsoperation lässt dann alle Makehamkurven mit diesem vorgegebenen

c invariant. Setzen wir, nach der Methode des Koeffizientenvergleichs,

zur Bestimmung der

A0 + £ c* 2 (4, + j) (*o + % <?+i) (41)
U)

so folgt, wenn wir die Anzahl der a- mit q bezeichnen, dass

Aoq+A'^J 1,

Ao^ci + Al^c* 1

sein muss, woraus sich A0 und Ä[ und damit a• M0 + A\ c' leicht
bestimmen lassen. Soll j in symmetrischer Weise die Werte —r <j <r
durchlaufen, so ist q 2r -j- 1 und

(^^-S^+C'aar + lJ-SC')
(2r + l)V^_Q>02

Die Koeffizienten a• sind hier natürlich irrational, und im Gegensatz

zur Ausgleichung nach Parabeln ist a;-^= a -. Für den Ansatz c 1,1

sind in Tabelle I hiernach die Werte a- für r 2, 3, 4, 5 und 6

aufgeführt.

Es ist unseres Wissens erstmalig, dass zur mechanischen Ausgleichung

von Sterbetafeln eine in den Koeffizienten unsymmetrische
Formel vorgeschlagen und praktisch zur Anwendung gebracht wird.
Die Idee, als Grundfunktion statt Parabeln die Makeham-Funktion
zu verwenden, wurde zwar von andern Autoren schon angetönt, so

z. B. wie bereits gesagt, von Blaschke [1] (Seite 243), und von Alten-
burger [29] (S. 50), aber als ungeeignet verworfen. Altenburger meint
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sogar, es würde sich dabei nicht um eigentliche mechanische Ausgleichung

handeln, da die Koeffizienten a- bei gewähltem r nicht ein für
allemal feststehen, sondern von dem für die auszugleichende Tafel in
Frage kommenden Werte c abhängen. Dieser Einwand ist uns nicht
verständlich. Es ist nicht einzusehen, warum die Koeffizienten einer
mechanischen Ausgleichung nicht von Fall zu Fall den speziellen
Verhältnissen sollen angepasst werden können, wenn damit eine Verbesserung

des Resultats erreicht wird. Sodann ist aber darauf hinzuweisen,
dass bei modernen Sterbetafeln weitgehend c<~l,l ist, so dass man
gegenwärtig unbedenklich c 1,1 setzen darf. Denn die Koeffizienten
a- ändern bei geringer Variation von c auch nur so wenig, dass es für
das Resultat der Ausgleichung praktisch ohne Bedeutung ist, worüber
Tabelle II hiernach orientiert. Will man aber für eine unausgeglichene
g^-Reihe einen genaueren Wert für c bestimmen, sei es, um denselben
der Ausgleichung zugrunde zu legen, oder um nachzuprüfen, ob er
nicht zu stark vom Ansatz c — 1,1 verschieden ist, so geschieht dies

sehr einfach nach der von Landre [23] angegebenen Methode:

Ist

und setzt man
Ux — + K

so ist

Ti-l 2n-l 3n-l

2 Vx+j — A 2 Ux+i B > 2 Vx+i B'
j Q j =ti j 2n

B — A Alf G — B Blt

Bi j ^ —
c d. h. lg c

Ax n

In analoger Weise kann man c bestimmen, wenn man als Grundfunktion

die zweite Formel von Makeham oder jene von Vermeeren wählt.

In letzterem Falle ist

und setzt man
Dx — A0 + AiX + /L2x2 + Xl cx,

A für 0 < j < n —1

B » n < j < 2n — 1

C » 2w < j < 3w — 1

D » 3n < j < An — 1

E » 4n < j < 5n — 1

2 Vx+i
(7)



B — A Ax, C-B B1, D — C Cx, E-B D1,

B i — Ax — A2, C1 — Bx — B2, Dx — Cj — C2,

B2 A2 — Ag, C2 B2 — B3,

so folgt lg B3 — lg Ä3
c —— und lg c

3 n

Die mechanische Ausgleichung nach einer makehamschen
Grundfunktion bietet also keinerlei Schwierigkeiten, sie ist im Gegenteil
äusserst einfach zu handhaben. Bleibt noch die Frage der Güte einer
solchen Ausgleichung. Es ist klar, dass sie nur soweit besondere Vorteile

haben kann, als die Reihe der empirischen qx deutlich steigende
Tendenz zeigt. Es steht aber nichts dagegen, sich für gewisse Bereiche,
z. B. für den «Tuberkulosebuckel», auf eine andere Grundfunktion zu
stützen.

