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Summation interpolierter Zahlenreihen

VYon H. Kreis, Winterthur

Die Lagrangesche Interpolationsformel liefert die ganze Funktion
n-ten Grades, welche die vorgeschriebenen Werte f(z,), (), - .., f(z,)
annimmbt, in der Gestalt n

SHR() ),

wobel die Polynome n-ten Grades I,(x) nur von den Argumenten z,
und nicht von der I'unktion f(x) abhingig sind.

Eine Summe von der Form
s = j(@) + fa+ 1)+ fla+2) + ...+ (D)

kann demnach folgendermassen geschrieben werden:

n

s = kA f(a).
0

Der allgemeine Koeffizient b

18t ebenfalls von der I'unktion f(z) unabhiingig. Wie in der folgenden
Auswahl von Beispielen gezeigt werden soll, konnen bei bestimmten
Summationen durch passende Spezialisierung der Funktion f(z) die
unbekannten Koeffizienten A4, direkt ermittelt werden.

1. Beispiel: Gegeben die aquidistanten Werte £(0), f(10), f(20)
und £(30) einer ganzen Iunktion vom 8. Grade; gesucht die Summe

§ = ;f(x).

Wir haben die Koeffizienten des Ausdruckes

s = A f(0) + B(10) L C f(20) + D f(30)
zu bestimmen.



— 112 —

Wir wihlen fir f(x) folgende Spezialwerte:

L f(x) = (2—15),
$= U,

2. f(g) = (z—15)%,
15
s =23 12 — 2480.
0

3. f(z) = (x—15)1,
s =0,
4. f(z) = (z—15)° =1,
§= 8l.
Bestimmungsgleichungen:
1. —38376 4 —126 B4 125C + 3375 D= 0
2. 2254 + 25 B+ 25C 4+ 225D = 1480
3. —154— 5B+ 5C+ 15D= 0
4. A4+ B +- ¢+ D= 31
341 899
A=D=——; B=C(C= ‘
80 80
AL 341 899
s = 2f@) = 5 [(0) +/BO] + =~ [[10) +f20)]. (1)
0

Analog findet man 1im Falle einer quadratischen Interpolations-
funktion

a) bel gegebenen Funktionswerten f(0), f(10) und f(20):

T 133

s = D fa) = 5 [H0) + F20)] + = - F10); @)

b) bei gegebenen Funktionswerten f(0), f(5) und f(10):

10 11 3
s = 2 (@) = = [H0) + f10)] + -51 (). )

0
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2. Beispiel: Gegeben die dquidistanten Werte f(0), f(5), f(10) und
f(15) einer ganzen Funktion des dritten Grades; gesucht die Summe

1_51
s = 2fla).
Zur Berechnung der Koeffizienten des Ausdruckes
s = Af(0) -+ Bf(5) + C f(10) + Df(15)

1. f(x) = (x—"T)3,
s = 8% = 512,

wihlen wir

bo
~
N

=
~—

I
—~

8

l

-1
p—
o

7
s =842 2 — 344,
1

8. f(a) = (z—T)L,

s = 8.
4. flz) = (z—T)° =1,
& = 16,

Bestimmungsgleichungen :

1. —343 4 —8 B +27C 4 512 D = 512
2, 494 4B+ 9C - 64D — 344

3. —T74—2B+ 3C+ 8D= 8
4. A+ B+ O+ D= 16
12 28

Ad=Pee . B,
5 5

19 12 28
S 5= %]f(fv) = — [{O) +7A5)] 4 [5) + f(10)]. 4)

3. Beispiel: (Gegeben diedquidistanten Werte einer ganzen unktion
vom 4. Grade f(0), f(5), f(10), f(15) und f(20); gesucht die Summe

§ == i;‘(m).
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Wir setzen
s = A f(0) + Bf(5) + C f(10) + Df(15) 4 L {(20)
und nehmen fiir f(z) folgende Spezialfille an:
1. fla) = (z—10),

10
s =231 = 50666.

2. flz) = (£—10)3,
g = {.

3. f(z) = (x—10)2,

10
s =23 = 770,
1

4. f(z) = (x—10)1,

g = U.
5. f(x) = (x—10)° =1,
5 = 91.

Bestimmungsglerchungen:

1. 100004 +625 B --0C 4625 D - 10000 Ff = 50666
2. —10004 —125B +-0C +1256 D +~ 1000 E = 0
3 1004+ 256 B+0C+ 26D+ 100E = 770
4, —104— 5B+0C+ 5D+ 108 = 0
' A -+ B+ O+ D - o= 21
1309 4389 1729
A=E=——; == —; (= ——.
625 625 625
(5)
20 1309 4389 1729
= = —— [0 20)] F —— [f(8) =} #15)] + ——{(10).
s = S f(e) = o [H0) + FRO)] 4+ 5 [18) + f18)] 4~ = f(10)

Die Formeln (2) und (3) liefern genaue Resultate bei ganzen Funk-
tionen f(x) bis zum zweiten Grade; bei den Formeln (1) und (4) sind
die Summen genau fiir ganze Funktionen f(z) bis zum dritten Grade,
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wihrend sich bei der Formel (5) eine genaue Summe ergibt fiir Funk-
tionen f(x) bis zum vierten Grade. Andernfalls liefern die Summen der
interpolierten Funktionswerte mehr oder weniger exakte Ndiherungs-
werte der urspriinglichen Zahlenreihe.

Zur Beurteilung der Tragweite der aufgestellten Summationsformeln
habe ich in den folgenden numerischen Beispielen die Kommutations-
werte D, der SM-Tafel 1939/44, 39, die sich wegen der Kontroll-
und Vergleichsmoglichkeit besonders gut eignen, verwendet.

Formel (2): Quadratische Interpolation.
f(0) = Dg5 = 81150
10} = D,, = 22178
f(20) = Dy = 14966

“l Tz
35

L 7 133
N D, = — - 46116 + —— - 22178 = 472514.
20 10

Genauer Wert = Ng;— Nyg = 665530 — 193125 = 472405.

Formel (3): Quadratische Interpolation.
f(0) = Dy = 31150
f(5) = Dy, = 26383
f(10) = D, = 22178

5 o83
DID, = - 53328 4 - 26383 = 201449
35 L

Genauer Wert = Ny — N, = 665530 — 374085 = 291445.

Formel (1): Kubische Interpolation.

f(0) = Dy = 81150

(10) = D, = 22178

§(20) = Dy; = 14966

(30) = Dy = 8820

65 341 899

N'D, = . 89970 - —— . 87144 = 587778.
80 T 50

pra T
35

Genauer Wert = N,z — Ngg = 665530 — 77986 = 557544,
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Formel (4): Kubische Interpolation.

#(0) = Dy = 31150
i(5) = Dy, = 26383
f(10) = D5 = 22178
f(15) = Dy, = 18398
0 12 28
:D D, = — - 49548 + — - 48561 = 39085T.

Genaner Wert — Ny — N, — 665530 — 274698 — 390832.

Formel (5): Interpolation vierten Grades.

F0) = Dy = 31150
f(5) = Dy = 263883
F(10) = D,y = 22178
f(15) = D,, — 18398
F(20) = Dy, — 14966

30¢ 4389 1729
S D, = —— 46116 + — - 44781 + — . 22178 = 472409.
625 625 625

Genauer Wert = Ny — N = 665530 — 198125 = 472405,
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