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Wahrscheinlichkeitstheoretische
Begriindung mechanischer Ausgleichung und
deren praktische Anwendung

Yon H. Jecklin und P. Strickler, Ziirich

i

Uber die Ausgleichung von Sterbetafeln im allgemeinen und iiber
die mechanische Ausgleichung derselben im besonderen ist schon sehr
viel geschrieben worden. Auch tiber die Beurteilung der Giite von Aus-
gleichungen besteht eine umfangreiche Literatur. In dem klassischen
Lehrbuch von Blaschke [1] wird Seite 251 ff. der Meinung Ausdruck
gegeben, dass die Giite einer Ausgleichung nur relativ und nicht ab-
solut gemessen werden konne. Diese Auffassung ist vorerst nicht be-
fremdend, denn nachdem der Glaube an die Existenz bestimmter
Sterbegesetze einmal {iberwunden war, handelte es sich bei der Aus-
gleichung nach allgemeiner Ansicht im wesentlichen darum, den em-
pirischen Streckenzug der Sterbehdufigkeiten in eine Kurve zu ver-
wandeln, die unseren Vorstellungen besser entspricht. So formuliert
es auch Altmeister Czuber [2]. Es wiirde ein Buch fiillen, die bis heute
erfundenen und empfohlenen Verfahren zur Sterbetafel-Ausgleichung
aufzuzdhlen und zu erliutern. Wir wollen lediglich einen charak-
teristischen Ausspruch von Tschuprow [3] nicht vorenthalten: «Bei
allen Ausgleichsmethoden (graphisch, mechanisch oder analytisch) ver-
fihrt man ziemlich willkiirlich, und man hat zwischen der Skylla eines
allzu weitgehenden Schematismus, der die eigenartige Wellenbewegung
der empirischen Zahlen durch eine allzu einfache Kurve nivelliert, und
der Charybdis einer allzu getreuen Wiedergabe der urspriinglichen
Zahlen, welche rein zufillige Schwankungen fortbestehen ldsst, zu
mangvrieren. »

Wenn man die Sache so betrachtet, kann man allerdings der von
Sachs [4] vertretenen Meinung beipflichten, die kurz gesagt dahin
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geht, dass man sich im mittleren Bereich einer Sterbetafel die Miihe
der Ausgleichung unbedenklich ersparen koénne, und dass in den
hochsten Altersklassen zumindest die analytische Ausgleichung zu ver-
werfen sei. Zufolge der willkiirlichen Anderungen, welchen man die
Sterbetafeln zu unterwerfen pflege, werde das wahre Bild der Sterb-
lichkeit, die in ihnen zusammengestellt sein sollte, iiber die ohnehin
vorhandenen Fehlerquellen hinaus noch verfilscht. Immerhin gibt
auch Sachs zu, dass es zweckmiissig sein kann, die Sterbetafel fiir den
Gebrauch in dieser oder jener Weise zu modifizieren. In der Tat soll
ja die Sterbetafel unter anderem dem praktischen Zweck der Primien-
berechnung dienen, und man hat sich nur die Folgen auszudenken,
wenn die Primien der einjdhrigen Risikoversicherung nach unaus-
geglichenen Tafeln berechnet wiirden. Was dagegen den Hrkenntnis-
wert der Sterbetafeln anbetrifft, so mochten wir Sachs darin zustim-
men, dass dieser wohl nicht so gross ist wie gemeinhin angenommen
wird.

Nun glauben wir, dass in der Frage der Ausgleichung von Sterbe-
tateln der Natur der Angelegenheit nur dann richtig Rechnung ge-
tragen wird, wenn man die Wahrscheinlichkeitstheorie zum Ausgangs-
punkt nimmt. Man muss sich dann die Frage stellen, was fir Kon-
sequenzen sich beziiglich der Tafel-Ausgleichung ergeben, wenn man
die sogenannten Sterbenswahrscheinlichkeiten als echte statistische
Wahrscheinlichkeiten auffasst, so dass also die empirisch festgestellten
q, nur als Stichprobenerhebungen aus einem Material mit einer vor-
handenen, aber nicht bekannten wahren Sterbenswahrscheinlichkeit
anzusehen sind. In wertvollen Untersuchungen hat Ammeter [5] ge-
zeigh, dass es bei Basierung auf den wahrscheinlichkeitstheoretischen
Standpunkt im Gegensatz zu den zitierten Auffassungen moglich ist,
eindeutige Kriterien fiir die Giite einer Ausgleichung anzugeben. Iis
wire aber nicht sinnvoll, sich bei der Beurteilung einer Ausgleichung
auf den wahrscheinlichkeitstheoretischen Standpunkt zu stellen, wenn
man dies bel der vorangehenden Ausgleichung selbst nicht tun diirfte.
Wir sind aber iiberzeugt, dass eine solche Stellungnahme gerechtfertigt
1st, worauf wir noch niher eintreten werden. Wenn man sich jedoch
bei der Ausgleichung auf einen wahrscheinlichkeitstheoretischen Stand-
punkt stellen darf, dann sollte man diesen Standpunkt einnehmen und
die beziiglichen Konsequenzen ziehen, indem dann die Ausgleichung
nicht mehr bloss eine willkiirliche Schonheitsoperation darstellen wird.
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Ziwar sagt Sachs [4], dass die Ausgleichung einer Sterbetafel mit
der Ausgleichung der Beobachtungsfehler z. B. nach der GaufBischen
Methode der kleinsten Quadrate im Grunde nichts gemein habe, wenn
auch das gleiche mathematische Riistzeug Verwendung finde. Denn
bei der Ausgleichung einer Sterbetafel handle es sich nicht darum,
aus einer grosseren Zahl einander in gewissen «Fehlergrenzen» wider-
sprechender Beobachtungsergebnisse ein einheitliches Bild herzustel-
len, sondern nur um ein Glitten der Kurve, als die sich die Sterbetafel
darstellen ldsst. Aber die Abweichungen von der geglitteten Kurve
selen nicht das Krgebnis mehrerer Beobachtungen desselben Vor-
ganges, die Widerspriiche enthalten, welche beseitigt werden miissen;
sie rithren vielmehr nur daher, dass man willkiirlich, um nicht zu sagen
gewaltsam, eine vorgefasste Meinung dariiber, wie eine Sterbetafel aus-
sehen miisse, in die Tat umsetze. In diesem Punkte sind wir etwas
anderer Ansicht, und wollen versuchen, diese in den néchstfolgenden
Austithrungen zu begriinden.

Iis 15t die Frage voranzustellen, ob die Sterbenswahrscheinlichkeit
als echte statistische Wahrscheinlichkeit angesprochen werden kann.
Wenn dies der Fall ist, kann — wie wir zeigen werden — gefolgert werden,
dass die empirischen Werte der ¢, zufillig um die wahre Sterblichkeits-
kurve schwanken, und wir kénnen mit Recht fir die Ausgleichung
in gewissen Grenzen analoge Uberlegungen anstellen, wie sie aus der
Theorie der Beobachtungsfehler bekannt sind. Nur hat man sich dem
Umstande anzupassen, dass es sich nicht um Schwankungen beziiglich
einer konstanten Grundwahrscheinlichkeit handelt, sondern wum
Schwankungen bezuglich einer von Beobachtung zu Beobachtung sich
dndernden Grundwahrscheinlichkeit.

Die Frage nach der Natur der Sterbenswahrscheinlichkeit 1st aber
heute hinreichend geklirt. Wir wissen, dass die Sterbenswahrschein-
lichkeit einer sikularen Anderung unterworfen ist, und dass man daher
bei der Priifung der Sterblichkeitsschwankungen einer bestimmten
Altersklasse innerhalb bestimmtem Zeitraum nicht einfach auf das
arithmetische Mittel abstellen darf, sondern die Abweichungen vom
Trend, der uns die zeitliche Anderung der Sterbenswahrscheinlichkeit
reprisentiert, auf ihren Zufallscharakter priiffen muss. Da wir nicht
einen festen Mittelwert haben, kann nicht die Verteilung der absoluten
Abweichungen betrachtet werden, die Priifung wird sich vielmehr auf
die Verteilung der relativen Abweichungen in bezug auf den jeweiligen
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Trendwert erstrecken. Was die Darstellung des Sterblichkeits-Trend
selbst anbetrifft, so kann er in den letzten Jahrzehnten gendhert als
linear aufgefasst werden, mit schwécherem Gefille je hoher die Alters-
klasse. Dass dieser Trend auf die Dauer keine Gerade sein kann ist
klar. Im tibrigen verweisen wir hier auf die einschlégige Literatur, vor
allem auch auf die Dissertationen von Baltensberger 6] und Schuler [7].
Abgesehen von Kriegs- und Epidemiezeiten schwanken die empirischen
q,-Werte im grossen und ganzen normal, also rein zufallsméssig um
den sdkularen Trend, welche Aussage insbesondere auf Grund der
Untersuchungen von Lange [8], Wiesler [9] und Ammeter [10] als
plausibel anzusehen ist.

Man kann also von der Voraussetzung ausgehen, dass die Sterbens-
wahrscheinlichkeit einer bestimmten Altersklasse eine echte statistische
Wahrscheinlichkeit ist, wobei immerhin im Hinblick auf praktische
Untersuchungen verschiedene Schwierigkeiten im Auge zu behalten
sind. So pflegt man bekanntlich zur Erreichung grosserer Kollektive
die Beobachtungen mehrerer Jahre zusammenzufassen. Wegen der
sikularen Sterblichkeitsabnahme erscheinen dadurch die Schwankun-
gen grosser, als es nach remner Zufallsverteilung der Fall wire, worauf
z. B. in einer Arbeit von Ruchti [11] hingewiesen wird. Das Streben
nach Kollektiven moglichst grossen Umfanges birgt {iberhaupt ge-
wisse (refahren in sich. Ein Material kleinen Umfanges, aber homo-
genen Inhaltes, kann oft nitzlichere Resultate liefern als ein ungleich
grosseres, aber aus charakterlich verschiedenen Teilkollektiven zu-
sammengesetztes Material. Fin lehrreiches Beispiel in dieser Hinsicht
sind die Sterblichkeitsuntersuchungen der englischen Versicherungs-
gesellschaften fiir die Periode 1924-29 [12].