Verschiedene Autoren, so z. B. Landre [22], Altenhurger [29] und
Perutz [30] (in einer sehr lesenswerten Abhandlung) bezeichnen die

Grösse a"s «Mass der Ausgleichskraft» der Operation A(yx).
Dies liegt darin begründet, dass die bereits genannte Beziehung gilt

D. h. unter allen denjenigen Ausgleichsoperationen A, welche eine

gegebene Grundfunktion invariant lassen und eine vorgegebene Anzahl

von Koeffizienten besitzen, hat jene die grösste «Ausgleichskraft», für
welche [M(ex)]2 im Mittel am kleinsten wird, also e^n Minimum
ist. Dieser Aussage kommt praktisch jedoch nur beschränkte Bedeutung

zu, weil sie sich nur auf die auszugleichenden AVerte selber
bezieht und nicht auch auf ihre Differenzen, während man in Praxi von
einer «guten» Ausgleichung meistens verlangt, dass die letzteren bis

etwa zur zweiten Ordnung ebenfalls einen regelmässigen Verlauf
aufweisen. Um einen solchen regelmässigen A'erlauf der Differenzen zu

erreichen, verwendet man statt der aus dem Minimumprinzip gewonnenen

Formeln solche, die man sich zumeist als durch mannigfache
Iterationsprozesse aus ihnen hervorgegangen denken kann. AYir
verweisen in diesem Zusammenhange auf Ausführungen bei Blaschke [1]

(S. 229) und Altenburger [29] (S. 59 ff.). Theoretisch ist leicht zu
überblicken, wie sich die einzelnen Ausgleichsoperationen in bezug auf die



Beobachtungsfehler ex (vgl. (2)) und deren Einfluss auf die Differenzenfolgen

der ausgeglichenen Werte yx A(yx) verhalten. Bilden wir
nämlich die Folgen der ersten, zweiten, dritten usw. Differenzen der yx,
so erhalten wir, wenn wir für j > r und j < — r die Grössen af durch

0 definieren:

A[1)yx yx+i-yx A{y{x+l)+ex+1) — A(y(x) + ex)

r r

y{x + 1) — y{x) + V a. ex+l+. — 2 a} ex+j
j=~r j =-r

dwy(x) — 2 («j — aj-i) sx+j A{1]y{x) — £x+i>

und ganz entsprechend für die Differenzen höherer Ordnung, so dass
sich die nachstehenden Differenzenfolgen ergeben:

r

yx y{x) + 2 ai Bx+i'
j=-r

r + l
yx A^y(x) — 2 A(1)«,M ex+j,

j—-r

A[2)yx Ai2)y{x) + 2 A(2)ai-2 Ex+j>
j=-r

A(l)yx A{1) y(x) + ahlex+j,

Daraus folgen auf Grund der Schwarzsehen Ungleichung sofort die

Abschätzungen über die Auswirkung der Beobachtungsfehler in der
Men Differenz der ausgeglichenen "Reihe:

[Z|(^(0]2< 2(z|(!) ai-i)
r r+l
y e2/ i c-x+j

Betrachten wir nun als Beispiel die Ausgleichskoeffizienten, wie wir
sie auf Grund des Minimumprinzips für r 6 erhalten, so dass also
die Ausgleichsformel 13 Glieder besitzt (Typus A). Eine Ausgleichsformel

mit ebenfalls 13 Gliedern erhalten wir, wenn wir die nach

unserer Methode bestimmte siebengliedrige Formel einmal iterieren
(Typus AJ 0üer die entsprechende ögliedrige Formel zweimal
iterieren (Typus A | A I A). Berechnen wir die Quadratsummen der kU' a?-
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für jeden dieser Fälle und multiplizieren wir sie mit der Zahl der
Summanden, so ergibt sich folgendes Bild:

Grundfunktion
und Typ

13 • 2 a) 14-SlJlVay)2 15-2(21 (a'a,-)2 16 • v (ZK3)«,)2 17 • 2 (/d(4»flj)2

Gerade, -1

l I l
7 1 7

X j J_ I JL
5 1 8 1 5

1

1,251

1,457

0,166

0,082

0,116

0,355

0,037

0,029

0,080

0,020 0,044

Makeham I, ~
C 1,1 111

7
1

7

X I h I

5 I 5 1

5

1,030

1,202

1,463

0,165

0,083

0,118

0,347

0,038

0,029

0,077

0,021 0,043

Parabel
2. Ordnung, tä

l i l
~i 1 i

1
1 -1-1 --5 1 5 1

i>

2,273

3,454

4,615

0,557

1,060

2,355

0,920

0,790

2,492

1,083

Makeham II, ~
c 1,1 III7 1

7

JL I X I X
5 1 5 1 5

2,238

3,429

4,596

0,553

1,046

2,337

0,927

0,779

2,470

1,071

Auf den ersten Blick erkennt man, dass in bezug auf die Fehlerglättung
die Ausgleichung mit einer einfachen Makehamkurve als Grundfunktion

praktisch gleichwertig ist mit jener nach einer Geraden, und dass

die Ausgleichung nach Makeham II als Grundfunktion gleichwertig
ist mit jener nach einer Parabel 2. Ordnung, wobei letztere beiden eine

wesentlich schwächere Fehlerebnung bewirken. Besonders auffallend
ist sodann, wie wenig der Einfluss der Beobachtungsfehler ex bei den

iterierten Ausgleichungen nach Makeham I und nach einer Geraden

in den Differenzen erster bis dritter Ordnung zur Auswirkung kommt.
Bei den Ausgleichungen mit Makeham II oder Parabel 2. Ordnung
als Grundfunktion scheint eine zu oft wiederholte Iteration in dieser

Hinsicht nicht immer von Vorteil zu sein, indem z. B. die Abweichungen

bei der zweimal iterierten 13gliedrigen Formel bereits in den
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zweiten Differenzen wieder stärker zur Auswirkung kommen können als

in den ersten, so dass ein glatter Verlauf der zweiten Differenzenfolgen
keineswegs garantiert ist und eher noch bei der nur einmal iterierten
Formel erwartet werden kann. Es ist jedoch auch bei den auf Basis
der einfachen Makehamfunktion bzw. einer Geraden bestimmten
Formeln zu bedenken, dass man bei wiederholter Iteration ein Ergebnis
erhält, das vom wahrscheinlichkeitstheoretischen Standpunkt aus
betrachtet ungünstiger sein wird, da man bei wiederholter Ausgleichung
nicht etwa zu einer Grenzfunktion gelangt, für welche das Minimumprinzip

erfüllt ist, was man am einfachsten anhand eines Beispiels
zeigen kann. Die beiden Begriffe «Fehlerglättung» und «getreue
Wiedergabe» schliessen einander also bis zu einem gewissen Grade aus

(vgl. das eingangs erwähnte Zitat von Tschuprow), und es wird stets
eine Ermessensfrage bleiben, welchem von beiden man im konkreten
Fall den Vorrang geben will.

Die Tatsache, dass man zur Erzielung einer genügenden
Fehlerglättung in den meisten Fällen eine iterierte Formel wird verwenden

müssen, vermindert den Wert unserer auf Grund des Minimumprinzips

aufgestellten Ausgleichsformeln keineswegs, im Gegenteil. Je mehr
sich die Beihe der yx auf Grund der ersten Ausgleichung dem Verlauf
der Grundfunktion anschmiegt, um so weniger wird sie sich bei der
zweiten Ausgleichung noch verändern, da ja die Grundfunktion
invariant bleibt, und um so weniger wird also auch das Minimumprinzip
verletzt werden.