Die Gesamtheit der Trendlinien fiir die Sterblichkeit der ver-
schiedenen Altersklassen liegen auf der sog. Sterblichkeitsfliche. Wenn
der Sterblichkeitsabfall tatsdchlich in jeder Altersklasse dauernd linear
wire, kénnte man die Sterblichkeitsfliche mit den Trendlinien als
Regelfliche bestimmen. Man pflegt bekanntlich auf der Sterblichkeits-
fliche drei Kurvenscharen auszuzeichnen:

x = konst., d.h. die zeitliche Anderung der Sterblichkeit fiir die
Altersklasse z.
t = konst., d. h. Sterbetafel gleichzeitig Lebender.

t— @ = 7 = konst., d. h. Verlauf der Sterblichkeit einer Generation.
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Wir wollen nun die ganze Sterblichkeitsfliche als ein Kollektiv
auffassen, von welchem die Trendlinien mit z = konst. Teilkollektive
bilden, und wollen das Ildchengitter der q,-Punkte in Vergleich setzen
zu eilnem Urnenschema von » Serien zu je s Versuchen mit konstanter
Grundwahrscheinlichkeit. Anstelle des durch dieses einfache Urnen-
schema veranschaulichten Kollektivs mit Schwankung der Kreignis-
zahlen um eine feste Grundwahrscheinlichkeit, d. h. also anstelle eines
ebenen Gitters, haben wir ein Flidchengitter mit Schwankungen um
die Gitterpunkte, welche ihrerseits eine von Gitterpunkt zu Gitter-
punkt sich &ndernde Grundwahrscheinlichkeit reprasentieren. Es ge-
hort zu den grundlegenden Fakten der Wahrscheinlichkeitstheorie,
dass man aus einem Gesamtkollektiv mit Wahrscheinlichkeitscharakter
nicht einen Teil herausheben kann, der diesen Charakter nicht besésse.
Bei dem durch unser Urnenschema gegebenen ebenen Gitter kénnen
wir irgendwelche Punktfolgen herausgreifen, sie bilden immer ein Teil-
kollektiv mit Wahrscheinlichkeitscharakter. Man vergleiche hiezu die
Forderung nach Unempfindlichkeit gegeniiber Stellenauswahl, welche
v. Mises [18] in seiner Grundlegung der Wahrscheinlichkeitsrechnung
aufgestellt hat. Nun haben auf der Sterblichkeitsfliche die Gitter-
punkte der durch die Trendlinien mit z = konst. gegebenen Teilkollek-
tive sicher Wahrscheinlichkeitscharakter. Wenn wir nun statt dieser
Teilkollektive jene der Gitterpunkte auf den Kurven mit ¢ = konst.,
d. h. auf den Sterblichkeitskurven gleichzeitig Lebender, herausgreifen,
so ist man versucht zu argumentieren, dass man wieder Teilkollektive
mit Wahrscheinlichkeitscharakter erhalte, so dass also die empirischen
Werte rein zufillige Schwankungen um eine a priori unbekannte
q,-Kurve aufweisen miissten. Es konnte aber doch eine Abhéngigkeit
der sikularen Trendlinien voneinander bestehen. Die Schwankung der
Gitterpunkte auf den Kurven mit ¢t = konst. erfordert daher eine ge-
sonderte Untersuchung. Eine solche wurde von Niedermann [14] durch-
gefithrt und hat eindeutig die Vermutung bestétigt, dass die Streuung
der Sterblichkeitsschwankungen auch durch die verschiedenen Alters-
klassen hindurch als normal betrachtet werden darf.

Wenn im einfachen Fall einer in Wirklichkeit konstanten Be-
obachtungsgrosse zu vermuten ist, dass die empirischen Werte nur
zufillige Abweichungen vom wahren Wert darstellen, so ist bekannt-
lich das arithmetische Mittel der empirischen Werte der wahrschein-
lichste Wert der unbekannten wahren Grosse. Oder mit andern Worten:
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Unter Voraussetzung einer normalen Schwankung der Beobachtungs-
werte 1st das arithmetische Mittel derselben die mit dem kleinsten
IFehlerrisiko behaftete Bestimmung des unbekannten wahren Wertes;
die Summe der scheinbaren Abweichungsquadrate ist dann ein Mini-
mum. Nun liegt die Sache bei der Sterbetafelausgleichung zugegebener-
massen nicht so einfach, denn wir haben hier nicht zuféllige Abwei-
chungen von einem konstanten Wert, sondern von einer vorldufig un-
bekannten Kurve. Man wird sich deshalb fragen, ob es nicht eine Art
Verallgemeinerung der Bildung des arithmetischen Mittels gibt fiir den
Fall der mit fortschreitender Abszissenordnung sich dndernden Un-
bekannten. Nach Lorenz [15] 18t die Darstellung einer empirischen
Werterethe durch eine ganze rationale Funktion, erhalten nach der
Methode der kleinsten Quadrate, die natiirliche Fortbildung des
arithmetischen Mittels. Mit Hilfe der von ihm verétfentlichten Tabel-
len wird die Ausgleichung empirischer Reithen durch orthogonale ganze
rationale Funktionen sehr leicht gemacht. Wir haben also eine Dar-
stellung der Iform

Yy=20bp+0,X;+a;Xo+ ... +0,X,,

wobel a, Konstante und X, ganze rationale Funktionen 1. Grades der
Verénderlichen z sind; a, 1st dabei das arithmetische Mittel.

In seinem Lehrbuch der Wahrscheinlichkeitsrechnung hat Poin-
caré [16] der Approximation einer empirischen Wertereihe durch eine
ganze rationale Funktion ein spezielles Kapitel gewidmet. Quiquet [17]
hat in der Folge die Frage aufgeworfen, ob die Methode wohl zur Aus-
gleichung von Sterbetafeln verwendet werden konnte, glaubte sie aber
verneinen zu miissen, da man nach seiner Meinung im Grade der ratio-
nalen Funktion zu hoch gehen miisste, wenn eine ausgedehnte Tafel
reprisentiert werden sollte, so dass die Formel praktisch zu unhandlich
wiirde. Interessant ist in diesem Zusammenhang ein Vorschlag von
Gram [18]. Er zerlegt die Beobachtungsreihe in kleinere Abschnitte,
gleicht diese aus mittels ganzer rationaler Funktionen dritten Grades
auf Basis von Orthogonalfunktionen, und verkniipft dann die ausge-
glichenen Kurventeile. Als Grosse der Kurventeile nennt Gram 10
bis 20 Reihenglieder. Es wird also offenbar auch hier die Befiirchtung
gehegt, dass ein nur niederer Grad der rationalen Funktion fiir die
Ausgleichung einer ganzen Tafel nicht ausreichend sei. Durch die Ta-
bellen von Lorenz [15] hdtte man nun allerdings die Moglichkeit in
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der Hand, mit leichter Mithe nach ganzen rationalen Funktionen bis
zum 6. Grade auszugleichen. Praktische Versuche zeigen, dass man bei
Weglassung der jiingeren Altersklassen schon bei Darstellung durch
eine Funktion 3. Grades befriedigende Resultate erhalten kann. — Im
Hinblick auf die Verwendung orthogonaler ganzer rationaler Funk-
tionen zur Tafel-Ausgleichung sei auch noch auf die bereits genannte
Arbeit von Ruchti [11] sowie auf eine weitere interessante Abhand-
lung von Lorenz [19] verwiesen.

Die Ausgleichung mittels ganzer rationaler Funktionen in ge-
nannter Art diirfte aber doch keine Liosung des Problems in dem von
uns anvisierten Sinne darstellen. Ohne Verwendung von Kriterien,
welche auf die bereits ausgeglichene Tafel abstellen miissen, kann gar
nicht festgestellt werden, welcher Grad der Funktion in einem vor-
liegenden Falle optimal ist, d. h. wohl zufillige Schwankungen nach
Moglichkeit glittet, ohne aber charakteristische Hocker zu verwischen.
Sodann 1st nicht zu tbersehen, dass das ausgeglichene g, als eine ein-
fache analytische Funktion der Ordnungsnummer z erscheint, es wird
also der Beobachtungsreihe gewissermassen ein bestimmtes Gesetz
supponiert, so dass es sich unseres Erachtens nicht um mechanische,
sondern um analytische Ausgleichung handelt, und man kann die
gleichen Kinwinde erheben, welche gegen die analytischen Ausgleichs-
verfahren ing Feld gefithrt werden. Immerhin wére dabei nicht zu
ibersehen, dass Begriindung sowohl als Funktionsform wesentlich
verschieden sind.

Wir glauben, dass die Losung vielmehr zu suchen ist in einer sinn-
gerechten Modifikation der mechanischen Ausgleichung, deren Formeln
ja bekanntlich im wesentlichen gewichtete arithmetische Mittel sind.
Anderson [20] hat sich mit einer analogen Fragestellung befasst in be-
zug auf Wirtschafts-Zeitreihen, und es erscheint uns nicht abwegig,
unsere Untersuchung dazu in Parallele zu setzen. Die Absterbeordnung
nimmt némlich insofern eine interessante Stellung ein, als sie im we-
sentlichen biologisch verursacht ist, aber doch nur bei Ordnung nach
steigender Ordnungszahl sinnvoll dargestellt erscheint. Nach letzterer
Eigenschaft wiire sie eine typische Zeitreihe. Anderson geht bei seinen
Untersuchungen von der Annahme aus, dass ein jedes Glied der Zeit-
reithe eine zufillige Variable im strengen Sinne des Wortes ist, so dass
es also verschiedene Werte mit verschiedener mathematischer Wahr-
scheinlichkeit annehmen kann. Als richtiger Wert des einzelnen Reihen-
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gliedes wird seine mathematische Erwartung angesehen, d.h. das
Ideal des arithmetischen Durchschnittes, der die zufilligen Einfliisse
zu eliminieren hat. Anderson komm¢t zum Schluss, dass eine auf Shep-
pard zuriickgehende mechanische Ausgleichung der Sachlage am besten
gerecht werde. (Iis handelt sich dabei einfach darum, dass nach einer
Parabel n-ter Ordnung, n > 1, gemittelt wird, wobei die Ordnung je
nach dem gewiinschten Grad der Annidherung der empirischen an die
ausgeglichene Reihe zu wéhlen ist. Auf die beziiglichen Ausgleichungs-
formeln, welche sich auch bei Blaschke [1], Seite 226 ff., vorfinden,
werden wir noch ausfithrlicher zuriickkommen.) Offensichtlich ist die
Ausgangslage bei unserem Problem die gleiche wie bei den Uber-
legungen Andersons. Wenn wir trotzdem auf eine spezielle mechanische
Ausgleichsformel hinzielen, so deshalb, weil man bei der Sterblichkeits-
kurve in bezug auf den Kurventrend im Gegensatz zu einer beliebigen
Zeitreihe a priori einigermassen orientiert ist. In den bereits genannten
Untersuchungen iiber die Beurteilung der Giite von Sterbetafel-Aus-
gleichungen auf wahrscheinlichkeitstheoretischer Grundlage hat Am-
meter [5] anhand praktischer Beispiele festgestellt, dass die analytische
Ausgleichung nach Makeham unter Umsténden bessere Resultate
liefert als mechanische Ausgleichungen nach bekannten Formeln.
Nachdem man aber auf wahrscheinlichkeitstheoretischer Basis sozu-
sagen zwangsldufig zur mechanischen Ausgleichung gelangt, ist zu
vermuten, dass in den iiblichen Formeln der mechanischen Ausglei-
chung, als arithmetische Mittel gedeutet, die Gewichte nicht gliicklich
gewdhlt sind. Zur Festlegung dieser Gewichte gelangt man bekannt-
lich, indem im wesentlichen die Ausgleichung nach einer Parabel nicht
zu hohen Grades als Grundkurve vorgenommen wird. Hier nun méch-
ten wir einsetzen, und anstelle der iblichen Parabel eine Makeham-
kurve treten lassen.

In diesem Zusammenhange ist an sehr interessante Meinungs-
dusserungen zu erinnern, welche Blaschke [1] Seite 240 ff. zum Pro-
blem der mechanischen Ausgleichung publiziert hat. Er weist darauf
hin, dass durch die Abgrenzung eines bestimmten Bereiches und durch
die Beschrinkung auf jene Parabeln, welche sich in diesem Bereich
nach einem bestimmten Prinzip mit Hilfe dquidistanter Punkte bilden
lassen, eine gewisse Aufteilung der Gewichte, je nach ihrer Stellung
zum Mittelwert, bewirkt wird. Zwangsldufig werden jenen Beobach-
tungswerten, welche bei der Parabelbildung 6fter mitwirken, hohere
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Gewichte zuerkannt, woraus folge, dass im mechanischen Ausgleichs-
prozess willkiirliche Gewichte an die Stelle der beobachteten treten.
Man habe versucht, die durch einfache Mittelbildung nach Parabeln
resultierenden mechanischen Ausgleichsformeln durch Anderung des
Gefilles der Koeffizienten, insbesondere im Sinne stirkerer Gewich-
tung der mittleren Werte, zu verbessern. Es sei aber klar, dass die
besten Resultate der mechanischen Ausgleichung erhalten werden,
wenn die fiir die Ausgleichung jedes einzelnen Bereiches herangezogene
Kurve das gesuchte Kurvengesetz selbst sei. Dieser Forderung ent-
spreche fiir die Absterbeordnung nahezu die Makehamsche Funktion,
und man konnte daher die Frage aufwerfen, wie sich die mechanische
Ausgleichung unter ihrer Verwendung gestalte. Die resultierende For-
mel erweise sich aber als {iberaus kompliziert. In diesem letzteren
Punkte hat sich Blagchke jedoch getéuscht.

Das Ziel unserer Untersuchungen liegt somit fest. Wir legen aber
Wert darauf, vorerst eine allgemeine Herleitung von mechanischen
Ausgleichsformeln darzustellen, woraus sich die gesuchte Ausgleichs-
formel als Spezialfall ergeben wird.

11,

Zur Herleitung der mechanischen Ausgleichsformeln machen wir
zundchst die vorstehend begriindete Voraussetzung, dass den beob-
achteten relativen Haufigkeiten

<o Yo Yoo y:c—l—l’

des Eintretens oder Nichteintretens einer Reihe von Ereignissen wohl-
bestimmte Wahrscheinlichkeitswerte

) y(x""l)’ y(a:), y(w_l—l):
zugrunde liegen. Von diesen letzteren nehmen wir weiter an, dass sie

sich zumindest in gewissen Bereichen um jeden beliebig herausgegrif-
fenen Wert = herum darstellen lassen durch eine analytische Funktion

der Form m
y(z) = ;Z{lk Pi(z) 5 (1)

wobei die Parameter 2, wertmiissig noch nicht néher bekannt sein
miissen. Die Funktionen g, () sollen untereinander linear unabhingig
sein. Wir bezeichnen die Funktion y(z) kurz als « Grundfunktion».

9
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Die beobachteten Werte y, weichen von den Erwartungswerten
y(x) um gewisse Betrige ¢, ab, die wir «Beobachtungsfehlers be-

nennen:
Ex = Yp— y(.’ll) . (2)

Wir suchen nun eine Ausgleichsoperation A(y,) fiir die beobachteten
Werte y, mit den folgenden Eigenschaften:

a) Lanearitit: Die Operation 4 soll linear sein, also die Form be-
sitzen
]

b) Erhaltung der Grundfunktion: Die Operation 4 soll alle Funk-
tionen, welche sich in der Form (1) mit beliebiger Wahl der Para-
meter 4, darstellen lassen, invariant lassen, d. h. es soll gelten

Aly@) = o) tir y(@) = 3 Agla). (4)

¢) Fehlerreduktion: Die unausgeglichenen und die ausgeglichenen
Werte sollen im Mittel moglichst wenig voneinander verschieden sein,

d. h. es soll
> [y —A(y)]* (%)
moglichst klein werden.

Um eine Ausgleichsoperation zu erhalten, welche diese drei For-
derungen befriedigt, machen wir den folgenden Ansatz: Nach Voraus-
setzung sollen sich die erwartungsméssigen Werte darstellen lassen in
der Form (1). Mittels o Werten x 45, wobei p>m (= Anzahl der
Parameter 2, in (1)), aber p <<n (= Anzahl der Beobachtungswerte y,)
sein moge, bilden wir die Summe der Differenzenquadrate

2 Yoy —y(@ +9)]% (6)

()
Wir bestimmen nun die Parameter 4, in (1) so, dass dieser Ausdruck
zu einem Minimum wird. Dadurch ist uns eine wohlbestimmte Funk-
tion ™M (x) festgelegt, und als ausgeglichenen Wert A(y,) erkliren

wir den Wert
' A(y,) = y™Mi(a). (7)

Wir bestimmen also den ausgeglichenen Wert 4(y,) nach der bekannten
Methode der kleinsten Quadrate, um die dritte Forderung zu erfiillen.
Man vergleiche in diesem Zusammenhange die Ausfithrungen Czubers
in seinem bekannten Lehrbuch der Wahrscheinlichkeitsrechnung [21].



— 135 —

Es 1st nunmehr noch zu zeigen, dass auch die beiden anderen Forde-
rungen erfiillt sind. Vorerst zeigen wir, dass die Forderung der Er-
haltung der Grundfunktion erfiillt ist, und nehmen zu diesem Zwecke
an, dass sich die auszugleichenden Werte y, selber in der Form (1)
darstellen lassen, also

m=é&mn ' ®)

Die Quadratsumme (6) nimmt in diesem Falle dann — und wegen der
vorausgesetzten linearen Unabhéngigkeit der ¢, (x) nur dann — fiir

alle beliebigen 2 den minimalen Betrag null an, wenn wir auch
y(x) = D) A @p(x) setzen. Nach unserer Definition von A(y,) wird

k=1 '
nun aber A(y,) = y(x) = y,, was zu beweisen war.

Als zweites zeigen wir, dass unsere durch (7) definierte Ausgleichs.

operation A(y,) linear ist, also auf die Form (3) gebracht werden kann-
Dazu schreiben wir die Minimumbedingung (6) ausfithrlich als:

St — 3 etz + )| = Min, 9)

(7)

Durch Ableiten nach den Parametern A, erhalten wir die notwendigen
Minimumbedingungen

(7)

Sty — S e+ oo+ = 0, ¢ =1, ..m), (10

was wir einfachheitshalber wie folgt schreiben

m

N A d(@) = Sty 0,z 4 ) (11)

k=1 (7)
Die Grosse 4,,(z) = > ¢(z + 1) @,(x -+ 7) hingt dabei nicht von den

Werten y,_ ab. Bezei((;l:met D(z) die Determinante, welche aus den

4,,(x) gebildet wird, so erhalten wir aus (11) die Parameter 4, dadurch,

dass wir in D(z) die p-te Spalte durch die in (11) rechts stehenden

Werte >y, ; @.(x 4 7) ersetzen und durch D(z) dividieren. s besitzt
(7)

l )
also 2, die Form 2 = Z ij%(x-{_j) B, (x), (12)

(r,7)

18t also wieder linear in den Grossen ,.
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- Setzen wir (12) in (7) ein, so erhalten wir nunmehr fiir 4(y,) nach
einer Umstellung der Summationsreihenfolge:

a) = S| 3 [ S o) Bl e ) sy (9

Dieser Ausdruck ist tatsichlich linear in den Grossen y,,,;, und die
Werte der Koeffizienten a; in (3) sind

= 2 [ S B glo + ) (14

Daraus ergibt sich als Hauptsatz:

Iiir jedes feste z bilden die Ausgleichskoeffizienten a; in (3) auf
Grund unserer Forderungen eine Folge, die nach dem Gesetze (1)
der Grundfunktion gebildet ist.