Aus diesen Überlegungen geht aber auch hervor, wie wichtig es

ist, dass die Grundfunktion glücklich gewählt wird. Ob dies der Fall
ist, kann im Sinne der Konzeption unserer Arbeit nur durch einen Test

auf wahrscheinlichkeitstheoretischer Basis entschieden werden. Nur
durch Vergleich der Testergebnisse für verschiedene Methoden oder

Formeln der Ausgleichung erhalten wir ein Kriterium über die «Güte
einer Ausgleichung».

Auf einen Punkt ist noch hinzuweisen. Die Ausgleichung wird an
den Sterbehäufigkeiten, d. h. an Relativzahlen vollzogen, so dass keine

Beobachtungsgewichte berücksichtigt werden. Man kann zwar
annehmen, dass die in einer Ausgleichsformel zusammengefassten
Q Beobachtungswerte näherungsweise gleiches Beobachtungsgewicht
haben, so dass die Gewichtsunterschiede vernachlässigt werden können.
Diese Annahme wird um so eher zutreffen, je kleiner die Gliederzahl

10
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der Ausgleichsformel ist. Anderseits wird jedoch die Möglichkeit der

Fehlerebnung beeinträchtigt, wenn die Mittelbildung der Ausgleichsformel

sich nur auf ganz wenige Werte bezieht. Wir stehen mithin
auch hier vor Ermessensfragen.

Abgesehen von den einzelnen Ermessensfragen glauben wir mit
der vorgeschlagenen mechanischen Ausgleichsformel dem Praktiker ein

Instrument von grosser Einfachheit und zugleich hoher Leistungsfähigkeit

in die Hand zu geben. Wir haben zu Illustrationszwecken zwei

Ausgleichungen vorgenommen. Als erstes Beispiel haben wir die Tafel
SM 1939/44 gewählt, wobei wir die rohen Sterbenswahrscheinlichkeiten
der bezüglichen Publikation des Eidgenössischen Statistischen Amtes

[31] entnahmen. Die Ausgleichung wurde vorerst für den Bereich

x — 7 bis x — 90 durchgeführt, auf Basis der 13gliedrigen Formel
Typus y j -i mit Makeham-Grundfunktion. Auf Grund der Konstanten

üj der Kolonne r 3 in Tabelle I ergeben sich für die henützte Formel
die folgenden Konstanten:

a_6 2 a_3 ct2

0.02608

0.05047

*ö=2 ai a-i
-3
3

h 2 ai ai-i
-2
3

2 ci_3 a_1 -j- a\ 0.07302 2 aia
-1

3

2-j

2 aj a~j~3
-3

4 2 v-3
2

i-i 2 ai'

2

-3-1

0.09358

0.11198

0.12805

*3 2 ai a3-i

0.14160

0.11632

0.09255

0.07040

a\ 2a1a3-f-a2 0.04996

2 a, a. 0.03134

0.01465

Wie zu erwarten war und durch die nachstehend aufgeführten
Testergebnisse bestätigt wird, liefert die Ausgleichung mit dieser Formel

und für den Tafelbereich von etwa x 30 an aufwärts, d. h. für
den monoton steigenden Teil ein wirklich gutes Besultat. Für die

jüngeren Alter muss man wegen des «Tuberkulosebuckels» eine andere

Grundfunktion wählen, wofür eine Parabel niedriger Ordnung in Frage



— 151 —

kommen kann. Wir wählten jedoch versuchsweise, um bei einer zu
der im oberen Tafelteil benutzten Grundfunktion verwandten Funktion

zu bleiben, als Grundfunktion für die Ausgleichung des Bereiches

x 7 bis x 34 die Funktion Makeham II, also

y(x) + Xx x -f- cx, mit c 1,1.

Nach vorgängig beschriebener Methode ergeben sich für die 7gliedrige
Formel (r 3) die Konstanten

a_3 — 0,08533 ax 0,29402

a_2 0,13426 a0 0,33211 a2 0,15231

a_x 0,27600 a3 =—0,10337

und daraus durch Iterierung für die 13gliedrige Formel (Typus ~ | ~)

a_6 0,00728 ax 0,25161

a_5 — 0,02291 a2 0,13055

a —0,02907 a3 0,02090
a0 0,33114

3

a_3 0,01743
0

a4 — 0,03759

0,11519 a5 —0,03149

a_x 0,23628 a6 0,01069

In Tabelle III hiernach ist die offizielle Tafel SM 1939/44 (Ausgleichung
im wesentlichen mechanische nach King mit der Kardinalpunktfolge
10, 15, 20, in Vergleich gestellt mit der von uns vorgenommenen
Ausgleichung (Typus yj—, Grundfunktion: Makeham II für x < 34,
Makeham I für x > 34). Von x 34 zu x 35 ergibt sich ein glatter
Übergang, wie dies auch aus der beigefügten Graphik ersichtlich ist.
Die Reihen der dritten Differenzen der q^-Werte geben uns Aufschluss
über die erreichte Glättung. Wie die Summen der absoluten Differenzen
zeigen, sind die beiden Ausgleichungen, im ganzen genommen, von
praktisch gleicher und sehr befriedigender Glättung. Immerhin hat
die offizielle Ausgleichung für x < 35 eine etwas bessere Glättung,
wogegen diese bei unserer Ausgleichung im oberen Tafelteil besser ist.

Um die getreue Wiedergabe zu beurteilen, bedienen wir uns des

£2-Tests. Wie aus den zitierten Untersuchungen Ammeters (Mitteilungen

52, 1, S. 40 ff. und Kongresshd. I Scheveningen 1951, S. 634 ff.)
hervorgeht, kann man sich bei der Prüfung mechanischer Ausgleichungen

der gewöhnlichen ^2-Verteilung bedienen, wobei für die Anzahl
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der Freiheitsgrade der Mittelwert E(%2) in Rechnung zu stellen ist.
Sind Tx die effektiven Totenzahlen der Altersklassen x, Tx die er-
wartungsmässigen Totenzahlen nach der ausgeglichenen Tafel, so ist

(T — f )2

2 ^ x
_

xl

(x) Tx

Ist weiter « die Gliederzahl der zu prüfenden Tafel, so gilt

E(X2) n^a-, mit cq.
f

(i)

und für das Streuungsquadrat hat man die Formel

Dix2) 2(2a?)2+42 (2 a3n~42k(2 a
\j=-r / /c= 1 W=-r ' -J /c=l W=-r

z,. für j ?£ 0,

00
^' M a,- — 1 für ?' 0,

2r 2

a,-

/c=l \?=-r '

Die numerische Rechnung ergibt für die %2-Verteilung und c 1,1

bei Formel Typ y [ y Mittelwert Streuungsquadrat

mit Grundfunktion Makeham I 0,8189 « 1,5251 «— 0,4036

mit Grundfunktion Makeham II 0,6015« 1,0633« — 0,4615

Die Prüfung verschiedener Intervalle unserer Ausgleichungen der Tafel
SM 1939/44 hat folgende Resultate ergeben:

Intervall Grundfunktion E(X2) I2 Pix2)

16-30
31—45

46-60

61-75

76-90

Makeham I
»

»

»

»

12.21

12.21

12.21

12.21

12.21

32.64
21.60
13.92

10.58
9.43

<0,5%
~5%

32%
58%
68%

O

TU

Cd

CO

1

1Cd

Makeham II
»

8.42
8.42

12.90
13.47

14%
12%

7-34

35-90

»

Makeham I
16.84
45.58

26.37
48.69

6%
35%

40-79

40-90

»

»