Dieser Satz erlaubt bereits, eine charakteristische Iigenschaft unserer
Ausgleichsoperation A4(y,) anzugeben. Wenden wir némlich 4 auf die
Ausgleichskoeffizienten a; selber an, bilden also A(a,), so muss diese
Grosse den Wert a, besitzen, weil ja alle Wertefolgen, welche der
Grundfunktion (1) geniigen, unverindert bleiben. Es gilt demnach die

Beziehung
= > ni (15)
(7

Diese sich hier als einfache Folgerung ergebende Beziehung 1st von
Landré fir den speziellen Fall der mechanischen Ausgleichung nach
Parabeln hergeleitet worden [22], und er erwihnt sie in seinem be-
kannten Lehrbuch [23] als einen merkwiirdigen Satz. An speziellen
Beispielen hat Landré auch nachgewiesen, dass diese Beziehung charak-

teristisch ist dafiir, dass > a} moglichst klein wird, dass es sich also
()

um Ausgleichungen mit maximaler «Ausgleichungskrafty handelt.

Schreibt man ndmlich gem. (2) die beobachteten Werte 3, in der Form

Yz = ’y(CIJ) + &, (16)
so wird nach (4) auf Grund der Linearitdt von A:

Ay, = A(y(x) + &) = A(y(2)) + A(er) = y(z) + A(e;).  (17)
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Die Grosse A(e,) gibt somit ein Mass fiir die Abweichung des aus-
geglichenen Wertes vom erwarteten Wert y(z). Auf Grund der
Schwarzschen Ungleichung findet man die Abschitzung
AT = [Sea] < (Sd)(Sed) @9
) (7) 6
so dass also tatsdchlich die ausgeglichenen Werte um so weniger von
y(x) abweichen, je kleiner > a? ist. Wir werden auf diesen Punkt
noch zuriickkommen. 1)

Obwohl es theoretisch durchaus denkbar ist, Ausgleichsoperatio-
nen A zu definieren, bei denen die Koeffizienten a; noch vom Index
des auszugleichenden Wertes abhéngen, wird man sich aus praktischen
Grinden auf die Verwendung solcher Operationen beschrinken, bei
denen dies nicht der Ifall ist, bei denen also mit einem einzigen System
von Ausgleichskoeffizienten a; iiber den ganzen Bereich der z ausge-
glichen wird. Diese Forderung der Konstanz der a; ist nur fiir sehr
spezielle Grundfunktionen (1) erfiillbar, und wir stellen uns nun die
Aufgabe, alle jene Funktionen zu bestimmen, welche auf solche 1m
eigentlichen Sinne mechanischen Ausgleichungen fithren. Da wir die
Funktionen ¢,(z) in (1) als linear unabhingig vorausgesetzt haben,
folgt aus der Bedingung (4), dass in diesem Falle durch unsere Aus-
gleichsoperation A4 jedes einzelne ¢,(x) in sich selber tibergefiihrt wer-
den muss, und die Frage reduziert sich deshalb auf die Bestimmung
aller méglichen linear unabhingigen Funktionen @(z), fiir welche eine
ey @) = Mo O +9) (19)

(7)
mit konstanten o; richtig sein kann.

Als erste Moglichkeit haben wir die m Funktionen @(z) = z*, mit
0<p<m—1, wobei m = Anzahl der Koeffizienten ;. Bilden wir nim-
lich Z o;(x 4 §)P, so finden wir, dass (19) auf die Bedingungsgleichung

{1
fithrt: ) :

i = Doz +iP = 3 o (F) 2o (20)
() (e, 7) k
Koeffizientenvergleich ergibt folgendes System von p - 1 Bestimmungs-
1 =z . . .
gleichungen fiir die «;: [ Sy =1 |
7 (21)
| St =0, firk=1,...,p,

welches fiir p <m—1 immer losbar ist.
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Wir haben somit m linear unabhingige Funktionen 2?, (p =0, ...,m—1)
gefunden, die unseren Forderungen geniigen.

Als weitere Moglichkeit ziehen wir die Funktion @(z) = ¢"* mit
reellem oder komplexem g in Betracht. Die Bedingungsgleichung (19)

fuhrt aut . , ;
6#1 — 2 aj eﬁ£($+9) = e,ux Z OL] 6‘”7, (22)
0 )]
d 1 N j
so dass also nur Nayer =1 (23)
()

erfilllt zu sein braucht, damit (19) befriedigt ist. So ergibt sich hier

eine ganze einparametrige Schar von Funktionen zu den m Funktio-

nen zP hinzu, welche fiir unsere Zwecke in Betracht kommen koénnen.
Die Reihenentwicklung von @(z -+ ) in der Form
| b s 1 B e

O +)) = Pa) + L ) + 0@ + .. (24

zeigt, dass damit im Bereich der analytischen Funktionen keine wei-
teren linear unabhéngigen Funktionen mehr gebildet werden konnen,
welche (19) befriedigen. Als allgemeinste Funktion, die zu einer mecha-
nischen Ausgleichsoperation 4 mit von z unabhingigen Koeffizienten
fithrt, haben wir daher die Linearkombination

m—1 R
y(x) = D\ A, a’ + > A, e (25)
p=0 r=1

in Betracht zu zichen, wobei E eine beliebig grosse Zahl sein kann.
Ob es tatsdchlich moglich ist, zu jeder dieser Funktionen auch eine
Ausgleichsoperation A(y,) zu bestimmen, kann mit Hilfe des vorgéngig
ausgesprochenen Hauptsatzes entschieden werden, nach welchem die
Koeffizienten a; selber die Gestalt (25) haben miissen. Machen wir
den Ansatz

m—1 Ji7
6= 2 A, 4 X A e = y(j), (26)
=0 r=1
so fithrt die Invarianzbedingung (4) auf (27)

m—1 R1 m—1 R m—1 R "
* Y 4 Y * 1 . *

2, Ayt 2\ et = 3 S Ay P X Ay ] {Zoﬂp(w i+ S e

p= r= p= —

@ \p=o ri=1
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Durch Ausmultiplizieren der rechten Seite dieser Gleichung erhalten
wir neben einem konstanten Glied solche, welche die Potenzen =z,
22, ... ™", und solche, welche die Exponentialfunktionen e“?, . .. e#&®
enthalten. Die Koeffizienten dieser Grossen miissen links und rechts
dieselben sein, also folgt speziell aus dem Vergleich der Koeffizienten
von ™1, dass

m—1
Sa=1=3[Sa,7+ S0 (28)

(7) (7) tp'=0
sein muss. Gehen wir der Reihe nach zu den Potenzen ™2, 2™, ... 20

iiber, so folgen sukzessive die Relationen

m—1 R

(7)) tp'=0 =1

(29)

m-1
Zaj_j-m—l — 0 = ZI [\ﬁ/l ?:D’+mﬁ + Y‘A m—1 8“”]
%) @ Lpr=o = :
Ein Vergleich der Koeffizienten von e¢”® ergibt schliesslich noch die
R weiteren Gleichungen
m-1
Za et —= 1 = Zn [E o 7p’eﬂﬂ + Z:A glur’ +ur)i ]’ (30)
() Lp'=0 rl=1

(Foe= 1y u0u BB)s

In den Gleichungen (28), (29), (30) haben wir ein System von m + R
linearen Gleichungen gefunden, das gerade die m 4 K Parameter A,
und A zu bestimmen gestattet. Dabei ist zu beachten, dass die An-
zahl der a; grosser als die Zahl m 4 B sein muss, damit nicht ay = 1,
a; =0 fiir j 20, die einzige moégliche Lésung unseres Gleichungs-
systems wird. Diese letztere bedeutet natiirlich diejenige Ausgleichung,
bei der die ausgeglichenen mit den unausgeglichenen Werten tiberein-
stimmen, und die stets dann auftritt, wenn die Anzahl der Parameter
arosser oder gleich ist wie die Anzahl der in der Minimumsbedingung
(9) verwendeten Punkte y,, ;. Wenn schon einerseits die Zahl der aus-
zugleichenden Werte grosser als m ++ I sein muss, so wird man ander-
seits die Ausgleichsbereiche nicht unnétig weit fassen. Blaschke [1]
(Seite 243) bezeichnet jene Ausgleichsformel, welche erhalten wird,
wenn die Zahl der zur Ausgleichung herangezogenen Werte die Zahl
der Parameter der Grundfunktion nur um eine Einheit iiberschreitet,
als eine Ausgleichung kleinsten Zwanges.
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Wir konnen mithin das Ergebnis der bisherigen Untersuchungen
folgendermassen zusammenfassen: Zu jeder m + R-parametrigen Funk-
tionenschar (25) und zu jeder vorgegebenen Anzahl p >m + R lisst sich
auf Grund der Minimumsbedingung (9) genau eine lineare Ausgleichs-
operation 4(y,) mit p konstanten (d. h. von z unabhéngigen) Koeffizien-
ten a; bestimmen, welche alle Funktionen der Schar invariant liasst.

Bis jetzt haben wir nichts genaueres beziiglich der Werte § aus-
gesagt, iiber welche in der allgemeinen Ausgleichsformel (8) zu sum-
mieren ist. Im Prinzip konnen diese ganz beliebig gewihlt werden,
sofern nur die Werte x 47 gewisse Indizes ergeben, die im auszu-
gleichenden Material enthalten sind. So wird man zwar in der Regel
Ausgleichsformeln zu verwenden suchen, deren Indizes symmetrisch
beziiglich des auszugleichenden Wertes gelagert sind, man wird also
7 die Werte —r, —r-+1, ...,0, ..., r—1, r durchlaufen lassen. Aber
nichts hindert daran, insbesondere zur Ausgleichung von Randwerten
auch vollstindig asymmetrisch gebaute Formeln zu verwenden. Es
braucht nicht, wie bei den symmetrisch gebauten Formeln, die Zahl
der zu mittelnden Werte ungerade zu sein. So ist es z. B. mdglich, auf
mechanischem Wege eine nach dem gewohnten Minimumprinzip aus-
geglichene n-gliedrige Tafel zu erhalten, indem man die Anzahl der
Glieder in (3) gleich der Anzahl der auszugleichenden Werte y; wihlt
und die Ausgleichskoeffizienten a; der Reihe nach so bestimmt, dass
sich sukzessive die ausgeglichenen Werte A4(y,), ..., A(y,) ergeben-
Dies wiirde allerdings zuerst die Bestimmung von n Koeffizienten-
systemen erfordern, so dass die direkte Minimumbestimmung und die
nachherige analytische Berechnung der ausgeglichenen Werte rascher
zum Ziele fiithrt. Auch ldsst sich — wenn auch nur in beschrinktem
Masse — auf mechanischem Wege eine Extrapolation der auszugleichen-
den Wertereihe vornehmen, indem man beispielsweise einfach ) = —1ry,
—7r;+1, ..., —7ry mit r; >7, >0 setat.