32.55

41.51

33.54
41.97

42%
45%
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Diese Test-Werte sind recht aufschlussreich. Vergleicht man mit
den in der amtlichen Publikation [31] sowie mit den von Ammeter
für verschiedene Ausgleichungen der Tafel SM 1939/44 genannten Werten

für die Masszahl so zeigt sich unsere Ausgleichung offensichtlich
überlegen. Wenn wir vorab den Tafelbereich für x > 35 betrachten,
so ersieht man, dass die mechanische Ausgleichung mit einfacher
Makehamkurve als Grundfunktion unter allen gegebenen Beispielen
den besten wahrscheinlichkeitstheoretischen Test aufweist. Aber auch
für das Tafelintervall 7 < x < 34 ist die Ausgleichung mit Makeham II
als Grundfunktion sehr befriedigend und hält den Vergleich mit anderen

mechanischen Ausgleichsverfahren sehr wohl aus. Ermittelt man
z. B. bei der offiziellen Tafel für diesen Bereich die Masszahl y2, so

ergibt sich der Wert 34.39, bei uns hingegen nur 26.37. Dabei lässt
die Methode in ihrer Anwendung an Einfachheit nichts zu wünschen

übrig.
Um die Methode auch an einem Material mit grösseren Schwankungen

zu erproben, haben wir als zweites Beispiel die neue
Versicherten-Sterbetafel der Schweizerischen Lebensversicherungs- und
Bentenanstalt B. A. E. 1940/50 [32] ausgeglichen. Dieser Versuch
schien uns auch deshalb interessant, weil die publizierte Tafel der
Bentenanstalt analytisch ausgeglichen wurde, und zwar für 2 < x < 33

mit einer Parabel 4. Grades und für x > 41 nach Perks, mit einer

Verbindungsparabel 3. Grades für das Zwischenstück. Unsere
Ausgleichung haben wir auf das Intervall 26 < x < 85 erstreckt, mit der

13gliedrigen Formel Typ yjy, und zwar durchwegs mit einfacher
Makeham-Grundfunktion. Die beiden Ausgleichungen sind in Tabelle IV
einander gegenübergestellt. Was die Glättung anbelangt, so ist sie bei
beiden ausgeglichenen gx-Beihen sehr befriedigend, und bis zu x 40

sind beide Ausgleichungen diesbezüglich einander praktisch
gleichwertig. Für den oberen Tafelteil ist die Ausgleichung der Bentenanstalt

hinsichtlich Glättung jedoch deutlich besser, was wegen der

analytischen Ausgleichung zum vornherein zu erwarten ist. Was

hingegen die getreue Wiedergabe anbetrifft, so spricht die Prüfung mittels
des ^2-Tests deutlich zugunsten unserer Ausgleichung. Wir sind uns
allerdings der Problematik des Vorgehens bewusst, indem es sich hier
um Policen- und nicht um Personen-Sterblichkeit handelt, und somit
die Hypothese der Unabhängigkeit der Einzelereignisse voneinander
teilweise nicht zutrifft. Die Masszahlen, in gleicher Weise bestimmt
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wie vorhin bei der Tafel SM 1989/44, können unseres Erachtens immerhin

als Yergleichswerte dienen. Für verschiedene Intervalle hat die

Rechnung folgende Angaben geliefert, wobei wir mit «analytisch» die

Ausgleichung der Rentenanstalt, mit «mechanisch» unsere Ausgleichung
kennzeichnen:

Intervall Ausgleichung E(X2) X2 P(X2)

26-40 analytisch ~ 12 21.69 ' '4%
mechanisch 12.21 19.61 8%

41-85 analytisch 41 47.81 22%
mechanisch 36.63 37.03 45%

41-55 analytisch 13.27
mechanisch 7.62

56-70 analytisch 13.56
mechanisch 10.27

71-85 analytisch 20.93
mechanisch 19.14

Abschliessend möchten wir den Wunsch aussprechen, dass die hier
behandelte Methode der mechanischen Ausgleichung auch an andern
Tafeln erprobt werde.
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Tabelle I
2c2'-2^'+^((2r + l)-2c0
(£) (£) (£)_