Mit der Ausgleichung kann zugleich eine Interpolation verbunden
werden. Im hiufig vorkommenden Falle, dass die unausgeglichenen
einjihrigen Sterbenswahrscheinlichkeiten fiir die Alter x 4 L statt
fiir die ganzzahligen Alter x gegeben sind, interpoliert man bzw. gleicht
man aus vermittels einer Formel, die man erhilt, indem man j = =+,

., £ (r+-1) setzt. Allerdings wird es kaum mdoglich sein, die
Giite einer auf diesem Wege gewonnenen Ausgleichung direkt nach-
zupriifen.
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I1I.

Wir wollen nach den vorstehenden theoretischen Untersuchungen
nun in einem mehr auf die Praxis ausgerichteten Teil einige Beispiele
von Ausgleichsformeln geben, die aus dem allgemeinen Ansatz (25)
hervorgehen. Setzen wir speziell die Grossen A, = 0, so ergeben sich
diejenigen Ausgleichsoperationen, welche Parabeln einer gewiinschten
Ordnung invariant lassen. In diesem Zusammenhange beweist man
sehr leicht folgenden bekannten Satz: Lésst eine symmetrische Aus-
gleichsoperation A4(y,) die Werte aller Parabeln der Ordnung 2s un-
verdndert, so lasst sie auch die Werte der Parabeln von der Ordnung
2s + 1 unverdndert.

Beweis: Sind die Koeffizienten a; symmetrisch, d. h. ist a; = a_;, so
wird identisch fiir alle ganzzahligen ¢

D et =0, (31)

j=-r
so dass das Gleichungssystem (29) ohne weiteres fir m = 2k 4 2
richtig ist, wenn es nur fir m = 2k 41 gilt, was zu beweisen war.

Der einfachste Spezialfall liegt vor, wenn wir die Invarianz einer
Geraden fordern. Dies fiithrt, falls wir j die Werte —r <7 <r an-
nehmen lassen, auf Grund der beiden Gleichungen (28) und (29), welche
hier die Form haben

1= @r )4y 0= (D7) 4, (32)
j=-r

-und 4, =0, so dass nach (26) gilt

sofort auf A, = o 1
r

1
a. — .
P 9r4-1

Wir haben also den Fall der einfachen arithmetischen Mittelbildung.

(33)

Fiir die numerische Bestimmung der Koeffizienten a; erweist sich
die Methode des Koeffizientenvergleichs, in Anwendung des Haupt-
satzes, als besonders praktisch. Nach dem Hauptsatz haben die Koef-
fizienten a; die gleiche Bauart, wie die Grundfunktion, so dass wir
gem. Beziehung (19), wenn wir @(z) = y(x) setzen, haben

y(z) = “Z) a; y(z - 9) (34)

wobei a; als Funktion von j von gleicher Form ist wie y(x) beziiglich z.



also

r = 2: a;
somit @,
r=38: a.
7

somit a,
r=4: a,

somit a,
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Im speziellen Falle der Geraden als Grundfunktion ist beispielsweise

o= 3y (A B o+ Bl
7
= (a+pf2) X (4 +Bj)+ > (4i+ Bj®).  (35)
Is muss demnach > (4 + Bj) =1, > (4] + Bj?) = 0 sein. Bedenken
wir noch, dass wenn j symmetrisch die Werte —r < 7 < r annehmen
soll, die Anzahl der j gleich 27 4+ 1, und >\ j = 0 ist, so gilt

A@r4+1) =1, BS =0 (36)

1
—, das heisst:
r+1

woraus, weil > 7220, folgt, B =0 und 4 =

a,=A+ By =-——.
j TR =0
Fordern wir dagegen die Invarianz von Parabeln zweiter (und da-
mit auch dritter) Ordnung, so ergibt sich, wenn wir wieder —r < j <r
wihlen, in analogen Berechnungen
9(r*+r)—3—1552

9T errn@Er—1)@r+9) (37

z. B. fur
17— 592
= — ;
= 0, = a_y — T Ao == g = — = 7;
35" ! tTogs B 2 35
T—1"
=
o1’ By =5y = a1 Qg = Qg = 91 Gy == g = _"2“1‘,
59 — 592
931
59 54 30 B B 14 B -
=0t T T gy T e T g BT gy B O
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Wir wollen hier die Frage der Ausgleichung nach Parabeln nicht
im Detail weiter verfolgen, es wurde dariitber von anderer Seite ge-
niigend publiziert, und wir verweisen z. B. auf die genannte Schrift
von Anderson [20], Seite 120 ff., sowie auf ein vom gleichen Autor
kiirzlich verdffentlichtes Lehrbuch [24], dann auf das Buch von
Blaschke [1], Seite 226 ff., und auf einen Aufsatz von Koeppler [25].

Dagegen erscheint uns ein anderer Hinweis erwihnenswert. Lassen
wir in (25) komplexe Werte fiir die Konstanten 4, A, und u, 7u, o
ergeben sich im einfachsten Ifalle, wenn wir nur den Realteil hin-
schreiben, Ansidtze von der Form

y(x) = Ay + Ay sin ux + A, cos ux, (38)

welche unter Umstinden zur mechanischen Ausgleichung von quasi-
periodischen Funktionen (z. B. Schwingungen mit verdnderlicher Am-
plitude) niitzlich sein kénnen, sofern die Liénge einer Periode und da-
mit x4 wenigstens angenihert bekannt ist.

Die bisherigen Ausfithrungen zur mechanischen Ausgleichung
sind — abgesehen von speziellen Hinweisen — nicht nur fiir die Aus-
gleichung von Rethen einjidhriger Sterbenswahrscheinlichkeiten von
Bedeutung. Wenn wir uns nun insbesondere der Betrachtung letzterer
zuwenden, so kommen in (25) nur reelle Konstanten in Frage, und wenn
wir y(x) = q,, e"" = ¢, setzen, so umfasst die Linearkombination

Q= >, 4 .I}p+-2)» (39)

eine Grosszahl der bekannten(pjcSterbegesetze», z. B.:
=0

A, =0 fir p>0:gq, = 4 = konst. (Dormoy I)

Ab=0 » p>1l:q, =+ 42 (Dormoy IT)

Ab=0 » p>2:q =4+ 2| 2A2? (Quiquet II, 2) [26]
A =0 fir r>1

Ay =0 P, = A" (Gomperz)

Ay=10 fir p>0:q, =+ A (Makeham I)

by =0 » p>1:q, =4 +Az+Ac (Makeham II)

A

=0 » p>2:q, = A+ A+ Az?+ A ¢ (Vermeeren) [27]
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A, =0 fir r> 2

A, =10 D g, = A CE Ayl (Rosmanith) [28]
A, =0 fir p>0: q, =2+ A+ G (Lazarus)
usw.

Aus guten Griinden beschrinken wir uns bei diesen Moglichkeiten
fiir die Wahl einer Grundfunktion auf Makeham I. Is sei also

y(z) = Ao + AL ¢ (40)

Die Konstante ¢ muss fest gewihlt werden, und die gesuchte Aus-
gleichsoperation lisst dann alle Makehamkurven mit diesem vorgege-
benen ¢ invariant. Setzen wir, nach der Methode des Koeffizienten-
vergleichs, zur Bestimmung der a;
oA c® = > (Ag+ A1) (24 A &) (41)
(7)
so folgt, wenn wir die Anzahl der a; mit o bezeichnen, dass

AOQ+AI26j:I,
DA =1

sein muss, woraus sich Ay und Aj und damit a; = A+ A; ¢ leicht be-
stimmen lassen. Soll j in symmetrischer Weise die Werte —r <j <r
durchlaufen, so ist p =27+ 1 und

(D H—=>Vd) +d (2r+1)— D) ¢)
“ @r41) > H— (D) d)? '
Die Koeffizienten a; sind hier natiirlich irrational, und im Gegensatz
zur Ausgleichung nach Parabeln ist a; == a_;. Fiir den Ansatz ¢ = 1,1
sind in Tabelle I hiernach die Werte a; fiir r = 2, 3, 4, 5 und 6 auf-
gefiihrt.