(2r + l)2C2'-(ScT
m \ /

(c 1,1; —r < j < r)

r 2 r 3 r 4 r 5

0,21807
0,20989
0,20090
0,19101
0,18013

0,16150
0,15625
0,15048
0,14413
0,13715
0,12947
0,12102

0,12969
0,12604
0,12202
0,11761
0,11274
0,10740
0,10152
0,09505
0,08793

0,10915
0,10649
0,10356
0,10033
0,09679
0,09288
0,08859
0,08387
0,07868
0,07297
0,06669

0,09468
0,09267
0,09047
0,08804
0,08538
0,08245
0,07922
0,07567
0,07177
0,06748
0,06276
0,05756
0,05185

2 aj 1 V n4
Zj a0

Tabelle II
a- nach gleicher Formel wie bei Tabelle I

r 3

c 1,08 c 1,09 c 1,10 o 1,11 c 1,12

0,1582 0,1599 0,1615 0,1631 0,1646
0,1537 0,1550 0,1563 0,1575 0,1587
0,1489 0,1497 0,1505 0,1513 0,1521
0,1437 0,1439 0,1441 0,1444 0,1446
0,1381 0,1376 0,1371 0,1367 0,1363
0,1320 0,1307 0,1295 0,1282 0,1271
0,1254 0,1232 0,1210 0,1188 0,1166

l S a) a0
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Tafel S. M. 1939/44 Tabelle III
a: Rohe einjährige Sterbenswahrscheinlichkeiten, °/00

b: Ausgleichung des Eidg. Statistischen Amtes; mechanisch nach King
[ x < 34 Grundfunktion Makeham II

c: Mechanische Ansgle.chnng j ^ > ^ Grum„mttion M>teh>m

X a qx°/oo b 105/1(3)
1

9z °/oo c 105/1(3)
1

7 1.35 1.42 1.38 -1
8 1.46 1.29 1.30 1

9 1.15 1.20 1.24 -1
10 1.13 1.15 1.19 6
11 1.32 1.14 2 1.16 2

12 1.08 1.17 -2 1.14 -2
13 1.18 1.24 2 1.19 -4
14 1.25 1.37 -1 1.33
15 1.56 1.54 -4 1.54 - 4
16 1.78 1.77 -2 1.78 4
17 2.18 2.05 -6 2.05 -6
18 2.20 2.34 -1 2.31 -7
19 2.51 2.62 4 2.60 1

20 2.89 2.83 1 2.86 4
21 3.13 2.96 3.02 6

22 3.24 3.05 1 3.09 1

23 2.92 3.11 3.11 -4
24 3.02 3.14 -2 3.14 -5
25 3.25 3.15 3 3.19 5

26 3.42 3.14 3 3.22 -2
27 3.04 3.09 2 3.18 8

28 3.17 3.03 -2 3.12 2

29 2.93 2.99 1 3.02 1

30 3.10 2.99 -1 2.96 -2
31 2.94 3.01 2.96 -6
32 2.89 3.06 1 3.03 2

33 3.09 3.13 -2 3.15
34 3.45 3.22 1 3.26 2
35 3.48 3.34 1 3.38 3

36 3.25 3.47 1 3.51 -4
37 3.53 3.62 4 3.67 2
38 3.76 3.80 -2 3.89
39 4.31 4.02 4.13 3

40 4.15 4.32 4.41 -3
41 4.44 4.68 -3 4.73 -1
42 5.17 5.10 5.12 1

43 5.84 5.58 -2 5.55 1

44 6.12 6.09 6.01 2
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X a

1

qxo/oo b 10M<3>
1

1

1x°/oo C 10M<3>
1

45 6.39 6.63 4 6.51 -3
46 6.87 7.18 2 7.06 2
47 8.11 7.74 3 7.68 -1
48 8.14 8.35 -3 8.34 2
49 9.03 9.03 9.06 1

50 9.70 9.81 1 9.85 1

51 11.04 10.66 4 10.71 1

52 11.53 11.58 4 11.65 2
53 12.76 12.58 -3 12.68 -4
54 13.71 13.70 -1 13.81 9
55 15.79 14.98 1 15.06 -1
56 15.98 16.39 4 16.39 1