Es ist unseres Wissens erstmalig, dass zur mechanischen Ausglei-
chung von Sterbetafeln eine in den Koeffizienten unsymmetrische
Formel vorgeschlagen und praktisch zur Anwendung gebracht wird.
Die Idee, als Grundfunktion statt Parabeln die Makeham-Funktion
zu verwenden, wurde zwar von andern Autoren schon angetént, so
z. B. wie bereits gesagt, von Blaschke [1] (Seite 243), und von Alten-
burger [29] (8. 50), aber als ungeeignet verworfen. Altenburger meint

(42)
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sogar, es wiirde sich dabei nicht um eigentliche mechanische Ausglei-
chung handeln, da die Koeffizienten a; bei gewihltem r nicht ein fiir
allemal feststehen, sondern von dem fiir die auszugleichende Tafel in
Frage kommenden Werte ¢ abhéingen. Dieser Einwand ist uns nicht
verstidndlich. Es 1st nicht einzusehen, warum die Koeffizienten einer
mechanischen Ausgleichung nicht von Fall zu Fall den speziellen Ver-
héltnissen sollen angepasst werden kénnen, wenn damit eine Verbes-
serung des Resultats erreicht wird. Sodann ist aber darauf hinzuweisen,
dass ber modernen Sterbetateln weitgehend ¢ ~ 1,1 1st, so dass man
gegenwirtig unbedenklich ¢ = 1,1 setzen darf. Denn die Koeffizienten
a; dndern bei geringer Variation von ¢ auch nur so wenig, dass es fiir
das Resultat der Ausgleichung praktisch ohne Bedeutung ist, woriiber
Tabelle IT hiernach orientiert. Will man aber fiir eine unausgeglichene
q,-Reihe einen genaueren Wert fir ¢ bestimmen, sei es, um denselben
der Ausgleichung zugrunde zu legen, oder um nachzupriifen, ob er
nicht zu stark vom Ansatz ¢ = 1,1 verschieden ist, so geschieht dies
sehr einfach nach der von Landré [23] angegebenen Methode:

L %
i Yo = Aot A
und setzt man

n-1 2?@:1 3n-1

_jy:c—}-j:A! Znyrj:BJ ny+jzc’
i=0 j=n j=2n
B—4=4,, C—B =B,
s0 1st
o B, lg B, —1g 4,
"=—, d.h lgec= = :
A, n

In analoger Weise kann man ¢ bestimmen, wenn man als Grundfunk-
tion die zweite Formel von Makeham oder jene von Vermeeren wihlt.

In letzterem Falle ist

Y, = Ayt A x Ay A 5

und setzt man

4 fir 0<j<n —1
B » n<9<2n—1
Zyﬁr?‘: C » 2n<gj<3n—1
7 D » 3n<)<4n—1
E » 4n<j<5bn—1
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B—A4=4,, C—B=B,, D—-C=06, E—D=D,,
B1_A1:A2’ OI—B1:B23 Dl__cliozﬁ
B,— A4, =4,, C,—B, =B,
so folgt B,

lg By —1g 4,
=— und lgc= .
Ag n

Die mechanische Ausgleichung nach einer makehamschen Grund-
funktion bietet also keinerle1 Schwierigkeiten, sie ist im Gegenteil
dusserst einfach zu handhaben. Bleibt noch die Frage der Giite einer
solchen Ausgleichung. Es ist klar, dass sie nur soweit besondere Vor-
teile haben kann, als die Reihe der empirischen ¢, deutlich steigende
Tendenz zeigt. Es steht aber nichts dagegen, sich fiir gewisse Bereiche,
z. B. fur den «Tuberkulosebuckel», auf eine andere Grundfunktion zu
stutzen.

Verschiedene Autoren, so z. B. Landré [22], Altenburger [29] und
Perutz [30] (in einer sehr lesenswerten Abhandlung) bezeichnen die
Grosse > a7 als «Mass der Ausgleichskrafty der Operation A(y,).
Dies liegt darin begriindet, dass die bereits genannte Beziehung gilt

[4(e)]: < (D) (3 )
(7 (@)
D. h. unter allen denjenigen Ausgleichsoperationen 4, welche eine ge-
gebene Grundfunktion invariant lassen und eine vorgegebene Anzahl
von Koeffizienten besitzen, hat jene die grosste « Ausgleichskrafty, fir
welche [4(e,)]? im Mittel am kleinsten wird, also > a% ein Minimum
1st. Dieser Aussage kommt praktisch jedoch nur beschriinkte Bedeu-
tung zu, weil sie sich nur auf die auszugleichenden Werte selber be-
zieht und nicht auch auf ithre Differenzen, wiahrend man in Praxi von
einer «guten» Ausgleichung meistens verlangt, dass die letzteren bis
etwa zur zweiten Ordnung ebenfalls einen regelmissigen Verlauf auf-
welsen. Um einen solchen regelméssigen Verlauf der Differenzen zu
erreichen, verwendet man statt der aus dem Minimumprinzip gewon-
nenen Formeln solche, die man sich zumeist als durch mannigfache
Tterationsprozesse aus ihnen hervorgegangen denken kann. Wir ver-
weisen in diesem Zusammenhange auf Ausfithrungen bei Blaschke [1]
(S. 229) und Altenburger [29] (8. 59 ff.). Theoretisch ist leicht zu iiber-
blicken, wie sich die einzelnen Ausgleichsoperationen in bezug auf die
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Beobachtungsfehler ¢, (vgl. (2)) und deren Einfluss auf die Differenzen-
folgen der ausgeglichenen Werte y, = A(y,) verhalten. Bilden wir
nimlich die Folgen der ersten, zweiten, dritten usw. Differenzen der y_,
so erhalten wir, wenn wir fiir j > und j << —r die Grossen a; durch

a; =0 definieren:

Ay, =Yy, —Y, = A[y(z +1) +&,,)) — A(y(z) +¢,) =

= ylz+1)—y(=) + 2 a; "3:+1+j__2 @i 8prj =

== 1==F

” r+1
— AW y(z) “,Z (a:— ) gy ; = AVy() _.Z AN, i
j=-r A=k

und ganz entsprechend fiir die Differenzen héherer Ordnung, so dass
sich die nachstehenden Differenzenfolgen ergeben:

Y, = y(x) _I_E O Extjs

j=-r
. r+1
A9, = AVy(a)— 3 AV e,

j=—r
_ r4+2
A¥y, = A®y(z) +_Z A®a, e,

j=-r

r+1
AV, = AV y(a) 4 (— 1) D AVa; e

VRN

j=-r

Daraus folgen auf Grund der Schwarzschen Ungleichung sofort die
Abschitzungen iiber die Auswirkung der Beobachtungsfehler in der
I-ten Differenz der ausgeglichenen Reihe:

r+1 r+1
[0 4G < | 3 (@Va2] | S|

j==r R
Betrachten wir nun als Beispiel die Ausgleichskoetfizienten, wie wir
sie auf Grund des Minimumprinzips fiir r = 6 erhalten, so dass also
die Ausgleichsformel 13 Glieder besitzt (Typus ]—15). Eine Ausgleichs-
formel mit ebenfalls 13 Gliedern erhalten wir, wenn wir die nach
unserer Methode bestimmte siebengliedrige Formel einmal iterieren
(Typus =] 1), oder die entsprechende 5gliedrige Formel zweimal ite-

rieren (Typus + = |1). Berechnen wir die Quadratsummen der A" a,
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fiir jeden dieser Fille und multiplizieren wir sie mit der Zahl der Sum-
manden, so ergibt sich folgendes Bild:

Grundfunkti
PR O 182 a? |14 ) (AWap?| 15 3 (AP ap? |16+ 3 (ABa)? 17+ X (A B4yt
und Typ
Gerade, =1 0,166 0,355
11 1,251 0,082 0,037 0,080
a5 | 1457 0,116 0,029 0,020 0,044
Makeham T, L 1,030 0,165 0,347
e=Ll 101 | i 0,083 0,038 0,077
+|5|+ | 1463 0,118 0,029 0,021 0,043
Parabel
2. Ordnung, 13 2,273 0,557 0,920
i+ | 8454 1,060 0,790 1,083
x|+ | 4615 2,355 2,492
Makeham II, ! o 2,238 0,553 0,927
e=1L1 1111 3409 1,046 0,779 1,071
11111
||+ 459 2,337 2,470

Auf den ersten Blick erkennt man, dass in bezug auf die Fehlerglittung
die Ausgleichung mit einer einfachen Makehamkurve als Grundfunk-
tion praktisch gleichwertig ist mit jener nach einer Geraden, und dass
die Ausgleichung nach Makeham II als Grundfunktion gleichwertig
ist mit jener nach einer Parabel 2. Ordnung, wobei letztere beiden eine
wesentlich schwiichere Fehlerebnung bewirken. Besonders auffallend
ist sodann, wie wenig der Einfluss der Beobachtungsfehler e, bei den
iterierten Ausgleichungen nach Makeham I und nach einer Geraden
in den Differenzen erster bis dritter Ordnung zur Auswirkung kommt.
Bel den Ausgleichungen mit Makeham II oder Parabel 2. Ordnung
als Grundfunktion scheint eine zu oft wiederholte Iteration in dieser
Hingicht nicht immer von Vorteil zu sein, indem z. B. die Abweichun-
gen bei der zweimal iterierten 13gliedrigen Formel bereits in den
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zweiten Differenzen wieder stérker zur Auswirkung kommen kénnen als
in den ersten, so dass ein glatter Verlauf der zweiten Differenzenfolgen
keineswegs garantiert ist und eher noch bei der nur einmal iterierten
Formel erwartet werden kann. Es ist jedoch auch bei den auf Basis
der einfachen Makehamfunktion bzw. einer Geraden bestimmten For-
meln zu bedenken, dass man bei wiederholter Iteration ein Krgebnis
erhilt, das vom wahrscheinlichkeitstheoretischen Standpunkt aus be-
trachtet ungiinstiger sein wird, da man bei wiederholter Ausgleichung
nicht etwa zu einer Grenzfunktion gelangt, fiir welche das Minimum-
prinzip erfiillt ist, was man am einfachsten anhand eines Beispiels
zeigen kann. Die beiden Begriffe «Fehlerglittung» und «getreue Wie-
dergabe» schliessen einander also bis zu einem gewissen Grade aus
(vgl. das eingangs erwihnte Zitat von Tschuprow), und es wird stets
eine Krmessensfrage bleiben, welchem von beiden man im konkreten
Fall den Vorrang geben will.

Die Tatsache, dass man zur Erzielung einer geniigenden Fehler-
glittung in den meisten Fillen eine iterierte Formel wird verwenden
miissen, vermindert den Wert unserer auf Grund des Minimumprin-
zips aufgestellten Ausgleichsformeln keineswegs, im Gegenteil. Je mehr
sich die Reihe der y, auf Grund der ersten Ausgleichung dem Verlauf
der Grundfunktion anschmiegt, um so weniger wird sie sich bei der
zweiten Ausgleichung noch veréndern, da ja die Grundfunktion in-
variant bleibt, und um so weniger wird also auch das Minimumprinzip
verletzt werden.

Aus diesen Uberlegungen geht aber auch hervor, wie wichtig es
ist, dass die Grundfunktion glicklich gewdhlt wird. Ob dies der Fall
1st, kann im Sinne der Konzeption unserer Arbeit nur durch einen Test
auf wahrscheinlichkeitstheoretischer Basis entschieden werden. Nur
durch Vergleich der Testergebnisse fiir verschiedene Methoden oder
Formeln der Ausgleichung erhalten wir ein Kriterium iiber die «Giite
einer Ausgleichungy.

Auf einen Punkt ist noch hinzuweisen. Die Ausgleichung wird an
den Sterbehdufigkeiten, d. h. an Relativzahlen vollzogen, so dass keine
Beobachtungsgewichte beriicksichtigt werden. Man kann zwar an-
nehmen, dass die in einer Ausgleichsformel zusammengefassten
o Beobachtungswerte niherungsweise gleiches Beobachtungsgewicht
haben, so dass die Gewichtsunterschiede vernachlissigt werden kénnen.
Diese Annahme wird um so eher zutreffen, je kleiner die Gliederzahl

10
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der Ausgleichsformel ist. Anderseits wird jedoch die Moglichkeit der
Fehlerebnung beeintriachtigt, wenn die Mittelbildung der Ausgleichs-
formel sich nur auf ganz wenige Werte bezieht. Wir stehen mithin
auch hier vor Ermessensfragen.

Abgesehen von den einzelnen Ermessensfragen glauben wir mit
der vorgeschlagenen mechanischen Ausgleichsformel dem Praktiker ein
Instrument von grosser Einfachheit und zugleich hoher Leistungs-
fihigkeit in die Hand zu geben. Wir haben zu Illustrationszwecken zwei
Ausgleichungen vorgenommen. Als erstes Beispiel haben wir die Tafel
SM 1939/44 gewihlt, wobei wir die rohen Sterbenswahrscheinlichkeiten
der bezlglichen Publikation des Fidgenossischen Statistischen Amtes
[31] entnahmen. Die Ausgleichung wurde vorerst fiir den Bereich
z =17 bis £ =90 durchgefiithrt, auf Basis der 13gliedrigen Formel
Typus % ! % mit Makeham-Grundfunktion. Auf Grund der Konstanten
a; der Kolonne r = 3 in Tabelle I ergeben sich fiir die bentitzte Formel
die folgenden Konstanten:

oy = afy = 0.02608 ag = >, %0 = 0.14160
-3
, 3
aly = 2050, = 0.05047 o = Naja,; = 0.11632
-2
3
a'y = 2a,a, -+ a?, = 0.07302 ay = > a;8,,; = 0.09255
-1
0 3
ay = Ma;a,, = 0.09358 ay = > a;a,; = 0.07040
-3 0
1
(aly = > a;0_, = 0.11198 a, = 2a; a; -+ a2 = 0.04996
=3
] 2 I3
a—l _— Z a;j a',_j_l - 0.12805 Cl5 —_— 20/2 a3 == 0.08134
-3
= uf — (0.01465

Wie zu erwarten war und durch die nachstehend aufgefiihrten
Testergebnisse bestitigt wird, liefert die Ausgleichung mit dieser For-
mel und fiir den Tafelbereich von etwa x = 30 an aufwirts, d. h. fir
den monoton steigenden Teil ein wirklich gutes Resultat. Fur die
jingeren Alter muss man wegen des « Tuberkulosebuckels» eine andere
Grundfunktion wihlen, wofiir eine Parabel niedriger Ordnung in Frage
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kommen kann. Wir wéhlten jedoch versuchsweise, um bei einer zu
der im oberen Tafelteil benutzten Grundfunktion verwandten Funk-
tion zu bleiben, als Grundfunktion fiir die Ausgleichung des Bereiches
x =T bis 2 = 34 die Funktion Makeham II, also

y(x) = Ay + A2+ 2 ¢5 mit ¢ = 1,1.

Nach vorgingig beschriebener Methode ergeben sich fiir die Tgliedrige
Formel (r = 3) die Konstanten

a_, = —0,08533 a, = 0,29402
a, = 0,13426 a, = 0,33211 a, = 0,15281
ay = 0,27600 az; = —0,10337
und daraus durch Iterierung fiir die 13gliedrige Formel (Typus —H—;)
ay, = 0,00728 a; = 0,25161
a_, = —0,02291 a, =  0,13055
a_, = —0,02907 ag = 0,02090
ap = 0,33114
a, = 0,01743 a, = —0,08759
a, = 011519 as; = —0,03149
a, = 0,23628 ag =  0,01069

In Tabelle I1I hiernach ist die offizielle Tafel SM 1939/44 (Ausgleichung
im wesentlichen mechanische nach King mit der Kardinalpunktfolge
10, 15, 20, ...) in Vergleich gestellt mit der von uns vorgenommenen
Ausgleichung (Typus % ‘ -:,—, Grundfunktion: Makeham 11 fir z < 34,
Makeham I fiir z > 34). Von x = 34 zu = = 35 ergibt sich ein glatter
Ubergang, wie dies auch aus der beigefiigten Graphik ersichtlich ist.
Die Reihen der dritten Differenzen der q,-Werte geben uns Aufschluss
liber die erreichte Glittung. Wie die Summen der absoluten Differenzen
zeigen, sind die beiden Ausgleichungen, im ganzen genommen, von
praktisch gleicher und sehr befriedigender Gliattung. Immerhin hat
die offizielle Ausgleichung fiir z << 85 eine etwas bessere Glittung, wo-
gegen diese bei unserer Ausgleichung im oberen Tafelteil besser ist.

Um die getreue Wiedergabe zu beurteilen, bedienen wir uns des
x2-Tests. Wie aus den zitierten Untersuchungen Ammeters (Mitteilun-
gen 52, 1, S. 40 ff. und Kongressbd. I Scheveningen 1951, S. 634 ff.)
hervorgeht, kann man sich bei der Priifung mechanischer Ausgleichun-
gen der gewohnlichen y2-Verteilung bedienen, wobel fiir die Anzahl
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der Freiheitsgrade der Mittelwert (2 in Rechnung zu stellen 1st.
Sind T, die effektiven Totenzahlen der Altersklassen z, 7' die er-
wartungsméssigen Totenzahlen nach der ausgeglichenen Tafel, so ist

T—f)

=3

T,

Ist weiter n die Gliederzahl der zu priifenden Tafel, so gilt

[:a. fiar 7 £ 0,

EX?) =n > o, mit «, s
*) %’ "N =a,—1 fir j=0,
und fiir das Streuungsquadrat hat man die Formel
DGe) = |2( Do) + 4 3 (S mympa) 1= 4 0 (S o)
j=-r

]=-T - ]=-T

Die numerische Rechnung ergibt fiir die x2-Verteilung und ¢ = 1,1

bei Formel Typ % | % Mittelwert Streuungsquadrat
mit Grundfunktion Makeham I 0,8139 n 1,56251 n — 0,4036
mit Grundfunktion Makeham II 0,6015n 1,0633 n —0,4615

Die Priifung verschiedener Intervalle unserer Ausgleichungen der Tafel
SM 1939/44 hat folgende Resultate ergeben:

Intervall Grundfunktion E(x®) y® P(x%
16-30 Makeham I 12.21 32.64 < 0,5%
31-45 » 12.21 21.60 ~ 5%
46-60 » 12.21 18.92 32%
61-75 » 12.21 10.58 58 %
76-90 » 12.21 9.43 68 %

720 Makeham IT 8.42 12.90 14%
21-34 » §.42 13.47 129%,
T-34 » 16.84 26.37 6%
35-90 Makeham I 45.58 48.69 85 %
40-79 » 32.55 33.54 429
40-90 ) 41.51 41.97 459,
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Diese Test-Werte sind recht aufschlussreich. Vergleicht man mit
den in der amtlichen Publikation [31] sowie mit den von Ammeter
fiir verschiedene Ausgleichungen der Tafel SM 1939/44 genannten Wer-
ten fiir die Masszahl 2, so zeigt sich unsere Ausgleichung offensichtlich
iiberlegen. Wenn wir vorab den Tafelbereich fiir x > 85 betrachten,
so ersieht man, dass die mechanische Ausgleichung mit einfacher
Makehamkurve als Grundfunktion unter allen gegebenen Beispielen
den besten wahrscheinlichkeitstheoretischen Test aufweist. Aber auch
fir das Tafelintervall 7 <z < 34 1st die Ausgleichung mit Makeham IT
als Grundfunktion sehr befriedigend und halt den Vergleich mit ande-
ren mechanischen Ausgleichsverfahren sehr wohl aus. Ermittelt man
z. B. bei der offiziellen Tafel fiir diesen Bereich die Masszahl y2, so
ergibt sich der Wert 34.39, bei ung hingegen nur 26.37. Dabe1 lasst
die Methode in ihrer Anwendung an Finfachheit nichts zu wiinschen
brig.