57 17.30 17.92 2 17.89 -2
58 19.47 19.58 -8 19.55 1

59 21.55 21.41 1 21.38 2
60 23.74 23.43 7 23.36 5
61 25.75 25.56 11 25.50 -1
62 27.49 27.81 8 27.82 1

63 31.48 30.25 -7 30.37 8

64 33.23 32.99 -6 33.14 3

65 36.02 36.11 11 36.14 8

66 39.30 39.54 10 39.45 3
67 42.12 43.22 9 43.10
68 46.69 47.26 -10 47.17 2

69 51.18 51.76 -7 51.69 7

70 58.46 56.81 17 56.66 2

71 61.60 62.31 17 62.10 9

72 68.62 68.19 15 68.08 2
73 74.15 74.62 2 74.62 2

74 82.78 81.77 -12 81.81 4
75 89.40 89.79 89.67 4
76 97.70 98.70 -3 98.22 -5
77 108.69 108.38 -1 107.50 10
78 116.67 118.83 -8 117.55
79 129.87 130.02 -6 128.32 -32
80 142.15 141.94 -1 139.91 8

81 158.23 154.51 152.32 26
82 166.44 167.67 9 165.23 -19
83 180.27 181.41 14 178.72 53
84 195.23 195.73 4 193.05 -64
85 206.00 210.72 4 208.03 62
86 231.75 226.52 5 224.19 -24
87 252.94 243.17 5 240.89 21

88 254.91 260.71 258.75
89 268.90 279.19 277.53
90 308.28 298.66 297.44
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Tabelle IV

Tafel R. A.E. 1940/50 der Schweizerischen Lebensversicherungs¬
und Renten-Anstalt

a: beobachtete einjährige Sterbenswahrscheinlichkeiten
b: analytische Ausgleichung der Rentenanstalt

c: mechanische Ausgleichung mit Makeham- Grundfunktion

1000 1000 qx
X X

a b c a b c

26 1.67 1.84 1.81 56 11.16 11.02 11.17
27 1.80 1.84 1.80 57 13.07 12.17 12.20
28 1.67 1.84 1.79 58 11.97 13.43 13.27
29 1.98 1.84 1.80 59 14.48 14.83 14.52
30 1.69 1.83 1.81 60 15.51 16.37 15.97
31 1.75 1.83 1.83 61 17.58 18.07 17.53
32 1.95 1.83 1.86 62 18.60 19.94 19.26
33 1.66 1.84 1.89 08 22.49 22.00 21.20
34 2.04 1.86 1.94 64 21.81 24.28 23.29
35 1.98 1.89 1.99 65 26.36 26.78 25.91
36 2.21 1.93 2.06 66 32.91 29.54 28.72
37 1.89 2.00 2.14 67 26.37 32.57 31.54
38 2.32 2.09 2.24 68 34.10 35.90 34.61
39 2.36 2.22 2.36 69 36.52 39.56 38.18
40 2.05 2.38 2.50 70 41.28 43.57 41.97
41 2.72 2.58 2.68 71 61.13 47.97 46.47
42 3.07 2.83 2.89 72 48.95 52.78 51.39
43 2.94 3.11 3.12 73 48.92 58.04 56.83
44 3.49 3.42 3.41 74 46.74 63.79 64.50
45 3.59 3.76 3.74 75 80.65 70.06 73.50
46 4.02 4.14 4.12 76 62.35 76.89 82.54
47 4.56 4.56 4.54 77 101.12 84.31 91.97
48 4.71 5.03 5.04 78 132.01 92.36 102.63
49 5.56 5.54 5.61 79 93.53 101.08 112.57
50 6.34 6.11 6.25 80 195.74 110.51 125.44
51 7.21 6.74 6.95 81 124.40 120.67 138.61
52 7.32 7.43 7.68 82 108.43 131.60 154.62
53 8.94 8.20 8.49 83 83.33 143.33 179.65
54 9.37 9.05 9.33 84 240.00 155.88 210.34
55 10.85 9.98 10.23 85 146.34 169.26 251.55
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