Um die Methode auch an einem Material mit grosseren Schwan-
kungen zu erproben, haben wir als zweites Beispiel die neue Ver-
sicherten-Sterbetafel der Schweizerischen Lebensversicherungs- und
Rentenanstalt R. A. E. 1940/50 [32] ausgeglichen. Dieser Versuch
schien uns auch deshalb interessant, weil die publizierte Tafel der
Rentenanstalt analytisch ausgeglichen wurde, und zwar fiir 2 < = < 33
mit einer Parabel 4. Grades und fir 2 > 41 nach Perks, mit einer
Verbindungsparabel 3. Grades fiir das Zwischenstiick. Unsere Aus-
gleichung haben wir auf das Intervall 26 < x < 85 erstreckt, mit der
13gliedrigen Formel Typ - —, und zwar durchwegs mit einfacher
Makeham-Grundfunktion. Die beiden Ausgleichungen sind in Tabelle IV
elnander gegeniibergestellt. Was die Glattung anbelangt, so ist sie bei
beiden ausgeglichenen ¢,-Reihen sehr befriedigend, und bis zu 2 = 40
sind beide Ausgleichungen diesbeziiglich einander praktisch gleich-
wertig. I'ir den oberen Tafelteil ist die Ausgleichung der Renten-
anstalt hinsichtlich Glattung jedoch deutlich besser, was wegen der
analytischen Ausgleichung zum vornherein zu erwarten ist. Was hin-
gegen die getreue Wiedergabe anbetrifft, so spricht die Priifung mittels
des y2-Tests deutlich zugunsten unserer Ausgleichung. Wir sind uns
allerdings der Problematik des Vorgehens bewusst, indem es sich hier
um Policen- und nicht um Personen-Sterblichkeit handelt, und somit
die Hypothese der Unabhiingigkeit der Einzelereignisse voneinander
tellweise nicht zutrifft. Die Masszahlen, in gleicher Weise bestimmt
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wie vorhin bei der Tafel SM 1939/44, kénnen unseres Erachtens immer-
hin als Vergleichswerte dienen. Fir verschiedene Intervalle hat die
Rechnung folgende Angaben geliefert, wobei wir mit «analytisch» die
Ausgleichung der Rentenanstalt, mit «mechanisch» unsere Ausgleichung
kennzeichnen:

Intervall Ausgleichung (%% %2 P(x?)
2640 analytisch ~ 12 21.69 ~ 49,
mechanisch 12.21 19.61 8%
41-85 analytisch 41 47.81 229,
mechanisch 36.63 37.03 459,
41-55 analytisch 13.27
mechanisch 7.62
56-T0 analytisch 13.56
mechanisch 10.27
T1-85 analytisch 20.93
mechanisch 19.14

Abschliessend mochten wir den Wunsch aussprechen, dass die hier
behandelte Methode der mechanischen Ausgleichung auch an andern
Tafeln erprobt werde.
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Tabelle 1

(4)

zczjﬁ(z)“cf+cf((27*+1)—zcj)

-

iy = : pr e
’ (27‘—|—1)2029—(Z 07)2
(7) (7)
(c=1,1; —r<<7<r)

] Pl ¥ =13 r=4 re==§ r==6
-6 0,09468
-5 0,10915 0,09267
-4 0,12969 0,10649 0,09047
-3 0,16150 0,12604 0,10356 0,08804
-2 0,21807 0,15625 0,12202 0,10033 0,08538
=% 0,20989 0,15048 0,11761 0,09679 0,08245

0 0,20090 0,14413 0,11274 0,09288 0,07922

1 0,19101 0,13715 0,10740 0,08859 0,07567

2 0,18013 0,12947 0,10152 0,08387 0,07177

3 0,12102 0,09505 0,07868 0,06748

4 0,08793 0,07297 0,06276

5 0,06669 0,05756

6 0,05185

3 a; = 1 ¥ a;“’- = a,
Tabelle 11
a; nach gleicher Formel wie bei Tabelle I
r =38

i c=1,08 | ¢=1,09 | ¢=1,10 | ¢=111 | ¢=112
-3 0,1582 0,1599 0,1615 0,1631 0,1646
-9 0,1537 0,1550 0,1563 0,1575 0,1587
-1 0,1489 0,1497 0,1505 0,1513 0,1521

0 0,1437 0,1439 0,1441 0,1444 0,1446

1 0,1381 0,1376 0,1371 0,1367 0,1363

2 0,1320 0,1307 0,1295 0,1282 0,1271

3 0,1254 0,1232 0,1210 0,1188 0,1166

Fa;=1 D0 =gy
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a: Rohe einjahrige Sterbenswahrscheinlichkeiten, 9/,
b: Ausgleichung des Eidg. Statistischen Amtes; mechanisch nach King
z < 84 Grundfunktion Makeham II

¢: Mechanische Ausgleichung

Tabelle 111

2 > 34 Grundfunktion Makeham I

| |
x a 4% b 105408) 0z%0 ¢ 105408)
| |
7 1.85 1.42 1.88 =3
8 1.46 1.29 1.30 1
9 1.15 1.20 1.24 2f
10 1.13 1.15 . 1.19 6
11 1.32 1.14 2 1.16 9
12 1.08 1.17 ) 1.14 -9
13 1.18 1.94 2 1.19 —4
14 1.25 1.37 ] 1.33 .
15 1.56 1.54 —4 1.54 —4
16 1.78 1.77 -9 1.78 4
17 2.18 2.05 — 2.05 -6
18 2.20 2.34 -1 2.31 -7
19 2.51 2.62 4 2.60 1
20 2.89 2.83 1 2.86 4
21 3.1 2.96 . 3.02 6
22 3.94 3.05 1 3.09 1
23 2.92 3.11 ) 3.11 —4
24 3.02 3.14 ~9 3.14 _5
25 3.95 3.15 3 3.19 5
26 3.42 3.14 3 3.99 )
27 3.04 3.09 2 3.18 8
28 3.17 3.03 -2 3.12 9
29 2.93 2.99 1 3.02 1
30 3.10 2.99 -1 2.96 )
31 92.94 3.01 . 2.96 -6
392 9.89 3.06 1 3.03 2
33 3.09 3.13 ~9 3.15 .
34 3.45 3.92 1 3.96 2
35 3.48 3.84 1 3.38 3
36 3.95 3.47 1 3.51 —4
37 3.53 3.62 4 3.67 2
38 3.76 3.80 -2 3.89 )
39 4.31 4.02 4.13 3
40 4.15 4.32 . 4.41 =5
41 4.44 4.68 -8 4.73 =1,
42 5.17 5.10 . 5.12 1
43 5.84 5.58 ) 5.55 1
44 6.12 6.09 6.01 2
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T a 92%0 b 10543 Gz %0 ¢ 10%4B)
|

45 6.39 6.63 4 6.51 -3
46 6.87 7.18 2 7.06 2
47 8.11 7.74 3 T7.68 -1
48 8.14 8.35 -3 8.34 2
49 9.08 9.03 . 9.06 1
50 9.70 9.81 1 9.85 1
51 11.04 10.66 4 10.71 1
52 11.53 11.58 4 11.65 2
53 12.76 12.58 -3 12.68 -4
54 13.71 13.70 -1 13.81 9
55 15.79 14.98 1 15.06 -1
56 15.98 16.39 4 16.39 1
57 17.30 17.92 2 17.89 -9
58 19.47 19.58 -8 19.55 1
59 21.55 21.41 1 21.38 2
60 23.74 23.43 7 923.36 5
61 2575 25.56 11 25.50 ~1
62 27.49 27.81 8 27.82 1
63 31.48 30.25 -7 30.37 8
64 33.23 32.99 -6 33.14 3
65 36.02 36.11 11 36.14 8
66 39.30 39.54 10 39.45 3
67 42.12 43.22 9 43.10 :
68 46.69 47.26 —-10 47.17 2
69 51.18 51.76 -7 51.69 T
70 58.46 56.81 17 56.66 2
71 61.60 62.31 17 62.10 9
T2 68.62 68.19 15 68.08 2
73 74.15 74.62 2 74.62 2
T4 82.78 81.77 - 12 81.81 4
75 89.40 89.79 . 89.67 4
76 97.70 98.70 -3 98.22 -5
77 108.69 108.38 -1 107.50 10
78 116.67 118.83 -8 117.55 .
79 129.87 130.02 -6 128.32 —-32
80 142.15 141.94 -1 139.91 8
81 158.23 154 .51 . 152.32 26
82 166.44 167.67 9 165.23 -19
83 180.27 181.41 14 178.72 53
84 195.23 195.73 4 193.05 - 64
85 206.00 210.72 4 208.03 62
86 231.75 296.52 5 224.19 - 24
87 252.94 243.17 5 240.89 21
88 254.91 260.71 258.75

89 268.90 279.19 277.53

90 308.28 298.66 297 .44




Tabelle IV

Tafel R. A.E.1940/50 der Schweizerischen Lebensversicherungs-

a: beobachtete einjihrige Sterbenswahrscheinlichkeiten
b: analytische Ausgleichung der Rentenanstalt
¢: mechanische Ausgleichung mit Makeham-Grundfunktion

und Renten-Anstalt

1000 g, 1000 q,,
T x
a b a b ¢

26 1.67 1.84 1.81 56 11.16 11.02 11.17
27 1.80 1.84 1.80 57 13.07 12.17 12.20
28 1.67 1.84 1.79 58 11.97 13.43 18.27
29 1.98 1.84 1.80 59 14..48 14.83 14.52
30 1.69 1.83 1.81 60 15.51 16.37 15.97
31 1.75 1..88 1.83 61 17.58 18.07 17.53
32 1.95 1.83 1.86 62 18.60 19.94 19.26
33 1.66 1.84 1.89 63 22.49 22.00 21.20
34 2.04 1.86 1.94 64 21.81 24 .28 23.29
35 1.98 1.89 1.99 65 26.36 26.78 25.91
36 2.21 1.93 2.06 66 32.91 29.54 28.72
37 1.89 2.00 2.14 67 26.37 32.57 31.54
38 2.82 2.09 2.24 68 34.10 35.90 34.61
39 2.36 2.22 2.36 69 36.52 39.56 38.18
40 2.05 2.38 2.50 70 41.28 43 .57 41.97
41 2.72 2.58 2.68 71 61.13 47.97 46.47
492 3.07 2.83 2.89 72 48.95 52.78 51.39
43 2.94 3.11 3.12 73 48.92 58.04 56.83
44 3.49 3.42 3.41 74 46.74 63.79 64.50
45 3.59 3.76 3.74 75 80.65 70.06 73.50
46 4.02 4.14 4.12 76 62.35 76.89 82.54
47 4.56 4.56 4.54 T 101.12 84.31 91.97
48 4.71 5.03 5.04 78 132.01 92,36 102.63
49 5.56 5.54 5.61 79 93.53 101.08 112.57
50 6.34 6.11 6.25 80 195.74 110.51 125.44
51 7.21 6.74 6.95 81 124..40 120.67 138.61
52 7.32 7.43 7.68 82 108.43 131.60 154.62
53 8.94 8.20 8.49 83 83.33 143.33 179.65
54 9.37 9.05 9.33 84 240.00 155.88 210.34
55 10.85 9.98 10.23 85 146.34 169.26 251.55
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